1
|
Uyeda TQP, Yamazaki Y, Kijima ST, Noguchi TQP, Ngo KX. Multiple Mechanisms to Regulate Actin Functions: "Fundamental" Versus Lineage-Specific Mechanisms and Hierarchical Relationships. Biomolecules 2025; 15:279. [PMID: 40001582 PMCID: PMC11853071 DOI: 10.3390/biom15020279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Eukaryotic actin filaments play a central role in numerous cellular functions, with each function relying on the interaction of actin filaments with specific actin-binding proteins. Understanding the mechanisms that regulate these interactions is key to uncovering how actin filaments perform diverse roles at different cellular locations. Several distinct classes of actin regulatory mechanisms have been proposed and experimentally supported. However, these mechanisms vary in their nature and hierarchy. For instance, some operate under the control of others, highlighting hierarchical relationships. Additionally, while certain mechanisms are fundamental and ubiquitous across eukaryotes, others are lineage-specific. Here, we emphasize the fundamental importance and functional significance of the following actin regulatory mechanisms: the biochemical regulation of actin nucleators, the ATP hydrolysis-dependent aging of actin filaments, thermal fluctuation- and mechanical strain-dependent conformational changes of actin filaments, and cooperative conformational changes induced by actin-binding proteins.
Collapse
Affiliation(s)
- Taro Q. P. Uyeda
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Shinjuku, Japan
| | - Yosuke Yamazaki
- RIKEN Center for Biosystems Dynamics Research, Yokohama 230-0045, Kanagawa, Japan;
| | - Saku T. Kijima
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Ibaraki, Japan;
| | - Taro Q. P. Noguchi
- Department of Chemical Science and Engineering, National Institute of Technology, Miyakonojo College, Miyakonojo 885-0006, Miyazaki, Japan;
| | - Kien Xuan Ngo
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Ishikawa, Japan;
| |
Collapse
|
2
|
Cagigas ML, Ariotti N, Hook J, Rae J, Parton RG, Bryce NS, Gunning PW, Hardeman EC. Single molecule visualization of tropomyosin isoform organization in the mammalian actin cytoskeleton. Cytoskeleton (Hoboken) 2025; 82:45-54. [PMID: 38872463 PMCID: PMC11748362 DOI: 10.1002/cm.21883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/22/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024]
Abstract
The actin cytoskeleton is composed of both branched and unbranched actin filaments. In mammals, the unbranched actin filaments are primarily copolymers of actin and tropomyosin. Biochemical and imaging studies indicate that different tropomyosin isoforms are segregated to different actin filament populations in cells and tissues, providing isoform-specific functionality to the actin filament. Intrinsic to this model is the prediction that single-molecule imaging of tropomyosin isoforms would confirm homopolymer formation along the length of single actin filaments, a knowledge gap that remains unaddressed in the cellular environment. We combined chemical labeling of genetically engineered tropomyosin isoforms with electron tomography to locate individual tropomyosin molecules in fibroblasts. We find that the organization of two non-muscle tropomyosins, Tpm3.1 with Tpm4.2, can be distinguished from each other using light and electron microscopy. Visualization of single tropomyosin molecules associated with actin filaments supports the hypothesis that tropomyosins form continuous homopolymers, instead of heteropolymers, in the presence of all physiologically native actin-binding proteins. This is true for both isoforms tested. Furthermore, the data suggest that the tropomyosin molecules on one side of an actin filament may not be in register with those on the opposite side, indicating that each tropomyosin polymer may assembly independently.
Collapse
Affiliation(s)
| | - Nicholas Ariotti
- School of Biomedical SciencesUNSW SydneySydneyAustralia
- Electron Microscope Unit, UNSWSydneyAustralia
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneAustralia
| | - Jeff Hook
- School of Biomedical SciencesUNSW SydneySydneyAustralia
| | - James Rae
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneAustralia
| | - Robert G. Parton
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneAustralia
- Centre for Microscopy and MicroanalysisThe University of QueenslandBrisbaneAustralia
| | | | | | | |
Collapse
|
3
|
Dhar A, Bagyashree VT, Biswas S, Kumari J, Sridhara A, Jeevan SB, Shekhar S, Palani S. Functional redundancy and formin-independent localization of tropomyosin isoforms in Saccharomyces cerevisiae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.587703. [PMID: 38617342 PMCID: PMC11014519 DOI: 10.1101/2024.04.04.587703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Tropomyosin is an actin binding protein which protects actin filaments from cofilin-mediated disassembly. Distinct tropomyosin isoforms have long been hypothesized to differentially sort to subcellular actin networks and impart distinct functionalities. Nevertheless, a mechanistic understanding of the interplay between Tpm isoforms and their functional contributions to actin dynamics has been lacking. In this study, we present and charcaterize mNeonGreen-Tpm fusion proteins that exhibit good functionality in cells as a sole copy, surpassing limitations of existing probes and enabling real-time dynamic tracking of Tpm-actin filaments in vivo. Using these functional Tpm fusion proteins, we find that S. cerevisiae Tpm isoforms, Tpm1 and Tpm2, colocalize on actin cables and indiscriminately bind to actin filaments nucleated by either formin isoform-Bnr1 and Bni1 in vivo, in contrast to the long-held paradigm of Tpm-formin pairing. We show that cellular Tpm levels regulate endocytosis by affecting balance between linear and branched actin networks in yeast cells. Finally, we discover that Tpm2 can protect and organize functional actin cables in absence of Tpm1. Overall, our work supports a concentration-dependent and formin isoform independent model of Tpm isoform binding to F-actin and demonstrates for the first time, the functional redundancy of the paralog Tpm2 in actin cable maintenance in S. cerevisiae.
Collapse
Affiliation(s)
- Anubhav Dhar
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka 560012, India
- equal contribution
| | - VT Bagyashree
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka 560012, India
- equal contribution
| | - Sudipta Biswas
- Departments of Physics, Cell Biology and Biochemistry, Emory University, Atlanta, GA, 30322, USA
| | - Jayanti Kumari
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Amruta Sridhara
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Subodh B Jeevan
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Shashank Shekhar
- Departments of Physics, Cell Biology and Biochemistry, Emory University, Atlanta, GA, 30322, USA
| | - Saravanan Palani
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
4
|
Pollard LW, Boczkowska M, Dominguez R, Ostap EM. Myosin-1C differentially displaces tropomyosin isoforms altering their inhibition of motility. J Biol Chem 2024; 300:107539. [PMID: 38971309 PMCID: PMC11338116 DOI: 10.1016/j.jbc.2024.107539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024] Open
Abstract
Force generation and motility by actomyosin in nonmuscle cells are spatially regulated by ∼40 tropomyosin (Tpm) isoforms. The means by which Tpms are targeted to specific cellular regions and the mechanisms that result in differential activity of myosin paralogs are unknown. We show that Tpm3.1 and Tpm1.7 inhibit Myosin-IC (Myo1C), with Tpm1.7 more effectively reducing the number of gliding filaments than Tpm3.1. Strikingly, cosedimentation and fluorescence microscopy assays revealed that Tpm3.1 is displaced from actin by Myo1C and not by myosin-II. In contrast, Tpm1.7 is only weakly displaced by Myo1C. Unlike other characterized myosins, Myo1C motility is inhibited by Tpm when the Tpm-actin filament is activated by myosin-II. These results point to a mechanism for the exclusion of myosin-I paralogs from cellular Tpm-decorated actin filaments that are activated by other myosins. Additionally, our results suggest a potential mechanism for myosin-induced Tpm sorting in cells.
Collapse
Affiliation(s)
- Luther W Pollard
- Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Malgorzata Boczkowska
- Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Roberto Dominguez
- Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - E Michael Ostap
- Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Schofield MM, Rzepski AT, Richardson-Solorzano S, Hammerstedt J, Shah S, Mirack CE, Herrick M, Parreno J. Targeting F-actin stress fibers to suppress the dedifferentiated phenotype in chondrocytes. Eur J Cell Biol 2024; 103:151424. [PMID: 38823166 PMCID: PMC11610718 DOI: 10.1016/j.ejcb.2024.151424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/30/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024] Open
Abstract
Actin is a central mediator of the chondrocyte phenotype. Monolayer expansion of articular chondrocytes on tissue culture polystyrene, for cell-based repair therapies, leads to chondrocyte dedifferentiation. During dedifferentiation, chondrocytes spread and filamentous (F-)actin reorganizes from a cortical to a stress fiber arrangement causing a reduction in cartilage matrix expression and an increase in fibroblastic matrix and contractile molecule expression. While the downstream mechanisms regulating chondrocyte molecular expression by alterations in F-actin organization have become elucidated, the critical upstream regulators of F-actin networks in chondrocytes are not completely known. Tropomyosin (TPM) and the RhoGTPases are known regulators of F-actin networks. The main purpose of this study is to elucidate the regulation of passaged chondrocyte F-actin stress fiber networks and cell phenotype by the specific TPM, TPM3.1, and the RhoGTPase, CDC42. Our results demonstrated that TPM3.1 associates with cortical F-actin and stress fiber F-actin in primary and passaged chondrocytes, respectively. In passaged cells, we found that pharmacological TPM3.1 inhibition or siRNA knockdown causes F-actin reorganization from stress fibers back to cortical F-actin and causes an increase in G/F-actin. CDC42 inhibition also causes formation of cortical F-actin. However, pharmacological CDC42 inhibition, but not TPM3.1 inhibition, leads to the re-association of TPM3.1 with cortical F-actin. Both TPM3.1 and CDC42 inhibition, as well as TPM3.1 knockdown, reduces nuclear localization of myocardin related transcription factor, which suppresses dedifferentiated molecule expression. We confirmed that TPM3.1 or CDC42 inhibition partially redifferentiates passaged cells by reducing fibroblast matrix and contractile expression, and increasing chondrogenic SOX9 expression. A further understanding on the regulation of F-actin in passaged cells may lead into new insights to stimulate cartilage matrix expression in cells for regenerative therapies.
Collapse
Affiliation(s)
| | | | | | | | - Sohan Shah
- Department of Biological Sciences, University of Delaware, USA
| | - Chloe E Mirack
- Department of Biological Sciences, University of Delaware, USA
| | - Marin Herrick
- Department of Biological Sciences, University of Delaware, USA
| | - Justin Parreno
- Department of Biological Sciences, University of Delaware, USA; Department of Biomedical Engineering, University of Delaware, USA.
| |
Collapse
|
6
|
Schofield MM, Rzepski A, Hammerstedt J, Shah S, Mirack C, Parreno J. Targeting F-actin stress fibers to suppress the dedifferentiated phenotype in chondrocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.08.570865. [PMID: 38106134 PMCID: PMC10723437 DOI: 10.1101/2023.12.08.570865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Actin is a central mediator of the chondrocyte phenotype. Monolayer expansion of articular chondrocytes on tissue culture polystyrene, for cell-based repair therapies, leads to chondrocyte dedifferentiation. During dedifferentiation, chondrocytes spread and filamentous (F-)actin reorganizes from a cortical to a stress fiber arrangement causing a reduction in cartilage matrix expression and an increase in fibroblastic matrix and contractile molecule expression. While the downstream mechanisms regulating chondrocyte molecular expression by alterations in F-actin organization have become elucidated, the critical upstream regulators of F-actin networks in chondrocytes are not completely known. Tropomyosin (TPM) and the RhoGTPases are known regulators of F-actin networks. The purpose of this study is to elucidate the regulation of passaged chondrocyte F-actin stress fiber networks and cell phenotype by the specific TPM, TPM3.1, and the RhoGTPase, CDC42. Our results demonstrated that TPM3.1 associates with cortical F-actin and stress fiber F-actin in primary and passaged chondrocytes, respectively. In passaged cells, we found that TPM3.1 inhibition causes F-actin reorganization from stress fibers back to cortical F-actin and also causes an increase in G/F-actin. CDC42 inhibition also causes formation of cortical F-actin. However, CDC42 inhibition, but not TPM3.1 inhibition, leads to the re-association of TPM3.1 with cortical F-actin. Both TPM3.1 and CDC42 inhibition reduces nuclear localization of myocardin related transcription factor, which is known to suppress dedifferentiated molecule expression. We confirmed that TPM3.1 or CDC42 inhibition partially redifferentiates passaged cells by reducing fibroblast matrix and contractile expression, and increasing chondrogenic SOX9 expression. A further understanding on the regulation of F-actin in passaged cells may lead into new insights to stimulate cartilage matrix expression in cells for regenerative therapies.
Collapse
Affiliation(s)
| | - Alissa Rzepski
- Department of Biological Sciences, University of Delaware
| | | | - Sohan Shah
- Department of Biological Sciences, University of Delaware
| | - Chloe Mirack
- Department of Biological Sciences, University of Delaware
| | - Justin Parreno
- Department of Biological Sciences, University of Delaware
- Department of Biomedical Engineering, University of Delaware
| |
Collapse
|
7
|
Lambert MR, Gussoni E. Tropomyosin 3 (TPM3) function in skeletal muscle and in myopathy. Skelet Muscle 2023; 13:18. [PMID: 37936227 PMCID: PMC10629095 DOI: 10.1186/s13395-023-00327-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023] Open
Abstract
The tropomyosin genes (TPM1-4) contribute to the functional diversity of skeletal muscle fibers. Since its discovery in 1988, the TPM3 gene has been recognized as an indispensable regulator of muscle contraction in slow muscle fibers. Recent advances suggest that TPM3 isoforms hold more extensive functions during skeletal muscle development and in postnatal muscle. Additionally, mutations in the TPM3 gene have been associated with the features of congenital myopathies. The use of different in vitro and in vivo model systems has leveraged the discovery of several disease mechanisms associated with TPM3-related myopathy. Yet, the precise mechanisms by which TPM3 mutations lead to muscle dysfunction remain unclear. This review consolidates over three decades of research about the role of TPM3 in skeletal muscle. Overall, the progress made has led to a better understanding of the phenotypic spectrum in patients affected by mutations in this gene. The comprehensive body of work generated over these decades has also laid robust groundwork for capturing the multiple functions this protein plays in muscle fibers.
Collapse
Affiliation(s)
- Matthias R Lambert
- Division of Genetics and Genomics, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, 02115, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
| | - Emanuela Gussoni
- Division of Genetics and Genomics, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- The Stem Cell Program, Boston Children's Hospital, Boston, MA, 02115, USA
| |
Collapse
|
8
|
Wang D, Wang Y, Di X, Wang F, Wanninayaka A, Carnell M, Hardeman EC, Jin D, Gunning PW. Cortical tension drug screen links mitotic spindle integrity to Rho pathway. Curr Biol 2023; 33:4458-4469.e4. [PMID: 37875071 DOI: 10.1016/j.cub.2023.09.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 07/24/2023] [Accepted: 09/11/2023] [Indexed: 10/26/2023]
Abstract
Mechanical force generation plays an essential role in many cellular functions, including mitosis. Actomyosin contractile forces mediate changes in cell shape in mitosis and are implicated in mitotic spindle integrity via cortical tension. An unbiased screen of 150 small molecules that impact actin organization and 32 anti-mitotic drugs identified two molecular targets, Rho kinase (ROCK) and tropomyosin 3.1/2 (Tpm3.1/2), whose inhibition has the greatest impact on mitotic cortical tension. The converse was found for compounds that depolymerize microtubules. Tpm3.1/2 forms a co-polymer with mitotic cortical actin filaments, and its inhibition prevents rescue of multipolar spindles induced by anti-microtubule chemotherapeutics. We examined the role of mitotic cortical tension in this rescue mechanism. Inhibition of ROCK and Tpm3.1/2 and knockdown (KD) of cortical nonmuscle myosin 2A (NM2A), all of which reduce cortical tension, inhibited rescue of multipolar mitotic spindles, further implicating cortical tension in the rescue mechanism. GEF-H1 released from microtubules by depolymerization increased cortical tension through the RhoA pathway, and its KD also inhibited rescue of multipolar mitotic spindles. We conclude that microtubule depolymerization by anti-cancer drugs induces cortical-tension-based rescue to ensure integrity of the mitotic bipolar spindle mediated via the RhoA pathway. Central to this mechanism is the dependence of NM2A on Tpm3.1/2 to produce the functional engagement of actin filaments responsible for cortical tension.
Collapse
Affiliation(s)
- Dejiang Wang
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Yao Wang
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Xiangjun Di
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Fan Wang
- School of Electrical and Data Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia; School of Physics, Beihang University, Beijing 100191, P.R. China
| | - Amanda Wanninayaka
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Michael Carnell
- Katharina Gaus Light Microscope Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Edna C Hardeman
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Dayong Jin
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; UTS-SUStech Joint Research Centre for Biomedical Materials & Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Peter W Gunning
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia.
| |
Collapse
|
9
|
Ono S, Watabe E, Morisaki K, Ono K, Kuroyanagi H. Alternative splicing of a single exon causes a major impact on the affinity of Caenorhabditis elegans tropomyosin isoforms for actin filaments. Front Cell Dev Biol 2023; 11:1208913. [PMID: 37745299 PMCID: PMC10512467 DOI: 10.3389/fcell.2023.1208913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Tropomyosin is generally known as an actin-binding protein that regulates actomyosin interaction and actin filament stability. In metazoans, multiple tropomyosin isoforms are expressed, and some of them are involved in generating subpopulations of actin cytoskeleton in an isoform-specific manner. However, functions of many tropomyosin isoforms remain unknown. Here, we report identification of a novel alternative exon in the Caenorhabditis elegans tropomyosin gene and characterization of the effects of alternative splicing on the properties of tropomyosin isoforms. Previous studies have reported six tropomyosin isoforms encoded by the C. elegans lev-11 tropomyosin gene. We identified a seventh isoform, LEV-11U, that contained a novel alternative exon, exon 7c (E7c). LEV-11U is a low-molecular-weight tropomyosin isoform that differs from LEV-11T only at the exon 7-encoded region. In silico analyses indicated that the E7c-encoded peptide sequence was unfavorable for coiled-coil formation and distinct from other tropomyosin isoforms in the pattern of electrostatic surface potentials. In vitro, LEV-11U bound poorly to actin filaments, whereas LEV-11T bound to actin filaments in a saturable manner. When these isoforms were transgenically expressed in the C. elegans striated muscle, LEV-11U was present in the diffuse cytoplasm with tendency to form aggregates, whereas LEV-11T co-localized with sarcomeric actin filaments. Worms with a mutation in E7c showed reduced motility and brood size, suggesting that this exon is important for the optimal health. These results indicate that alternative splicing of a single exon can produce biochemically diverged tropomyosin isoforms and suggest that a tropomyosin isoform with poor actin affinity has a novel biological function.
Collapse
Affiliation(s)
- Shoichiro Ono
- Departments of Pathology and Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, United States
| | - Eichi Watabe
- Laboratory of Gene Expression, Graduate School of Biomedical Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keita Morisaki
- Departments of Pathology and Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Kanako Ono
- Departments of Pathology and Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, United States
| | - Hidehito Kuroyanagi
- Laboratory of Gene Expression, Graduate School of Biomedical Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Biochemistry, University of the Ryukyus Graduate School of Medicine, Okinawa, Japan
| |
Collapse
|
10
|
Meng Y, Huang K, Shi M, Huo Y, Han L, Liu B, Li Y. Research Advances in the Role of the Tropomyosin Family in Cancer. Int J Mol Sci 2023; 24:13295. [PMID: 37686101 PMCID: PMC10488083 DOI: 10.3390/ijms241713295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Cancer is one of the most difficult diseases for human beings to overcome. Its development is closely related to a variety of factors, and its specific mechanisms have been a hot research topic in the field of scientific research. The tropomyosin family (Tpm) is a group of proteins closely related to the cytoskeleton and actin, and recent studies have shown that they play an important role in various cancers, participating in a variety of biological activities, including cell proliferation, invasion, and migration, and have been used as biomarkers for various cancers. The purpose of this review is to explore the research progress of the Tpm family in tumorigenesis development, focusing on the molecular pathways associated with them and their relevant activities involved in tumors. PubMed and Web of Science databases were searched for relevant studies on the role of Tpms in tumorigenesis and development and the activities of Tpms involved in tumors. Data from the literature suggest that the Tpm family is involved in tumor cell proliferation and growth, tumor cell invasion and migration, tumor angiogenesis, tumor cell apoptosis, and immune infiltration of the tumor microenvironment, among other correlations. It can be used as a potential biomarker for early diagnosis, follow-up, and therapeutic response of some tumors. The Tpm family is involved in cancer in a close relationship with miRNAs and LncRNAs. Tpms are involved in tumor tissue invasion and migration as a key link. On this basis, TPM is frequently used as a biomarker for various cancers. However, the specific molecular mechanism of its involvement in cancer progression has not been explained clearly, which remains an important direction for future research.
Collapse
Affiliation(s)
- Yucheng Meng
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (Y.M.); (K.H.); (M.S.); (Y.H.); (L.H.)
| | - Ke Huang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (Y.M.); (K.H.); (M.S.); (Y.H.); (L.H.)
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730030, China
| | - Mingxuan Shi
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (Y.M.); (K.H.); (M.S.); (Y.H.); (L.H.)
| | - Yifei Huo
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (Y.M.); (K.H.); (M.S.); (Y.H.); (L.H.)
| | - Liang Han
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (Y.M.); (K.H.); (M.S.); (Y.H.); (L.H.)
| | - Bin Liu
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (Y.M.); (K.H.); (M.S.); (Y.H.); (L.H.)
| | - Yi Li
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (Y.M.); (K.H.); (M.S.); (Y.H.); (L.H.)
| |
Collapse
|
11
|
Seixas AI, Morais MRG, Brakebusch C, Relvas JB. A RhoA-mediated biomechanical response in Schwann cells modulates peripheral nerve myelination. Prog Neurobiol 2023:102481. [PMID: 37315917 DOI: 10.1016/j.pneurobio.2023.102481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/22/2023] [Accepted: 06/03/2023] [Indexed: 06/16/2023]
Abstract
Myelin improves axonal conduction velocity and is essential for nerve development and regeneration. In peripheral nerves, Schwann cells depend on bidirectional mechanical and biochemical signaling to form the myelin sheath but the mechanism underlying this process is not understood. Rho GTPases are integrators of "outside-in" signaling that link cytoskeletal dynamics with cellular architecture to regulate morphology and adhesion. Using Schwann cell-specific gene inactivation in the mouse, we discovered that RhoA promotes the initiation of myelination, and is required to both drive and terminate myelin growth at different stages of peripheral myelination, suggesting developmentally-specific modes of action. In Schwann cells, RhoA targets actin filament turnover, via Cofilin 1, actomyosin contractility and cortical actin-membrane attachments. This mechanism couples actin cortex mechanics with the molecular organization of the cell boundary to target specific signaling networks that regulate axon-Schwann cell interaction/adhesion and myelin growth. This work shows that RhoA is a key component of a biomechanical response required to control Schwann cell state transitions for proper myelination of peripheral nerves.
Collapse
Affiliation(s)
- Ana I Seixas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| | - Miguel R G Morais
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | | | - João B Relvas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; Dept of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
12
|
Selvaraj M, Kokate SB, Reggiano G, Kogan K, Kotila T, Kremneva E, DiMaio F, Lappalainen P, Huiskonen JT. Structural basis underlying specific biochemical activities of non-muscle tropomyosin isoforms. Cell Rep 2023; 42:111900. [PMID: 36586407 DOI: 10.1016/j.celrep.2022.111900] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 11/03/2022] [Accepted: 12/07/2022] [Indexed: 12/31/2022] Open
Abstract
The actin cytoskeleton is critical for cell migration, morphogenesis, endocytosis, organelle dynamics, and cytokinesis. To support diverse cellular processes, actin filaments form a variety of structures with specific architectures and dynamic properties. Key proteins specifying actin filaments are tropomyosins. Non-muscle cells express several functionally non-redundant tropomyosin isoforms, which differentially control the interactions of other proteins, including myosins and ADF/cofilin, with actin filaments. However, the underlying molecular mechanisms have remained elusive. By determining the cryogenic electron microscopy structures of actin filaments decorated by two functionally distinct non-muscle tropomyosin isoforms, Tpm1.6 and Tpm3.2, we reveal that actin filament conformation remains unaffected upon binding. However, Tpm1.6 and Tpm3.2 follow different paths along the actin filament major groove, providing an explanation for their incapability to co-polymerize on actin filaments. We also elucidate the molecular basis underlying specific roles of Tpm1.6 and Tpm3.2 in myosin II activation and protecting actin filaments from ADF/cofilin-catalyzed severing.
Collapse
Affiliation(s)
- Muniyandi Selvaraj
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Shrikant B Kokate
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Gabriella Reggiano
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Konstantin Kogan
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Tommi Kotila
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Elena Kremneva
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Pekka Lappalainen
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland.
| | - Juha T Huiskonen
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland.
| |
Collapse
|
13
|
Inguito KL, Schofield MM, Faghri AD, Bloom ET, Heino M, West VC, Ebron KMM, Elliott DM, Parreno J. Stress deprivation of tendon explants or Tpm3.1 inhibition in tendon cells reduces F-actin to promote a tendinosis-like phenotype. Mol Biol Cell 2022; 33:ar141. [PMID: 36129771 PMCID: PMC9727789 DOI: 10.1091/mbc.e22-02-0067] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/29/2022] [Accepted: 09/12/2022] [Indexed: 02/04/2023] Open
Abstract
Actin is a central mediator between mechanical force and cellular phenotype. In tendons, it is speculated that mechanical stress deprivation regulates gene expression by reducing filamentous (F)-actin. However, the mechanisms regulating tenocyte F-actin remain unclear. Tropomyosins (Tpms) are master regulators of F-actin. There are more than 40 Tpm isoforms, each having the unique capability to stabilize F-actin subpopulations. We investigated F-actin polymerization in stress-deprived tendons and tested the hypothesis that stress fiber-associated Tpm(s) stabilize F-actin to regulate cellular phenotype. Stress deprivation of mouse tail tendon down-regulated tenogenic and up-regulated protease (matrix metalloproteinase-3) mRNA levels. Concomitant with mRNA modulation were increases in G/F-actin, confirming reduced F-actin by tendon stress deprivation. To investigate the molecular regulation of F-actin, we identified that tail, Achilles, and plantaris tendons express three isoforms in common: Tpm1.6, 3.1, and 4.2. Tpm3.1 associates with F-actin in native and primary tenocytes. Tpm3.1 inhibition reduces F-actin, leading to decreases in tenogenic expression, increases in chondrogenic expression, and enhancement of protease expression in mouse and human tenocytes. These expression changes by Tpm3.1 inhibition are consistent with tendinosis progression. A further understanding of F-actin regulation in musculoskeletal cells could lead to new therapeutic interventions to prevent alterations in cellular phenotype during disease progression.
Collapse
Affiliation(s)
- Kameron L. Inguito
- Departments of Biological Sciences, University of Delaware, Newark, DE 19716
| | - Mandy M. Schofield
- Departments of Biological Sciences, University of Delaware, Newark, DE 19716
| | - Arya D. Faghri
- Departments of Biological Sciences, University of Delaware, Newark, DE 19716
| | - Ellen T. Bloom
- Biomedical Engineering, University of Delaware, Newark, DE 19716
| | - Marissa Heino
- Departments of Biological Sciences, University of Delaware, Newark, DE 19716
- Biomedical Engineering, University of Delaware, Newark, DE 19716
| | - Valerie C. West
- Biomedical Engineering, University of Delaware, Newark, DE 19716
| | | | - Dawn M. Elliott
- Biomedical Engineering, University of Delaware, Newark, DE 19716
| | - Justin Parreno
- Departments of Biological Sciences, University of Delaware, Newark, DE 19716
- Biomedical Engineering, University of Delaware, Newark, DE 19716
| |
Collapse
|
14
|
Reindl T, Giese S, Greve JN, Reinke PY, Chizhov I, Latham SL, Mulvihill DP, Taft MH, Manstein DJ. Distinct actin–tropomyosin cofilament populations drive the functional diversification of cytoskeletal myosin motor complexes. iScience 2022; 25:104484. [PMID: 35720262 PMCID: PMC9204724 DOI: 10.1016/j.isci.2022.104484] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/02/2022] [Accepted: 05/24/2022] [Indexed: 11/02/2022] Open
Abstract
The effects of N-terminal acetylation of the high molecular weight tropomyosin isoforms Tpm1.6 and Tpm2.1 and the low molecular weight isoforms Tpm1.12, Tpm3.1, and Tpm4.2 on the actin affinity and the thermal stability of actin-tropomyosin cofilaments are described. Furthermore, we show how the exchange of cytoskeletal tropomyosin isoforms and their N-terminal acetylation affects the kinetic and chemomechanical properties of cytoskeletal actin-tropomyosin-myosin complexes. Our results reveal the extent to which the different actin-tropomyosin-myosin complexes differ in their kinetic and functional properties. The maximum sliding velocity of the actin filament as well as the optimal motor density for continuous unidirectional movement, parameters that were previously considered to be unique and invariant properties of each myosin isoform, are shown to be influenced by the exchange of the tropomyosin isoform and the N-terminal acetylation of tropomyosin. Tpm diversity is largely determined by sequences contributing to the overlap region Global sequence differences are of greater importance than variable exon 6 usage Tpm isoforms confer distinctly altered properties to cytoskeletal myosin motors Cytoskeletal myosins are differentially affected by N-terminal acetylation of Tpm
Collapse
|
15
|
Vakhrusheva A, Murashko A, Trifonova E, Efremov Y, Timashev P, Sokolova O. Role of Actin-binding Proteins in the Regulation of Cellular Mechanics. Eur J Cell Biol 2022; 101:151241. [DOI: 10.1016/j.ejcb.2022.151241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/18/2022] [Accepted: 05/19/2022] [Indexed: 12/25/2022] Open
|
16
|
Ghosh A, Coffin M, West R, Fowler VM. Erythroid differentiation in mouse erythroleukemia cells depends on Tmod3-mediated regulation of actin filament assembly into the erythroblast membrane skeleton. FASEB J 2022; 36:e22220. [PMID: 35195928 DOI: 10.1096/fj.202101011r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 02/01/2022] [Accepted: 02/10/2022] [Indexed: 11/11/2022]
Abstract
Erythroid differentiation (ED) is a complex cellular process entailing morphologically distinct maturation stages of erythroblasts during terminal differentiation. Studies of actin filament (F-actin) assembly and organization during terminal ED have revealed essential roles for the F-actin pointed-end capping proteins, tropomodulins (Tmod1 and Tmod3). Tmods bind tropomyosins (Tpms), which enhance Tmod capping and F-actin stabilization. Tmods can also nucleate F-actin assembly, independent of Tpms. Tmod1 is present in the red blood cell (RBC) membrane skeleton, and deletion of Tmod1 in mice leads to a mild compensated anemia due to mis-regulated F-actin lengths and membrane instability. Tmod3 is not present in RBCs, and global deletion of Tmod3 leads to embryonic lethality in mice with impaired ED. To further decipher Tmod3's function during ED, we generated a Tmod3 knockout in a mouse erythroleukemia cell line (Mel ds19). Tmod3 knockout cells appeared normal prior to ED, but showed defects during progression of ED, characterized by a marked failure to reduce cell and nuclear size, reduced viability, and increased apoptosis. Tmod3 does not assemble with Tmod1 and Tpms into the Triton X-100 insoluble membrane skeleton during ED, and loss of Tmod3 had no effect on α1,β1-spectrin and protein 4.1R assembly into the membrane skeleton. However, F-actin, Tmod1 and Tpms failed to assemble into the membrane skeleton during ED in absence of Tmod3. We propose that Tmod3 nucleation of F-actin assembly promotes incorporation of Tmod1 and Tpms into membrane skeleton F-actin, and that this is integral to morphological maturation and cell survival during erythroid terminal differentiation.
Collapse
Affiliation(s)
- Arit Ghosh
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Megan Coffin
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Richard West
- Delaware Biotechnology Institute, Newark, Delaware, USA
| | - Velia M Fowler
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
17
|
Amer M, Shi L, Wolfenson H. The 'Yin and Yang' of Cancer Cell Growth and Mechanosensing. Cancers (Basel) 2021; 13:4754. [PMID: 34638240 PMCID: PMC8507527 DOI: 10.3390/cancers13194754] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/07/2021] [Accepted: 09/16/2021] [Indexed: 01/06/2023] Open
Abstract
In cancer, two unique and seemingly contradictory behaviors are evident: on the one hand, tumors are typically stiffer than the tissues in which they grow, and this high stiffness promotes their malignant progression; on the other hand, cancer cells are anchorage-independent-namely, they can survive and grow in soft environments that do not support cell attachment. How can these two features be consolidated? Recent findings on the mechanisms by which cells test the mechanical properties of their environment provide insight into the role of aberrant mechanosensing in cancer progression. In this review article, we focus on the role of high stiffness on cancer progression, with particular emphasis on tumor growth; we discuss the mechanisms of mechanosensing and mechanotransduction, and their dysregulation in cancerous cells; and we propose that a 'yin and yang' type phenomenon exists in the mechanobiology of cancer, whereby a switch in the type of interaction with the extracellular matrix dictates the outcome of the cancer cells.
Collapse
Affiliation(s)
- Malak Amer
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Lidan Shi
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Haguy Wolfenson
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| |
Collapse
|
18
|
Robbins M, Clayton E, Kaminski Schierle GS. Synaptic tau: A pathological or physiological phenomenon? Acta Neuropathol Commun 2021; 9:149. [PMID: 34503576 PMCID: PMC8428049 DOI: 10.1186/s40478-021-01246-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022] Open
Abstract
In this review, we discuss the synaptic aspects of Tau pathology occurring during Alzheimer's disease (AD) and how this may relate to memory impairment, a major hallmark of AD. Whilst the clinical diagnosis of AD patients is a loss of working memory and long-term declarative memory, the histological diagnosis is the presence of neurofibrillary tangles of hyperphosphorylated Tau and Amyloid-beta plaques. Tau pathology spreads through synaptically connected neurons to impair synaptic function preceding the formation of neurofibrillary tangles, synaptic loss, axonal retraction and cell death. Alongside synaptic pathology, recent data suggest that Tau has physiological roles in the pre- or post- synaptic compartments. Thus, we have seen a shift in the research focus from Tau as a microtubule-stabilising protein in axons, to Tau as a synaptic protein with roles in accelerating spine formation, dendritic elongation, and in synaptic plasticity coordinating memory pathways. We collate here the myriad of emerging interactions and physiological roles of synaptic Tau, and discuss the current evidence that synaptic Tau contributes to pathology in AD.
Collapse
|
19
|
Chaichim C, Tomanic T, Stefen H, Paric E, Gamaroff L, Suchowerska AK, Gunning PW, Ke YD, Fath T, Power J. Overexpression of Tropomyosin Isoform Tpm3.1 Does Not Alter Synaptic Function in Hippocampal Neurons. Int J Mol Sci 2021; 22:ijms22179303. [PMID: 34502205 PMCID: PMC8430609 DOI: 10.3390/ijms22179303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
Tropomyosin (Tpm) has been regarded as the master regulator of actin dynamics. Tpms regulate the binding of the various proteins involved in restructuring actin. The actin cytoskeleton is the predominant cytoskeletal structure in dendritic spines. Its regulation is critical for spine formation and long-term activity-dependent changes in synaptic strength. The Tpm isoform Tpm3.1 is enriched in dendritic spines, but its role in regulating the synapse structure and function is not known. To determine the role of Tpm3.1, we studied the synapse structure and function of cultured hippocampal neurons from transgenic mice overexpressing Tpm3.1. We recorded hippocampal field excitatory postsynaptic potentials (fEPSPs) from brain slices to examine if Tpm3.1 overexpression alters long-term synaptic plasticity. Tpm3.1-overexpressing cultured neurons did not show a significantly altered dendritic spine morphology or synaptic activity. Similarly, we did not observe altered synaptic transmission or plasticity in brain slices. Furthermore, expression of Tpm3.1 at the postsynaptic compartment does not increase the local F-actin levels. The results suggest that although Tpm3.1 localises to dendritic spines in cultured hippocampal neurons, it does not have any apparent impact on dendritic spine morphology or function. This is contrary to the functional role of Tpm3.1 previously observed at the tip of growing neurites, where it increases the F-actin levels and impacts growth cone dynamics.
Collapse
Affiliation(s)
- Chanchanok Chaichim
- Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia;
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (T.T.); (H.S.); (E.P.); (L.G.); (A.K.S.); (Y.D.K.)
| | - Tamara Tomanic
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (T.T.); (H.S.); (E.P.); (L.G.); (A.K.S.); (Y.D.K.)
| | - Holly Stefen
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (T.T.); (H.S.); (E.P.); (L.G.); (A.K.S.); (Y.D.K.)
| | - Esmeralda Paric
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (T.T.); (H.S.); (E.P.); (L.G.); (A.K.S.); (Y.D.K.)
| | - Lucy Gamaroff
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (T.T.); (H.S.); (E.P.); (L.G.); (A.K.S.); (Y.D.K.)
| | - Alexandra K. Suchowerska
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (T.T.); (H.S.); (E.P.); (L.G.); (A.K.S.); (Y.D.K.)
| | - Peter W. Gunning
- Cellular and Genetic Medicine Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia;
| | - Yazi D. Ke
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (T.T.); (H.S.); (E.P.); (L.G.); (A.K.S.); (Y.D.K.)
| | - Thomas Fath
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (T.T.); (H.S.); (E.P.); (L.G.); (A.K.S.); (Y.D.K.)
- Correspondence: (T.F.); (J.P.)
| | - John Power
- Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia;
- Correspondence: (T.F.); (J.P.)
| |
Collapse
|
20
|
Pan X, Zhou Y, Hotulainen P, Meunier FA, Wang T. The axonal radial contractility: Structural basis underlying a new form of neural plasticity. Bioessays 2021; 43:e2100033. [PMID: 34145916 DOI: 10.1002/bies.202100033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/25/2022]
Abstract
Axons are the longest cellular structure reaching over a meter in the case of human motor axons. They have a relatively small diameter and contain several cytoskeletal elements that mediate both material and information exchange within neurons. Recently, a novel type of axonal plasticity, termed axonal radial contractility, has been unveiled. It is represented by dynamic and transient diameter changes of the axon shaft to accommodate the passages of large organelles. Mechanisms underpinning this plasticity are not fully understood. Here, we first summarised recent evidence of the functional relevance for axon radial contractility, then discussed the underlying structural basis, reviewing nanoscopic evidence of the subtle changes. Two models are proposed to explain how actomyosin rings are organised. Possible roles of non-muscle myosin II (NM-II) in axon degeneration are discussed. Finally, we discuss the concept of periodic functional nanodomains, which could sense extracellular cues and coordinate the axonal responses. Also see the video abstract here: https://youtu.be/ojCnrJ8RCRc.
Collapse
Affiliation(s)
- Xiaorong Pan
- Center for Brain Science, School of Life Science and Technology, Shanghaitech University, Shanghai, China
| | - Yimin Zhou
- Center for Brain Science, School of Life Science and Technology, Shanghaitech University, Shanghai, China
| | - Pirta Hotulainen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Tong Wang
- Center for Brain Science, School of Life Science and Technology, Shanghaitech University, Shanghai, China
| |
Collapse
|
21
|
Bradbury P, Nader CP, Cidem A, Rutting S, Sylvester D, He P, Rezcallah MC, O'Neill GM, Ammit AJ. Tropomyosin 2.1 collaborates with fibronectin to promote TGF-β 1-induced contraction of human lung fibroblasts. Respir Res 2021; 22:129. [PMID: 33910572 PMCID: PMC8080347 DOI: 10.1186/s12931-021-01730-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 04/22/2021] [Indexed: 12/20/2022] Open
Abstract
Many lung diseases are characterized by fibrosis, leading to impaired tissue patency and reduced lung function. Development of fibrotic tissue depends on two-way interaction between the cells and the extra-cellular matrix (ECM). Concentration-dependent increased stiffening of the ECM is sensed by the cells, which in turn increases intracellular contraction and pulling on the matrix causing matrix reorganization and further stiffening. It is generally accepted that the inflammatory cytokine growth factor β1 (TGF-β1) is a major driver of lung fibrosis through the stimulation of ECM production. However, TGF-β1 also regulates the expression of members of the tropomyosin (Tm) family of actin associating proteins that mediate ECM reorganization through intracellular-generated forces. Thus, TGF-β1 may mediate the bi-directional signaling between cells and the ECM that promotes tissue fibrosis. Using combinations of cytokine stimulation, mRNA, protein profiling and cellular contractility assays with human lung fibroblasts, we show that concomitant induction of key Tm isoforms and ECM by TGF-β1, significantly accelerates fibrotic phenotypes. Knocking down Tpm2.1 reduces fibroblast-mediated collagen gel contraction. Collectively, the data suggest combined ECM secretion and actin cytoskeleton contractility primes the tissue for enhanced fibrosis. Our study suggests that Tms are at the nexus of inflammation and tissue stiffening. Small molecules targeting specific Tm isoforms have recently been designed; thus targeting Tpm2.1 may represent a novel therapeutic target in lung fibrosis.
Collapse
Affiliation(s)
- Peta Bradbury
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Cassandra P Nader
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Aylin Cidem
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Sandra Rutting
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Dianne Sylvester
- Children's Cancer Research Unit, Kids Research Institute, Children's Hospital at Westmead, Sydney, NSW, Australia.,Children's Hospital at Westmead Clinical School, Sydney, Australia
| | - Patrick He
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Maria C Rezcallah
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Geraldine M O'Neill
- Children's Cancer Research Unit, Kids Research Institute, Children's Hospital at Westmead, Sydney, NSW, Australia.,Children's Hospital at Westmead Clinical School, Sydney, Australia.,School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Alaina J Ammit
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia. .,School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
22
|
Deletion of the Actin-Associated Tropomyosin Tpm3 Leads to Reduced Cell Complexity in Cultured Hippocampal Neurons-New Insights into the Role of the C-Terminal Region of Tpm3.1. Cells 2021; 10:cells10030715. [PMID: 33807093 PMCID: PMC8005004 DOI: 10.3390/cells10030715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/20/2022] Open
Abstract
Tropomyosins (Tpms) have been described as master regulators of actin, with Tpm3 products shown to be involved in early developmental processes, and the Tpm3 isoform Tpm3.1 controlling changes in the size of neuronal growth cones and neurite growth. Here, we used primary mouse hippocampal neurons of C57/Bl6 wild type and Bl6Tpm3flox transgenic mice to carry out morphometric analyses in response to the absence of Tpm3 products, as well as to investigate the effect of C-terminal truncation on the ability of Tpm3.1 to modulate neuronal morphogenesis. We found that the knock-out of Tpm3 leads to decreased neurite length and complexity, and that the deletion of two amino acid residues at the C-terminus of Tpm3.1 leads to more detrimental changes in neurite morphology than the deletion of six amino acid residues. We also found that Tpm3.1 that lacks the 6 C-terminal amino acid residues does not associate with stress fibres, does not segregate to the tips of neurites, and does not impact the amount of the filamentous actin pool at the axonal growth cones, as opposed to Tpm3.1, which lacks the two C-terminal amino acid residues. Our study provides further insight into the role of both Tpm3 products and the C-terminus of Tpm3.1, and it forms the basis for future studies that aim to identify the molecular mechanisms underlying Tpm3.1 targeting to different subcellular compartments.
Collapse
|
23
|
Parreno J, Amadeo MB, Kwon EH, Fowler VM. Tropomyosin 3.1 Association With Actin Stress Fibers is Required for Lens Epithelial to Mesenchymal Transition. Invest Ophthalmol Vis Sci 2021; 61:2. [PMID: 32492110 PMCID: PMC7415280 DOI: 10.1167/iovs.61.6.2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Purpose Epithelial to mesenchymal transition (EMT) is a cause of anterior and posterior subcapsular cataracts. Central to EMT is the formation of actin stress fibers. Selective targeting of actin stress fiber-associated tropomyosin (Tpm) in epithelial cells may be a means to prevent stress fiber formation and repress lens EMT. Methods We identified Tpm isoforms in mouse immortalized lens epithelial cells and epithelial and fiber cells from whole lenses by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) followed Sanger sequencing. We focused on the role of one particular tropomyosin isoform, Tpm3.1, in EMT. To induce EMT, we treated cells or native lenses with TGFβ2. To test the function of Tpm3.1, we exposed cells or whole lenses to a Tpm3.1-specific chemical inhibitor, TR100, as well as investigated lenses from Tpm3.1 knockout mice. We examined stress fiber formation by confocal microscopy and assessed EMT progression by analysis of alpha-smooth muscle actin (αSMA) mRNA (real-time RT-PCR), and protein (Western immunoassay [WES]). Results Lens epithelial cells express eight Tpm isoforms. Cell culture studies showed that TGFβ2 treatment results in the upregulation of Tpm3.1, which associates with actin in stress fibers. TR100 prevents stress fiber formation and reduces αSMA in TGFβ2-treated cells. Using an ex vivo lens culture model, TGFβ2 treatment results in stress fiber formation at the basal regions of the epithelial cells. Genetic knockout of Tpm3.1 or treatment of lenses with TR100 prevents basal stress fiber formation and reduces epithelial αSMA levels. Conclusions Targeting specific stress fiber associated tropomyosin isoform, Tpm3.1, is a means to repress lens EMT.
Collapse
|
24
|
Shrestha MM, Lim CY, Bi X, Robinson RC, Han W. Tmod3 Phosphorylation Mediates AMPK-Dependent GLUT4 Plasma Membrane Insertion in Myoblasts. Front Endocrinol (Lausanne) 2021; 12:653557. [PMID: 33959097 PMCID: PMC8095187 DOI: 10.3389/fendo.2021.653557] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/22/2021] [Indexed: 12/28/2022] Open
Abstract
Insulin and muscle contractions mediate glucose transporter 4 (GLUT4) translocation and insertion into the plasma membrane (PM) for glucose uptake in skeletal muscles. Muscle contraction results in AMPK activation, which promotes GLUT4 translocation and PM insertion. However, little is known regarding AMPK effectors that directly regulate GLUT4 translocation. We aim to identify novel AMPK effectors in the regulation of GLUT4 translocation. We performed biochemical, molecular biology and fluorescent microscopy imaging experiments using gain- and loss-of-function mutants of tropomodulin 3 (Tmod3). Here we report Tmod3, an actin filament capping protein, as a novel AMPK substrate and an essential mediator of AMPK-dependent GLUT4 translocation and glucose uptake in myoblasts. Furthermore, Tmod3 plays a key role in AMPK-induced F-actin remodeling and GLUT4 insertion into the PM. Our study defines Tmod3 as a key AMPK effector in the regulation of GLUT4 insertion into the PM and glucose uptake in muscle cells, and offers new mechanistic insights into the regulation of glucose homeostasis.
Collapse
Affiliation(s)
- Man Mohan Shrestha
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Chun-Yan Lim
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xuezhi Bi
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Robert C. Robinson
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Weiping Han
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- *Correspondence: Weiping Han,
| |
Collapse
|
25
|
Bareja I, Wioland H, Janco M, Nicovich PR, Jégou A, Romet-Lemonne G, Walsh J, Böcking T. Dynamics of Tpm1.8 domains on actin filaments with single-molecule resolution. Mol Biol Cell 2020; 31:2452-2462. [PMID: 32845787 PMCID: PMC7851853 DOI: 10.1091/mbc.e19-10-0586] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 01/28/2023] Open
Abstract
Tropomyosins regulate the dynamics and functions of the actin cytoskeleton by forming long chains along the two strands of actin filaments that act as gatekeepers for the binding of other actin-binding proteins. The fundamental molecular interactions underlying the binding of tropomyosin to actin are still poorly understood. Using microfluidics and fluorescence microscopy, we observed the binding of the fluorescently labeled tropomyosin isoform Tpm1.8 to unlabeled actin filaments in real time. This approach, in conjunction with mathematical modeling, enabled us to quantify the nucleation, assembly, and disassembly kinetics of Tpm1.8 on single filaments and at the single-molecule level. Our analysis suggests that Tpm1.8 decorates the two strands of the actin filament independently. Nucleation of a growing tropomyosin domain proceeds with high probability as soon as the first Tpm1.8 molecule is stabilized by the addition of a second molecule, ultimately leading to full decoration of the actin filament. In addition, Tpm1.8 domains are asymmetrical, with enhanced dynamics at the edge oriented toward the barbed end of the actin filament. The complete description of Tpm1.8 kinetics on actin filaments presented here provides molecular insight into actin-tropomyosin filament formation and the role of tropomyosins in regulating actin filament dynamics.
Collapse
Affiliation(s)
- Ilina Bareja
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Hugo Wioland
- Université de Paris, CNRS, Institut Jacques Monod, 75006 Paris, France
| | - Miro Janco
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Philip R. Nicovich
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Antoine Jégou
- Université de Paris, CNRS, Institut Jacques Monod, 75006 Paris, France
| | | | - James Walsh
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Till Böcking
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
26
|
Wang T, Li W, Martin S, Papadopulos A, Joensuu M, Liu C, Jiang A, Shamsollahi G, Amor R, Lanoue V, Padmanabhan P, Meunier FA. Radial contractility of actomyosin rings facilitates axonal trafficking and structural stability. J Cell Biol 2020; 219:e201902001. [PMID: 32182623 PMCID: PMC7199852 DOI: 10.1083/jcb.201902001] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 09/17/2019] [Accepted: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
Most mammalian neurons have a narrow axon, which constrains the passage of large cargoes such as autophagosomes that can be larger than the axon diameter. Radial axonal expansion must therefore occur to ensure efficient axonal trafficking. In this study, we reveal that the speed of various large cargoes undergoing axonal transport is significantly slower than that of small ones and that the transit of diverse-sized cargoes causes an acute, albeit transient, axonal radial expansion, which is immediately restored by constitutive axonal contractility. Using live super-resolution microscopy, we demonstrate that actomyosin-II controls axonal radial contractility and local expansion, and that NM-II filaments associate with periodic F-actin rings via their head domains. Pharmacological inhibition of NM-II activity significantly increases axon diameter by detaching the NM-II from F-actin and impacts the trafficking speed, directionality, and overall efficiency of long-range retrograde trafficking. Consequently, prolonged NM-II inactivation leads to disruption of periodic actin rings and formation of focal axonal swellings, a hallmark of axonal degeneration.
Collapse
Affiliation(s)
- Tong Wang
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| | - Wei Li
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| | - Sally Martin
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| | - Andreas Papadopulos
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Merja Joensuu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Chunxia Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Anmin Jiang
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Golnoosh Shamsollahi
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Rumelo Amor
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Vanessa Lanoue
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Pranesh Padmanabhan
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Frédéric A. Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| |
Collapse
|
27
|
Shi Y, Cai EL, Yang C, Ye CY, Zeng P, Wang XM, Fang YY, Cheng ZK, Wang Q, Cao FY, Zhou XW, Tian Q. Protection of melatonin against acidosis-induced neuronal injuries. J Cell Mol Med 2020; 24:6928-6942. [PMID: 32364678 PMCID: PMC7299701 DOI: 10.1111/jcmm.15351] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 01/13/2020] [Accepted: 04/12/2020] [Indexed: 12/23/2022] Open
Abstract
Acidosis, a common feature of cerebral ischaemia and hypoxia, plays a key role in these pathological processes by aggravating the ischaemic and hypoxic injuries. To explore the mechanisms, in this research, we cultured primary neurons in an acidic environment (potential of hydrogen [pH]6.2, 24 hours) to mimic the acidosis. By proteomic analysis, 69 differentially expressed proteins in the acidic neurons were found, mainly related to stress and cell death, synaptic plasticity and gene transcription. And, the acidotic neurons developed obvious alterations including increased neuronal death, reduced dendritic length and complexity, reduced synaptic proteins, tau hyperphosphorylation, endoplasmic reticulum (ER) stress activation, abnormal lysosome‐related signals, imbalanced oxidative stress/anti‐oxidative stress and decreased Golgi matrix proteins. Then, melatonin (1 × 10−4 mol/L) was used to pre‐treat the cultured primary neurons before acidic treatment (pH6.2). The results showed that melatonin partially reversed the acidosis‐induced neuronal death, abnormal dendritic complexity, reductions of synaptic proteins, tau hyperphosphorylation and imbalance of kinase/phosphatase. In addition, acidosis related the activations of glycogen synthase kinase‐3β and nuclear factor‐κB signals, ER stress and Golgi stress, and the abnormal autophagy‐lysosome signals were completely reversed by melatonin. These data indicate that melatonin is beneficial for neurons against acidosis‐induced injuries.
Collapse
Affiliation(s)
- Yan Shi
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China.,School of Medicine, Hunan Normal University, Changsha, China
| | - Er-Li Cai
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Can Yang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China.,Department of Emergency Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Chao-Yuan Ye
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zeng
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Ming Wang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Ying-Yan Fang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Kang Cheng
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Qun Wang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Fu-Yuan Cao
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xin-Wen Zhou
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Tian
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
28
|
Abouelezz A, Stefen H, Segerstråle M, Micinski D, Minkeviciene R, Lahti L, Hardeman EC, Gunning PW, Hoogenraad CC, Taira T, Fath T, Hotulainen P. Tropomyosin Tpm3.1 Is Required to Maintain the Structure and Function of the Axon Initial Segment. iScience 2020; 23:101053. [PMID: 32344377 PMCID: PMC7186529 DOI: 10.1016/j.isci.2020.101053] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 03/05/2020] [Accepted: 04/06/2020] [Indexed: 12/26/2022] Open
Abstract
The axon initial segment (AIS) is the site of action potential initiation and serves as a cargo transport filter and diffusion barrier that helps maintain neuronal polarity. The AIS actin cytoskeleton comprises actin patches and periodic sub-membranous actin rings. We demonstrate that tropomyosin isoform Tpm3.1 co-localizes with actin patches and that the inhibition of Tpm3.1 led to a reduction in the density of actin patches. Furthermore, Tpm3.1 showed a periodic distribution similar to sub-membranous actin rings but Tpm3.1 was only partially congruent with sub-membranous actin rings. Nevertheless, the inhibition of Tpm3.1 affected the uniformity of the periodicity of actin rings. Furthermore, Tpm3.1 inhibition led to reduced accumulation of AIS structural and functional proteins, disruption in sorting somatodendritic and axonal proteins, and a reduction in firing frequency. These results show that Tpm3.1 is necessary for the structural and functional maintenance of the AIS. Tropomyosin isoform Tpm3.1 co-localizes with the actin cytoskeleton in the AIS Tpm3.1 inhibition led to a less organized AIS actin cytoskeleton Perturbation of Tpm3.1 function reduced the accumulation of AIS scaffolding proteins Tpm3.1 inhibition compromised cargo sorting and rapidly reduced firing frequency
Collapse
Affiliation(s)
- Amr Abouelezz
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Tukholmankatu 8, 00290 Helsinki, Finland; HiLIFE - Neuroscience Center, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Holly Stefen
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Mikael Segerstråle
- Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, 00790 Helsinki, Finland
| | - David Micinski
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Rimante Minkeviciene
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Lauri Lahti
- Department of Computer Science, Aalto University School of Science, Espoo, Finland
| | - Edna C Hardeman
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Peter W Gunning
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Casper C Hoogenraad
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584CH Utrecht, the Netherlands
| | - Tomi Taira
- Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, 00790 Helsinki, Finland
| | - Thomas Fath
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia; Dementia Research Centre, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Pirta Hotulainen
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Tukholmankatu 8, 00290 Helsinki, Finland.
| |
Collapse
|
29
|
Wang Y, Stear JH, Swain A, Xu X, Bryce NS, Carnell M, Alieva IB, Dugina VB, Cripe TP, Stehn J, Hardeman EC, Gunning PW. Drug Targeting the Actin Cytoskeleton Potentiates the Cytotoxicity of Low Dose Vincristine by Abrogating Actin-Mediated Repair of Spindle Defects. Mol Cancer Res 2020; 18:1074-1087. [PMID: 32269073 DOI: 10.1158/1541-7786.mcr-19-1122] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/09/2020] [Accepted: 04/03/2020] [Indexed: 11/16/2022]
Abstract
Antimicrotubule vinca alkaloids are widely used in the clinic but their toxicity is often dose limiting. Strategies that enhance their effectiveness at lower doses are needed. We show that combining vinca alkaloids with compounds that target a specific population of actin filaments containing the cancer-associated tropomyosin Tpm3.1 result in synergy against a broad range of tumor cell types. We discovered that low concentrations of vincristine alone induce supernumerary microtubule asters that form transient multi-polar spindles in early mitosis. Over time these asters can be reconstructed into functional bipolar spindles resulting in cell division and survival. These microtubule asters are organized by the nuclear mitotic apparatus protein (NuMA)-dynein-dynactin complex without involvement of centrosomes. However, anti-Tpm3.1 compounds at nontoxic concentrations inhibit this rescue mechanism resulting in delayed onset of anaphase, formation of multi-polar spindles, and apoptosis during mitosis. These findings indicate that drug targeting actin filaments containing Tpm3.1 potentiates the anticancer activity of low-dose vincristine treatment. IMPLICATIONS: Simultaneously inhibiting Tpm3.1-containing actin filaments and microtubules is a promising strategy to potentiate the anticancer activity of low-dose vincristine.
Collapse
Affiliation(s)
- Yao Wang
- Cellular and Genetic Medicine Unit, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Jeffrey H Stear
- Cellular and Genetic Medicine Unit, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Ashleigh Swain
- Cellular and Genetic Medicine Unit, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Xing Xu
- Cellular and Genetic Medicine Unit, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Nicole S Bryce
- Cellular and Genetic Medicine Unit, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Michael Carnell
- Biomedical Imaging Facility, Mark Wainwright Analytical Center, University of New South Wales, Sydney, New South Wales, Australia
| | - Irina B Alieva
- Department of Electron Microscopy, A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Vera B Dugina
- Department of Mathematical Methods in Biology, A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Justine Stehn
- Cellular and Genetic Medicine Unit, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Edna C Hardeman
- Cellular and Genetic Medicine Unit, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Peter W Gunning
- Cellular and Genetic Medicine Unit, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
30
|
Kwon S, Kim KS. Qualitative analysis of contribution of intracellular skeletal changes to cellular elasticity. Cell Mol Life Sci 2020; 77:1345-1355. [PMID: 31605149 PMCID: PMC11105102 DOI: 10.1007/s00018-019-03328-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 01/07/2023]
Abstract
Cells are dynamic structures that continually generate and sustain mechanical forces within their environments. Cells respond to mechanical forces by changing their shape, moving, and differentiating. These reactions are caused by intracellular skeletal changes, which induce changes in cellular mechanical properties such as stiffness, elasticity, viscoelasticity, and adhesiveness. Interdisciplinary research combining molecular biology with physics and mechanical engineering has been conducted to characterize cellular mechanical properties and understand the fundamental mechanisms of mechanotransduction. In this review, we focus on the role of cytoskeletal proteins in cellular mechanics. The specific role of each cytoskeletal protein, including actin, intermediate filaments, and microtubules, on cellular elasticity is summarized along with the effects of interactions between the fibers.
Collapse
Affiliation(s)
- Sangwoo Kwon
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Kyung Sook Kim
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
31
|
Dendritic Spines in Alzheimer's Disease: How the Actin Cytoskeleton Contributes to Synaptic Failure. Int J Mol Sci 2020; 21:ijms21030908. [PMID: 32019166 PMCID: PMC7036943 DOI: 10.3390/ijms21030908] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by Aβ-driven synaptic dysfunction in the early phases of pathogenesis. In the synaptic context, the actin cytoskeleton is a crucial element to maintain the dendritic spine architecture and to orchestrate the spine’s morphology remodeling driven by synaptic activity. Indeed, spine shape and synaptic strength are strictly correlated and precisely governed during plasticity phenomena in order to convert short-term alterations of synaptic strength into long-lasting changes that are embedded in stable structural modification. These functional and structural modifications are considered the biological basis of learning and memory processes. In this review we discussed the existing evidence regarding the role of the spine actin cytoskeleton in AD synaptic failure. We revised the physiological function of the actin cytoskeleton in the spine shaping and the contribution of actin dynamics in the endocytosis mechanism. The internalization process is implicated in different aspects of AD since it controls both glutamate receptor membrane levels and amyloid generation. The detailed understanding of the mechanisms controlling the actin cytoskeleton in a unique biological context as the dendritic spine could pave the way to the development of innovative synapse-tailored therapeutic interventions and to the identification of novel biomarkers to monitor synaptic loss in AD.
Collapse
|
32
|
How Actin Tracks Affect Myosin Motors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1239:183-197. [DOI: 10.1007/978-3-030-38062-5_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
33
|
Small Molecule Effectors of Myosin Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1239:61-84. [DOI: 10.1007/978-3-030-38062-5_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Zhao S, Cai J, Zhang X, Cui J, Jiu Y. Different formins restrict localization of distinct tropomyosins on dorsal stress fibers in osteosarcoma cells. Cytoskeleton (Hoboken) 2019; 77:16-24. [PMID: 31820591 DOI: 10.1002/cm.21588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/01/2019] [Accepted: 12/04/2019] [Indexed: 12/25/2022]
Abstract
Formins and tropomyosins (Tpms) are two central components of the microfilaments. Formins are involved in the nucleation and polymerization of actin filaments, and Tpms form along the actin stress fibers to regulate their dynamics. However, the correlation between formins and Tpms remains unclear. Here, we elucidated the function of distinct formins and their specific regulation to the subcellular-localization of Tpm isoforms on dorsal stress fibers in human osteosarcoma cells. Knockdown of individual formin isoform led to varied defects in actin stress fiber network, but did not affect the expression level of other formin isoforms and Tpms. Further investigation showed that different formins regulated distinct Tpm isoforms in decorating dorsal stress fibers. Specifically, DAAM1 and FHOD1 restricted the distal end expression of Tpm3.1; INF2 controlled the approximate localization of Tpm4.2; and Dia1 partially modulated the dorsal localization of Tpm1.6. Taken together, these data provide microscopy experimental evidence that different formins restrict the localization of distinct Tpm isoforms on dorsal actin stress fibers.
Collapse
Affiliation(s)
- Shuangshuang Zhao
- The Joint Center for Infection and Immunity between Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center (Guangzhou, 510623, China) and Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Jinping Cai
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Xin Zhang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Jie Cui
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yaming Jiu
- The Joint Center for Infection and Immunity between Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center (Guangzhou, 510623, China) and Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
35
|
Putra VDL, Jalilian I, Campbell M, Poole K, Whan R, Tomasetig F, Tate MLK. Mapping the Mechanome-A Protocol for Simultaneous Live Imaging and Quantitative Analysis of Cell Mechanoadaptation and Ingression. Bio Protoc 2019; 9:e3439. [PMID: 33654934 DOI: 10.21769/bioprotoc.3439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/28/2019] [Accepted: 11/22/2019] [Indexed: 11/02/2022] Open
Abstract
Mechanomics, the mechanics equivalent of genomics, is a burgeoning field studying mechanical modulation of stem cell behavior and lineage commitment. Analogous to mechanical testing of a living material as it adapts and evolves, mapping of the mechanome necessitates the development of new protocols to assess changes in structure and function in live stem cells as they adapt and differentiate. Previous techniques have relied on imaging of cellular structures in fixed cells and/or live cell imaging of single cells with separate studies of changes in mechanical and biological properties. Here we present two complementary protocols to study mechanobiology and mechanoadaptation of live stem cells in adherent and motile contexts. First, we developed and tested live imaging protocols for simultaneous visualization and tracking of actin and tubulin mechanoadaptation as well as shape and volume of cells and their nuclei in adherent model embryonic murine mesenchymal stem cells (C3H/10T1/2) and in a neuroblastoma cell line. Then we applied the protocol to enable quantitative study of primary human mesenchymal stem cells in a motile state, e.g., ingression in a three-dimensional, in vitro cell culture model. Together, these protocols enable study of emergent structural mechanoadaptation of the cell's own cytoskeletal machinery while tracking lineage commitment using phenotypic (quantitative morphology measures) and genotypic (e.g., reverse transcription Polymerase Chain Reaction, rtPCR) methods. These tools are expected to facilitate the mapping of the mechanome and incipient mechanistic understanding of stem cell mechanobiology, from the cellular to the tissue and organ length scales.
Collapse
Affiliation(s)
- Vina D L Putra
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| | - Iman Jalilian
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia.,Department of Cell Biology, Yale University, New Haven, USA
| | - Madeline Campbell
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| | - Kate Poole
- Cellular Mechanotransduction Group, EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Renee Whan
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia
| | - Florence Tomasetig
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia
| | - Melissa L Knothe Tate
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| |
Collapse
|
36
|
Impact of the actin cytoskeleton on cell development and function mediated via tropomyosin isoforms. Semin Cell Dev Biol 2019; 102:122-131. [PMID: 31630997 DOI: 10.1016/j.semcdb.2019.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 01/07/2023]
Abstract
The physiological function of actin filaments is challenging to dissect because of the pleiotropic impact of global disruption of the actin cytoskeleton. Tropomyosin isoforms have provided a unique opportunity to address this issue. A substantial fraction of actin filaments in animal cells consist of co-polymers of actin with specific tropomyosin isoforms which determine the functional capacity of the filament. Genetic manipulation of the tropomyosins has revealed isoform specific roles and identified the physiological function of the different actin filament types based on their tropomyosin isoform composition. Surprisingly, there is remarkably little redundancy between the tropomyosins resulting in highly penetrant impacts of both ectopic overexpression and knockout of isoforms. The physiological roles of the tropomyosins cover a broad range from development and morphogenesis to cell migration and specialised tissue function and human diseases.
Collapse
|
37
|
Abstract
The interactions of cytoskeletal actin filaments with myosin family motors are essential for the integrity and function of eukaryotic cells. They support a wide range of force-dependent functions. These include mechano-transduction, directed transcellular transport processes, barrier functions, cytokinesis, and cell migration. Despite the indispensable role of tropomyosins in the generation and maintenance of discrete actomyosin-based structures, the contribution of individual cytoskeletal tropomyosin isoforms to the structural and functional diversification of the actin cytoskeleton remains a work in progress. Here, we review processes that contribute to the dynamic sorting and targeted distribution of tropomyosin isoforms in the formation of discrete actomyosin-based structures in animal cells and their effects on actin-based motility and contractility.
Collapse
|
38
|
Meiring JCM, Bryce NS, Niño JLG, Gabriel A, Tay SS, Hardeman EC, Biro M, Gunning PW. Tropomyosin concentration but not formin nucleators mDia1 and mDia3 determines the level of tropomyosin incorporation into actin filaments. Sci Rep 2019; 9:6504. [PMID: 31019238 PMCID: PMC6482184 DOI: 10.1038/s41598-019-42977-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/11/2019] [Indexed: 12/31/2022] Open
Abstract
The majority of actin filaments in human cells exist as a co-polymer with tropomyosin, which determines the functionality of actin filaments in an isoform dependent manner. Tropomyosin isoforms are sorted to different actin filament populations and in yeast this process is determined by formins, however it remains unclear what process determines tropomyosin isoform sorting in mammalian cells. We have tested the roles of two major formin nucleators, mDia1 and mDia3, in the recruitment of specific tropomyosin isoforms in mammals. Despite observing poorer cell-cell attachments in mDia1 and mDia3 KD cells and an actin bundle organisation defect with mDia1 knock down; depletion of mDia1 and mDia3 individually and concurrently did not result in any significant impact on tropomyosin recruitment to actin filaments, as observed via immunofluorescence and measured via biochemical assays. Conversely, in the presence of excess Tpm3.1, the absolute amount of Tpm3.1-containing actin filaments is not fixed by actin filament nucleators but rather depends on the cell concentration of Tpm3.1. We conclude that mDia1 and mDia3 are not essential for tropomyosin recruitment and that tropomyosin incorporation into actin filaments is concentration dependent.
Collapse
Affiliation(s)
- Joyce C M Meiring
- Cellular and Genetic Medicine Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Nicole S Bryce
- Cellular and Genetic Medicine Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jorge Luis Galeano Niño
- Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Antje Gabriel
- Cellular and Genetic Medicine Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.,Pharmaceutical Biology, Center for Drug Research, Ludwig-Maximilians-Universität, Munich, Germany
| | - Szun S Tay
- Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Edna C Hardeman
- Cellular and Genetic Medicine Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Maté Biro
- Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Peter W Gunning
- Cellular and Genetic Medicine Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
39
|
Humayun-Zakaria N, Arnold R, Goel A, Ward D, Savill S, Bryan RT. Tropomyosins: Potential Biomarkers for Urothelial Bladder Cancer. Int J Mol Sci 2019; 20:E1102. [PMID: 30836651 PMCID: PMC6429115 DOI: 10.3390/ijms20051102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 02/07/2023] Open
Abstract
Despite the incidence and prevalence of urothelial bladder cancer (UBC), few advances in treatment and diagnosis have been made in recent years. In this review, we discuss potential biomarker candidates: the tropomyosin family of genes, encoded by four loci in the human genome. The expression of these genes is tissue-specific. Tropomyosins are responsible for diverse cellular roles, most notably based upon their interplay with actin to maintain cellular processes, integrity and structure. Tropomyosins exhibit a large variety of splice forms, and altered isoform expression levels have been associated with cancer, including UBC. Notably, tropomyosin isoforms are detectable in urine, offering the potential for non-invasive diagnosis and risk-stratification. This review collates the basic knowledge on tropomyosin and its isoforms, and discusses their relationships with cancer-related phenomena, most specifically in UBC.
Collapse
Affiliation(s)
- Nada Humayun-Zakaria
- Institute of Cancer and Genomic Sciences, College of Medicine and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Roland Arnold
- Institute of Cancer and Genomic Sciences, College of Medicine and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Anshita Goel
- Institute of Cancer and Genomic Sciences, College of Medicine and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Douglas Ward
- Institute of Cancer and Genomic Sciences, College of Medicine and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Stuart Savill
- North Wales Clinical Research Centre, Betsi Cadwaladr University Health Board, Wrexham LL13 7YP, UK.
| | - Richard T Bryan
- Institute of Cancer and Genomic Sciences, College of Medicine and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
40
|
Kis-Bicskei N, Bécsi B, Erdődi F, Robinson RC, Bugyi B, Huber T, Nyitrai M, Talián GC. Tropomyosins Regulate the Severing Activity of Gelsolin in Isoform-Dependent and Independent Manners. Biophys J 2019; 114:777-787. [PMID: 29490240 PMCID: PMC5984974 DOI: 10.1016/j.bpj.2017.11.3812] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/16/2017] [Accepted: 11/29/2017] [Indexed: 12/16/2022] Open
Abstract
The actin cytoskeleton fulfills numerous key cellular functions, which are tightly regulated in activity, localization, and temporal patterning by actin binding proteins. Tropomyosins and gelsolin are two such filament-regulating proteins. Here, we investigate how the effects of tropomyosins are coupled to the binding and activity of gelsolin. We show that the three investigated tropomyosin isoforms (Tpm1.1, Tpm1.12, and Tpm3.1) bind to gelsolin with micromolar or submicromolar affinities. Tropomyosin binding enhances the activity of gelsolin in actin polymerization and depolymerization assays. However, the effects of the three tropomyosin isoforms varied. The tropomyosin isoforms studied also differed in their ability to protect pre-existing actin filaments from severing by gelsolin. Based on the observed specificity of the interactions between tropomyosins, actin filaments, and gelsolin, we propose that tropomyosin isoforms specify which populations of actin filaments should be targeted by, or protected from, gelsolin-mediated depolymerization in living cells.
Collapse
Affiliation(s)
| | - Bálint Bécsi
- Department of Medical Chemistry, University of Debrecen, Faculty of Medicine, Debrecen, Hungary; MTA-DE Cell Biology and Signaling Research Group, University of Debrecen, Faculty of Medicine, Debrecen, Hungary
| | - Ferenc Erdődi
- Department of Medical Chemistry, University of Debrecen, Faculty of Medicine, Debrecen, Hungary; MTA-DE Cell Biology and Signaling Research Group, University of Debrecen, Faculty of Medicine, Debrecen, Hungary
| | - Robert C Robinson
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore; Research Institute for Interdisciplinary Science, Okayama University, Okayama, Japan
| | - Beáta Bugyi
- Department of Biophysics, Medical School, University of Pécs, Pécs, Hungary; Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Tamás Huber
- Department of Biophysics, Medical School, University of Pécs, Pécs, Hungary
| | - Miklós Nyitrai
- Department of Biophysics, Medical School, University of Pécs, Pécs, Hungary; MTA-PTE Nuclear-Mitochondrial Interactions Research Group, Pécs, Hungary.
| | - Gábor Csaba Talián
- Department of Biophysics, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
41
|
Jansen S, Goode BL. Tropomyosin isoforms differentially tune actin filament length and disassembly. Mol Biol Cell 2019; 30:671-679. [PMID: 30650006 PMCID: PMC6589703 DOI: 10.1091/mbc.e18-12-0815] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cellular actin networks exhibit diverse filamentous architectures and turnover dynamics, but how these differences are specified remains poorly understood. Here, we used multicolor total internal reflection fluorescence microscopy to ask how decoration of actin filaments by five biologically prominent Tropomyosin (TPM) isoforms influences disassembly induced by Cofilin alone, or by the collaborative effects of Cofilin, Coronin, and AIP1 (CCA). TPM decoration restricted Cofilin binding to pointed ends, while not interfering with Coronin binding to filament sides. Different isoforms of TPM provided variable levels of protection against disassembly, with the strongest protection by Tpm3.1 and the weakest by Tpm1.6. In biomimetic assays in which filaments were simultaneously assembled by formins and disassembled by CCA, these TPM isoform-specific effects persisted, giving rise to filaments with different lengths and treadmilling behavior. Together, our data reveal that TPM isoforms have quantitatively distinct abilities to tune actin filament length and turnover.
Collapse
Affiliation(s)
- Silvia Jansen
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO 63110
| | - Bruce L Goode
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454
| |
Collapse
|
42
|
Meiring JCM, Bryce NS, Cagigas ML, Benda A, Whan RM, Ariotti N, Parton RG, Stear JH, Hardeman EC, Gunning PW. Colocation of Tpm3.1 and myosin IIa heads defines a discrete subdomain in stress fibres. J Cell Sci 2019; 132:jcs.228916. [DOI: 10.1242/jcs.228916] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 07/06/2019] [Indexed: 01/06/2023] Open
Abstract
Co-polymers of tropomyosin and actin make up a major fraction of the actin cytoskeleton. Tropomyosin isoforms determine the function of an actin filament by selectively enhancing or inhibiting the association of other actin binding proteins, altering the stability of an actin filament and regulating myosin activity in an isoform specific manner. Previous work has implicated specific roles for at least 5 different tropomyosin isoforms in stress fibres, as depletion of any of these 5 isoforms results in a loss of stress fibres. Despite this, most models of stress fibres continue to exclude tropomyosins. In this study we investigate tropomyosin organisation in stress fibres using super resolution light microscopy and electron microscopy with genetically tagged, endogenous tropomyosin. We show that tropomyosin isoforms are organised in subdomains within the overall domain of stress fibres. Tpm3.1/3.2 co-localises with non-muscle myosin IIa/IIb heads and are in register but do not overlap with non-muscle myosin IIa/IIb tails. Furthermore, perturbation of Tpm3.1/3.2 results in decreased myosin IIa in stress fibres, which is consistent with a role for Tpm3.1 in maintaining myosin IIa localisation in stress fibres.
Collapse
Affiliation(s)
- Joyce C. M. Meiring
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nicole S. Bryce
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Maria Lastra Cagigas
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Aleš Benda
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Renee M. Whan
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nicholas Ariotti
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Robert G. Parton
- Cell Biology and Molecular Medicine Division, Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD 4072, Australia
- Centre for Microscopy and Microanalysis, University of Queensland, St Lucia, QLD 4072, Australia
| | - Jeffrey H. Stear
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Edna C. Hardeman
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Peter W. Gunning
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
43
|
Cao Y, Lei Y, Luo Y, Tan T, Du B, Zheng Y, Sun L, Liang Q. The actomyosin network is influenced by NMHC IIA and regulated by Crp F46, which is involved in controlling cell migration. Exp Cell Res 2018; 373:119-131. [PMID: 30336116 DOI: 10.1016/j.yexcr.2018.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 10/28/2022]
Abstract
When a cell migrates, the centrosome positions between the nucleus and the leading edge of migration via the microtubule system. The protein CrpF46 (centrosome-related protein F46) has a known role during mitosis and centrosome duplication. However, how CrpF46 efficiently regulates centrosome-related cell migration is unclear. Here, we report that knockdown of CrpF46 resulted in the disruption of microtubule arrangement, with impaired centrosomal reorientation, and slowed down cell migration. In cells that express low levels of CrpF46, stress fibers were weakened, which could be rescued by recovering Flag-CrpF46. We also found that CrpF46 interacted with non-muscle myosin high chain IIA (NMHC IIA) and that its three coiled-coil domains are pivotal for its binding to NMHC IIA. Additionally, analyses of phosphorylation of NMHC IIA and RLC (regulatory light chain) demonstrated that CrpF46 was associated with myosin IIA during filament formation. Indirect immunofluorescence images indicated that NM IIA filaments were inhibited when CrpF46 was under-expressed. Thus, CrpF46 regulates cell migration by centrosomal reorientation and altering the function of the actomyosin network by controlling specific phosphorylation of myosin.
Collapse
Affiliation(s)
- Yang Cao
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, PR China; Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Yan Lei
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, PR China; Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Yang Luo
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Tan Tan
- School of Pharmacology and Biology, University of South China, Hunan Province Cooperative innovation Center for Molecular Target New Drug Study, Hengyang 421001, PR China
| | - Baochen Du
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Yanbo Zheng
- The Institute of Medical Biotechnology (IMB) of the Chinese Academy of Medical Sciences, Beijing 100050, PR China
| | - Le Sun
- AbMax Biotechnology Co., Beijing 101111, PR China
| | - Qianjin Liang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, PR China; Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
44
|
Fenix AM, Neininger AC, Taneja N, Hyde K, Visetsouk MR, Garde RJ, Liu B, Nixon BR, Manalo AE, Becker JR, Crawley SW, Bader DM, Tyska MJ, Liu Q, Gutzman JH, Burnette DT. Muscle-specific stress fibers give rise to sarcomeres in cardiomyocytes. eLife 2018; 7:42144. [PMID: 30540249 PMCID: PMC6307863 DOI: 10.7554/elife.42144] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/11/2018] [Indexed: 11/13/2022] Open
Abstract
The sarcomere is the contractile unit within cardiomyocytes driving heart muscle contraction. We sought to test the mechanisms regulating actin and myosin filament assembly during sarcomere formation. Therefore, we developed an assay using human cardiomyocytes to monitor sarcomere assembly. We report a population of muscle stress fibers, similar to actin arcs in non-muscle cells, which are essential sarcomere precursors. We show sarcomeric actin filaments arise directly from muscle stress fibers. This requires formins (e.g., FHOD3), non-muscle myosin IIA and non-muscle myosin IIB. Furthermore, we show short cardiac myosin II filaments grow to form ~1.5 μm long filaments that then 'stitch' together to form the stack of filaments at the core of the sarcomere (i.e., the A-band). A-band assembly is dependent on the proper organization of actin filaments and, as such, is also dependent on FHOD3 and myosin IIB. We use this experimental paradigm to present evidence for a unifying model of sarcomere assembly.
Collapse
Affiliation(s)
- Aidan M Fenix
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| | - Abigail C Neininger
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| | - Nilay Taneja
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| | - Karren Hyde
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| | - Mike R Visetsouk
- Department of Biological Sciences, Cell and Molecular Biology, University of Wisconsin Milwaukee, Milwaukee, United States
| | - Ryan J Garde
- Department of Biological Sciences, Cell and Molecular Biology, University of Wisconsin Milwaukee, Milwaukee, United States
| | - Baohong Liu
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, United States
| | - Benjamin R Nixon
- Department of Medicine, Vanderbilt University Medical Center, Nashville, United States
| | - Annabelle E Manalo
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| | - Jason R Becker
- Department of Medicine, Vanderbilt University Medical Center, Nashville, United States
| | - Scott W Crawley
- Department of Biological Sciences, The University of Toledo, Toledo, United States
| | - David M Bader
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| | - Qi Liu
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, United States
| | - Jennifer H Gutzman
- Department of Biological Sciences, Cell and Molecular Biology, University of Wisconsin Milwaukee, Milwaukee, United States
| | - Dylan T Burnette
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| |
Collapse
|
45
|
Cheng C, Nowak RB, Amadeo MB, Biswas SK, Lo WK, Fowler VM. Tropomyosin 3.5 protects the F-actin networks required for tissue biomechanical properties. J Cell Sci 2018; 131:jcs222042. [PMID: 30333143 PMCID: PMC6288072 DOI: 10.1242/jcs.222042] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022] Open
Abstract
Tropomyosins (Tpms) stabilize F-actin and regulate interactions with other actin-binding proteins. The eye lens changes shape in order to focus light to transmit a clear image, and thus lens organ function is tied to its biomechanical properties, presenting an opportunity to study Tpm functions in tissue mechanics. Mouse lenses contain Tpm3.5 (also known as TM5NM5), a previously unstudied isoform encoded by Tpm3, which is associated with F-actin on lens fiber cell membranes. Decreased levels of Tpm3.5 lead to softer and less mechanically resilient lenses that are unable to resume their original shape after compression. While cell organization and morphology appear unaffected, Tmod1 dissociates from the membrane in Tpm3.5-deficient lens fiber cells resulting in reorganization of the spectrin-F-actin and α-actinin-F-actin networks at the membrane. These rearranged F-actin networks appear to be less able to support mechanical load and resilience, leading to an overall change in tissue mechanical properties. This is the first in vivo evidence that a Tpm protein is essential for cell biomechanical stability in a load-bearing non-muscle tissue, and indicates that Tpm3.5 protects mechanically stable, load-bearing F-actin in vivoThis article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Catherine Cheng
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Roberta B Nowak
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michael B Amadeo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sondip K Biswas
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA 30314, USA
| | - Woo-Kuen Lo
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA 30314, USA
| | - Velia M Fowler
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
46
|
Stefen H, Hassanzadeh-Barforoushi A, Brettle M, Fok S, Suchowerska AK, Tedla N, Barber T, Warkiani ME, Fath T. A Novel Microfluidic Device-Based Neurite Outgrowth Inhibition Assay Reveals the Neurite Outgrowth-Promoting Activity of Tropomyosin Tpm3.1 in Hippocampal Neurons. Cell Mol Neurobiol 2018; 38:1557-1563. [PMID: 30218404 PMCID: PMC11469800 DOI: 10.1007/s10571-018-0620-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/06/2018] [Indexed: 11/28/2022]
Abstract
Overcoming neurite inhibition is integral for restoring neuronal connectivity after CNS injury. Actin dynamics are critical for neurite growth cone formation and extension. The tropomyosin family of proteins is a regarded as master regulator of actin dynamics. This study investigates tropomyosin isoform 3.1 (Tpm3.1) as a potential candidate for overcoming an inhibitory substrate, as it is known to influence neurite branching and outgrowth. We designed a microfluidic device that enables neurons to be grown adjacent to an inhibitory substrate, Nogo-66. Results show that neurons, overexpressing hTpm3.1, have an increased propensity to overcome Nogo-66 inhibition. We propose Tpm3.1 as a potential target for promoting neurite growth in an inhibitory environment in the central nervous system.
Collapse
Affiliation(s)
- Holly Stefen
- Neurodegenerative and Repair Unit, School of Medical Science, UNSW Sydney, Sydney, NSW, Australia
- Neuron Culture Core Facility (NCCF), University of New South Wales, Sydney, NSW, Australia
| | - Amin Hassanzadeh-Barforoushi
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Cancer Division, Garvan Institute of Medical Research/The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
| | - Merryn Brettle
- Neurodegenerative and Repair Unit, School of Medical Science, UNSW Sydney, Sydney, NSW, Australia
| | - Sandra Fok
- Neurodegenerative and Repair Unit, School of Medical Science, UNSW Sydney, Sydney, NSW, Australia
| | - Alexandra K Suchowerska
- Neurodegenerative and Repair Unit, School of Medical Science, UNSW Sydney, Sydney, NSW, Australia
| | - Nicodemus Tedla
- Inflammation Research, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Tracie Barber
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia.
- Institute of Molecular Medicine, Sechenov First Moscow State University, Moscow, 119991, Russia.
| | - Thomas Fath
- Neurodegenerative and Repair Unit, School of Medical Science, UNSW Sydney, Sydney, NSW, Australia.
- Neuron Culture Core Facility (NCCF), University of New South Wales, Sydney, NSW, Australia.
- Faculty of Medicine and Health Sciences, Dementia Research Centre, Macquarie University, Sydney, NSW, 2019, Australia.
| |
Collapse
|
47
|
Mitchell CB, Stehn JR, O'Neill GM. Small molecule targeting of the actin associating protein tropomyosin Tpm3.1 increases neuroblastoma cell response to inhibition of Rac‐mediated multicellular invasion. Cytoskeleton (Hoboken) 2018; 75:307-317. [DOI: 10.1002/cm.21452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 05/07/2018] [Accepted: 05/07/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Camilla B. Mitchell
- Children's Cancer Research UnitKids Research Institute, The Children's Hospital at WestmeadWestmead New South Wales Australia
| | - Justine R. Stehn
- Novogen Pty LtdHornsby NSW Australia
- School of Medical SciencesUniversity of New South Wales AustraliaSydney NSW Australia
| | - Geraldine M. O'Neill
- Children's Cancer Research UnitKids Research Institute, The Children's Hospital at WestmeadWestmead New South Wales Australia
- Discipline of Paediatrics and Child HealthThe University of SydneySydney New South Wales Australia
| |
Collapse
|
48
|
Meiring JC, Bryce NS, Wang Y, Taft MH, Manstein DJ, Liu Lau S, Stear J, Hardeman EC, Gunning PW. Co-polymers of Actin and Tropomyosin Account for a Major Fraction of the Human Actin Cytoskeleton. Curr Biol 2018; 28:2331-2337.e5. [DOI: 10.1016/j.cub.2018.05.053] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/20/2018] [Accepted: 05/17/2018] [Indexed: 01/14/2023]
|
49
|
Hilton DM, Aguilar RM, Johnston AB, Goode BL. Species-Specific Functions of Twinfilin in Actin Filament Depolymerization. J Mol Biol 2018; 430:3323-3336. [PMID: 29928893 DOI: 10.1016/j.jmb.2018.06.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/28/2018] [Accepted: 06/12/2018] [Indexed: 11/16/2022]
Abstract
Twinfilin is a highly conserved member of the actin depolymerization factor homology (ADF-H) protein superfamily, which also includes ADF/Cofilin, Abp1/Drebrin, GMF, and Coactosin. Twinfilin has a unique molecular architecture consisting of two ADF-H domains joined by a linker and followed by a C-terminal tail. Yeast Twinfilin, in conjunction with yeast cyclase-associated protein (Srv2/CAP), increases the rate of depolymerization at both the barbed and pointed ends of actin filaments. However, it has remained unclear whether these activities extend to Twinfilin homologs in other species. To address this, we purified the three mouse Twinfilin isoforms (mTwf1, mTwf2a, mTwf2b) and mouse CAP1, and used total internal reflection fluorescence microscopy assays to study their effects on filament disassembly. Our results show that all three mouse Twinfilin isoforms accelerate barbed end depolymerization similar to yeast Twinfilin, suggesting that this activity is evolutionarily conserved. In striking contrast, mouse Twinfilin isoforms and CAP1 failed to induce rapid pointed end depolymerization. Using chimeras, we show that the yeast-specific pointed end depolymerization activity is specified by the C-terminal ADF-H domain of yeast Twinfilin. In addition, Tropomyosin decoration of filaments failed to impede depolymerization by yeast and mouse Twinfilin and Srv2/CAP, but inhibited Cofilin severing. Together, our results indicate that Twinfilin has conserved functions in regulating barbed end dynamics, although its ability to drive rapid pointed end depolymerization appears to be species-specific. We discuss the implications of this work, including that pointed end depolymerization may be catalyzed by different ADF-H family members in different species.
Collapse
Affiliation(s)
- Denise M Hilton
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Rey M Aguilar
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Adam B Johnston
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Bruce L Goode
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|
50
|
Barnes DE, Watabe E, Ono K, Kwak E, Kuroyanagi H, Ono S. Tropomyosin isoforms differentially affect muscle contractility in the head and body regions of the nematode Caenorhabditis elegans. Mol Biol Cell 2018; 29:1075-1088. [PMID: 29496965 PMCID: PMC5921574 DOI: 10.1091/mbc.e17-03-0152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 11/11/2022] Open
Abstract
Tropomyosin, one of the major actin filament-binding proteins, regulates actin-myosin interaction and actin-filament stability. Multicellular organisms express a number of tropomyosin isoforms, but understanding of isoform-specific tropomyosin functions is incomplete. The nematode Caenorhabditis elegans has a single tropomyosin gene, lev-11, which has been reported to express four isoforms by using two separate promoters and alternative splicing. Here, we report a fifth tropomyosin isoform, LEV-11O, which is produced by alternative splicing that includes a newly identified seventh exon, exon 7a. By visualizing specific splicing events in vivo, we find that exon 7a is predominantly selected in a subset of the body wall muscles in the head, while exon 7b, which is the alternative to exon 7a, is utilized in the rest of the body. Point mutations in exon 7a and exon 7b cause resistance to levamisole--induced muscle contraction specifically in the head and the main body, respectively. Overexpression of LEV-11O, but not LEV-11A, in the main body results in weak levamisole resistance. These results demonstrate that specific tropomyosin isoforms are expressed in the head and body regions of the muscles and contribute differentially to the regulation of muscle contractility.
Collapse
Affiliation(s)
- Dawn E. Barnes
- Department of Pathology, Department of Cell Biology, and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | - Eichi Watabe
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Kanako Ono
- Department of Pathology, Department of Cell Biology, and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | - Euiyoung Kwak
- Department of Pathology, Department of Cell Biology, and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | - Hidehito Kuroyanagi
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Shoichiro Ono
- Department of Pathology, Department of Cell Biology, and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| |
Collapse
|