1
|
Tan T, Wu C, Wang R, Pan BF, Hawke D, Yin F, Su Z, Liu B, Lin SH, Zhang W, Kuang J. Revisiting phosphoregulation of Cdc25C during M-phase induction. iScience 2025; 28:111603. [PMID: 39834856 PMCID: PMC11743101 DOI: 10.1016/j.isci.2024.111603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/23/2024] [Accepted: 11/11/2024] [Indexed: 01/22/2025] Open
Abstract
Cdc25C undergoes a sudden and substantial gel mobility shift at M-phase onset, correlating with abrupt activation of both Cdc25C and Cdk1 activities. A positive feedback loop between Cdk1 and Cdc25C has been used to explain this hallmark phenomenon. Here, we demonstrate that the M-phase supershift and robust activation of Cdc25C are due to the site-comprehensive phosphorylation of its long intrinsically disordered regulatory domain without requiring Cdk1 or other major mitotic kinase activities. The phosphorylation process involves substrate-mediated assembly of phosphorylation machinery that catalyzes multisite phosphorylation continuously without substrate dissociation. In contrast to the site-comprehensive phosphorylation of Cdc25C occurring at M-phase onset, the site-specific phosphorylation of Cdc25C by Cdk1 or other major mitotic kinases generates slight gel mobility shifts and modest activation of Cdc25C prior to M-phase onset. These findings suggest a two-stage framework consisting of site-specific phosphorylation followed by site-comprehensive phosphorylation for Cdc25C regulation during M-phase induction.
Collapse
Affiliation(s)
- Tan Tan
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Biochemistry and Molecular Biology, University of South China, Hengyang, Hunan 421001, China
| | - Chuanfen Wu
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ruoning Wang
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bih-Fang Pan
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David Hawke
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Fumin Yin
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Zehao Su
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Boye Liu
- Key Laboratory for Biodiversity and Ecological Engineering of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Sue-Hwa Lin
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Jian Kuang
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
2
|
Pellarin I, Dall'Acqua A, Favero A, Segatto I, Rossi V, Crestan N, Karimbayli J, Belletti B, Baldassarre G. Cyclin-dependent protein kinases and cell cycle regulation in biology and disease. Signal Transduct Target Ther 2025; 10:11. [PMID: 39800748 PMCID: PMC11734941 DOI: 10.1038/s41392-024-02080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/16/2024] [Accepted: 11/13/2024] [Indexed: 01/18/2025] Open
Abstract
Cyclin Dependent Kinases (CDKs) are closely connected to the regulation of cell cycle progression, having been first identified as the kinases able to drive cell division. In reality, the human genome contains 20 different CDKs, which can be divided in at least three different sub-family with different functions, mechanisms of regulation, expression patterns and subcellular localization. Most of these kinases play fundamental roles the normal physiology of eucaryotic cells; therefore, their deregulation is associated with the onset and/or progression of multiple human disease including but not limited to neoplastic and neurodegenerative conditions. Here, we describe the functions of CDKs, categorized into the three main functional groups in which they are classified, highlighting the most relevant pathways that drive their expression and functions. We then discuss the potential roles and deregulation of CDKs in human pathologies, with a particular focus on cancer, the human disease in which CDKs have been most extensively studied and explored as therapeutic targets. Finally, we discuss how CDKs inhibitors have become standard therapies in selected human cancers and propose novel ways of investigation to export their targeting from cancer to other relevant chronic diseases. We hope that the effort we made in collecting all available information on both the prominent and lesser-known CDK family members will help in identify and develop novel areas of research to improve the lives of patients affected by debilitating chronic diseases.
Collapse
Affiliation(s)
- Ilenia Pellarin
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Alessandra Dall'Acqua
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Andrea Favero
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Ilenia Segatto
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Valentina Rossi
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Nicole Crestan
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Javad Karimbayli
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Barbara Belletti
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Gustavo Baldassarre
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy.
| |
Collapse
|
3
|
Zhou X, Alimu A, Zhao J, Xu X, Li X, Lin H, Lin Z. Paeonia genus: a systematic review of active ingredients, pharmacological effects and mechanisms, and clinical applications for the treatment of cancer. Arch Pharm Res 2024; 47:677-695. [PMID: 39306813 DOI: 10.1007/s12272-024-01512-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/12/2024] [Indexed: 10/11/2024]
Abstract
The main active constituents of plants of the Paeonia genus are known to have antitumor activity. Hundreds of compounds with a wide range of pharmacological activities, including monoterpene glycosides, flavonoids, tannins, stilbenes, triterpenoids, steroids, and phenolic compounds have been isolated. Among them, monoterpenes and their glycosides, flavonoids, phenolic acids, and other constituents have been shown to have good therapeutic effects on various cancers, with the main mechanisms including the induction of apoptosis; the inhibition of tumor cell proliferation, migration, and invasion; and the modulation of immunity. In this study, many citations related to the traditional uses, phytochemical constituents, antitumor effects, and clinical applications of the Paeonia genus were retrieved from popular and widely used databases such as Web of Science, Science Direct, Google Scholar, and PubMed using different search strings. A systematic review of the antitumor constituents of the Paeonia genus and their therapeutic effects on various cancers was conducted and the mechanisms of action and pathways of these phytochemicals were summarised to provide a further basis for antitumor research.
Collapse
Affiliation(s)
- Xinrui Zhou
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Aikebaier Alimu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Jiarui Zhao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xinyi Xu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xiaowen Li
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - He Lin
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Zhe Lin
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
4
|
Yang C, Wang Y, Hardy P. Emerging roles of microRNAs and their implications in uveal melanoma. Cell Mol Life Sci 2021; 78:545-559. [PMID: 32783068 PMCID: PMC11072399 DOI: 10.1007/s00018-020-03612-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/14/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022]
Abstract
Uveal melanoma (UM) is the most common intraocular malignant tumor in adults with an extremely high mortality rate. Genetic and epigenetic dysregulation contribute to the development of UM. Recent discoveries have revealed dysregulation of the expression levels of microRNAs (miRNAs) as one of the epigenetic mechanisms underlying UM tumorigenesis. Based on their roles, miRNAs are characterized as either oncogenic or tumor suppressive. This review focuses on the roles of miRNAs in UM tumorigenesis, diagnosis, and prognosis, as well as their therapeutic potentials. Particularly, the actions of collective miRNAs are summarized with respect to their involvement in major, aberrant signaling pathways that are implicated in the development and progression of UM. Elucidation of the underlying functional mechanisms and biological aspects of miRNA dysregulation in UM is invaluable in the development of miRNA-based therapeutics, which may be used in combination with conventional treatments to improve therapeutic outcomes. In addition, the expression levels of some miRNAs are correlated with UM initiation and progression and, therefore, may be used as biomarkers for diagnosis and prognosis.
Collapse
Affiliation(s)
- Chun Yang
- Departments of Pediatrics, Pharmacology, and Physiology, University of Montréal, Montréal, Québec, H3T 1C5, Canada
| | - Yuejiao Wang
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Pierre Hardy
- Departments of Pediatrics, Pharmacology, and Physiology, University of Montréal, Montréal, Québec, H3T 1C5, Canada.
- Research Center of CHU Sainte-Justine, 3175 Côte-Sainte-Catherine, Room 2.17.004, Montréal, Québec, H3T 1C5, Canada.
| |
Collapse
|
5
|
Peng D, Dong J, Zhao Y, Peng X, Tang J, Chen X, Wang L, Hu DN, Reinach PS, Qu J, Yan D. miR-142-3p suppresses uveal melanoma by targeting CDC25C, TGFβR1, GNAQ, WASL, and RAC1. Cancer Manag Res 2019; 11:4729-4742. [PMID: 31213897 PMCID: PMC6541795 DOI: 10.2147/cmar.s206461] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/18/2019] [Indexed: 02/03/2023] Open
Abstract
Purpose: Uveal melanoma (UM) is the most frequent metastatic ocular tumor in adults. Therapeutic intervention remains ineffective since none of the novel procedures used to treat this disease increased survival rates. To deal with this limitation, additional studies are required to clarify its pathogenesis. The current study focused on describing how epigenetic modulation by miR-142-3p affects changes in some cellular functions underlying UM pathogenesis. Methods and results: Microarray analysis identified 374 miRNAs which were differentially expressed between UM cells and uveal melanocytes. miR-142-3p was one of the 10 most downregulated miRNAs. Quantitative RT-PCR analysis confirmed that miR-142-3p expression levels were significantly decreased in both UM cell lines and clinical specimens. The results of the MTS, clone formation, scratch wound, transwell assays, and in vivo biofluorescence imaging showed that miR-142-3p overexpression significantly inhibited cell proliferation, migration, and invasiveness. Nevertheless, miR-142-3p did not affect cell apoptotic activity or sensitivity to doxorubicin. Cell cycle and EdU analysis showed that miR-142-3p overexpression induced G1/G2 cell cycle arrest and reduced DNA synthesis in UM cells. Microarray analysis showed that miR-142-3p mainly regulates the TGFβ signaling pathway, and those in which MAPK and PI3K-Akt are constituents. Functional interactions between miR-142-3p and CDC25C, TGFβR1, GNAQ, WASL, and RAC1 target genes were confirmed based on the results of the luciferase reporter assay and Western blot analysis. CDC25C or RAC1 downregulation is in agreement with cell cycle arrest and DNA synthesis disorder induction, while downregulation of TGFβR1, GNAQ, WASL, or RAC1 accounts for declines in cell migration. Conclusion: miR-143-3p is a potential therapeutic target to treat UM since overriding its declines in expression that occur in this disease reversed the pathogenesis of this disease. Such insight reveals novel biomarker for decreasing UM vitality and for improved tracking of tumor progression.
Collapse
Affiliation(s)
- Dewei Peng
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, People's Republic of China
| | - Jing Dong
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, People's Republic of China
| | - Yunping Zhao
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, People's Republic of China
| | - Xiaomei Peng
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, People's Republic of China
| | - Jingjing Tang
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, People's Republic of China
| | - Xiaoyan Chen
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, People's Republic of China
| | - Lihua Wang
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, People's Republic of China
| | - Dan-Ning Hu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, People's Republic of China.,Tissue Culture Center, New York Eye and Ear Infirmary, New York Medical College, New York, NY, USA
| | - Peter S Reinach
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, People's Republic of China
| | - Jia Qu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, People's Republic of China
| | - Dongsheng Yan
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, People's Republic of China
| |
Collapse
|
6
|
Zhang Y, Wang L, Zeng K, Wang K, Yang X. Vanadyl complexes discriminate between neuroblastoma cells and primary neurons by inducing cell-specific apoptotic pathways. J Inorg Biochem 2018; 188:76-87. [PMID: 30121400 DOI: 10.1016/j.jinorgbio.2018.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/27/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022]
Abstract
Vanadium compounds have arisen as potential therapeutic agent for the treatment of cancers over the past decades. A few studies suggested that vanadyl complexes may discriminate between the cancerous and the normal cells. Here, we reported the investigation on the pro-apoptotic effect and the underlying mechanism of bis(acetylacetonato) oxovanadium(IV) ([VO(acac)2]) on SH-SY5Y neuroblastoma cells in comparison with that of mouse primary cortex neurons. The experimental results revealed that [VO(acac)2] showed about 10-fold higher cytotoxicity (IC50 ~16 μM) on the neuroblastoma cells than on normal neurons (IC50 ~250 μM). Further analysis indicated that the vanadyl complex suppressed the growth of neuroblastoma cells via different pathways depending on its concentration. It induced a special cyclin D-mediated and p53-independent cell apoptosis at <50 μM but cell cycle arrests at >50 μM. In contrast, [VO(acac)2] promoted cell viability of primary neurons in the concentration range of 0-150 μM; while [VO(acac)2] at hundreds of μM would cause neuronal death possibly via the reactive oxygen species (ROS)-mediated signal pathways. The extraordinary discrimination between neuroblastoma cells and primary neurons suggests potential application of vanadyl complexes for therapeutic treatment of neuroblastoma. In addition, the p53-independent apoptotic pathways induced by vanadyl complexes may provide new insights for future discovery of new anticancer drugs overcoming the chemo-resistance due to p53 mutation.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Science, Peking University Health Science Center, Beijing 100191, PR China; Department of Chemical Biology, School of Pharmaceutical Science, Peking University Health Science Center, Beijing 100191, PR China
| | - Lichao Wang
- Department of Chemical Biology, School of Pharmaceutical Science, Peking University Health Science Center, Beijing 100191, PR China
| | - Kewu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Science, Peking University Health Science Center, Beijing 100191, PR China; Department of Natural Medicines, School of Pharmaceutical Science, Peking University Health Science Center, Beijing 100191, PR China.
| | - Kui Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Science, Peking University Health Science Center, Beijing 100191, PR China; Department of Chemical Biology, School of Pharmaceutical Science, Peking University Health Science Center, Beijing 100191, PR China
| | - Xiaoda Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Science, Peking University Health Science Center, Beijing 100191, PR China; Department of Chemical Biology, School of Pharmaceutical Science, Peking University Health Science Center, Beijing 100191, PR China.
| |
Collapse
|
7
|
Abood S, Veisaga ML, López LA, Barbieri MA. Dehydroleucodine inhibits mitotic clonal expansion during adipogenesis through cell cycle arrest. Phytother Res 2018; 32:1583-1592. [DOI: 10.1002/ptr.6089] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 01/03/2018] [Accepted: 03/12/2018] [Indexed: 01/04/2023]
Affiliation(s)
- S. Abood
- Department of Biological Sciences; Florida International University; Miami FL 33199 USA
| | - M. L. Veisaga
- Biomolecular Sciences Institute; Florida International University; Miami FL 33199 USA
| | - L. A. López
- Laboratory of Cytoskeleton and Cell Cycle, Institute of Histology and Embryology, Faculty of Medicine; National University of Cuyo; Mendoza 5500 Argentina
| | - M. A. Barbieri
- Department of Biological Sciences; Florida International University; Miami FL 33199 USA
- Biomolecular Sciences Institute; Florida International University; Miami FL 33199 USA
- Fairchild Tropical Botanic Garden; 10901 Old Cutler Road Coral Gables FL 33156 USA
- International Center of Tropical Botany; Florida International University; Miami FL 33199 USA
| |
Collapse
|
8
|
Giono LE, Resnick-Silverman L, Carvajal LA, St Clair S, Manfredi JJ. Mdm2 promotes Cdc25C protein degradation and delays cell cycle progression through the G2/M phase. Oncogene 2017; 36:6762-6773. [PMID: 28806397 PMCID: PMC6002854 DOI: 10.1038/onc.2017.254] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 06/15/2017] [Accepted: 06/27/2017] [Indexed: 12/16/2022]
Abstract
Upon different types of stress, the gene encoding the mitosis-promoting phosphatase Cdc25C is transcriptionally repressed by p53, contributing to p53's enforcement of a G2 cell cycle arrest. In addition, Cdc25C protein stability is also decreased following DNA damage. Mdm2, another p53 target gene, encodes a ubiquitin ligase that negatively regulates p53 levels by ubiquitination. Ablation of Mdm2 by siRNA led to an increase in p53 protein and repression of Cdc25C gene expression. However, Cdc25C protein levels were actually increased following Mdm2 depletion. Mdm2 is shown to negatively regulate Cdc25C protein levels by reducing its half-life independently of the presence of p53. Further, Mdm2 physically interacts with Cdc25C and promotes its degradation through the proteasome in a ubiquitin-independent manner. Either Mdm2 overexpression or Cdc25C downregulation delays cell cycle progression through the G2/M phase. Thus, the repression of the Cdc25C promoter by p53, together with p53-dependent induction of Mdm2 and subsequent degradation of Cdc25C, could provide a dual mechanism by which p53 can enforce and maintain a G2/M cell cycle arrest.
Collapse
Affiliation(s)
- L E Giono
- Department of Oncological Sciences and Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - L Resnick-Silverman
- Department of Oncological Sciences and Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - L A Carvajal
- Department of Oncological Sciences and Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - S St Clair
- Department of Oncological Sciences and Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J J Manfredi
- Department of Oncological Sciences and Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
9
|
Schaefer-Ramadan S, Hubrack S, Machaca K. Transition metal dependent regulation of the signal transduction cascade driving oocyte meiosis. J Cell Physiol 2017; 233:3164-3175. [DOI: 10.1002/jcp.26157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 08/14/2017] [Indexed: 12/19/2022]
Affiliation(s)
| | - Satanay Hubrack
- Department of Physiology and Biophysics; Weill Cornell Medicine-Qatar; Doha Qatar
| | - Khaled Machaca
- Department of Physiology and Biophysics; Weill Cornell Medicine-Qatar; Doha Qatar
| |
Collapse
|
10
|
Cellular Dynamics Controlled by Phosphatases. J Indian Inst Sci 2017. [DOI: 10.1007/s41745-016-0016-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Coffee extract inhibits adipogenesis in 3T3-L1 preadipocyes by interrupting insulin signaling through the downregulation of IRS1. PLoS One 2017; 12:e0173264. [PMID: 28282409 PMCID: PMC5345824 DOI: 10.1371/journal.pone.0173264] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 02/17/2017] [Indexed: 12/11/2022] Open
Abstract
Although epidemiological data have indicated that a strong negative association exists between coffee consumption and the prevalence of obesity-associated diseases, the molecular mechanisms by which coffee intake prevents obesity-associated diseases has not yet been elucidated. In this study, we found that coffee intake significantly suppressed high-fat diet (HFD)-induced metabolic alternations such as increases in body weight and the accumulation of adipose tissue, and up-regulation of glucose, free fatty acid, total cholesterol and insulin levels in the blood. We also found that coffee extract significantly inhibited adipogenesis in 3T3-L1 preadipocytes. In the early phase of adipogenesis, 3T3-L1 cells treated with coffee extract displayed the retardation of cell cycle entry into the G2/M phase called as mitotic clonal expansion (MCE). Coffee extract also inhibited the activation of CCAAT/enhancer-binding protein β (C/EBPβ) by preventing its phosphorylation by ERK. Furthermore, the coffee extract suppressed the adipogenesis-related events such as MCE and C/EBPβ activation through the down-regulation of insulin receptor substrate 1 (IRS1). The stability of the IRS1 protein was markedly decreased by the treatment with coffee extract due to proteasomal degradation. These results have revealed an anti-adipogenic function for coffee intake and identified IRS1 as a novel target for coffee extract in adipogenesis.
Collapse
|
12
|
Liu Y, Zhan P, Zhou Z, Xing Z, Zhu S, Ma C, Li Q, Zhu Q, Miao Y, Zhang J, Lv T, Song Y. The overexpression of KIFC1 was associated with the proliferation and prognosis of non-small cell lung cancer. J Thorac Dis 2016; 8:2911-2923. [PMID: 27867568 DOI: 10.21037/jtd.2016.10.67] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND The kinesin family member C1 (KIFC1, also known as HSET) is a kinesin superfamily protein (KIFs). Although KIFC1 acts as a crucial role in the development of several human cancers, the KIFC1 expression profile and functional remain unclear in non-small cell lung cancer (NSCLC). METHODS We collected the fresh NSCLC samples and paired normal lung tissue in patients with lung cancer operation, and detected KIFC1 expression using quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and Western blotting. To expand on previous smaller-scale studies, NSCLC tissue microarrays (TMA) were analyzed by IHC. Finally, cell lines were employed to further probe the potential mechanisms. RESULTS In this study, we described that KIFC1 was significantly upregulated in NSCLC tissues compared with the corresponding normal tissues. Moreover, KIFC1 overexpression was associated with the poor overall survival (OS) of NSCLC patients, and siRNA-mediated knockdown of KIFC1 significantly suppressed tumor cell proliferation in vitro. Further verification showed that inhibition of KIFC1 gene expression caused the upregulation of the cyclin-dependent kinases inhibitor p21 and downregulation of the cell cycle driver protein cdc2, which arrested cells in the G2-M phase. CONCLUSIONS we report that increased KIFC1 expression may promote cell proliferation and identified it as a biomarker of unfavorable prognosis in NSCLC patients.
Collapse
Affiliation(s)
- Yafang Liu
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing 210002, China
| | - Ping Zhan
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Zejun Zhou
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing 210002, China
| | - Ze Xing
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Suhua Zhu
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing 210002, China
| | - Chenhui Ma
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing 210002, China
| | - Qian Li
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing 210002, China
| | - Qingqing Zhu
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing 210002, China
| | - Yingying Miao
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing 210002, China
| | - Jianya Zhang
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing 210002, China
| | - Tangfeng Lv
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing 210002, China;; Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Yong Song
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing 210002, China;; Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| |
Collapse
|
13
|
Gabrielli B, Burgess A. Cdc25 Family Phosphatases in Cancer. PROTEIN TYROSINE PHOSPHATASES IN CANCER 2016:283-306. [DOI: 10.1007/978-1-4939-3649-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
14
|
Wang Y, Wang C, Jiang C, Zeng H, He X. Novel mechanism of harmaline on inducing G2/M cell cycle arrest and apoptosis by up-regulating Fas/FasL in SGC-7901 cells. Sci Rep 2015; 5:18613. [PMID: 26678950 PMCID: PMC4683523 DOI: 10.1038/srep18613] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 11/25/2015] [Indexed: 01/13/2023] Open
Abstract
Harmaline (HAR), a natural occurrence β-carboline alkaloid, was isolated from the seeds of Peganum harmala and exhibited potent antitumor effect. In this study, the anti-gastric tumor effects of HAR were firstly investigated in vitro and in vivo. The results strongly showed that HAR could inhibit tumor cell proliferation and induce G2/M cell cycle arrest accompanied by an increase in apoptotic cell death in SGC-7901 cancer cells. HAR could up-regulate the expressions of cell cycle-related proteins of p-Cdc2, p21, p-p53, Cyclin B and down-regulate the expression of p-Cdc25C. In addition, HAR could up-regulate the expressions of Fas/FasL, activated Caspase-8 and Caspase-3. Moreover, blocking Fas/FasL signaling could markedly inhibit the apoptosis caused by HAR, suggesting that Fas/FasL mediated pathways were involved in HAR-induced apoptosis. Interestingly, HAR could also exert on antitumor activity with a dose of 15 mg/kg/day in vivo, which was also related with cell cycle arrest. These new findings provided a framework for further exploration of HAR which possess the potential antitumor activity by inducing cell cycle arrest and apoptosis.
Collapse
Affiliation(s)
- Yihai Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chunhua Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chenguang Jiang
- Huangshan Jingzhi Pharmaceutical Company of Nanjing Tongrentang Group, Huangshan 245999, China
| | - Hong Zeng
- Xinjiang Production &Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim 843300, China
| | - Xiangjiu He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
15
|
Expression of CDC5L is associated with tumor progression in gliomas. Tumour Biol 2015; 37:4093-103. [PMID: 26490980 DOI: 10.1007/s13277-015-4088-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/13/2015] [Indexed: 10/22/2022] Open
Abstract
Cell division cycle 5-like (CDC5L) protein is a cell cycle regulator of the G2/M transition and has been reported to participate in the catalytic step of pre-messenger RNA (mRNA) splicing and DNA damage repair. Recently, it was also found to act as a candidate oncogene in osteosarcoma and cervical tumors. However, the role of CDC5L expression in tumor biology was still unclear. Here, we analyzed the expression and clinical significance of CDC5L in gliomas. The expression of CDC5L in fresh glioma tissues and paraffin-embedded slices was evaluated by western blot and immunohistochemistry, respectively. We found that CDC5L was highly expressed in glioma tissues. The expression of CDC5L was significantly associated with glioma pathology grade and Ki-67 expression. Univariate and multivariate analyses showed that high CDC5L expression was an independent prognostic factor for glioma patients' survival. To determine whether CDC5L could regulate the proliferation of glioma cells, we transfected glioma cells with interfering RNA target CDC5L, then investigated cell proliferation with cell counting kit (CCK)-8, flow cytometry assays and colony formation analyses. Our results indicated that knockdown of CDC5L would inhibit proliferation of glioma cells. Besides, reduced expression of CDC5L could induce the apoptosis of glioma cells. These findings suggested that CDC5L might play an important role in glioma and thus be a promising therapeutic target of glioma.
Collapse
|
16
|
Tandon M, Salamoun JM, Carder EJ, Farber E, Xu S, Deng F, Tang H, Wipf P, Wang QJ. SD-208, a novel protein kinase D inhibitor, blocks prostate cancer cell proliferation and tumor growth in vivo by inducing G2/M cell cycle arrest. PLoS One 2015; 10:e0119346. [PMID: 25747583 PMCID: PMC4352033 DOI: 10.1371/journal.pone.0119346] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 01/19/2015] [Indexed: 12/26/2022] Open
Abstract
Protein kinase D (PKD) has been implicated in many aspects of tumorigenesis and progression, and is an emerging molecular target for the development of anticancer therapy. Despite recent advancement in the development of potent and selective PKD small molecule inhibitors, the availability of in vivo active PKD inhibitors remains sparse. In this study, we describe the discovery of a novel PKD small molecule inhibitor, SD-208, from a targeted kinase inhibitor library screen, and the synthesis of a series of analogs to probe the structure-activity relationship (SAR) vs. PKD1. SD-208 displayed a narrow SAR profile, was an ATP-competitive pan-PKD inhibitor with low nanomolar potency and was cell active. Targeted inhibition of PKD by SD-208 resulted in potent inhibition of cell proliferation, an effect that could be reversed by overexpressed PKD1 or PKD3. SD-208 also blocked prostate cancer cell survival and invasion, and arrested cells in the G2/M phase of the cell cycle. Mechanistically, SD-208-induced G2/M arrest was accompanied by an increase in levels of p21 in DU145 and PC3 cells as well as elevated phosphorylation of Cdc2 and Cdc25C in DU145 cells. Most importantly, SD-208 given orally for 24 days significantly abrogated the growth of PC3 subcutaneous tumor xenografts in nude mice, which was accompanied by reduced proliferation and increased apoptosis and decreased expression of PKD biomarkers including survivin and Bcl-xL. Our study has identified SD-208 as a novel efficacious PKD small molecule inhibitor, demonstrating the therapeutic potential of targeted inhibition of PKD for prostate cancer treatment.
Collapse
Affiliation(s)
- Manuj Tandon
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States of America
| | - Joseph M. Salamoun
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States of America
| | - Evan J. Carder
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States of America
| | - Elisa Farber
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States of America
| | - Shuping Xu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States of America
| | - Fan Deng
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hua Tang
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas, 75708, United States of America
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States of America
| | - Q. Jane Wang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States of America
- * E-mail:
| |
Collapse
|
17
|
Guo L, Li X, Tang QQ. Transcriptional regulation of adipocyte differentiation: a central role for CCAAT/enhancer-binding protein (C/EBP) β. J Biol Chem 2014; 290:755-61. [PMID: 25451943 DOI: 10.1074/jbc.r114.619957] [Citation(s) in RCA: 267] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A detailed understanding of the processes controlling adipogenesis is instrumental in the fight against the obesity epidemic. Adipogenesis is controlled by a transcriptional cascade composed of a large number of transcriptional factors, among which CCAAT/enhancer-binding protein (C/EBP) β plays an essential role. During 3T3-L1 adipocyte differentiation, C/EBPβ is induced early to transactivate the expression of C/EBPα and peroxisome proliferator-activated receptor γ (PPARγ), two master transcription factors for terminal adipocyte differentiation. Studies in recent years have revealed many new target genes of C/EBPβ, implicating its participation in many other processes during adipogenesis, such as mitotic clonal expansion, epigenetic regulation, unfolded protein response, and autophagy. Moreover, the function of C/EBPβ is highly regulated by post-translational modifications, which are crucial for the proper activation of the adipogenic program. Advances toward elucidation of the function and roles of the post-translational modification of C/EBPβ during adipogenesis will greatly improve our understanding of the molecular mechanisms governing adipogenesis.
Collapse
Affiliation(s)
- Liang Guo
- From the Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Xi Li
- From the Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Qi-Qun Tang
- From the Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, China
| |
Collapse
|
18
|
Brenner AK, Reikvam H, Lavecchia A, Bruserud Ø. Therapeutic targeting the cell division cycle 25 (CDC25) phosphatases in human acute myeloid leukemia--the possibility to target several kinases through inhibition of the various CDC25 isoforms. Molecules 2014; 19:18414-47. [PMID: 25397735 PMCID: PMC6270710 DOI: 10.3390/molecules191118414] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/28/2014] [Accepted: 11/02/2014] [Indexed: 01/26/2023] Open
Abstract
The cell division cycle 25 (CDC25) phosphatases include CDC25A, CDC25B and CDC25C. These three molecules are important regulators of several steps in the cell cycle, including the activation of various cyclin-dependent kinases (CDKs). CDC25s seem to have a role in the development of several human malignancies, including acute myeloid leukemia (AML); and CDC25 inhibition is therefore considered as a possible anticancer strategy. Firstly, upregulation of CDC25A can enhance cell proliferation and the expression seems to be controlled through PI3K-Akt-mTOR signaling, a pathway possibly mediating chemoresistance in human AML. Loss of CDC25A is also important for the cell cycle arrest caused by differentiation induction of malignant hematopoietic cells. Secondly, high CDC25B expression is associated with resistance against the antiproliferative effect of PI3K-Akt-mTOR inhibitors in primary human AML cells, and inhibition of this isoform seems to reduce AML cell line proliferation through effects on NFκB and p300. Finally, CDC25C seems important for the phenotype of AML cells at least for a subset of patients. Many of the identified CDC25 inhibitors show cross-reactivity among the three CDC25 isoforms. Thus, by using such cross-reactive inhibitors it may become possible to inhibit several molecular events in the regulation of cell cycle progression and even cytoplasmic signaling, including activation of several CDKs, through the use of a single drug. Such combined strategies will probably be an advantage in human cancer treatment.
Collapse
Affiliation(s)
- Annette K Brenner
- Section for Hematology, Institute of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Bergen, 5021, Norway
| | - Håkon Reikvam
- Section for Hematology, Institute of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Bergen, 5021, Norway
| | - Antonio Lavecchia
- "Drug Discovery" Laboratory, Department of Pharmacy, University of Naples Federico II, Naples 80131, Italy
| | - Øystein Bruserud
- Section for Hematology, Institute of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Bergen, 5021, Norway.
| |
Collapse
|
19
|
Yoshimi A, Toya T, Kawazu M, Ueno T, Tsukamoto A, Iizuka H, Nakagawa M, Nannya Y, Arai S, Harada H, Usuki K, Hayashi Y, Ito E, Kirito K, Nakajima H, Ichikawa M, Mano H, Kurokawa M. Recurrent CDC25C mutations drive malignant transformation in FPD/AML. Nat Commun 2014; 5:4770. [PMID: 25159113 DOI: 10.1038/ncomms5770] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 07/21/2014] [Indexed: 11/09/2022] Open
Abstract
Familial platelet disorder (FPD) with predisposition to acute myelogenous leukaemia (AML) is characterized by platelet defects with a propensity for the development of haematological malignancies. Its molecular pathogenesis is poorly understood, except for the role of germline RUNX1 mutations. Here we show that CDC25C mutations are frequently found in FPD/AML patients (53%). Mutated CDC25C disrupts the G2/M checkpoint and promotes cell cycle progression even in the presence of DNA damage, suggesting a critical role for CDC25C in malignant transformation in FPD/AML. The predicted hierarchical architecture shows that CDC25C mutations define a founding pre-leukaemic clone, followed by stepwise acquisition of subclonal mutations that contribute to leukaemia progression. In three of seven individuals with CDC25C mutations, GATA2 is the target of subsequent mutation. Thus, CDC25C is a novel gene target identified in haematological malignancies. CDC25C is also useful as a clinical biomarker that predicts progression of FPD/AML in the early stage.
Collapse
Affiliation(s)
- Akihide Yoshimi
- 1] Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan [2]
| | - Takashi Toya
- 1] Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan [2]
| | - Masahito Kawazu
- Department of Medical Genomics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Toshihide Ueno
- Department of Cellular Signaling, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Ayato Tsukamoto
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hiromitsu Iizuka
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Masahiro Nakagawa
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yasuhito Nannya
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Shunya Arai
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hironori Harada
- Department of Hematology, Juntendo University School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo 113-8431, Japan
| | - Kensuke Usuki
- Department of Hematology, NTT Medical Center Tokyo, 5-9-22 Higashi-Gotanda, Shinagawa-ku, Tokyo 141-8625, Japan
| | - Yasuhide Hayashi
- Department of Hematology/Oncology, Gunma Children's Medical Center, 779 Simohakoda, Kitaakebonocho, Shibukawa-shi, Gunma 377-8577, Japan
| | - Etsuro Ito
- Department of Pediatrics, Graduate School of Medicine, Hirosaki University, 53 Honmachi, Hirosaki-shi, Aomori 036-8563, Japan
| | - Keita Kirito
- Department of Hematology and Oncology, University of Yamanashi, 1110 Simokawakita, Chuou-shi, Yamanashi 409-3898, Japan
| | - Hideaki Nakajima
- Division of Hematology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo 160-8582, Japan
| | - Motoshi Ichikawa
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hiroyuki Mano
- Department of Cellular Signaling, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Mineo Kurokawa
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
20
|
TGF-β-Smad2 dependent activation of CDC 25A plays an important role in cell proliferation through NFAT activation in metastatic breast cancer cells. Cell Signal 2013; 26:240-52. [PMID: 24269534 DOI: 10.1016/j.cellsig.2013.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 11/11/2013] [Accepted: 11/14/2013] [Indexed: 12/17/2022]
Abstract
In late stages of cancer, TGF-β promotes the metastasis process by enhancing the invasiveness of cancer cells and inducing the epithelial-to-mesenchymal transition (EMT), a process that is concomitantly associated with breast cancer metastasis. Metastasis comprises of multiple steps with the regulation of complex network of signaling. Metastasis is associated with both the EMT and cell proliferation, but yet it has not been clearly distinguished how the balance between the cell proliferation and EMT is maintained together. Recently, it has been accounted that a transcription factor, NFAT has an important role for switching tumor suppressive to progressive effect of TGF-β and NFAT has a role in TGF-β mediated EMT by regulating N-cadherin. CDC 25A phosphatase, an important cell cycle regulator is overexpressed in breast cancer. Our results demonstrate that TGF-β regulating the CDC 25A in a Smad2 dependent way, translocates NFAT to nucleus and NFAT in co-operation with Smad2 promotes the tumor progression by upregulating the CDK2, CDK4, and cyclin E. This result signifies that TGF-β by regulating NFAT in different ways maintains the balance between EMT and cell proliferation mechanism concurrently during the late stage of breast cancer.
Collapse
|
21
|
Huang H, Hu M, Zhao R, Li P, Li M. Dihydromyricetin suppresses the proliferation of hepatocellular carcinoma cells by inducing G2/M arrest through the Chk1/Chk2/Cdc25C pathway. Oncol Rep 2013; 30:2467-2475. [PMID: 24002546 DOI: 10.3892/or.2013.2705] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 07/15/2013] [Indexed: 02/07/2023] Open
Abstract
The aim of the present study was to evaluate the antitumor mechanism of dihydromyricetin (DHM). Results showed that DHM significantly inhibited cell viability of HepG2 and Hep3B cells in a dose-dependent manner. DHM induced G2/M cell-cycle arrest in HepG2 and Hep3B cells by altering the expression of cell cycle proteins such as cyclin A, cyclin B1, Cdk1, p53, Cdc25c, p-Cdc25c Chk1 and Chk, which are critical for G2/M transition. Knockdown of p53 and Chk1 in HepG2 cells did not affect G2/M phase arrest caused by DHM. Furthermore, G2/M arrest induced by DHM can be disrupted by Chk2 siRNA. These findings indicate that DHM inhibits the growth of hepatocellular carcinoma (HCC) cells via G2/M phase cell cycle arrest through Chk1/Chk2/Cdc25C pathway. The present study identified effects of DHM in G2/M phase arrest in HCC and described detailed mechanisms of G2/M phase arrest by this agent, which may contribute to its overall cancer preventive efficacy in HCC.
Collapse
Affiliation(s)
- Haili Huang
- Laboratory of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | | | | | | | | |
Collapse
|
22
|
Purification and biochemical analysis of catalytically active human cdc25C dual specificity phosphatase. Biochimie 2013; 95:1450-61. [DOI: 10.1016/j.biochi.2013.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 03/22/2013] [Indexed: 11/18/2022]
|
23
|
Chou YW, Zhang L, Muniyan S, Ahmad H, Kumar S, Alam SM, Lin MF. Androgens upregulate Cdc25C protein by inhibiting its proteasomal and lysosomal degradation pathways. PLoS One 2013; 8:e61934. [PMID: 23637932 PMCID: PMC3630140 DOI: 10.1371/journal.pone.0061934] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 03/18/2013] [Indexed: 11/18/2022] Open
Abstract
Cdc25C is a cell cycle protein of the dual specificity phosphatase family essential for activating the cdk1/Cyclin B1 complex in cells entering into mitosis. Since altered cell cycle is a hallmark of human cancers, we investigated androgen regulation of Cdc25C protein in human prostate cancer (PCa) cells, including androgen-sensitive (AS) LNCaP C-33 cells and androgen-independent (AI) LNCaP C-81 as well as PC-3 cells. In the regular culture condition containing fetal bovine serum (FBS), Cdc25C protein levels were similar in these PCa cells. In a steroid-reduced condition, Cdc25C protein was greatly decreased in AS C-33 cells but not AI C-81 or PC-3 cells. In androgen-treated C-33 cells, the Cdc25C protein level was greatly elevated, following a dose- and a time-dependent manner, correlating with increased cell proliferation. This androgen effect was blocked by Casodex, an androgen receptor blocker. Nevertheless, epidermal growth factor (EGF), a growth stimulator of PCa cells, could only increase Cdc25C protein level by about 1.5-fold. Altered expression of Cdc25C in C-33 cells and PC-3 cells by cDNA and/or shRNA transfection is associated with the corresponding changes of cell growth and Cyclin B1 protein level. Actinomycin D and cycloheximide could only partially block androgen-induced Cdc25C protein level. Treatments with both proteasomal and lysosomal inhibitors resulted in elevated Cdc25C protein levels. Immunoprecipitation revealed that androgens reduced the ubiquitination of Cdc25C proteins. These results show for the first time that Cdc25C protein plays a role in regulating PCa cell growth, and androgen treatments, but not EGF, greatly increase Cdc25C protein levels in AS PCa cells, which is in part by decreasing its degradation. These results can lead to advanced PCa therapy via up-regulating the degradation pathways of Cdc25C protein.
Collapse
Affiliation(s)
- Yu-Wei Chou
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Li Zhang
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Beijing Friendship Hospital affiliated to the Capital Medical University, Beijing Digestive Disease Center, Beijing, China
| | - Sakthivel Muniyan
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Humera Ahmad
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Satyendra Kumar
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Syed Mahfuzul Alam
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Ming-Fong Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Surgery/Urology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
- * E-mail:
| |
Collapse
|
24
|
|
25
|
Verbon EH, Post JA, Boonstra J. The influence of reactive oxygen species on cell cycle progression in mammalian cells. Gene 2012; 511:1-6. [PMID: 22981713 DOI: 10.1016/j.gene.2012.08.038] [Citation(s) in RCA: 349] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 08/14/2012] [Accepted: 08/24/2012] [Indexed: 10/27/2022]
Abstract
Cell cycle regulation is performed by cyclins and cyclin dependent kinases (CDKs). Recently, it has become clear that reactive oxygen species (ROS) influence the presence and activity of these enzymes and thereby control cell cycle progression. In this review, we first describe the discovery of enzymes specialized in ROS production: the NADPH oxidase (NOX) complexes. This discovery led to the recognition of ROS as essential players in many cellular processes, including cell cycle progression. ROS influence cell cycle progression in a context-dependent manner via phosphorylation and ubiquitination of CDKs and cell cycle regulatory molecules. We show that ROS often regulate ubiquitination via intermediate phosphorylation and that phosphorylation is thus the major regulatory mechanism influenced by ROS. In addition, ROS have recently been shown to be able to activate growth factor receptors. We will illustrate the diverse roles of ROS as mediators in cell cycle regulation by incorporating phosphorylation, ubiquitination and receptor activation in a model of cell cycle regulation involving EGF-receptor activation. We conclude that ROS can no longer be ignored when studying cell cycle progression.
Collapse
|
26
|
Guo L, Li X, Huang JX, Huang HY, Zhang YY, Qian SW, Zhu H, Zhang YD, Liu Y, Liu Y, Wang KK, Tang QQ. Histone demethylase Kdm4b functions as a co-factor of C/EBPβ to promote mitotic clonal expansion during differentiation of 3T3-L1 preadipocytes. Cell Death Differ 2012; 19:1917-27. [PMID: 22722334 DOI: 10.1038/cdd.2012.75] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
CCAAT/enhancer-binding protein (C/EBP) β is required for both mitotic clonal expansion (MCE) and terminal adipocyte differentiation of 3T3-L1 preadipocytes. Although the role of C/EBPβ in terminal adipocyte differentiation is well defined, its mechanism of action during MCE is not. In this report, histone demethylase Kdm4b, as well as cell cycle genes Cdc45l (cell division cycle 45 homolog), Mcm3 (mini-chromosome maintenance complex component 3), Gins1 (GINS complex subunit 1) and Cdc25c (cell division cycle 25 homolog c), were identified as potential C/EBPβ target genes during MCE by utilizing promoter-wide chromatin immunoprecipitation (ChIP)-on-chip analysis combined with gene expression microarrays. The expression of Kdm4b is induced during MCE and its induction is dependent on C/EBPβ. ChIP, Electrophoretic Mobility Shift Assay (EMSA) and luciferase assay confirmed that the promoter of Kdm4b is bound and activated by C/EBPβ. Knockdown of Kdm4b impaired MCE. Furthermore, Kdm4b interacted with C/EBPβ and was recruited to the promoters of C/EBPβ-regulated cell cycle genes, including Cdc45l, Mcm3, Gins1, and Cdc25c, demethylated H3K9me3 and activated their transcription. These findings suggest a novel feed forward mechanism involving a DNA binding transcription factor (C/EBPβ) and a chromatin regulator (Kdm4b) in the regulation of MCE by controlling cell cycle gene expression.
Collapse
Affiliation(s)
- L Guo
- Key Laboratory of Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Yoon S, Kawasaki I, Shim YH. CDC-25.1 controls the rate of germline mitotic cell cycle by counteracting WEE-1.3 and by positively regulating CDK-1 in Caenorhabditis elegans. Cell Cycle 2012; 11:1354-63. [PMID: 22421141 DOI: 10.4161/cc.19755] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In Caenorhabditis elegans, cdc-25.1 loss-of-function mutants display a lack of germline proliferation. We found that the proliferation defect of cdc-25.1 mutants was suppressed by wee-1.3 RNAi. Further, among the seven cdk and seven cyclin homologs examined, cdk-1 and cyb-3 RNAi treatment caused the most severe germline proliferation defects in an rrf-1 mutant background, which were similar to those of the cdc-25.1 mutants. In addition, while RNAi of cyd-1 and cye-1 caused significant germline proliferation defects, RNAi of cdk-2 and cdk-4 did not. Compared with the number of germ nuclei in wee-1.3(RNAi) worms, the number in wee-1.3(RNAi);cdk-1(RNAi) and wee-1.3(RNAi);cyb-3(RNAi) worms further decreased to the level of cdk-1(RNAi) and cyb-3(RNAi) worms, respectively, indicating that cdk-1 and cyb-3 are epistatic and function downstream of cdc-25.1 and wee-1.3 in the control of the cell cycle. BrdU labeling of adult worms showed that, while 100% of the wild-type germ nuclei in the mitotic region incorporated BrdU when labeled for more than 12 h at 20°C, a small fraction of the cdc-25.1 mutant germ nuclei failed to incorporate BrdU even when labeled for 68 h. These results indicate that CDC-25.1 is required for maintaining proper rate of germline mitotic cell cycle. We propose that CDC-25.1 regulates the rate of germline mitotic cell cycle by counteracting WEE-1.3 and by positively controlling CDK-1, which forms a complex primarily with CYB-3, but also possibly with CYD-1 and CYE-1.
Collapse
Affiliation(s)
- Sunghee Yoon
- Department of Bioscience and Biotechnology, Institute of Functional Genomics, Konkuk University, Seoul, South Korea
| | | | | |
Collapse
|
28
|
Ou TT, Wu CH, Hsu JD, Chyau CC, Lee HJ, Wang CJ. Paeonia lactiflora Pall inhibits bladder cancer growth involving phosphorylation of Chk2 in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2011; 135:162-172. [PMID: 21396995 DOI: 10.1016/j.jep.2011.03.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/24/2011] [Accepted: 03/03/2011] [Indexed: 05/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Extracts of Paeonia lactiflora Pall (RPA), a traditional Chinese medicines has been shown to treat cancers. AIM OF THE STUDY The purpose of this study is to evaluate the anticancer effect of RPA in urinary bladder carcinoma in vitro and in vivo. MATERIALS AND METHODS The cell viability was analyzed with DAPI. Flow cytometry and Western blot were used to study the apoptosis and cell cycle related mechanism. A rat model of bladder cancer was induced by N-butyl-N-(4-hydroxybutyl) nitrosamine (OH-BBN). Tumors were analyzed with immunohistochemical analysis. RESULTS Our data suggested that RPA inhibits growth of bladder cancer via induction of apoptosis and cell cycle arrest. Treatment of TSGH-8301 cells with RPA resulted in G2-M phase arrest that was associated with a marked decline in protein levels of cdc2, cyclin B1, cell division cycle 25B (Cdc25B) and Cdc25C. We also reported that RPA-mediated growth inhibition of TSGH-8301 cells was correlated with activation of checkpoint kinase 2 (Chk2). Herein, we further evaluated urinary bladder cancer using a model of bladder cancer induced by OH-BBN. Analysis of tumors from RPA-treated rats showed significant decrease in the expression of Bcl2, cyclin D1, and PCNA, and increase in the expression of p-Chk2 (Thr-68), Bax, and Cip1/p21. CONCLUSION Our data provide the experimental evidence that RPA could modulate apoptosis in models of bladder cancer.
Collapse
Affiliation(s)
- Ting-Tsz Ou
- Institute of Biochemistry and Biotechnology, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
29
|
Lee G, Origanti S, White LS, Sun J, Stappenbeck TS, Piwnica-Worms H. Contributions made by CDC25 phosphatases to proliferation of intestinal epithelial stem and progenitor cells. PLoS One 2011; 6:e15561. [PMID: 21283624 PMCID: PMC3026785 DOI: 10.1371/journal.pone.0015561] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 11/13/2010] [Indexed: 11/29/2022] Open
Abstract
The CDC25 protein phosphatases drive cell cycle advancement by activating cyclin-dependent protein kinases (CDKs). Humans and mice encode three family members denoted CDC25A, -B and -C and genes encoding these family members can be disrupted individually with minimal phenotypic consequences in adult mice. However, adult mice globally deleted for all three phosphatases die within one week after Cdc25 disruption. A severe loss of absorptive villi due to a failure of crypt epithelial cells to proliferate was observed in the small intestines of these mice. Because the Cdc25s were globally deleted, the small intestinal phenotype and loss of animal viability could not be solely attributed to an intrinsic defect in the inability of small intestinal stem and progenitor cells to divide. Here, we report the consequences of deleting different combinations of Cdc25s specifically in intestinal epithelial cells. The phenotypes arising in these mice were then compared with those arising in mice globally deleted for the Cdc25s and in mice treated with irinotecan, a chemotherapeutic agent commonly used to treat colorectal cancer. We report that the phenotypes arising in mice globally deleted for the Cdc25s are due to the failure of small intestinal stem and progenitor cells to proliferate and that blocking cell division by inhibiting the cell cycle engine (through Cdc25 loss) versus by inducing DNA damage (via irinotecan) provokes a markedly different response of small intestinal epithelial cells. Finally, we demonstrate that CDC25A and CDC25B but not CDC25C compensate for each other to maintain the proliferative capacity of intestinal epithelial stem and progenitor cells.
Collapse
Affiliation(s)
- Gwanghee Lee
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Sofia Origanti
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- BRIGHT Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Lynn S. White
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- BRIGHT Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Jinwu Sun
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Molecular Imaging Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Thaddeus S. Stappenbeck
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Helen Piwnica-Worms
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- BRIGHT Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- * E-mail:
| |
Collapse
|
30
|
Ou TT, Wang CJ, Lee YS, Wu CH, Lee HJ. Gallic acid induces G2/M phase cell cycle arrest via
regulating 14-3-3β release from Cdc25C and Chk2 activation in human bladder transitional carcinoma cells. Mol Nutr Food Res 2010; 54:1781-90. [DOI: 10.1002/mnfr.201000096] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Franckhauser C, Mamaeva D, Heron-Milhavet L, Fernandez A, Lamb NJC. Distinct pools of cdc25C are phosphorylated on specific TP sites and differentially localized in human mitotic cells. PLoS One 2010; 5:e11798. [PMID: 20668692 PMCID: PMC2909920 DOI: 10.1371/journal.pone.0011798] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 07/06/2010] [Indexed: 12/24/2022] Open
Abstract
Background The dual specificity phosphatase cdc25C was the first human cdc25 family member found to be essential in the activation of cdk1/cyclin B1 that takes place at the entry into mitosis. Human cdc25C is phosphorylated on Proline-dependent SP and TP sites when it becomes active at mitosis and the prevalent model is that this phosphorylation/activation of cdc25C would be part of an amplification loop with cdk1/cyclin B1. Methodology/Principal Findings Using highly specific antibodies directed against cdc25C phospho-epitopes, pT67 and pT130, we show here that these two phospho-forms of cdc25C represent distinct pools with differential localization during human mitosis. Phosphorylation on T67 occurs from prophase and the cdc25C-pT67 phospho-isoform closely localizes with condensed chromosomes throughout mitosis. The phospho-T130 form of cdc25C arises in late G2 and associates predominantly with centrosomes from prophase to anaphase B where it colocalizes with Plk1. As shown by immunoprecipitation of each isoform, these two phospho-forms are not simultaneously phosphorylated on the other mitotic TP sites or associated with one another. Phospho-T67 cdc25C co-precipitates with MPM2-reactive proteins while pT130-cdc25C is associated with Plk1. Interaction and colocalization of phosphoT130-cdc25C with Plk1 demonstrate in living cells, that the sequence around pT130 acts as a true Polo Box Domain (PBD) binding site as previously identified from in vitro peptide screening studies. Overexpression of non-phosphorylatable alanine mutant forms for each isoform, but not wild type cdc25C, strongly impairs mitotic progression showing the functional requirement for each site-specific phosphorylation of cdc25C at mitosis. Conclusions/Significance These results show for the first time that in human mitosis, distinct phospho-isoforms of cdc25C exist with different localizations and interacting partners, thus implying that the long-standing model of a cdc25C/cdk1 multi-site auto amplification loop is implausible.
Collapse
Affiliation(s)
| | | | | | | | - Ned J. C. Lamb
- Cell Biology Unit, Institute de Genetique Humain, CNRS-UPR1142, Montpellier, France
- * E-mail:
| |
Collapse
|
32
|
Bugler B, Schmitt E, Aressy B, Ducommun B. Unscheduled expression of CDC25B in S-phase leads to replicative stress and DNA damage. Mol Cancer 2010; 9:29. [PMID: 20128929 PMCID: PMC2825247 DOI: 10.1186/1476-4598-9-29] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 02/04/2010] [Indexed: 01/18/2023] Open
Abstract
Background CDC25B phosphatase is a cell cycle regulator that plays a critical role in checkpoint control. Up-regulation of CDC25B expression has been documented in a variety of human cancers, however, the relationships with the alteration of the molecular mechanisms that lead to oncogenesis still remain unclear. To address this issue we have investigated, in model cell lines, the consequences of unscheduled and elevated CDC25B levels. Results We report that increased CDC25B expression leads to DNA damage in the absence of genotoxic treatment. H2AX phosphorylation is detected in S-phase cells and requires active replication. We also report that CDC25B expression impairs DNA replication and results in an increased recruitment of the CDC45 replication factor onto chromatin. Finally, we observed chromosomal aberrations that are also enhanced upon CDC25B expression. Conclusion Overall, our results demonstrate that a moderate and unscheduled increase in CDC25B level, as observed in a number of human tumours, is sufficient to overcome the S-phase checkpoint efficiency thus leading to replicative stress and genomic instability.
Collapse
|
33
|
Kiyokawa H, Ray D. In vivo roles of CDC25 phosphatases: biological insight into the anti-cancer therapeutic targets. Anticancer Agents Med Chem 2009; 8:832-6. [PMID: 19075565 DOI: 10.2174/187152008786847693] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CDC25 phosphatases are not only rate-limiting activators of cyclin-dependent kinases (CDKs) but also important targets of the CHK1/CHK2-mediated checkpoint pathway. Each isoform of the mammalian CDC25 family seems to exert unique biological functions. CDC25A is a critical regulator for both G1-S and G2-M transitions and essential for embryonic cell proliferation after the blastocyst stage. CDC25B is dispensable for embryogenesis but required for meiotic progression of oocytes in a manner analogous to Drosophila Twine or C. elegans cdc-25.1. Moreover, CDC25A and CDC25B appear to regulate different events or stages of mitosis. CDC25B may mediate the activation of CDK1/Cyclin B at the centrosome during prophase, while CDC25A may be required for the subsequent full activation of nuclear CDK1/Cyclin B. CDC25C is dispensable for both mitotic and meiotic divisions, although it is highly regulated during the processes. Excessive levels of CDC25A and CDC25B are often observed in various human cancer tissues. Deregulated expression of these phosphatases allows cells to overcome DNA damage-induced checkpoint, leading to genomic instability. Studies using mouse models demonstrated that deregulated expression of CDC25A significantly promotes RAS- or NEU-induced mammary tumor development with chromosomal aberrations, whereas decreased CDC25A expression in heterozygous knockout mice delays tumorigenesis. These biological properties of CDC25 phosphatases provide significant insight into the pathobiology of cancer and scientific foundation for anti-CDC25 therapeutic intervention.
Collapse
Affiliation(s)
- Hiroaki Kiyokawa
- Department of Molecular Pharmacology and Biological Chemistry, and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA.
| | | |
Collapse
|
34
|
Dhar A, Mehta S, Dhar G, Dhar K, Banerjee S, Van Veldhuizen P, Campbell DR, Banerjee SK. Crocetin inhibits pancreatic cancer cell proliferation and tumor progression in a xenograft mouse model. Mol Cancer Ther 2009; 8:315-23. [PMID: 19208826 DOI: 10.1158/1535-7163.mct-08-0762] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Crocetin, a carotenoid compound derived from saffron, has long been used as a traditional ancient medicine against different human diseases including cancer. The aim of the series of experiments was to systematically determine whether crocetin significantly affects pancreatic cancer growth both in vitro and/or in vivo. For the in vitro studies, first, MIA-PaCa-2 cells were treated with crocetin and in these sets of experiments, a proliferation assay using H(3)-thymidine incorporation and flow cytometric analysis suggested that crocetin inhibited proliferation. Next, cell cycle proteins were investigated. Cdc-2, Cdc-25C, Cyclin-B1, and epidermal growth factor receptor were altered significantly by crocetin. To further confirm the findings of inhibition of proliferation, H(3)-thymidine incorporation in BxPC-3, Capan-1, and ASPC-1 pancreatic cancer cells was also significantly inhibited by crocetin treatment. For the in vivo studies, MIA-PaCa-2 as highly aggressive cells than other pancreatic cancer cells used in this study were injected into the right hind leg of the athymic nude mice and crocetin was given orally after the development of a palpable tumor. The in vivo results showed significant regression in tumor growth with inhibition of proliferation as determined by proliferating cell nuclear antigen and epidermal growth factor receptor expression in the crocetin-treated animals compared with the controls. Both the in vitro pancreatic cancer cells and in vivo athymic nude mice tumor, apoptosis was significantly stimulated as indicated by Bax/Bcl-2 ratio. This study indicates that crocetin has a significant antitumorigenic effect in both in vitro and in vivo on pancreatic cancer.
Collapse
Affiliation(s)
- Animesh Dhar
- Hematology and Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
It is well known that G1 to S phase transition is tightly regulated by the expression and phosphorylation of a number of well-characterized cyclins, cyclin-dependent kinases and members of the retinoblastoma gene family. In this review we discuss the role of these components in regulation of G1 to S phase transition in somatic cells and human embryonic stem cells. Most importantly, we discuss some new tenable links between maintenance of pluripotency and cell cycle regulation in embryonic stem cells by describing the role that master transcription factors play in this process. Finally, the differences in cell cycle regulation between murine and human embryonic stem cells are highlighted, raising interesting questions regarding their biology and stages of embryonic development from which they have been derived.
Collapse
Affiliation(s)
- Irina Neganova
- North East Institute for Stem Cell Research, University of Newcastle upon Tyne, International Centre for Life, Newcastle NE1 3BZ, UK
| | | |
Collapse
|
36
|
A caspase-dependent cleavage of CDC25A generates an active fragment activating cyclin-dependent kinase 2 during apoptosis. Cell Death Differ 2008; 16:208-18. [PMID: 18927589 DOI: 10.1038/cdd.2008.142] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The cellular level of the CDC25A phosphatase is tightly regulated during both the normal and genotoxic-perturbed cell cycle. Here, we describe a caspase-dependent cleavage of this protein at residue D223 in non-genotoxic apoptotic conditions. This specific proteolysis generates a catalytically active C-terminal fragment that localizes to the nuclear compartment. Accumulation of this active CDC25A fragment leads to reduced inhibitory phosphorylation of the CDC25A substrate cyclin-dependent kinase 2 (CDK2) on Tyr15. Moreover, CDK2 was found stably associated with this fragment, as well as with an ectopically expressed CDC25A224-525 truncation mutant that mimicks the cleavage product. Ectopic expression of this mutant induced CDK2 Tyr15 dephosphorylation, whereas its catalytically inactive version did not. Finally, this 224-525 mutant initiated apoptosis when transfected into HeLa cells, whereas its catalytic inactive form did not. Altogether, this study demonstrates for the first time that caspase-dependent cleavage of CDC25A is a central step linking CDK2 activation with non-genotoxic apoptotic induction.
Collapse
|
37
|
Feng X, Wang LN, Zhou YY, Yu HP, Shen Q, Zang Y, Zhou YB, Li JY, Zhang HX, Li J. Discovery and characterization of a novel inhibitor of CDC25B, LGH00045. Acta Pharmacol Sin 2008; 29:1268-74. [PMID: 18817634 DOI: 10.1111/j.1745-7254.2008.00841.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIM Cell division cycle 25 (CDC25) phosphatases have recently been considered as potential targets for the development of new cancer therapeutic agents. We aimed to discover novel CDC25B inhibitors in the present study. METHODS A molecular level high-throughput screening (HTS) assay was set up to screen a set of 48000 pure compounds. RESULTS HTS, whose average Z' factor is 0.55, was finished and LGH00045, a mixed-type CDC25B inhibitor with a novel structure and relative selectivity for protein tyrosine phosphatases, was identified. Furthermore, LGH00045 impaired the proliferation of tumor cells and increased cyclin-dependent kinase 1 inhibitory tyrosine phosphorylation. In synchronized HeLa cells, LGH00045 delayed cell cycle progression at the G2-M transition. CONCLUSION LGH00045, a novel CDC25B inhibitor identified through HTS, showed good inhibition on the proliferation of tumor cells and affected the cell cycle progression, which makes it a good hit for further structure modification.
Collapse
Affiliation(s)
- Xu Feng
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Braud E, Goddard ML, Kolb S, Brun MP, Mondésert O, Quaranta M, Gresh N, Ducommun B, Garbay C. Novel naphthoquinone and quinolinedione inhibitors of CDC25 phosphatase activity with antiproliferative properties. Bioorg Med Chem 2008; 16:9040-9. [PMID: 18789703 DOI: 10.1016/j.bmc.2008.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 07/29/2008] [Accepted: 08/04/2008] [Indexed: 10/21/2022]
Abstract
CDC25 phosphatases are considered as attractive targets for anti-cancer therapy. To date, quinone derivatives are among the most potent inhibitors of CDC25 phosphatase activity. We present in this paper the synthesis and the biological evaluation of new quinolinedione and naphthoquinone derivatives, containing carboxylic or malonic acids groups introduced to mimic the role of the phosphate moieties of Cyclin-Dependent Kinase complexes. The most efficient compounds show inhibitory activity against CDC25B with IC(50) values in the 10 microM range, and are cytotoxic against HeLa cells.
Collapse
Affiliation(s)
- Emmanuelle Braud
- Université Paris Descartes, UFR biomédicale, Laboratoire de Pharmacochimie Moléculaire et Cellulaire, 45 rue des Saints-Pères, Paris F-75006, France
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Cunat S, Anahory T, Berthenet C, Hedon B, Franckhauser C, Fernandez A, Hamamah S, Lamb NJC. The cell cycle control protein cdc25C is present, and phosphorylated on serine 214 in the transition from germinal vesicle to metaphase II in human oocyte meiosis. Mol Reprod Dev 2008; 75:1176-84. [PMID: 18161793 DOI: 10.1002/mrd.20853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cdc25C is a dual specificity phosphatase essential for dephosphorylation and activation of cyclin-dependent kinase 1 (cdk1), a prerequisite step for mitosis in all eucaryotes. Cdc25C activation requires phosphorylation on at least six sites including serine 214 (S214) which is essential for metaphase/anaphase transit. Here, we have investigated S214 phosphorylation during human meiosis with the objectives of determining if this mitotic phosphatase cdc25C participates in final meiotic divisions in human oocytes. One hundred forty-eight human oocytes from controlled ovarian stimulation protocols were stained for immunofluorescence: 33 germinal vesicle (GV), 37 metaphase stage I (MI), and 78 unfertilized metaphase stage II (MII). Results were stage dependent, identical, independent of infertility type, or stimulation protocol. During GV stages, phospho-cdc25C is localized at the oocyte periphery. During early meiosis I (MI), phosphorylated cdc25C is no longer detected until onset of meiosis I. Here, phospho-cdc25C localizes on interstitial microtubules and at the cell periphery corresponding to the point of polar body expulsion. As the first polar body reaches the periphery, phosphorylated cdc25C is localized at the junction corresponding to the mid body position. On polar body expulsion, the interior signal for phospho-cdc25C is lost, but remains clearly visible in the extruded polar body. In atresic or damaged oocytes, the polar body no longer stains for phospho-cdc25C. Human cdc25C is both present and phosphorylated during meiosis I and localizes in a fashion similar to that seen during human mitotic divisions implying that the involvement of cdc25C is conserved and functional in meiotic cells.
Collapse
Affiliation(s)
- S Cunat
- Institut de Génétique Humaine, CNRS UPR 1142, Biologie Cellulaire, Prolifération et Différenciation Cellulaire, Montpellier Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Hargreaves RHJ, David CL, Whitesell LJ, Labarbera DV, Jamil A, Chapuis JC, Skibo EB. Discovery of quinolinediones exhibiting a heat shock response and angiogenesis inhibition. J Med Chem 2008; 51:2492-501. [PMID: 18363347 DOI: 10.1021/jm7014099] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A series of substituted quinoline-5,8-diones were synthesized and evaluated as inhibitors of the chaperone protein Hsp90 using two assays: competition for binding to C-terminal ATP-binding site and competition for binding to N-terminal ATP-binding site. In addition, the ability of the compounds to induce the heat shock response was determined using a reporter fibroblast cell line. Of all the compounds assayed, only 6-aziridinyl-2-biphenylquinoline-5,8-dione induced a heat shock response and did so without interacting at the ATP binding sites of Hsp90. COMPARE analysis was carried out on quinoline-5,8-diones active in the National Cancer Institute's 60-cell line screen with the goal of discovering quinoline-5,8-dione structures that interact with other cellular targets (molecular targets) important for cancer chemotherapy. COMPARE analysis led to the discovery of a combretastatin-like quinoline-5,8-dione structure that, in fact, inhibited angiogenesis.
Collapse
Affiliation(s)
- Robert H J Hargreaves
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
The interaction of herpes simplex virus 1 regulatory protein ICP22 with the cdc25C phosphatase is enabled in vitro by viral protein kinases US3 and UL13. J Virol 2008; 82:4533-43. [PMID: 18272572 DOI: 10.1128/jvi.02022-07] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Earlier studies have shown that ICP22 and the U(L)13 protein kinase but not the U(S)3 kinase are required for optimal expression of a subset of late (gamma(2)) genes exemplified by U(L)38, U(L)41, and U(S)11. In primate cells, ICP22 mediates the disappearance of inactive isoforms of cdc2 and degradation of cyclins A and B1. Active cdc2 acquires a new partner, the viral DNA synthesis processivity factor U(L)42. The cdc2-U(L)42 complex recruits and phosphorylates topoisomerase IIalpha for efficient expression of the gamma(2) genes listed above. In uninfected cells, the cdc25C phosphatase activates cdc2 by removing two inhibitory phosphates. The accompanying report shows that in the absence of cdc25C, the rate of degradation of cyclin B1 is similar to that occurring in infected wild-type mouse embryo fibroblast cells but the levels of cdc2 increase, and the accumulation of a subset of late proteins and virus yields are reduced. This report links ICP22 with cdc25C. We show that in infected cells, ICP22 and U(S)3 protein kinase mediate the phosphorylation of cdc25C at its C-terminal domain. In in vitro assays with purified components, both U(L)13 and U(S)3 viral kinases phosphorylate cdc25C and ICP22. cdc25C also interacts with cdc2. However, in infected cells, the ability of cdc25C to activate cdc2 by dephosphorylation of the inactive cdc2 protein is reduced. Coupled with the phosphorylation of cdc25C by the U(S)3 kinase, the results raise the possibility that herpes simplex virus 1 diverts cdc25C to perform functions other than those performed in uninfected cells.
Collapse
|
42
|
Bouché JP, Froment C, Dozier C, Esmenjaud-Mailhat C, Lemaire M, Monsarrat B, Burlet-Schiltz O, Ducommun B. NanoLC-MS/MS analysis provides new insights into the phosphorylation pattern of Cdc25B in vivo: full overlap with sites of phosphorylation by Chk1 and Cdk1/cycB kinases in vitro. J Proteome Res 2008; 7:1264-73. [PMID: 18237113 DOI: 10.1021/pr700623p] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
NanoLC-MS/MS analysis was used to characterize the phosphorylation pattern in vivo of CDC25B3 (phosphatase splice variant 1) expressed in a human cell line and to compare it to the phosphorylation of CDC25B3 by Cdk1/cyclin B and Chk1 in vitro. Cellular CDC25B3 was purified from U2OS cells conditionally overexpressing the phosphatase. Eighteen sites were detectably phosphorylated in vivo. Nearly all existing (S/T)P sites were phosphorylated in vivo and in vitro. Eight non(S/T)P sites were phosphorylated in vivo. All these sites could be phosphorylated by kinase Chk1, which phosphorylated a total of 11 sites in vitro, with consensus sequence (R/K) X(2-3) (S/P)-non P. Nearly half of the sites identified in this study were not previously described and were not homologous to sites reported to be phosphorylated in other CDC25 species. We also show that in vivo a significant part of CDC25B molecules can be hyperphosphorylated, with up to 13 phosphates per phosphatase molecule.
Collapse
Affiliation(s)
- Jean-Pierre Bouché
- LBCMCP-CNRS-IFR109, Institut d'Exploration Fonctionnelle des Génomes, University of Toulouse, France.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Nesaretnam K, Koon TH, Selvaduray KR, Bruno RS, Ho E. Modulation of cell growth and apoptosis response in human prostate cancer cells supplemented with tocotrienols. EUR J LIPID SCI TECH 2008. [DOI: 10.1002/ejlt.200700068] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
44
|
Abstract
Cell division cycle 25 (CDC25) phosphatases regulate key transitions between cell cycle phases during normal cell division, and in the event of DNA damage they are key targets of the checkpoint machinery that ensures genetic stability. Taking only this into consideration, it is not surprising that CDC25 overexpression has been reported in a significant number of human cancers. However, in light of the significant body of evidence detailing the stringent complexity with which CDC25 activities are regulated, the significance of CDC25 overexpression in a subset of cancers and its association with poor prognosis are proving difficult to assess. We will focus on the roles of CDC25 phosphatases in both normal and abnormal cell proliferation, provide a critical assessment of the current data on CDC25 overexpression in cancer, and discuss both current and future therapeutic strategies for targeting CDC25 activity in cancer treatment.
Collapse
Affiliation(s)
- Rose Boutros
- LBCMCP-CNRS UMR5088, IFR109 Institut d'Exploration Fonctionnelle des Génomes, University of Toulouse, 118 route de Narbonne, 31062 Toulouse, France
| | | | | |
Collapse
|
45
|
Sun A, Shanmugam I, Song J, Terranova PF, Thrasher JB, Li B. Lithium suppresses cell proliferation by interrupting E2F-DNA interaction and subsequently reducing S-phase gene expression in prostate cancer. Prostate 2007; 67:976-88. [PMID: 17440966 DOI: 10.1002/pros.20586] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Lithium is an existing drug for bipolar disorder and its uptake was recently linked to reduced tumor incidence compared to the general population. The major target of lithium action is glycogen synthase kinase 3 (GSK-3). Since GSK-3 expression and activation are associated with prostate cancer progression, the anti-cancer potential of lithium on prostate cancer was investigated in this study. METHODS Multiple prostate cancer cell lines were treated with lithium chloride (LiCl). Cell proliferation and cell cycle distribution were analysed. DNA replication was determined using BrdU labeling assay. Genome-wide screening of gene expression was performed using cDNA microarray assay. GSK-3beta gene-specific silencing was conducted using small interferencing RNA (siRNA) transfection. E2 factor (E2F) transactivation was evaluated using reporter gene assay and E2F-DNA interaction was determined with chromatin-immunoprecipitation assay (ChIP). RESULTS LiCl significantly inhibited cell proliferation, which was associated with reduced DNA replication and S-phase cell cycle arrest. LiCl significantly decreased the expression of multiple DNA replication-related genes, including cell division cycle 6 (cdc6), cyclin A, cyclin E, and cdc25C, which are regulated by E2F factor during cell cycle. A novel GSK-3-specific inhibitor TDZD-8 and GSK-3beta siRNA also suppressed the expression of these E2F target genes, indicating that LiCl-induced anti-cancer effect was associated with GSK-3beta inhibition. Furthermore, LiCl suppressed E2F transactivation by interrupting the interaction of E2F1 factor with its target gene promoter. CONCLUSIONS These data indicated that LiCl suppresses cancer cell proliferation by disrupting E2F-DNA interaction and subsequent E2F-mediated gene expression in prostate cancer.
Collapse
Affiliation(s)
- Aijing Sun
- Department of Pathology, Shaoxing People's Hospital and the First Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | | | | | | | | | | |
Collapse
|
46
|
Hoffmann MS, Singh P, Wolk R, Romero-Corral A, Raghavakaimal S, Somers VK. Microarray studies of genomic oxidative stress and cell cycle responses in obstructive sleep apnea. Antioxid Redox Signal 2007; 9:661-9. [PMID: 17511582 DOI: 10.1089/ars.2007.1589] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Obstructive sleep apnea (OSA), the commonest form of sleep-disordered breathing, is characterized by recurrent episodes of intermittent hypoxia and sleep fragmentation. This study evaluated microarray measures of gene transcript levels in OSA subjects compared to age and BMI matched healthy controls. Measurements were obtained before and after: (a) a night of normal sleep in controls; and (b) a night of untreated apnea in OSA patients. All subjects underwent full polysomnography. mRNA from the whole blood samples was analyzed by HG-U133A and B Affymetrix GeneChip arrays using Spotfire 7.2 data analysis platform. After sleep in OSA patients, changes were noted in several genes involved in modulation of reactive oxygen species (ROS), including heme oxygenase 1, superoxide dismutase 1 and 2, and catalase. Changes were also observed in genes involved in cell growth, proliferation, and the cell cycle such as cell division cycle 25B, signaling lymphocyte activating molecule (SLAM), calgizzarin S100A11, B-cell translocation gene, Src-like adapter protein (SLAP), and eukaryotic translation initiation factor 4E binding protein 2. These overnight changes in OSA patients are suggestive of activation of several mechanisms to modulate, and adapt to, increased ROS developing in response to the frequent episodes of intermittent hypoxia.
Collapse
Affiliation(s)
- Michal S Hoffmann
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
47
|
Rudolph J. Inhibiting transient protein-protein interactions: lessons from the Cdc25 protein tyrosine phosphatases. Nat Rev Cancer 2007; 7:202-11. [PMID: 17287826 DOI: 10.1038/nrc2087] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Transient protein-protein interactions have key regulatory functions in many of the cellular processes that are implicated in cancerous growth, particularly the cell cycle. Targeting these transient interactions as therapeutic targets for anticancer drug development seems like a good idea, but it is not a trivial task. This Review discusses the issues and difficulties that are encountered when considering these transient interactions as drug targets, using the example of the cell division cycle 25 (Cdc25) phosphatases and their cyclin-dependent kinase (CDK)-cyclin protein substrates.
Collapse
Affiliation(s)
- Johannes Rudolph
- Department of Biochemistry, Duke University Medical Center, BOX 3813, LSRC Building, Room C125, Durham, North Carolina 27710, USA.
| |
Collapse
|
48
|
Brondello JM, Ducommun B, Fernandez A, Lamb NJ. Linking PCNA-dependent replication and ATR by human Claspin. Biochem Biophys Res Commun 2007; 354:1028-33. [PMID: 17274954 DOI: 10.1016/j.bbrc.2007.01.091] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 01/18/2007] [Indexed: 10/23/2022]
Abstract
Recent studies in Xenopus have identified a new checkpoint protein called Claspin that is believed to transduce the checkpoint DNA damage signals to Chk1 kinase. Here we show that the human Claspin homolog is a chromatin bound protein either in the absence or in the presence of damaged DNA, independent of its association with ATR. Furthermore, we show that human Claspin is found in complex with PCNA, an essential component of the DNA replication machinery, and is released upon DNA replication arrest. Interfering with PCNA function by overexpression of p21 mutant, impaired in its interaction with Cdks but not with PCNA, leads to ATR-dependent Chk1 activation. These findings suggest that the dissociation of Claspin-PCNA could be part of the signal leading to Chk1 activation.
Collapse
Affiliation(s)
- Jean-Marc Brondello
- INSERM EMI 0229 Génotypes et Phénotypes Tumoraux CRLC Val d'Aurelle, 34298 Montpellier, Cedex 5, France.
| | | | | | | |
Collapse
|
49
|
Brisson M, Foster C, Wipf P, Joo B, Tomko RJ, Nguyen T, Lazo JS. Independent mechanistic inhibition of cdc25 phosphatases by a natural product caulibugulone. Mol Pharmacol 2007; 71:184-92. [PMID: 17018577 DOI: 10.1124/mol.106.028589] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Caulibugulones are novel but poorly characterized cytotoxic isoquinoline quinones and iminoquinones identified in extracts from the marine bryozoan Caulibugula intermis. We now report that the caulibugulones are selective in vitro inhibitors of the Cdc25 family of cell cycle-controlling protein phosphatases compared with either human vaccinia H1-related phosphatase (VHR) or tyrosine phosphatase 1B (PTP1B). The in vitro inhibition of Cdc25B by caulibugulone A was irreversible and attenuated by reducing agents or catalase, consistent with direct oxidation of the enzyme by reactive oxygen species. Mechanistically, caulibugulone A directly inhibited cellular Cdc25B activity, generated intracellular reactive oxygen species and arrested cells in both G1 and G2/M phases of the cell cycle. Caulibugulone A also caused the selective degradation of Cdc25A protein by a process that was independent of reactive oxygen species production, proteasome activity, and the Chk1 signaling pathway. Instead, caulibugulone A stimulated the phosphorylation and subsequent activation of p38 stress kinase, leading to Cdc25A degradation. Thus, caulibugulone inhibition of cellular Cdc25A and B phosphatases occurred through at least two different mechanisms, leading to pronounced cell cycle arrest.
Collapse
Affiliation(s)
- Marni Brisson
- Drug Discovery Institute, University of Pittsburgh, BST3, Suite 10040, 3501 Fifth Ave., Pittsburgh, PA 15260-0001, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Takahashi Y, Lavigne JA, Hursting SD, Chandramouli GVR, Perkins SN, Kim YS, Wang TTY. Molecular signatures of soy-derived phytochemicals in androgen-responsive prostate cancer cells: a comparison study using DNA microarray. Mol Carcinog 2006; 45:943-56. [PMID: 16865672 DOI: 10.1002/mc.20247] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The present study utilized microarray technology as a tool to elucidate the molecular signatures of soy-derived phytochemicals in the human androgen-responsive prostate cancer cell line LNCaP. Global gene expression pattern analysis of LNCaP cells exposed to 0, 1, 5, or 25 microM of the soy-derived phytochemicals equol and daidzein were conducted and compared. The data were further compared with previously generated data from exposure of LNCaP cells to the same doses of genistein, a soy isoflavone. Multidimensional scaling (MDS) analyses of the expression patterns suggest that these compounds exerted differential effects on gene expression in LNCaP cells. Further examination of specific gene changes revealed that these compounds differentially modulated genes in multiple cellular pathways, including the cell-cycle pathway genes. However, the three compounds also exerted similar effect on genes belonging to several other important cellular pathways. A universal effect of the three compounds on androgen-responsive genes, IGF-1 pathway gene, and MAP kinase-related pathway gene was observed. These results provide the foundation for establishing molecular signatures for equol, daidzein, and genistein. Moreover, these results also allow for the identification of candidate mechanism(s) by which soy phytochemicals and soy may act in prostate cancer cells.
Collapse
Affiliation(s)
- Yoko Takahashi
- Phytonutrients Laboratory, Beltsville Human Nutrition Research Center, ARS, USDA, Beltsville, Maryland 20705, USA
| | | | | | | | | | | | | |
Collapse
|