1
|
Gutay-Tóth Z, Gellen G, Doan M, Eliason JF, Vincze J, Szente L, Fenyvesi F, Goda K, Vecsernyés M, Szabó G, Bacso Z. Cholesterol-Depletion-Induced Membrane Repair Carries a Raft Conformer of P-Glycoprotein to the Cell Surface, Indicating Enhanced Cholesterol Trafficking in MDR Cells, Which Makes Them Resistant to Cholesterol Modifications. Int J Mol Sci 2023; 24:12335. [PMID: 37569709 PMCID: PMC10419235 DOI: 10.3390/ijms241512335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
The human P-glycoprotein (P-gp), a transporter responsible for multidrug resistance, is present in the plasma membrane's raft and non-raft domains. One specific conformation of P-gp that binds to the monoclonal antibody UIC2 is primarily associated with raft domains and displays heightened internalization in cells overexpressing P-gp, such as in NIH-3T3 MDR1 cells. Our primary objective was to investigate whether the trafficking of this particular P-gp conformer is dependent on cholesterol levels. Surprisingly, depleting cholesterol using cyclodextrin resulted in an unexpected increase in the proportion of raft-associated P-gp within the cell membrane, as determined by UIC2-reactive P-gp. This increase appears to be a compensatory response to cholesterol loss from the plasma membrane, whereby cholesterol-rich raft micro-domains are delivered to the cell surface through an augmented exocytosis process. Furthermore, this exocytotic event is found to be part of a complex trafficking mechanism involving lysosomal exocytosis, which contributes to membrane repair after cholesterol reduction induced by cyclodextrin treatment. Notably, cells overexpressing P-gp demonstrated higher total cellular cholesterol levels, an increased abundance of stable lysosomes, and more effective membrane repair following cholesterol modifications. These modifications encompassed exocytotic events that involved the transport of P-gp-carrying rafts. Importantly, the enhanced membrane repair capability resulted in a durable phenotype for MDR1 expressing cells, as evidenced by significantly improved viabilities of multidrug-resistant Pgp-overexpressing immortal NIH-3T3 MDR1 and MDCK-MDR1 cells compared to their parents when subjected to cholesterol alterations.
Collapse
Affiliation(s)
- Zsuzsanna Gutay-Tóth
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.G.-T.); (G.G.); (M.D.); (K.G.); (G.S.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Gabriella Gellen
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.G.-T.); (G.G.); (M.D.); (K.G.); (G.S.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Department of Analytical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, 1053 Budapest, Hungary
| | - Minh Doan
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.G.-T.); (G.G.); (M.D.); (K.G.); (G.S.)
| | - James F. Eliason
- Great Lakes Stem Cell Innovation Center, Detroit, MI 48202, USA;
| | - János Vincze
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Lajos Szente
- CycloLab Cyclodextrin Research & Development Laboratory, Ltd., 1097 Budapest, Hungary;
| | - Ferenc Fenyvesi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (F.F.); (M.V.)
| | - Katalin Goda
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.G.-T.); (G.G.); (M.D.); (K.G.); (G.S.)
| | - Miklós Vecsernyés
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (F.F.); (M.V.)
| | - Gábor Szabó
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.G.-T.); (G.G.); (M.D.); (K.G.); (G.S.)
| | - Zsolt Bacso
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.G.-T.); (G.G.); (M.D.); (K.G.); (G.S.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (F.F.); (M.V.)
| |
Collapse
|
2
|
Molecular Regulation of Canalicular ABC Transporters. Int J Mol Sci 2021; 22:ijms22042113. [PMID: 33672718 PMCID: PMC7924332 DOI: 10.3390/ijms22042113] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 12/17/2022] Open
Abstract
The ATP-binding cassette (ABC) transporters expressed at the canalicular membrane of hepatocytes mediate the secretion of several compounds into the bile canaliculi and therefore play a key role in bile secretion. Among these transporters, ABCB11 secretes bile acids, ABCB4 translocates phosphatidylcholine and ABCG5/G8 is responsible for cholesterol secretion, while ABCB1 and ABCC2 transport a variety of drugs and other compounds. The dysfunction of these transporters leads to severe, rare, evolutionary biliary diseases. The development of new therapies for patients with these diseases requires a deep understanding of the biology of these transporters. In this review, we report the current knowledge regarding the regulation of canalicular ABC transporters' folding, trafficking, membrane stability and function, and we highlight the role of molecular partners in these regulating mechanisms.
Collapse
|
3
|
A Link between Intrahepatic Cholestasis and Genetic Variations in Intracellular Trafficking Regulators. BIOLOGY 2021; 10:biology10020119. [PMID: 33557414 PMCID: PMC7914782 DOI: 10.3390/biology10020119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 12/20/2022]
Abstract
Simple Summary Cholestasis refers to a medical condition in which the liver is not capable of secreting bile. The consequent accumulation of toxic bile components in the liver leads to liver failure. Cholestasis can be caused by mutations in genes that code for proteins involved in bile secretion. Recently mutations in other genes have been discovered in patients with cholestasis of unknown origin. Interestingly, many of these newly discovered genes code for proteins that regulate the intracellular distribution of other proteins, including those involved in bile secretion. This group of genes thus suggests the deregulated intracellular distribution of bile-secreting proteins as an important but still poorly understood mechanism that underlies cholestasis. To expedite a better understanding of this mechanism, we have reviewed these genes and their mutations and we discuss these in the context of cholestasis. Abstract Intrahepatic cholestasis is characterized by the accumulation of compounds in the serum that are normally secreted by hepatocytes into the bile. Genes associated with familial intrahepatic cholestasis (FIC) include ATP8B1 (FIC1), ABCB11 (FIC2), ABCB4 (FIC3), TJP2 (FIC4), NR1H4 (FIC5) and MYO5B (FIC6). With advanced genome sequencing methodologies, additional mutated genes are rapidly identified in patients presenting with idiopathic FIC. Notably, several of these genes, VPS33B, VIPAS39, SCYL1, and AP1S1, together with MYO5B, are functionally associated with recycling endosomes and/or the Golgi apparatus. These are components of a complex process that controls the sorting and trafficking of proteins, including those involved in bile secretion. These gene variants therefore suggest that defects in intracellular trafficking take a prominent place in FIC. Here we review these FIC-associated trafficking genes and their variants, their contribution to biliary transporter and canalicular protein trafficking, and, when perturbed, to cholestatic liver disease. Published variants for each of these genes have been summarized in table format, providing a convenient reference for those who work in the intrahepatic cholestasis field.
Collapse
|
4
|
Gajate C, Mollinedo F. Lipid Raft Isolation by Sucrose Gradient Centrifugation and Visualization of Raft-Located Proteins by Fluorescence Microscopy: The Use of Combined Techniques to Assess Fas/CD95 Location in Rafts During Apoptosis Triggering. Methods Mol Biol 2021; 2187:147-186. [PMID: 32770506 DOI: 10.1007/978-1-0716-0814-2_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Lipid rafts are heterogeneous membrane domains enriched in cholesterol, sphingolipids, and gangliosides that serve as sorting platforms to compartmentalize and modulate signaling pathways. Death receptors and downstream signaling molecules have been reported to be recruited into these raft domains during the triggering of apoptosis. Here, we provide two protocols that support the presence of Fas/CD95 in lipid rafts during apoptosis, involving lipid raft isolation and confocal microscopy techniques. A detailed protocol is provided for the isolation of lipid rafts, by taking advantage of their resistance to Triton X-100 solubilization at 4 °C, followed by subsequent sucrose gradient centrifugation and analysis of the protein composition of the different gradient fractions by Western blotting. In addition, we also provide a detailed protocol for the visualization of the coclustering of Fas/CD95 death receptor and lipid rafts, as assessed by using anti-Fas/CD95 antibodies and fluorescent dye-conjugated cholera toxin B subunit that binds to ganglioside GM1, a main component of lipid rafts, by immunofluorescence and confocal microscopy. These protocols can be extended to any protein of interest to be analyzed for its association to lipid rafts.
Collapse
Affiliation(s)
- Consuelo Gajate
- Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Faustino Mollinedo
- Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| |
Collapse
|
5
|
Seo S, Murata M, Shinoda W. Pivotal Role of Interdigitation in Interleaflet Interactions: Implications from Molecular Dynamics Simulations. J Phys Chem Lett 2020; 11:5171-5176. [PMID: 32515980 DOI: 10.1021/acs.jpclett.0c01317] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The asymmetric lipid composition in plasma membranes within the inner leaflet is not typically suitable for domain formation. Thus elucidation of the likelihood of the formation or stability of a raft-like domain in the inner leaflet is necessary. Herein we investigated the phase behavior of asymmetric membranes using coarse-grained molecular dynamics simulations. The lipid leaflet comprising dioleoylphosphatidylcholine (DOPC) and cholesterol (Chol) does not typically show well-developed domains in symmetric bilayer membranes; however, it does separate into liquid ordered (Lo) and liquid disordered (Ld) phases when the opposing leaflet containing sphingomyelin (SM), DOPC, and Chol demonstrates domain formation. We determine that interdigitated acyl chains modulated the partitioning of Chol in the opposing leaflet, resulting in phase separation. Similarly, the acyl chain length of SM within the opposing leaflet affected the phase behavior of the leaflet. Our results reveal the crucial role of interdigitation in determining the phase status in asymmetric membranes.
Collapse
Affiliation(s)
- Sangjae Seo
- Department of Materials Chemistry, Nagoya University, Nagoya 464-8603, Japan
- Korean Institute of Science and Technology Information, Daejeon 34141, Republic of Korea
| | - Michio Murata
- Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Wataru Shinoda
- Department of Materials Chemistry, Nagoya University, Nagoya 464-8603, Japan
| |
Collapse
|
6
|
Lázaro-Diéguez F, Müsch A. Low Rho activity in hepatocytes prevents apical from basolateral cargo separation during trans-Golgi network to surface transport. Traffic 2020; 21:364-374. [PMID: 32124512 PMCID: PMC7959587 DOI: 10.1111/tra.12725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 12/24/2022]
Abstract
Hepatocytes, the main epithelial cells of the liver, organize their polarized membrane domains differently from ductal epithelia. They also differ in their biosynthetic delivery of single-membrane-spanning and glycophosphatidylinositol-anchored proteins to the apical domain. While ductal epithelia target apical proteins to varying degrees from the trans-Golgi network (TGN) to the apical surface directly, hepatocytes target them first to the basolateral domain, from where they undergo basolateral-to-apical transcytosis. How TGN-to-surface transport differs in both scenarios is unknown. Here, we report that the basolateral detour of a hepatocyte apical protein is due, in part, to low RhoA activity at the TGN, which prevents its segregation from basolateral transport carriers. Activating Rho in hepatocytic cells, which switches their polarity from hepatocytic to ductal, also led to apical-basolateral cargo segregation at the TGN as is typical for ductal cells, affirming a central role for Rho-signaling in different aspects of the hepatocytic polarity phenotype. Nevertheless, Rho-induced cargo segregation was not sufficient to target the apical protein directly; thus, failure to recruit apical targeting machinery also contributes to its indirect itinerary.
Collapse
Affiliation(s)
- Francisco Lázaro-Diéguez
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Anne Müsch
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
7
|
van IJzendoorn SCD, Agnetti J, Gassama-Diagne A. Mechanisms behind the polarized distribution of lipids in epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183145. [PMID: 31809710 DOI: 10.1016/j.bbamem.2019.183145] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/25/2019] [Accepted: 11/30/2019] [Indexed: 01/28/2023]
Abstract
Epithelial cells are polarized cells and typically display distinct plasma membrane domains: basal plasma membrane domains face the underlying tissue, lateral domains contact adjacent cells and apical domains face the exterior lumen. Each membrane domain is endowed with a specific macromolecular composition that constitutes the functional identity of that domain. Defects in apical-basal plasma membrane polarity altogether or more subtle defects in the composition of either apical or basal plasma membrane domain can give rise to severe diseases. Lipids are the main component of cellular membranes and mechanisms that control their polarized distribution in epithelial cells are emerging. In particular sphingolipids and phosphatidylinositol lipids have taken center stage in the organization of the apical and basolateral plasma membrane domain. This short review article discusses mechanisms that contribute to the polarized distribution of lipids in epithelial cells.
Collapse
Affiliation(s)
- Sven C D van IJzendoorn
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Jean Agnetti
- INSERM, Unité 1193, Villejuif F-94800, France; Université Paris-Sud, UMR-S 1193, Villejuif F-94800, France
| | - Ama Gassama-Diagne
- INSERM, Unité 1193, Villejuif F-94800, France; Université Paris-Sud, UMR-S 1193, Villejuif F-94800, France
| |
Collapse
|
8
|
Huang C, Hays FA, Tomasek JJ, Benyajati S, Zhang XA. Tetraspanin CD82 interaction with cholesterol promotes extracellular vesicle-mediated release of ezrin to inhibit tumour cell movement. J Extracell Vesicles 2019; 9:1692417. [PMID: 31807237 PMCID: PMC6882436 DOI: 10.1080/20013078.2019.1692417] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/16/2019] [Accepted: 10/26/2019] [Indexed: 01/04/2023] Open
Abstract
Tumour metastasis suppressor KAI1/CD82 inhibits tumour cell movement. As a transmembrane protein, tetraspanin CD82 bridges the interactions between membrane microdomains of lipid rafts and tetraspanin-enriched microdomains (TEMs). In this study, we found that CD82 and other tetraspanins contain cholesterol recognition/interaction amino-acid consensus (CRAC) sequences in their transmembrane domains and revealed that cholesterol binding of CD82 determines its interaction with lipid rafts but not with TEMs. Functionally, CD82 needs cholesterol binding to inhibit solitary migration, collective migration, invasion and infiltrative outgrowth of tumour cells. Importantly, CD82–cholesterol/–lipid raft interaction not only promotes extracellular release of lipid raft components such as cholesterol and gangliosides but also facilitates extracellular vesicle (EV)–mediated release of ezrin–radixin–moesin (ERM) protein Ezrin. Since ERM proteins link actin cytoskeleton to the plasma membrane, we show for the first time that cell movement can be regulated by EV-mediated releases, which disengage the plasma membrane from cytoskeleton and then impair cell movement. Our findings also conceptualize that interactions between membrane domains, in this case converge of lipid rafts and TEMs by CD82, can change cell movement. Moreover, CD82 coalescences with both lipid rafts and TEMs are essential for its inhibition of tumour cell movement and for its enhancement of EV release. Finally, our study underpins that tetraspanins as a superfamily of functionally versatile molecules are cholesterol-binding proteins. Abbreviations:Ab: antibody; CBM: cholesterol-binding motif; CCM: cholesterol consensus motif; CRAC/CARC: cholesterol recognition or interaction amino-acid consensus; CTxB: cholera toxin B subunit; ECM: extracellular matrix; ERM: ezrin, radixin and moesin; EV: extracellular vesicles; FBS: foetal bovine serum; mAb: monoclonal antibody; MST: microscale thermophoresis; pAb: polyclonal antibody; and TEM: tetraspanin-enriched microdomain
Collapse
Affiliation(s)
- Chao Huang
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Franklin A Hays
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - James J Tomasek
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Siribhinya Benyajati
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Xin A Zhang
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
9
|
Yamamoto H, Umeda D, Matsumoto S, Kikuchi A. LDL switches the LRP6 internalization route from flotillin dependent to clathrin dependent in hepatic cells. J Cell Sci 2017; 130:3542-3556. [PMID: 28821575 DOI: 10.1242/jcs.202135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 08/14/2017] [Indexed: 12/26/2022] Open
Abstract
Low-density lipoprotein (LDL) receptor-related protein 6 (LRP6) was originally identified as a co-receptor of the Wnt signalling pathway and has been shown to be involved in LDL transport. In polarized hepatocytes, many apical proteins are sorted to the basolateral membrane and then internalized and transported to the apical bile canalicular membrane - a process known as transcytosis. We show that LRP6 is transcytosed to the apical membrane of polarized hepatic HepG2 cells via a flotillin-dependent manner in the absence of LDL. LRP6 formed a complex with Niemann-Pick type C1-like 1 (NPC1L1), which is localized to the bile canalicular membrane of the liver and is involved in cholesterol absorption from the bile. LRP6 was required for apical membrane localization of NPC1L1 in the absence of LDL. Clathrin-dependent LRP6 internalization occurred in the presence of LDL, which resulted in trafficking of LRP6 to the lysosome, thereby reducing apical sorting of LRP6 and NPC1L1. These results suggest that LRP6 endocytosis proceeds by two routes, depending on the presence of LDL, and that LRP6 controls the intracellular destination of NPC1L1 in hepatocytes.
Collapse
Affiliation(s)
- Hideki Yamamoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Daisuke Umeda
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shinji Matsumoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akira Kikuchi
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
10
|
Fieten H, Gill Y, Martin AJ, Concilli M, Dirksen K, van Steenbeek FG, Spee B, van den Ingh TSGAM, Martens ECCP, Festa P, Chesi G, van de Sluis B, Houwen RHJH, Watson AL, Aulchenko YS, Hodgkinson VL, Zhu S, Petris MJ, Polishchuk RS, Leegwater PAJ, Rothuizen J. The Menkes and Wilson disease genes counteract in copper toxicosis in Labrador retrievers: a new canine model for copper-metabolism disorders. Dis Model Mech 2016; 9:25-38. [PMID: 26747866 PMCID: PMC4728329 DOI: 10.1242/dmm.020263] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The deleterious effects of a disrupted copper metabolism are illustrated by hereditary diseases caused by mutations in the genes coding for the copper transporters ATP7A and ATP7B. Menkes disease, involving ATP7A, is a fatal neurodegenerative disorder of copper deficiency. Mutations in ATP7B lead to Wilson disease, which is characterized by a predominantly hepatic copper accumulation. The low incidence and the phenotypic variability of human copper toxicosis hamper identification of causal genes or modifier genes involved in the disease pathogenesis. The Labrador retriever was recently characterized as a new canine model for copper toxicosis. Purebred dogs have reduced genetic variability, which facilitates identification of genes involved in complex heritable traits that might influence phenotype in both humans and dogs. We performed a genome-wide association study in 235 Labrador retrievers and identified two chromosome regions containing ATP7A and ATP7B that were associated with variation in hepatic copper levels. DNA sequence analysis identified missense mutations in each gene. The amino acid substitution ATP7B:p.Arg1453Gln was associated with copper accumulation, whereas the amino acid substitution ATP7A:p.Thr327Ile partly protected against copper accumulation. Confocal microscopy indicated that aberrant copper metabolism upon expression of the ATP7B variant occurred because of mis-localization of the protein in the endoplasmic reticulum. Dermal fibroblasts derived from ATP7A:p.Thr327Ile dogs showed copper accumulation and delayed excretion. We identified the Labrador retriever as the first natural, non-rodent model for ATP7B-associated copper toxicosis. Attenuation of copper accumulation by the ATP7A mutation sheds an interesting light on the interplay of copper transporters in body copper homeostasis and warrants a thorough investigation of ATP7A as a modifier gene in copper-metabolism disorders. The identification of two new functional variants in ATP7A and ATP7B contributes to the biological understanding of protein function, with relevance for future development of therapy. Summary: Labrador retrievers with hereditary copper toxicosis are a useful new model for copper-metabolism disorders.
Collapse
Affiliation(s)
- Hille Fieten
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands
| | - Yadvinder Gill
- The WALTHAM Centre for Pet Nutrition, Waltham-on-the-Wolds, Melton Mowbray, Leicestershire, LE14 4RT, UK
| | - Alan J Martin
- The WALTHAM Centre for Pet Nutrition, Waltham-on-the-Wolds, Melton Mowbray, Leicestershire, LE14 4RT, UK
| | - Mafalda Concilli
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Karen Dirksen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands
| | - Frank G van Steenbeek
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands
| | - Bart Spee
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands
| | | | - Ellen C C P Martens
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands
| | - Paola Festa
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Giancarlo Chesi
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Bart van de Sluis
- Department of Pediatrics, Molecular Genetics Section, University of Groningen, University Medical Center, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Roderick H J H Houwen
- Department of Pediatric Gastroenterology, Wilhelmina Children's Hospital, University Medical Center, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| | - Adrian L Watson
- The WALTHAM Centre for Pet Nutrition, Waltham-on-the-Wolds, Melton Mowbray, Leicestershire, LE14 4RT, UK
| | - Yurii S Aulchenko
- Novosibirsk State University, 630090 Novosibirsk, Russia Institute of Cytology and Genetics, 630090 Novosibirsk, Russia
| | - Victoria L Hodgkinson
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA The Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO 65211, USA
| | - Sha Zhu
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA The Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO 65211, USA
| | - Michael J Petris
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA The Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO 65211, USA Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211, USA
| | - Roman S Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Peter A J Leegwater
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands
| | - Jan Rothuizen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands
| |
Collapse
|
11
|
Martín-Ávila A, Medina-Tamayo J, Ibarra-Sánchez A, Vázquez-Victorio G, Castillo-Arellano JI, Hernández-Mondragón AC, Rivera J, Madera-Salcedo IK, Blank U, Macías-Silva M, González-Espinosa C. Protein Tyrosine Kinase Fyn Regulates TLR4-Elicited Responses on Mast Cells Controlling the Function of a PP2A-PKCα/β Signaling Node Leading to TNF Secretion. THE JOURNAL OF IMMUNOLOGY 2016; 196:5075-88. [PMID: 27183589 DOI: 10.4049/jimmunol.1501823] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 04/16/2016] [Indexed: 12/21/2022]
Abstract
Mast cells produce proinflammatory cytokines in response to TLR4 ligands, but the signaling pathways involved are not fully described. In this study, the participation of the Src family kinase Fyn in the production of TNF after stimulation with LPS was evaluated using bone marrow-derived mast cells from wild-type and Fyn-deficient mice. Fyn(-/-) cells showed higher LPS-induced secretion of preformed and de novo-synthesized TNF. In both cell types, TNF colocalized with vesicle-associated membrane protein (VAMP)3-positive compartments. Addition of LPS provoked coalescence of VAMP3 and its interaction with synaptosomal-associated protein 23; those events were increased in the absence of Fyn. Higher TNF mRNA levels were also observed in Fyn-deficient cells as a result of increased transcription and greater mRNA stability after LPS treatment. Fyn(-/-) cells also showed higher LPS-induced activation of TAK-1 and ERK1/2, whereas IκB kinase and IκB were phosphorylated, even in basal conditions. Increased responsiveness in Fyn(-/-) cells was associated with a lower activity of protein phosphatase 2A (PP2A) and augmented activity of protein kinase C (PKC)α/β, which was dissociated from PP2A and increased its association with the adapter protein neuroblast differentiation-associated protein (AHNAK, desmoyokin). LPS-induced PKCα/β activity was associated with VAMP3 coalescence in WT and Fyn-deficient cells. Reconstitution of MC-deficient Wsh mice with Fyn(-/-) MCs produced greater LPS-dependent production of TNF in the peritoneal cavity. Our data show that Fyn kinase is activated after TLR4 triggering and exerts an important negative control on LPS-dependent TNF production in MCs controlling the inactivation of PP2Ac and activation of PKCα/β necessary for the secretion of TNF by VAMP3(+) carriers.
Collapse
Affiliation(s)
- Alejandro Martín-Ávila
- Departamento de Farmacobiología, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Sede Sur, Tlalpan, CP 14330 Mexico City, Mexico
| | - Jaciel Medina-Tamayo
- Departamento de Farmacobiología, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Sede Sur, Tlalpan, CP 14330 Mexico City, Mexico
| | - Alfredo Ibarra-Sánchez
- Departamento de Farmacobiología, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Sede Sur, Tlalpan, CP 14330 Mexico City, Mexico
| | - Genaro Vázquez-Victorio
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP 04510 Mexico City, Mexico
| | - Jorge Iván Castillo-Arellano
- Departamento de Farmacobiología, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Sede Sur, Tlalpan, CP 14330 Mexico City, Mexico
| | - Alma Cristal Hernández-Mondragón
- Departamento de Farmacobiología, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Sede Sur, Tlalpan, CP 14330 Mexico City, Mexico
| | - Juan Rivera
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892-1820; and
| | - Iris K Madera-Salcedo
- INSERM UMRS1149, Faculté de Médecine, Université Paris-Diderot, Site X, Bichat, Paris 75018, France
| | - Ulrich Blank
- INSERM UMRS1149, Faculté de Médecine, Université Paris-Diderot, Site X, Bichat, Paris 75018, France
| | - Marina Macías-Silva
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP 04510 Mexico City, Mexico
| | - Claudia González-Espinosa
- Departamento de Farmacobiología, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Sede Sur, Tlalpan, CP 14330 Mexico City, Mexico;
| |
Collapse
|
12
|
Fong-ngern K, Sueksakit K, Thongboonkerd V. Surface heat shock protein 90 serves as a potential receptor for calcium oxalate crystal on apical membrane of renal tubular epithelial cells. J Biol Inorg Chem 2016; 21:463-74. [DOI: 10.1007/s00775-016-1355-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/13/2016] [Indexed: 02/04/2023]
|
13
|
Gissen P, Arias IM. Structural and functional hepatocyte polarity and liver disease. J Hepatol 2015; 63:1023-37. [PMID: 26116792 PMCID: PMC4582071 DOI: 10.1016/j.jhep.2015.06.015] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 06/14/2015] [Accepted: 06/15/2015] [Indexed: 02/08/2023]
Abstract
Hepatocytes form a crucially important cell layer that separates sinusoidal blood from the canalicular bile. They have a uniquely organized polarity with a basal membrane facing liver sinusoidal endothelial cells, while one or more apical poles can contribute to several bile canaliculi jointly with the directly opposing hepatocytes. Establishment and maintenance of hepatocyte polarity is essential for many functions of hepatocytes and requires carefully orchestrated cooperation between cell adhesion molecules, cell junctions, cytoskeleton, extracellular matrix and intracellular trafficking machinery. The process of hepatocyte polarization requires energy and, if abnormal, may result in severe liver disease. A number of inherited disorders affecting tight junction and intracellular trafficking proteins have been described and demonstrate clinical and pathophysiological features overlapping those of the genetic cholestatic liver diseases caused by defects in canalicular ABC transporters. Thus both structural and functional components contribute to the final hepatocyte polarity phenotype. Many acquired liver diseases target factors that determine hepatocyte polarity, such as junctional proteins. Hepatocyte depolarization frequently occurs but is rarely recognized because hematoxylin-eosin staining does not identify the bile canaliculus. However, the molecular mechanisms underlying these defects are not well understood. Here we aim to provide an update on the key factors determining hepatocyte polarity and how it is affected in inherited and acquired diseases.
Collapse
Affiliation(s)
- Paul Gissen
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK; UCL Institute of Child Health, London, UK; Great Ormond Street Hospital, London, UK.
| | - Irwin M Arias
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States
| |
Collapse
|
14
|
Eckstein J, Berndt N, Holzhütter HG. Computer simulations suggest a key role of membranous nanodomains in biliary lipid secretion. PLoS Comput Biol 2015; 11:e1004033. [PMID: 25692493 PMCID: PMC4333117 DOI: 10.1371/journal.pcbi.1004033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 11/12/2014] [Indexed: 01/06/2023] Open
Abstract
The bile fluid contains various lipids that are secreted at the canalicular membrane of hepatocytes. As the secretion mechanism is still a matter of debate and a direct experimental observation of the secretion process is not possible so far, we used a mathematical model to simulate the extraction of the major bile lipids cholesterol, phosphatidylcholine and sphingomyelin from the outer leaflet of the canalicular membrane. Lipid diffusion was modeled as random movement on a triangular lattice governed by next-neighbor interaction energies. Phase separation in liquid-ordered and liquid-disordered domains was modeled by assigning two alternative ordering states to each lipid species and minimization of next-neighbor ordering energies. Parameterization of the model was performed such that experimentally determined diffusion rates and phases in ternary lipid mixtures of model membranes were correctly recapitulated. The model describes the spontaneous formation of nanodomains in the external leaflet of the canalicular membrane in a time window between 0.1 ms to 10 ms at varying lipid proportions. The extraction of lipid patches from the bile salt soluble nanodomain into the bile reproduced observed biliary phospholipid compositions for a physiologi-cal membrane composition. Comparing the outcome of model simulations with available experi-mental observations clearly favors the extraction of tiny membrane patches composed of about 100–400 lipids as the likely mechanism of biliary lipid secretion. Formation of the bile is one of the central functions of the liver. The bile fluid aids in the digestion of edible fats and removal of drugs and toxins from the body. The bile fluid is mainly composed of bile salts (BS), phosphatidylcholine (PC) and cholesterol (CH) in a fairly fixed proportion that prevents liver impairment by gallstone formation or cholestasis. During bile formation, BS are actively pumped out of the hepatocyte into the extracellular space where they extract PC and CH from the canalicular membrane. This extraction process bears the risk for the canalicular membrane to be destructed. Hence, only a certain fraction of the membrane should be accessible to the solubilizing activity of BS. We have developed a mathematical model that describes the temporal formation of CH-enriched ordered and PC-enriched disordered nanodomains in the canalicular membrane. Model simulations reveal that the disordered nanodomains exhibit a composition of PC and CH similar to that also found in the bile. From this finding and the good concordance of model simulations with experimental data we conclude that PC and CH are mainly secreted into the bile from the disordered nanodomain. Our work adds a new layer of physiological importance to the spontaneous formation of lipid domains in biological membranes.
Collapse
Affiliation(s)
- Johannes Eckstein
- Charité—University Medicine Berlin, Institute of Biochemistry, Berlin, Germany
| | - Nikolaus Berndt
- Charité—University Medicine Berlin, Institute of Biochemistry, Berlin, Germany
| | | |
Collapse
|
15
|
Activation of muscarinic receptors in rat parotid acinar cells induces AQP5 trafficking to nuclei and apical plasma membrane. Biochim Biophys Acta Gen Subj 2015; 1850:784-93. [PMID: 25603543 DOI: 10.1016/j.bbagen.2015.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/24/2014] [Accepted: 01/12/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND The subcellular distribution of aquaporin-5 (AQP5) in rat parotid acinar cells in response to muscarinic acetylcholine receptor (mAChR) activation remains unclear. METHODS Immunoconfocal and immunoelectron microscopy were used to visualize the distribution of AQP5 in parotid acinar cells. Western blotting was used to analyze AQP5 levels in membranes. To clarify the characteristics of membrane domains associated with AQP5, detergent solubility and sucrose-density flotation experiments were performed. RESULTS Under control conditions, AQP5 was diffusely distributed on the apical plasma membrane (APM) and apical plasmalemmal region and throughout the cytoplasm. Upon mAChR activation, AQP5 was predominantly located in the nucleus, APM and lateral plasma membrane (LPM). Subsequently, localization of AQP5 in the nucleus, APM and LPM was decreased. Prolonged atropine treatment inhibited mAChR agonist-induced translocation of AQP5 to the nucleus, APM and LPM. AQP5 levels were enhanced in isolated nuclei and nuclear membranes prepared from parotid tissues incubated with mAChR agonist. mAChR agonist induced AQP5 levels in both soluble and insoluble nuclear fractions solubilized with Triton X-100 or Lubrol WX. Small amounts of AQP5 in nuclei were detected using low-density sucrose gradient. When AQP5 was present in the nuclear membrane, nuclear size decreased. CONCLUSION The activation of mAChR induced AQP5 translocation to the nucleus, APM and LPM, and AQP5 may trigger water transport across the nuclear membrane and plasma membrane in rat parotid acinar cells. GENERAL SIGNIFICANCE AQP5 translocates to the nuclear membrane and may trigger the movement of water, inducing shrinkage of the nucleus and the start of nuclear functions.
Collapse
|
16
|
Vázquez-Victorio G, Caligaris C, Del Valle-Espinosa E, Sosa-Garrocho M, González-Arenas NR, Reyes-Cruz G, Briones-Orta MA, Macías-Silva M. Novel regulation of Ski protein stability and endosomal sorting by actin cytoskeleton dynamics in hepatocytes. J Biol Chem 2015; 290:4487-99. [PMID: 25561741 DOI: 10.1074/jbc.m114.579532] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TGF-β-induced antimitotic signals are highly regulated during cell proliferation under normal and pathological conditions, such as liver regeneration and cancer. Up-regulation of the transcriptional cofactors Ski and SnoN during liver regeneration may favor hepatocyte proliferation by inhibiting TGF-β signals. In this study, we found a novel mechanism that regulates Ski protein stability through TGF-β and G protein-coupled receptor (GPCR) signaling. Ski protein is distributed between the nucleus and cytoplasm of normal hepatocytes, and the molecular mechanisms controlling Ski protein stability involve the participation of actin cytoskeleton dynamics. Cytoplasmic Ski is partially associated with actin and localized in cholesterol-rich vesicles. Ski protein stability is decreased by TGF-β/Smads, GPCR/Rho signals, and actin polymerization, whereas GPCR/cAMP signals and actin depolymerization promote Ski protein stability. In conclusion, TGF-β and GPCR signals differentially regulate Ski protein stability and sorting in hepatocytes, and this cross-talk may occur during liver regeneration.
Collapse
Affiliation(s)
- Genaro Vázquez-Victorio
- From the Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, D. F. 04510, México and
| | - Cassandre Caligaris
- From the Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, D. F. 04510, México and
| | - Eugenio Del Valle-Espinosa
- From the Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, D. F. 04510, México and
| | - Marcela Sosa-Garrocho
- From the Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, D. F. 04510, México and
| | - Nelly R González-Arenas
- From the Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, D. F. 04510, México and
| | - Guadalupe Reyes-Cruz
- the Departamento de Biología Celular, CINVESTAV-IPN, México, D. F. 07000, México
| | - Marco A Briones-Orta
- From the Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, D. F. 04510, México and
| | - Marina Macías-Silva
- From the Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, D. F. 04510, México and
| |
Collapse
|
17
|
The major myelin-resident protein PLP is transported to myelin membranes via a transcytotic mechanism: involvement of sulfatide. Mol Cell Biol 2014; 35:288-302. [PMID: 25368380 DOI: 10.1128/mcb.00848-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myelin membranes are sheet-like extensions of oligodendrocytes that can be considered membrane domains distinct from the cell's plasma membrane. Consistent with the polarized nature of oligodendrocytes, we demonstrate that transcytotic transport of the major myelin-resident protein proteolipid protein (PLP) is a key element in the mechanism of myelin assembly. Upon biosynthesis, PLP traffics to myelin membranes via syntaxin 3-mediated docking at the apical-surface-like cell body plasma membrane, which is followed by subsequent internalization and transport to the basolateral-surface-like myelin sheet. Pulse-chase experiments, in conjunction with surface biotinylation and organelle fractionation, reveal that following biosynthesis, PLP is transported to the cell body surface in Triton X-100 (TX-100)-resistant microdomains. At the plasma membrane, PLP transiently resides within these microdomains and its lateral dissipation is followed by segregation into 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate (CHAPS)-resistant domains, internalization, and subsequent transport toward the myelin membrane. Sulfatide triggers PLP's reallocation from TX-100- into CHAPS-resistant membrane domains, while inhibition of sulfatide biosynthesis inhibits transcytotic PLP transport. Taking these findings together, we propose a model in which PLP transport to the myelin membrane proceeds via a transcytotic mechanism mediated by sulfatide and characterized by a conformational alteration and dynamic, i.e., transient, partitioning of PLP into distinct membrane microdomains involved in biosynthetic and transcytotic transport.
Collapse
|
18
|
Falguières T, Aït-Slimane T, Housset C, Maurice M. ABCB4: Insights from pathobiology into therapy. Clin Res Hepatol Gastroenterol 2014; 38:557-63. [PMID: 24953525 DOI: 10.1016/j.clinre.2014.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/25/2014] [Accepted: 03/05/2014] [Indexed: 02/04/2023]
Abstract
Adenosine triphosphate (ATP)-binding cassette, sub-family B, member 4 (ABCB4), also called multidrug resistance 3 (MDR3), is a member of the ATP-binding cassette transporter superfamily, which is localized at the canalicular membrane of hepatocytes, and mediates the translocation of phosphatidylcholine into bile. Phosphatidylcholine secretion is crucial to ensure solubilization of cholesterol into mixed micelles and to prevent bile acid toxicity towards hepatobiliary epithelia. Genetic defects of ABCB4 may cause progressive familial intrahepatic cholestasis type 3 (PFIC3), a rare autosomic recessive disease occurring early in childhood that may be lethal in the absence of liver transplantation, and other cholestatic or cholelithiasic diseases in heterozygous adults. Development of therapies for these conditions requires understanding of the biology of this transporter and how gene variations may cause disease. This review focuses on our current knowledge on the regulation of ABCB4 expression, trafficking and function, and presents recent advances in fundamental research with promising therapeutic perspectives.
Collapse
Affiliation(s)
- Thomas Falguières
- INSERM, UMR_S 938, CDR Saint-Antoine, 75012 Paris, France; UMR_S 938, CDR Saint-Antoine, Sorbonne Universités, UPMC - Université Paris-06, 75012 Paris, France
| | - Tounsia Aït-Slimane
- INSERM, UMR_S 938, CDR Saint-Antoine, 75012 Paris, France; UMR_S 938, CDR Saint-Antoine, Sorbonne Universités, UPMC - Université Paris-06, 75012 Paris, France
| | - Chantal Housset
- INSERM, UMR_S 938, CDR Saint-Antoine, 75012 Paris, France; UMR_S 938, CDR Saint-Antoine, Sorbonne Universités, UPMC - Université Paris-06, 75012 Paris, France; Service d'hépatologie, Centre Maladies Rares (CMR) Maladies Inflammatoires des Voies Biliaires, Hôpital Saint-Antoine, Assistance publique-Hôpitaux de Paris, 75012 Paris, France
| | - Michèle Maurice
- INSERM, UMR_S 938, CDR Saint-Antoine, 75012 Paris, France; UMR_S 938, CDR Saint-Antoine, Sorbonne Universités, UPMC - Université Paris-06, 75012 Paris, France.
| |
Collapse
|
19
|
Müsch A. The unique polarity phenotype of hepatocytes. Exp Cell Res 2014; 328:276-83. [PMID: 24956563 DOI: 10.1016/j.yexcr.2014.06.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/09/2014] [Accepted: 06/12/2014] [Indexed: 01/11/2023]
Abstract
Hepatocytes, the main epithelial cell type of the liver, function like all epithelial cells to mediate the vectorial flow of macromolecules into and out of the organ they encompass. They do so by establishing polarized surface domains and by restricting paracellular flow via their tight junctions and cell-cell adhesion. Yet, the cell and tissue organization of hepatocytes differs profoundly from that of most other epithelia, including those of the digestive and urinary tracts, the lung or the breast. The latter form monolayered tissues in which the apical domains of individual cells align around a central continuous luminal cavity that constitutes the tubules and acini characteristic of these organs. Hepatocytes, by contrast, form capillary-sized lumina with multiple neighbors resulting in a branched, tree-like bile canaliculi network that spreads across the liver parenchyme. I will discuss some of the key molecular features that distinguish the hepatocyte polarity phenotype from that of monopolar, columnar epithelia.
Collapse
Affiliation(s)
- Anne Müsch
- Albert-Einstein College of Medicine, Department of Cell & Molecular Biology, The Bronx, USA.
| |
Collapse
|
20
|
Polishchuk EV, Concilli M, Iacobacci S, Chesi G, Pastore N, Piccolo P, Paladino S, Baldantoni D, van IJzendoorn SCD, Chan J, Chang CJ, Amoresano A, Pane F, Pucci P, Tarallo A, Parenti G, Brunetti-Pierri N, Settembre C, Ballabio A, Polishchuk RS. Wilson disease protein ATP7B utilizes lysosomal exocytosis to maintain copper homeostasis. Dev Cell 2014; 29:686-700. [PMID: 24909901 PMCID: PMC4070386 DOI: 10.1016/j.devcel.2014.04.033] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 03/15/2014] [Accepted: 04/29/2014] [Indexed: 12/24/2022]
Abstract
Copper is an essential yet toxic metal and its overload causes Wilson disease, a disorder due to mutations in copper transporter ATP7B. To remove excess copper into the bile, ATP7B traffics toward canalicular area of hepatocytes. However, the trafficking mechanisms of ATP7B remain elusive. Here, we show that, in response to elevated copper, ATP7B moves from the Golgi to lysosomes and imports metal into their lumen. ATP7B enables lysosomes to undergo exocytosis through the interaction with p62 subunit of dynactin that allows lysosome translocation toward the canalicular pole of hepatocytes. Activation of lysosomal exocytosis stimulates copper clearance from the hepatocytes and rescues the most frequent Wilson-disease-causing ATP7B mutant to the appropriate functional site. Our findings indicate that lysosomes serve as an important intermediate in ATP7B trafficking, whereas lysosomal exocytosis operates as an integral process in copper excretion and hence can be targeted for therapeutic approaches to combat Wilson disease.
Collapse
Affiliation(s)
- Elena V Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Naples 80131, Italy
| | - Mafalda Concilli
- Telethon Institute of Genetics and Medicine (TIGEM), Naples 80131, Italy
| | - Simona Iacobacci
- Telethon Institute of Genetics and Medicine (TIGEM), Naples 80131, Italy
| | - Giancarlo Chesi
- Telethon Institute of Genetics and Medicine (TIGEM), Naples 80131, Italy
| | - Nunzia Pastore
- Telethon Institute of Genetics and Medicine (TIGEM), Naples 80131, Italy; Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA
| | - Pasquale Piccolo
- Telethon Institute of Genetics and Medicine (TIGEM), Naples 80131, Italy
| | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples 80125, Italy
| | | | - Sven C D van IJzendoorn
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen 9713, the Netherlands
| | - Jefferson Chan
- Department of Chemistry and Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Christopher J Chang
- Department of Chemistry and Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Napoli 80126, Italy
| | - Francesca Pane
- Department of Chemical Sciences, University of Naples Federico II, Napoli 80126, Italy
| | - Piero Pucci
- Department of Chemical Sciences, University of Naples Federico II, Napoli 80126, Italy
| | - Antonietta Tarallo
- Telethon Institute of Genetics and Medicine (TIGEM), Naples 80131, Italy
| | - Giancarlo Parenti
- Telethon Institute of Genetics and Medicine (TIGEM), Naples 80131, Italy; Medical Genetics, Department of Translational and Medical Sciences, Federico II University, Naples 80125, Italy
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine (TIGEM), Naples 80131, Italy; Medical Genetics, Department of Translational and Medical Sciences, Federico II University, Naples 80125, Italy
| | - Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM), Naples 80131, Italy; Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA; Medical Genetics, Department of Translational and Medical Sciences, Federico II University, Naples 80125, Italy; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dulbecco Telethon Institute, TIGEM, Naples 80131, Italy
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Naples 80131, Italy; Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA; Medical Genetics, Department of Translational and Medical Sciences, Federico II University, Naples 80125, Italy; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Roman S Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Naples 80131, Italy.
| |
Collapse
|
21
|
Par1b induces asymmetric inheritance of plasma membrane domains via LGN-dependent mitotic spindle orientation in proliferating hepatocytes. PLoS Biol 2013; 11:e1001739. [PMID: 24358023 PMCID: PMC3866089 DOI: 10.1371/journal.pbio.1001739] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 11/05/2013] [Indexed: 01/06/2023] Open
Abstract
Proliferating hepatocytes in the liver show an atypical, asymmetric mode of cell division, which is coordinated by Par1b and LGN and may explain the unique tissue architecture of the liver. The development and maintenance of polarized epithelial tissue requires a tightly controlled orientation of mitotic cell division relative to the apical polarity axis. Hepatocytes display a unique polarized architecture. We demonstrate that mitotic hepatocytes asymmetrically segregate their apical plasma membrane domain to the nascent daughter cells. The non-polarized nascent daughter cell can form a de novo apical domain with its new neighbor. This asymmetric segregation of apical domains is facilitated by a geometrically distinct “apicolateral” subdomain of the lateral surface present in hepatocytes. The polarity protein partitioning-defective 1/microtubule-affinity regulating kinase 2 (Par1b/MARK2) translates this positional landmark to cortical polarity by promoting the apicolateral accumulation of Leu-Gly-Asn repeat-enriched protein (LGN) and the capture of nuclear mitotic apparatus protein (NuMA)–positive astral microtubules to orientate the mitotic spindle. Proliferating hepatocytes thus display an asymmetric inheritance of their apical domains via a mechanism that involves Par1b and LGN, which we postulate serves the unique tissue architecture of the developing liver parenchyma. The development and maintenance of the polarized epithelial architecture and function of organs that form tubular “lumen” structures is important for normal physiology and, when deregulated, gives rise to disease. Recent studies have highlighted the importance of a strict coordination of the orientation of mitotic divisions relative to an internal axis of asymmetry in proliferating epithelial cells during this process. Hepatocytes are the predominant epithelial cells of the liver. Hepatocytes display a unique lumen-forming architecture and cellular asymmetry, but the molecular basis for this special polarized architecture is not well understood. Our study now reveals an unexpected mode of plasma membrane domain inheritance that is coupled to a cellular axis of asymmetry in proliferating mammalian hepatocytes. We show that mitotic hepatocytes asymmetrically segregate their apical plasma membrane (the membrane facing the lumen structure) along with the lumen to their daughter cells. We demonstrate that the coordinated action of two proteins, Par1b and LGN, constitutes a fundamental part of the underlying molecular mechanism. This coupling of cell division and polarity in hepatocytes is distinct from that established in other epithelial cell types. These findings are important for understanding the unique polarized tissue architecture in the developing liver.
Collapse
|
22
|
Abstract
Hepatocytes, like other epithelia, are situated at the interface between the organism's exterior and the underlying internal milieu and organize the vectorial exchange of macromolecules between these two spaces. To mediate this function, epithelial cells, including hepatocytes, are polarized with distinct luminal domains that are separated by tight junctions from lateral domains engaged in cell-cell adhesion and from basal domains that interact with the underlying extracellular matrix. Despite these universal principles, hepatocytes distinguish themselves from other nonstriated epithelia by their multipolar organization. Each hepatocyte participates in multiple, narrow lumina, the bile canaliculi, and has multiple basal surfaces that face the endothelial lining. Hepatocytes also differ in the mechanism of luminal protein trafficking from other epithelia studied. They lack polarized protein secretion to the luminal domain and target single-spanning and glycosylphosphatidylinositol-anchored bile canalicular membrane proteins via transcytosis from the basolateral domain. We compare this unique hepatic polarity phenotype with that of the more common columnar epithelial organization and review our current knowledge of the signaling mechanisms and the organization of polarized protein trafficking that govern the establishment and maintenance of hepatic polarity. The serine/threonine kinase LKB1, which is activated by the bile acid taurocholate and, in turn, activates adenosine monophosphate kinase-related kinases including AMPK1/2 and Par1 paralogues has emerged as a key determinant of hepatic polarity. We propose that the absence of a hepatocyte basal lamina and differences in cell-cell adhesion signaling that determine the positioning of tight junctions are two crucial determinants for the distinct hepatic and columnar polarity phenotypes.
Collapse
Affiliation(s)
- Aleksandr Treyer
- Albert Einstein College of Medicine, Department of Developmental and Molecular Biology, Bronx, New York, USA
| | | |
Collapse
|
23
|
Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, Bode JG, Bolleyn J, Borner C, Böttger J, Braeuning A, Budinsky RA, Burkhardt B, Cameron NR, Camussi G, Cho CS, Choi YJ, Craig Rowlands J, Dahmen U, Damm G, Dirsch O, Donato MT, Dong J, Dooley S, Drasdo D, Eakins R, Ferreira KS, Fonsato V, Fraczek J, Gebhardt R, Gibson A, Glanemann M, Goldring CEP, Gómez-Lechón MJ, Groothuis GMM, Gustavsson L, Guyot C, Hallifax D, Hammad S, Hayward A, Häussinger D, Hellerbrand C, Hewitt P, Hoehme S, Holzhütter HG, Houston JB, Hrach J, Ito K, Jaeschke H, Keitel V, Kelm JM, Kevin Park B, Kordes C, Kullak-Ublick GA, LeCluyse EL, Lu P, Luebke-Wheeler J, Lutz A, Maltman DJ, Matz-Soja M, McMullen P, Merfort I, Messner S, Meyer C, Mwinyi J, Naisbitt DJ, Nussler AK, Olinga P, Pampaloni F, Pi J, Pluta L, Przyborski SA, Ramachandran A, Rogiers V, Rowe C, Schelcher C, Schmich K, Schwarz M, Singh B, Stelzer EHK, Stieger B, Stöber R, Sugiyama Y, Tetta C, Thasler WE, Vanhaecke T, Vinken M, Weiss TS, Widera A, Woods CG, Xu JJ, Yarborough KM, Hengstler JG. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 2013; 87:1315-1530. [PMID: 23974980 PMCID: PMC3753504 DOI: 10.1007/s00204-013-1078-5] [Citation(s) in RCA: 967] [Impact Index Per Article: 80.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/06/2013] [Indexed: 12/15/2022]
Abstract
This review encompasses the most important advances in liver functions and hepatotoxicity and analyzes which mechanisms can be studied in vitro. In a complex architecture of nested, zonated lobules, the liver consists of approximately 80 % hepatocytes and 20 % non-parenchymal cells, the latter being involved in a secondary phase that may dramatically aggravate the initial damage. Hepatotoxicity, as well as hepatic metabolism, is controlled by a set of nuclear receptors (including PXR, CAR, HNF-4α, FXR, LXR, SHP, VDR and PPAR) and signaling pathways. When isolating liver cells, some pathways are activated, e.g., the RAS/MEK/ERK pathway, whereas others are silenced (e.g. HNF-4α), resulting in up- and downregulation of hundreds of genes. An understanding of these changes is crucial for a correct interpretation of in vitro data. The possibilities and limitations of the most useful liver in vitro systems are summarized, including three-dimensional culture techniques, co-cultures with non-parenchymal cells, hepatospheres, precision cut liver slices and the isolated perfused liver. Also discussed is how closely hepatoma, stem cell and iPS cell-derived hepatocyte-like-cells resemble real hepatocytes. Finally, a summary is given of the state of the art of liver in vitro and mathematical modeling systems that are currently used in the pharmaceutical industry with an emphasis on drug metabolism, prediction of clearance, drug interaction, transporter studies and hepatotoxicity. One key message is that despite our enthusiasm for in vitro systems, we must never lose sight of the in vivo situation. Although hepatocytes have been isolated for decades, the hunt for relevant alternative systems has only just begun.
Collapse
Affiliation(s)
- Patricio Godoy
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | | | - Ute Albrecht
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Melvin E. Andersen
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Nariman Ansari
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Sudin Bhattacharya
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Johannes Georg Bode
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Jennifer Bolleyn
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Jan Böttger
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Albert Braeuning
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Robert A. Budinsky
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI USA
| | - Britta Burkhardt
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Neil R. Cameron
- Department of Chemistry, Durham University, Durham, DH1 3LE UK
| | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - Yun-Jaie Choi
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - J. Craig Rowlands
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI USA
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General Visceral, and Vascular Surgery, Friedrich-Schiller-University Jena, 07745 Jena, Germany
| | - Georg Damm
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Olaf Dirsch
- Institute of Pathology, Friedrich-Schiller-University Jena, 07745 Jena, Germany
| | - María Teresa Donato
- Unidad de Hepatología Experimental, IIS Hospital La Fe Avda Campanar 21, 46009 Valencia, Spain
- CIBERehd, Fondo de Investigaciones Sanitarias, Barcelona, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Jian Dong
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Steven Dooley
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Dirk Drasdo
- Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, 04107 Leipzig, Germany
- INRIA (French National Institute for Research in Computer Science and Control), Domaine de Voluceau-Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France
- UPMC University of Paris 06, CNRS UMR 7598, Laboratoire Jacques-Louis Lions, 4, pl. Jussieu, 75252 Paris cedex 05, France
| | - Rowena Eakins
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Karine Sá Ferreira
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
- GRK 1104 From Cells to Organs, Molecular Mechanisms of Organogenesis, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Valentina Fonsato
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
| | - Joanna Fraczek
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Rolf Gebhardt
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Andrew Gibson
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Matthias Glanemann
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Chris E. P. Goldring
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - María José Gómez-Lechón
- Unidad de Hepatología Experimental, IIS Hospital La Fe Avda Campanar 21, 46009 Valencia, Spain
- CIBERehd, Fondo de Investigaciones Sanitarias, Barcelona, Spain
| | - Geny M. M. Groothuis
- Department of Pharmacy, Pharmacokinetics Toxicology and Targeting, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Lena Gustavsson
- Department of Laboratory Medicine (Malmö), Center for Molecular Pathology, Lund University, Jan Waldenströms gata 59, 205 02 Malmö, Sweden
| | - Christelle Guyot
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - David Hallifax
- Centre for Applied Pharmacokinetic Research (CAPKR), School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | - Seddik Hammad
- Department of Forensic Medicine and Veterinary Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Adam Hayward
- Biological and Biomedical Sciences, Durham University, Durham, DH13LE UK
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Claus Hellerbrand
- Department of Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany
| | | | - Stefan Hoehme
- Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, 04107 Leipzig, Germany
| | - Hermann-Georg Holzhütter
- Institut für Biochemie Abteilung Mathematische Systembiochemie, Universitätsmedizin Berlin (Charité), Charitéplatz 1, 10117 Berlin, Germany
| | - J. Brian Houston
- Centre for Applied Pharmacokinetic Research (CAPKR), School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | | | - Kiyomi Ito
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, 202-8585 Japan
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Verena Keitel
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | | | - B. Kevin Park
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Claus Kordes
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Gerd A. Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Edward L. LeCluyse
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Peng Lu
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | | | - Anna Lutz
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Daniel J. Maltman
- Reinnervate Limited, NETPark Incubator, Thomas Wright Way, Sedgefield, TS21 3FD UK
| | - Madlen Matz-Soja
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Patrick McMullen
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Irmgard Merfort
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | | | - Christoph Meyer
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jessica Mwinyi
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Dean J. Naisbitt
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Andreas K. Nussler
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Peter Olinga
- Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Francesco Pampaloni
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Jingbo Pi
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Linda Pluta
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Stefan A. Przyborski
- Reinnervate Limited, NETPark Incubator, Thomas Wright Way, Sedgefield, TS21 3FD UK
- Biological and Biomedical Sciences, Durham University, Durham, DH13LE UK
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Vera Rogiers
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Cliff Rowe
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Celine Schelcher
- Department of Surgery, Liver Regeneration, Core Facility, Human in Vitro Models of the Liver, Ludwig Maximilians University of Munich, Munich, Germany
| | - Kathrin Schmich
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Michael Schwarz
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Bijay Singh
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - Ernst H. K. Stelzer
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Regina Stöber
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, Yokohama Biopharmaceutical R&D Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Ciro Tetta
- Fresenius Medical Care, Bad Homburg, Germany
| | - Wolfgang E. Thasler
- Department of Surgery, Ludwig-Maximilians-University of Munich Hospital Grosshadern, Munich, Germany
| | - Tamara Vanhaecke
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Mathieu Vinken
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Thomas S. Weiss
- Department of Pediatrics and Juvenile Medicine, University of Regensburg Hospital, Regensburg, Germany
| | - Agata Widera
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | - Courtney G. Woods
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | | | | | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| |
Collapse
|
24
|
Galmes R, Delaunay JL, Maurice M, Aït-Slimane T. Oligomerization is required for normal endocytosis/transcytosis of a GPI-anchored protein in polarized hepatic cells. J Cell Sci 2013; 126:3409-16. [PMID: 23750006 DOI: 10.1242/jcs.126250] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Targeting of glycosyl-phosphatidylinositol (GPI)-anchored proteins (GPI-APs) in polarized epithelial cells depends on their association with detergent-resistant membrane microdomains called rafts. In MDCK cells, GPI-APs associate with rafts in the trans-Golgi network and are directly delivered to the apical membrane. It has been shown that oligomerization is required for their stabilization in rafts and their apical targeting. In hepatocytes, GPI-APs are first delivered to the basolateral membrane and secondarily reach the apical membrane by transcytosis. We investigated whether oligomerization is required for raft association and apical sorting of GPI-APs in polarized HepG2 cells, and at which step of the pathway oligomerization occurs. Model proteins were wild-type GFP-GPI and a double cysteine GFP-GPI mutant, in which GFP dimerization was impaired. Unlike wild-type GFP-GPI, which was efficiently endocytosed and transcytosed to the apical surface, the double cysteine mutant was basolaterally internalized, but massively accumulated in early endosomes, and reached the bile canaliculi with delayed kinetics. The double cysteine mutant was less resistant to Triton X-100 extraction, and formed fewer high molecular weight complexes. We conclude from these results that, in hepatocytes, oligomerization plays a key role in targeting GPI-APs to the apical membrane, by increasing their affinity for rafts and allowing their transcytosis.
Collapse
Affiliation(s)
- Romain Galmes
- INSERM, UMR_S938, Centre de Recherche Saint-Antoine, Paris, France
| | | | | | | |
Collapse
|
25
|
Xu S, Olenyuk BZ, Okamoto CT, Hamm-Alvarez SF. Targeting receptor-mediated endocytotic pathways with nanoparticles: rationale and advances. Adv Drug Deliv Rev 2013; 65:121-38. [PMID: 23026636 PMCID: PMC3565049 DOI: 10.1016/j.addr.2012.09.041] [Citation(s) in RCA: 322] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 09/13/2012] [Accepted: 09/20/2012] [Indexed: 12/22/2022]
Abstract
Targeting of drugs and their carrier systems by using receptor-mediated endocytotic pathways was in its nascent stages 25 years ago. In the intervening years, an explosion of knowledge focused on design and synthesis of nanoparticulate delivery systems as well as elucidation of the cellular complexity of what was previously-termed receptor-mediated endocytosis has now created a situation when it has become possible to design and test the feasibility of delivery of highly specific nanoparticle drug carriers to specific cells and tissue. This review outlines the mechanisms governing the major modes of receptor-mediated endocytosis used in drug delivery and highlights recent approaches using these as targets for in vivo drug delivery of nanoparticles. The review also discusses some of the inherent complexity associated with the simple shift from a ligand-drug conjugate versus a ligand-nanoparticle conjugate, in terms of ligand valency and its relationship to the mode of receptor-mediated internalization.
Collapse
Affiliation(s)
- Shi Xu
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, USA 90033
| | - Bogdan Z. Olenyuk
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, USA 90033
| | - Curtis T. Okamoto
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, USA 90033
| | - Sarah F. Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, USA 90033
| |
Collapse
|
26
|
Huber O, Brunner A, Maier P, Kaufmann R, Couraud PO, Cremer C, Fricker G. Localization microscopy (SPDM) reveals clustered formations of P-glycoprotein in a human blood-brain barrier model. PLoS One 2012; 7:e44776. [PMID: 22984556 PMCID: PMC3440331 DOI: 10.1371/journal.pone.0044776] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 08/07/2012] [Indexed: 11/24/2022] Open
Abstract
P-glycoprotein (Pgp; also known as MDR1, ABCB1) is the most important and best studied efflux transporter at the blood-brain barrier (BBB); however, the organization of Pgp is unknown. The aim of this study was to employ the recently developed super-resolution fluorescence microscopy method spectral precision distance microscopy/spectral position determination microscopy (SPDM) to investigate the spatial distribution of Pgp in the luminal plasma membrane of brain capillary endothelial cells. Potential disturbing effects of cell membrane curvatures on the distribution analysis are addressed with computer simulations. Immortalized human cerebral microvascular endothelial cells (hCMEC/D3) served as a model of human BBB. hCMEC/D3 cells were transduced with a Pgp-green fluorescent protein (GFP) fusion protein incorporated in a lentivirus-derived vector. The expression and localization of the Pgp-GFP fusion protein was visualized by SPDM. The limited resolution of SPDM in the z-direction leads to a projection during the imaging process affecting the appeared spatial distribution of fluorescence molecules in the super-resolution images. Therefore, simulations of molecule distributions on differently curved cell membranes were performed and their projected spatial distribution was investigated. Function of the fusion protein was confirmed by FACS analysis after incubation of cells with the fluorescent probe eFluxx-ID Gold in absence and presence of verapamil. More than 112,000 single Pgp-GFP molecules (corresponding to approximately 5,600 Pgp-GFP molecules per cell) were detected by SPDM with an averaged spatial resolution of approximately 40 nm in hCMEC/D3 cells. We found that Pgp-GFP is distributed in clustered formations in hCMEC/D3 cells while the influence of present random cell membrane curvatures can be excluded based on the simulation results. Individual formations are distributed randomly over the cell membrane.
Collapse
Affiliation(s)
- Olga Huber
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Alexander Brunner
- Kirchhoff-Institute for Physics, University of Heidelberg, Heidelberg, Germany
- Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Patrick Maier
- Department of Radiation Oncology, Mannheim Medical Centre, University of Heidelberg, Mannheim, Germany
| | - Rainer Kaufmann
- Kirchhoff-Institute for Physics, University of Heidelberg, Heidelberg, Germany
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | - Christoph Cremer
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
- Kirchhoff-Institute for Physics, University of Heidelberg, Heidelberg, Germany
- Institute of Molecular Biology, Mainz, Germany
| | - Gert Fricker
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
27
|
Cacas JL, Furt F, Le Guédard M, Schmitter JM, Buré C, Gerbeau-Pissot P, Moreau P, Bessoule JJ, Simon-Plas F, Mongrand S. Lipids of plant membrane rafts. Prog Lipid Res 2012; 51:272-99. [PMID: 22554527 DOI: 10.1016/j.plipres.2012.04.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipids tend to organize in mono or bilayer phases in a hydrophilic environment. While they have long been thought to be incapable of coherent lateral segregation, it is now clear that spontaneous assembly of these compounds can confer microdomain organization beyond spontaneous fluidity. Membrane raft microdomains have the ability to influence spatiotemporal organization of protein complexes, thereby allowing regulation of cellular processes. In this review, we aim at summarizing briefly: (i) the history of raft discovery in animals and plants, (ii) the main findings about structural and signalling plant lipids involved in raft segregation, (iii) imaging of plant membrane domains, and their biochemical purification through detergent-insoluble membranes, as well as the existing debate on the topic. We also discuss the potential involvement of rafts in the regulation of plant physiological processes, and further discuss the prospects of future research into plant membrane rafts.
Collapse
Affiliation(s)
- Jean-Luc Cacas
- Laboratoire de Biogenèse Membranaire, UMR 5200 CNRS, Université de Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Pierrard MA, Kestemont P, Phuong NT, Tran MP, Delaive E, Thezenas ML, Dieu M, Raes M, Silvestre F. Proteomic analysis of blood cells in fish exposed to chemotherapeutics: evidence for long term effects. J Proteomics 2012; 75:2454-67. [PMID: 22406376 DOI: 10.1016/j.jprot.2012.02.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 02/10/2012] [Accepted: 02/17/2012] [Indexed: 01/03/2023]
Abstract
Proteomics technology are increasingly used in ecotoxicological studies to characterize and monitor biomarkers of exposure. The present study aims at identifying long term effects of malachite green (MG) exposure on the proteome of peripheral blood mononuclear cells (PBMC) from the Asian catfish, Pangasianodon hypophthalmus. A common (0.1 ppm) concentration for therapeutic treatment was applied twice with a 72 h interval. PBMC were collected directly at the end of the second bath of MG (T1) and after 1 month of decontamination (T2). Analytical 2D-DIGE gels were run and a total of 2551±364 spots were matched. Among them, MG induced significant changes in abundance of 116 spots with no recovery after one month of decontamination. Using LC-MS/MS and considering single identification per spot, we could identify 25 different proteins. Additionally, MG residues were measured in muscle and in blood indicating that leuco-MG has almost totally disappeared after one month of decontamination. This work highlights long term effects of MG treatment on the PBMC proteome from fish intended for human consumption.
Collapse
Affiliation(s)
- Marie-Aline Pierrard
- Research Unit in Environmental and Evolutionary Biology (URBE), University of Namur (FUNDP), Rue de Bruxelles 61, B-5000, Namur, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Larsson K, Quinn P, Sato K, Tiberg F. Lipids of biological membranes. Lipids 2012. [DOI: 10.1533/9780857097910.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
Hepatocytes traffic and export hepatitis B virus basolaterally by polarity-dependent mechanisms. J Virol 2011; 85:12474-81. [PMID: 21937643 DOI: 10.1128/jvi.05344-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viruses commonly utilize the cellular trafficking machinery of polarized cells to effect viral export. Hepatocytes are polarized in vivo, but most in vitro hepatocyte models are either nonpolarized or have morphology unsuitable for the study of viral export. Here, we investigate the mechanisms of trafficking and export for the hepadnaviruses hepatitis B virus (HBV) and duck hepatitis B virus (DHBV) in polarized hepatocyte-derived cell lines and primary duck hepatocytes. DHBV export, but not replication, was dependent on the development of hepatocyte polarity, with export significantly abrogated over time as primary hepatocytes lost polarity. Using Transwell cultures of polarized N6 cells and adenovirus-based transduction, we observed that export of both HBV and DHBV was vectorially regulated and predominantly basolateral. Monitoring of polarized N6 cells and nonpolarized C11 cells during persistent, long-term DHBV infection demonstrated that newly synthesized sphingolipid and virus displayed significant colocalization and fluorescence resonance energy transfer, implying cotransportation from the Golgi complex to the plasma membrane. Notably, 15% of virus was released apically from polarized cells, corresponding to secretion into the bile duct in vivo, also in association with sphingolipids. We conclude that DHBV and, probably, HBV are reliant upon hepatocyte polarity to be efficiently exported and this export is in association with sphingolipid structures, possibly lipid rafts. This study provides novel insights regarding the mechanisms of hepadnavirus trafficking in hepatocytes, with potential relevance to pathogenesis and immune tolerance.
Collapse
|
31
|
Palestini P, Botto L, Rivolta I, Miserocchi G. Remodelling of membrane rafts expression in lung cells as an early sign of mechanotransduction-signalling in pulmonary edema. J Lipids 2011; 2011:695369. [PMID: 21785732 PMCID: PMC3139192 DOI: 10.1155/2011/695369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 03/22/2011] [Indexed: 11/17/2022] Open
Abstract
Membrane rafts (MRs) are clusters of lipids, organized in a "quasicrystalline" liquid-order phase, organized on the cell surface and whose pattern of molecules and physicochemical properties are distinct from those of the surrounding plasma membrane. MRs may be considered an efficient and fairly rapid cell-activated mechanism to express or mask surface receptors aimed at triggering specific response pathways. This paper reports observations concerning the role of MRs in the control of lung extravascular water that ought to be kept at minimum to assure gas diffusion, supporting the hypothesis that MRs expression is a potential mechanism of sensing minor changes in the volume of extravascular water. We present the evidence that MRs expression specifically relates to signal-transduction processes evoked by mechanical stimuli arising in the interstitial lung compartment when a small increase in extravascular volume occurs. We further hypothesize that a differential expression of MRs might also reflect the damage to precise components of the extracellular matrix caused by the perturbation in water balance and thus can trigger a molecule-oriented specific matrix remodelling.
Collapse
Affiliation(s)
- Paola Palestini
- Department of Experimental Medicine, University of Milano-Bicocca, 48 Via Cadore, 20052 Monza, Italy
| | - Laura Botto
- Department of Experimental Medicine, University of Milano-Bicocca, 48 Via Cadore, 20052 Monza, Italy
| | - Ilaria Rivolta
- Department of Experimental Medicine, University of Milano-Bicocca, 48 Via Cadore, 20052 Monza, Italy
| | - Giuseppe Miserocchi
- Department of Experimental Medicine, University of Milano-Bicocca, 48 Via Cadore, 20052 Monza, Italy
| |
Collapse
|
32
|
Papanikolaou A, Papafotika A, Christoforidis S. CD39 Reveals Novel Insights into the Role of Transmembrane Domains in Protein Processing, Apical Targeting and Activity. Traffic 2011; 12:1148-65. [DOI: 10.1111/j.1600-0854.2011.01224.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
33
|
Dolganiuc A. Role of lipid rafts in liver health and disease. World J Gastroenterol 2011; 17:2520-35. [PMID: 21633657 PMCID: PMC3103810 DOI: 10.3748/wjg.v17.i20.2520] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 02/24/2011] [Accepted: 03/03/2011] [Indexed: 02/06/2023] Open
Abstract
Liver diseases are an increasingly common cause of morbidity and mortality; new approaches for investigation of mechanisms of liver diseases and identification of therapeutic targets are emergent. Lipid rafts (LRs) are specialized domains of cellular membranes that are enriched in saturated lipids; they are small, mobile, and are key components of cellular architecture, protein partition to cellular membranes, and signaling events. LRs have been identified in the membranes of all liver cells, parenchymal and non-parenchymal; more importantly, LRs are active participants in multiple physiological and pathological conditions in individual types of liver cells. This article aims to review experimental-based evidence with regard to LRs in the liver, from the perspective of the liver as a whole organ composed of a multitude of cell types. We have gathered up-to-date information related to the role of LRs in individual types of liver cells, in liver health and diseases, and identified the possibilities of LR-dependent therapeutic targets in liver diseases.
Collapse
|
34
|
Wüstner D, Brewer JR, Bagatolli L, Sage D. Potential of ultraviolet wide-field imaging and multiphoton microscopy for analysis of dehydroergosterol in cellular membranes. Microsc Res Tech 2011; 74:92-108. [PMID: 21181715 DOI: 10.1002/jemt.20878] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Dehydroergosterol (DHE) is an intrinsically fluorescent sterol with absorption/emission in the ultraviolet (UV) region and biophysical properties similar to those of cholesterol. We compared the potential of UV-sensitive low-light-level wide-field (UV-WF) imaging with that of multiphoton (MP) excitation microscopy to monitor DHE in living cells. Significantly reduced photobleaching in MP microscopy of DHE enabled us to acquire three-dimensional z-stacks of DHE-stained cells and to obtain high-resolution maps of DHE in surface ruffles, nanotubes, and the apical membrane of epithelial cells. We found that the lateral resolution of MP microscopy is ∼1.5-fold higher than that of UV-WF deconvolution microscopy, allowing for improved spatiotemporal analysis of plasma membrane sterol distribution. Surface intensity patterns of DHE with a diameter of 0.2 μm persisting over several minutes could be resolved by MP time-lapse microscopy. Diffusion coefficients of 0.25-μm-diameter endocytic vesicles containing DHE were determined by MP spatiotemporal image correlation spectroscopy. The requirement of extremely high laser power for visualization of DHE by MP microscopy made this method less potent for multicolor applications with organelle markers like green fluorescent protein-tagged proteins. The signal-to-noise ratio obtainable by UV-WF imaging could be significantly improved by pixelwise bleach rate fitting and calculation of an amplitude image from the decay model and by frame averaging after pixelwise bleaching correction of the image stacks. We conclude that UV-WF imaging and MP microscopy of DHE provide complementary information regarding membrane distribution and intracellular targeting of sterols.
Collapse
Affiliation(s)
- Daniel Wüstner
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark.
| | | | | | | |
Collapse
|
35
|
Woudenberg J, Rembacz KP, Hoekstra M, Pellicoro A, van den Heuvel FAJ, Heegsma J, van Ijzendoorn SCD, Holzinger A, Imanaka T, Moshage H, Faber KN. Lipid rafts are essential for peroxisome biogenesis in HepG2 cells. Hepatology 2010; 52:623-33. [PMID: 20683960 DOI: 10.1002/hep.23684] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
UNLABELLED Peroxisomes are particularly abundant in the liver and are involved in bile salt synthesis and fatty acid metabolism. Peroxisomal membrane proteins (PMPs) are required for peroxisome biogenesis [e.g., the interacting peroxisomal biogenesis factors Pex13p and Pex14p] and its metabolic function [e.g., the adenosine triphosphate-binding cassette transporters adrenoleukodystrophy protein (ALDP) and PMP70]. Impaired function of PMPs is the underlying cause of Zellweger syndrome and X-linked adrenoleukodystrophy. Here we studied for the first time the putative association of PMPs with cholesterol-enriched lipid rafts and their function in peroxisome biogenesis. Lipid rafts were isolated from Triton X-100-lysed or Lubrol WX-lysed HepG2 cells and analyzed for the presence of various PMPs by western blotting. Lovastatin and methyl-beta-cyclodextrin were used to deplete cholesterol and disrupt lipid rafts in HepG2 cells, and this was followed by immunofluorescence microscopy to determine the subcellular location of catalase and PMPs. Cycloheximide was used to inhibit protein synthesis. Green fluorescent protein-tagged fragments of PMP70 and ALDP were analyzed for their lipid raft association. PMP70 and Pex14p were associated with Triton X-100-resistant rafts, ALDP was associated with Lubrol WX-resistant rafts, and Pex13p was not lipid raft-associated in HepG2 cells. The minimal peroxisomal targeting signals in ALDP and PMP70 were not sufficient for lipid raft association. Cholesterol depletion led to dissociation of PMPs from lipid rafts and impaired sorting of newly synthesized catalase and ALDP but not Pex14p and PMP70. Repletion of cholesterol to these cells efficiently reestablished the peroxisomal sorting of catalase but not ALDP. CONCLUSION Human PMPs are differentially associated with lipid rafts independently of the protein homology and/or their functional interaction. Cholesterol is required for peroxisomal lipid raft assembly and peroxisome biogenesis.
Collapse
Affiliation(s)
- Jannes Woudenberg
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Woudenberg J, Rembacz KP, van den Heuvel FAJ, Woudenberg-Vrenken TE, Buist-Homan M, Geuken M, Hoekstra M, Deelman LE, Enrich C, Henning RH, Moshage H, Faber KN. Caveolin-1 is enriched in the peroxisomal membrane of rat hepatocytes. Hepatology 2010; 51:1744-53. [PMID: 20146263 DOI: 10.1002/hep.23460] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
UNLABELLED Caveolae are a subtype of cholesterol-enriched lipid microdomains/rafts that are routinely detected as vesicles pinching off from the plasma membrane. Caveolin-1 is an essential component of caveolae. Hepatic caveolin-1 plays an important role in liver regeneration and lipid metabolism. Expression of caveolin-1 in hepatocytes is relatively low, and it has been suggested to also reside at other subcellular locations than the plasma membrane. Recently, we found that the peroxisomal membrane contains lipid microdomains. Like caveolin-1, hepatic peroxisomes are involved in lipid metabolism. Here, we analyzed the subcellular location of caveolin-1 in rat hepatocytes. The subcellular location of rat hepatocyte caveolin-1 was analyzed by cell fractionation procedures, immunofluorescence, and immuno-electron microscopy. Green fluorescent protein (GFP)-tagged caveolin-1 was expressed in rat hepatocytes. Lipid rafts were characterized after Triton X-100 or Lubrol WX extraction of purified peroxisomes. Fenofibric acid-dependent regulation of caveolin-1 was analyzed. Peroxisome biogenesis was studied in rat hepatocytes after RNA interference-mediated silencing of caveolin-1 and caveolin-1 knockout mice. Cell fractionation and microscopic analyses reveal that caveolin-1 colocalizes with peroxisomal marker proteins (catalase, the 70 kDa peroxisomal membrane protein PMP70, the adrenoleukodystrophy protein ALDP, Pex14p, and the bile acid-coenzyme A:amino acid N-acyltransferase BAAT) in rat hepatocytes. Artificially expressed GFP-caveolin-1 accumulated in catalase-positive organelles. Peroxisomal caveolin-1 is associated with detergent-resistant microdomains. Caveolin-1 expression is strongly repressed by the peroxisome proliferator-activated receptor-alpha agonist fenofibric acid. Targeting of peroxisomal matrix proteins and peroxisome number and shape were not altered in rat hepatocytes with 70%-80% reduced caveolin-1 levels and in livers of caveolin-1 knockout mice. CONCLUSION Caveolin-1 is enriched in peroxisomes of hepatocytes. Caveolin-1 is not required for peroxisome biogenesis, but this unique subcellular location may determine its important role in hepatocyte proliferation and lipid metabolism.
Collapse
Affiliation(s)
- Jannes Woudenberg
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ohgaki R, Matsushita M, Kanazawa H, Ogihara S, Hoekstra D, van Ijzendoorn SCD. The Na+/H+ exchanger NHE6 in the endosomal recycling system is involved in the development of apical bile canalicular surface domains in HepG2 cells. Mol Biol Cell 2010; 21:1293-304. [PMID: 20130086 PMCID: PMC2847532 DOI: 10.1091/mbc.e09-09-0767] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This study underscores the emerging role of NHE6 as a novel regulatory protein in the apical surface development of human hepatoma HepG2 cells. A limited range of endosomal pH facilitated by NHE6.1 is suggested to be important for securing the polarized distribution of membrane lipids and proteins and maintenance of apical bile canaliculi. Polarized epithelial cells develop and maintain distinct apical and basolateral surface domains despite a continuous flux of membranes between these domains. The Na+/H+exchanger NHE6 localizes to endosomes but its function is unknown. Here, we demonstrate that polarized hepatoma HepG2 cells express an NHE6.1 variant that localizes to recycling endosomes and colocalizes with transcytosing bulk membrane lipids. NHE6.1 knockdown or overexpression decreases or increases recycling endosome pH, respectively, and inhibits the maintenance of apical, bile canalicular plasma membranes and, concomitantly, apical lumens. NHE6.1 knockdown or overexpression has little effect on the de novo biogenesis of apical surface domains. NHE6.1 knockdown does not inhibit basolateral-to-apical transcytosis of bulk membrane lipids, but it does promote their progressive loss from the apical surface, leaving cells unable to efficiently retain bulk membrane and bile canalicular proteins at the apical surface. The data suggest that a limited range of endosome pH mediated by NHE6.1 is important for securing the polarized distribution of membrane lipids at the apical surface and maintenance of apical bile canaliculi in HepG2 cells and hence cell polarity. This study underscores the emerging role of the endosomal recycling system in apical surface development and identifies NHE6 as a novel regulatory protein in this process.
Collapse
Affiliation(s)
- Ryuichi Ohgaki
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
38
|
Weisz OA, Rodriguez-Boulan E. Apical trafficking in epithelial cells: signals, clusters and motors. J Cell Sci 2010; 122:4253-66. [PMID: 19923269 DOI: 10.1242/jcs.032615] [Citation(s) in RCA: 237] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In the early days of epithelial cell biology, researchers working with kidney and/or intestinal epithelial cell lines and with hepatocytes described the biosynthetic and recycling routes followed by apical and basolateral plasma membrane (PM) proteins. They identified the trans-Golgi network and recycling endosomes as the compartments that carried out apical-basolateral sorting. They described complex apical sorting signals that promoted association with lipid rafts, and simpler basolateral sorting signals resembling clathrin-coated-pit endocytic motifs. They also noticed that different epithelial cell types routed their apical PM proteins very differently, using either a vectorial (direct) route or a transcytotic (indirect) route. Although these original observations have generally held up, recent studies have revealed interesting complexities in the routes taken by apically destined proteins and have extended our understanding of the machinery required to sustain these elaborate sorting pathways. Here, we critically review the current status of apical trafficking mechanisms and discuss a model in which clustering is required to recruit apical trafficking machineries. Uncovering the mechanisms responsible for polarized trafficking and their epithelial-specific variations will help understand how epithelial functional diversity is generated and the pathogenesis of many human diseases.
Collapse
Affiliation(s)
- Ora A Weisz
- Department of Medicine and Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
39
|
Abstract
Cholesterol is a major constituent of the plasma membrane in eukaryotic cells. It regulates the physical state of the phospholipid bilayer and is crucially involved in the formation of membrane microdomains. Cholesterol also affects the activity of several membrane proteins, and is the precursor for steroid hormones and bile acids. Here, methods are described that are used to explore the binding and/or interaction of proteins to cholesterol. For this purpose, a variety of cholesterol probes bearing radio-, spin-, photoaffinity- or fluorescent labels are currently available. Examples of proven cholesterol binding molecules are polyene compounds, cholesterol-dependent cytolysins, enzymes accepting cholesterol as substrate, and proteins with cholesterol binding motifs. Main topics of this report are the localization of candidate membrane proteins in cholesterol-rich microdomains, the issue of specificity of cholesterol- protein interactions, and applications of the various cholesterol probes for these studies.
Collapse
Affiliation(s)
- Gerald Gimpl
- Institut für Biochemie, Johannes Gutenberg-Universität, Johann-Joachim-Becherweg 30, Mainz, Germany.
| |
Collapse
|
40
|
Corbeil D, Marzesco AM, Fargeas CA, Huttner WB. Prominin-1: a distinct cholesterol-binding membrane protein and the organisation of the apical plasma membrane of epithelial cells. Subcell Biochem 2010; 51:399-423. [PMID: 20213552 DOI: 10.1007/978-90-481-8622-8_14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The apical plasma membrane of polarized epithelial cells is composed of distinct subdomains, that is, planar regions and protrusions (microvilli, primary cilium), each of which are constructed from specific membrane microdomains. Assemblies containing the pentaspan glycoprotein prominin-1 and certain membrane lipids, notably cholesterol, are characteristic features of these microdomains in apical membrane protrusions. Here we highlight the recent findings concerning the molecular architecture of the apical plasma membrane of epithelial cells and its dynamics. The latter is illustrated by the budding and fission of prominin-1-containing membrane vesicles from apical plasma membrane protrusions, which is controlled, at least in part, by the level of membrane cholesterol and the cholesterol-dependent organization of membrane microdomains.
Collapse
Affiliation(s)
- Denis Corbeil
- Tissue Engineering Laboratories, BIOTEC, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
| | | | | | | |
Collapse
|
41
|
Fan J, Sammalkorpi M, Haataja M. Influence of nonequilibrium lipid transport, membrane compartmentalization, and membrane proteins on the lateral organization of the plasma membrane. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:011908. [PMID: 20365400 DOI: 10.1103/physreve.81.011908] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 09/16/2009] [Indexed: 05/16/2023]
Abstract
Compositional lipid domains (lipid rafts) in plasma membranes are believed to be important components of many cellular processes. The mechanisms by which cells regulate the sizes, lifetimes, and spatial localization of these domains are rather poorly understood at the moment. We propose a robust mechanism for the formation of finite-sized lipid raft domains in plasma membranes, the competition between phase separation in an immiscible lipid system and active cellular lipid transport processes naturally leads to the formation of such domains. Simulations of a continuum model reveal that the raft size distribution is broad and the average raft size is strongly dependent on the rates of cellular and interlayer lipid transport processes. We demonstrate that spatiotemporal variations in the recycling may enable the cell to localize larger raft aggregates at specific parts along the membrane. Moreover, we show that membrane compartmentalization may further facilitate spatial localization of the raft domains. Finally, we demonstrate that local interactions with immobile membrane proteins can spatially localize the rafts and lead to further clustering.
Collapse
Affiliation(s)
- Jun Fan
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | | | | |
Collapse
|
42
|
Procino G, Barbieri C, Carmosino M, Rizzo F, Valenti G, Svelto M. Lovastatin-induced cholesterol depletion affects both apical sorting and endocytosis of aquaporin-2 in renal cells. Am J Physiol Renal Physiol 2009; 298:F266-78. [PMID: 19923410 DOI: 10.1152/ajprenal.00359.2009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vasopressin causes the redistribution of the water channel aquaporin-2 (AQP2) from cytoplasmic storage vesicles to the apical plasma membrane of collecting duct principal cells, leading to urine concentration. The molecular mechanisms regulating the selective apical sorting of AQP2 are only partially uncovered. In this work, we investigate whether AQP2 sorting/trafficking is regulated by its association with membrane rafts. In both MCD4 cells and rat kidney, AQP2 preferentially associated with Lubrol WX-insoluble membranes regardless of its presence in the storage compartment or at the apical membrane. Block-and-release experiments indicate that 1) AQP2 associates with detergent-resistant membranes early in the biosynthetic pathway; 2) strong cholesterol depletion delays the exit of AQP2 from the trans-Golgi network. Interestingly, mild cholesterol depletion promoted a dramatic accumulation of AQP2 at the apical plasma membrane in MCD4 cells in the absence of forskolin stimulation. An internalization assay showed that AQP2 endocytosis was clearly reduced under this experimental condition. Taken together, these data suggest that association with membrane rafts may regulate both AQP2 apical sorting and endocytosis.
Collapse
Affiliation(s)
- G Procino
- Department of General and Environmental Physiology, University of Bari, Bari, Italy.
| | | | | | | | | | | |
Collapse
|
43
|
Chora S, Starita-Geribaldi M, Guigonis JM, Samson M, Roméo M, Bebianno MJ. Effect of cadmium in the clam Ruditapes decussatus assessed by proteomic analysis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2009; 94:300-308. [PMID: 19716188 DOI: 10.1016/j.aquatox.2009.07.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 07/15/2009] [Accepted: 07/22/2009] [Indexed: 05/28/2023]
Abstract
Cadmium, an environmental stressor due to its toxicity, persistence and accumulation in biota, is widespread in the aquatic environment. Cadmium accumulation kinetics have revealed that Ruditapes decussatus has a high affinity to this metal. Proteomics is an effective tool to evaluate the toxic effects of contaminants. The aim of this study was to investigate the Cd effects in the gill and digestive gland of the sentinel species R. decussatus. Protein expression profiles (PEPs) in the clam tissues exposed to Cd (40 microg l(-1), 21 days) were compared to unexposed ones. Cd induces major changes in tissue-specific protein expression profiles in gill and digestive gland. This tissue dependent response results mainly from differences in Cd accumulation, protein inhibition and/or autophagy. An overall decrease of protein spots was detected in both treated tissues, being higher in gill. Some of the spots more drastically altered after pollutants exposure were excised and nine were identified by micro liquid chromatography tandem mass spectrometry (LC-MS/MS). Proteins identified by homology search in databases included: three proteins (8-fold) up-regulated, one down-regulated, four suppressed and one induced. Cd induces major changes in proteins involved in cytoskeletal structure maintenance (muscle-type actin, adductor muscle actin and beta-tubulin), cell maintenance (Rab GDP) and metabolism (ALDH and MCAD, both identified by de novo sequencing) suggesting potential energetic change. They provide a valuable knowledge of Cd effects at biochemical and molecular levels in the gill and digestive gland of R. decussatus.
Collapse
Affiliation(s)
- Suze Chora
- University of Algarve, CIMA, Faculty of Marine and Environmental Sciences, Campus de Gambelas, 8000-139 Faro, Portugal
| | | | | | | | | | | |
Collapse
|
44
|
Aït-Slimane T, Galmes R, Trugnan G, Maurice M. Basolateral internalization of GPI-anchored proteins occurs via a clathrin-independent flotillin-dependent pathway in polarized hepatic cells. Mol Biol Cell 2009; 20:3792-800. [PMID: 19605558 DOI: 10.1091/mbc.e09-04-0275] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In polarized hepatocytes, the predominant route for apical resident proteins to reach the apical bile canalicular membrane is transcytosis. Apical proteins are first sorted to the basolateral membrane from which they are internalized and transported to the opposite surface. We have noted previously that transmembrane proteins and GPI-anchored proteins reach the apical bile canaliculi at very different rates. Here, we investigated whether these differences may be explained by the use of distinct endocytic mechanisms. We show that endocytosis of both classes of proteins at the basolateral membrane of polarized hepatic cells is dynamin dependent. However, internalization of transmembrane proteins is clathrin mediated, whereas endocytosis of GPI-anchored proteins does not require clathrin. Further analysis of basolateral endocytosis of GPI-anchored proteins showed that caveolin, as well as the small GTPase cdc42 were dispensable. Alternatively, internalized GPI-anchored proteins colocalized with flotillin-2-positive vesicles, and down-expression of flotillin-2 inhibited endocytosis of GPI-anchored proteins. These results show that basolateral endocytosis of GPI-anchored proteins in hepatic cells occurs via a clathrin-independent flotillin-dependent pathway. The use of distinct endocytic pathways may explain, at least in part, the different rates of transcytosis between transmembrane and GPI-anchored proteins.
Collapse
Affiliation(s)
- Tounsia Aït-Slimane
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 938, Centre de Recherche Saint-Antoine, 75571 Paris Cedex 12, France.
| | | | | | | |
Collapse
|
45
|
Xu C, Zhang YH, Thangavel M, Richardson MM, Liu L, Zhou B, Zheng Y, Ostrom RS, Zhang XA. CD82 endocytosis and cholesterol-dependent reorganization of tetraspanin webs and lipid rafts. FASEB J 2009; 23:3273-88. [PMID: 19497983 DOI: 10.1096/fj.08-123414] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tetraspanin CD82 suppresses cell migration, tumor invasion, and tumor metastasis. To determine the mechanism by which CD82 inhibits motility, most studies have focused on the cell surface CD82, which forms tetraspanin-enriched microdomains (TEMs) with other transmembrane proteins, such as integrins. In this study, we found that CD82 undergoes endocytosis and traffics to endosomes and lysosomes. To determine the endocytic mechanism of CD82, we demonstrated that dynamin and clathrin are not essential for CD82 internalization. Depletion or sequestration of sterol in the plasma membrane markedly inhibited the endocytosis of CD82. Despite the demand on Cdc42 activity, CD82 endocytosis is distinct from macropinocytosis and the documented dynamin-independent pinocytosis. As a TEM component, CD82 reorganizes TEMs and lipid rafts by redistributing cholesterol into these membrane microdomains. CD82-containing TEMs are characterized by the cholesterol-containing microdomains in the extreme light- and intermediate-density fractions. Moreover, the endocytosis of CD82 appears to alleviate CD82-mediated inhibition of cell migration. Taken together, our studies demonstrate that lipid-dependent endocytosis drives CD82 trafficking to late endosomes and lysosomes, and CD82 reorganizes TEMs and lipid rafts through redistribution of cholesterol.
Collapse
Affiliation(s)
- Congfeng Xu
- Vascular Biology Center, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ismair MG, Häusler S, Stuermer CA, Guyot C, Meier PJ, Roth J, Stieger B. ABC-transporters are localized in caveolin-1-positive and reggie-1-negative and reggie-2-negative microdomains of the canalicular membrane in rat hepatocytes. Hepatology 2009; 49:1673-82. [PMID: 19197976 DOI: 10.1002/hep.22807] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
UNLABELLED The canalicular plasma membrane is constantly exposed to bile acids acting as detergents. Bile acids are essential to mediate release of biliary lipids from the canalicular membrane. Membrane microdomains (previously called lipid rafts) are biochemically defined by their resistance to detergent solubilization at cold temperature. We aimed to investigate the canalicular plasma membrane for the presence of microdomains, which could protect this membrane against the detergent action of bile acids. Highly purified rat liver canalicular plasma membrane vesicles were extracted with 1% Triton X-100 or 1% Lubrol WX at 4 degrees C and subjected to flotation through sucrose step gradients. Both detergents yielded detergent-resistant membranes containing the microdomain markers alkaline phosphatase and sphingomyelin. However, cholesterol was resistant to Lubrol WX solubilization, whereas it was only marginally resistant to solubilization by Triton X-100. The microdomain marker caveolin-1 was localized to the canalicular plasma membrane domain and was resistant to Lubrol WX, but to a large extent solubilized by Triton X-100. The two additional microdomain markers, reggie-1 and reggie-2, were localized to the basolateral and canalicular plasma membrane and were partially resistant to Lubrol WX but resistant to Triton X-100. The canalicular transporters bile salt export pump, multidrug resistance protein 2, multidrug resistance-associated protein 2, and Abcg5 were largely resistant to Lubrol WX but were solubilized by Triton X-100. CONCLUSION These results indicate the presence of two different types of microdomains in the canalicular plasma membrane: "Lubrol-microdomains" and "Triton-microdomains". "Lubrol-microdomains" contain the machinery for canalicular bile formation and may be the starting place for canalicular lipid secretion.
Collapse
Affiliation(s)
- Manfred G Ismair
- Division of Clinical Pharmacology and Toxicology, Department of Medicine, University Hospital, Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
47
|
Delaunay JL, Durand-Schneider AM, Delautier D, Rada A, Gautherot J, Jacquemin E, Aït-Slimane T, Maurice M. A missense mutation in ABCB4 gene involved in progressive familial intrahepatic cholestasis type 3 leads to a folding defect that can be rescued by low temperature. Hepatology 2009; 49:1218-27. [PMID: 19185004 DOI: 10.1002/hep.22775] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
UNLABELLED Progressive familial intrahepatic cholestasis type 3 (PFIC3) is a rare liver disease characterized by early onset of cholestasis that leads to cirrhosis and liver failure before adulthood. PFIC3 may be improved by chronic administration of ursodeoxycholic acid, although in many cases liver transplantation is the only therapy. The disease is caused by mutations of the adenosine triphosphate (ATP)-binding cassette, sub-family B, member 4 (ABCB4) [multidrug resistance 3 (MDR3)] gene encoding a specific hepatocellular canalicular transporter involved in biliary phosphatidylcholine secretion. Several mutations have been reported; however, the effect of individual mutations has not been investigated. ABCB4 is highly homologous to ATP-binding cassette, sub-family B, member 1 (ABCB1) (MDR1), the multidrug transporter responsible for drug resistance of cancer cells. We have studied the effect of mutation I541F localized to the first nucleotide-binding domain, which is highly conserved between ABCB4 and ABCB1. Plasmids encoding the wild-type human ABCB4 or rat ABCB1-green fluorescing protein (GFP) construct, and corresponding I541F-mutants, were expressed in hepatocellular carcinoma, human (HepG2) and Madin-Darby canine kidney (MDCK) cells. Expression studies showed that ABCB4 was localized at the bile canalicular membrane in HepG2 cells and at the apical surface in MDCK cells, whereas the I541F mutant was intracellular. In MDCK cells, ABCB1-I541F also accumulated intracellularly in compartments, which were identified as the endoplasmic reticulum and cis-Golgi, and remained partially endoH-sensitive. After shifting cells to 27 degrees C, ABCB1-I541F was expressed at the apical cell surface in a mature and active form. Similarly, ABCB4 was significantly trafficked to the membrane of bile canaliculi in HepG2 cells. CONCLUSION Mutation I541F causes mislocalization of both ABCB4 and ABCB1. Intracellular retention of ABCB4-I541F can explain the disease in PFIC3 patients bearing this mutation. The observation that plasma membrane expression and activity can be rescued by low temperature opens perspectives to develop novel therapies for the treatment of PFIC3.
Collapse
Affiliation(s)
- Jean-Louis Delaunay
- Institut National de la Santé et de la Recherche Médicale UMR S893, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Furber KL, Churchward MA, Rogasevskaia TP, Coorssen JR. Identifying critical components of native Ca2+-triggered membrane fusion. Integrating studies of proteins and lipids. Ann N Y Acad Sci 2009; 1152:121-34. [PMID: 19161383 DOI: 10.1111/j.1749-6632.2008.03993.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ca(2+)-triggered membrane fusion is the defining step of exocytosis. Despite realization that the fusion machinery must include lipids and proteins working in concert, only of late has work in the field focused more equally on both these components. Here we use isolated sea urchin egg cortical vesicles (CV), a stage-specific preparation of Ca(2+)-sensitive release-ready vesicles that enables the tight coupling of molecular and functional analyses necessary to dissect molecular mechanisms. The stalk-pore hypothesis proposes that bilayer merger proceeds rapidly via transient, high-negative curvature, intermediate membrane structures. Consistent with this, cholesterol, a major component of the CV membrane, contributes to a critical local negative curvature that supports formation of lipidic fusion intermediates. Following cholesterol depletion, structurally dissimilar lipids having intrinsic negative curvature greater than or equal to cholesterol recover the ability of CV to fuse but do not recover fusion efficiency (Ca(2+) sensitivity and kinetics). Conversely, cholesterol- and sphingomyelin-enriched microdomains regulate the efficiency of the fusion mechanism, presumably by contributing spatial and functional organization of other critical lipids and proteins at the fusion site. Critical proteins are thought to participate in Ca(2+) sensing, initiating membrane deformations, and facilitating fusion pore expansion. Capitalizing on a novel effect of the thiol-reactive reagent iodoacetamide (IA), potentiation of the Ca(2+) sensitivity and kinetics, a fluorescently tagged IA has been used to enhance fusion efficiency and simultaneously label the proteins involved. Isolation of cholesterol-enriched CV membrane fractions, using density gradient centrifugation, is being used to narrow the list of protein candidates potentially critical to the mechanism of fast Ca(2+)-triggered membrane fusion.
Collapse
Affiliation(s)
- Kendra L Furber
- Department of Physiology and Biophysics, University of Calgary, Faculty of Medicine, Calgary, Canada
| | | | | | | |
Collapse
|
49
|
Cholesterol but not association with detergent resistant membranes is necessary for the transport function of MRP2/ABCC2. FEBS Lett 2008; 582:4153-7. [PMID: 19038257 DOI: 10.1016/j.febslet.2008.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 11/11/2008] [Accepted: 11/11/2008] [Indexed: 11/20/2022]
Abstract
MRP2(/ABCC2) excretes amphiphilic organic anions into bile, and associates with detergent-resistant bile canalicular membrane domains (DRM). Here, we have evaluated sensitivities of MRP2 transport function and DRM association by titrating the cellular cholesterol content. We demonstrate that the role of cholesterol in the partitioning of MRP2 to DRM can be separated from the role of cholesterol in the function of MRP2, such that (i) cholesterol is not necessary for the polarized distribution of MRP2 at the canalicular membrane, (ii) partitioning into DRM is not required for MRP2 function, yet (iii) the presence of cholesterol is necessary for transport activity.
Collapse
|
50
|
Rowe RK, Suszko JW, Pekosz A. Roles for the recycling endosome, Rab8, and Rab11 in hantavirus release from epithelial cells. Virology 2008; 382:239-49. [PMID: 18951604 PMCID: PMC2648827 DOI: 10.1016/j.virol.2008.09.021] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 08/25/2008] [Accepted: 09/05/2008] [Indexed: 01/13/2023]
Abstract
Hantavirus structural proteins are believed to localize to intracellular membranes often identified as Golgi membranes, in virus-infected cells. After virus budding into the Golgi luminal space, virus-containing vesicles are transported to the plasma membrane via trafficking pathways that are not well defined. Using the New World hantavirus, Andes virus, we have investigated the role of various Rab proteins in the release of hantavirus particles from infected cells. Rabs 8 and 11 were found to colocalize with Andes virus proteins in virus infected cells and when expressed from cDNA, implicating the recycling endosome as an organelle important for hantavirus infection. Small interfering RNA-mediated downregulation of Rab11a alone or Rab11a and Rab11b together resulted in a decrease in infectious virus particle secretion from infected cells. Downregulation of Rab8a did not alter infectious virus release but reduction of both isoforms did. These data implicate the recycling endosome and the Rab proteins associated with vesicular transport to or from this intracellular organelle as an important pathway for hantavirus trafficking to the plasma membrane.
Collapse
Affiliation(s)
- Regina K Rowe
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|