1
|
Liao H, Chen Y, He Y, Zou M, Zheng L, Liao J, Rana K, Qian W, Ding Y. Stress responsive glycosylphosphatidylinositol-anchored protein SsGSP1 contributes to Sclerotinia sclerotiorum virulence. Virulence 2025; 16:2503434. [PMID: 40353429 PMCID: PMC12091936 DOI: 10.1080/21505594.2025.2503434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 04/23/2025] [Accepted: 05/03/2025] [Indexed: 05/14/2025] Open
Abstract
Fungal cell wall acts as a defense barrier, shielding the cell from varying environmental stresses. Cell wall proteins, such as glycosylphosphatidylinositol (GPI)-anchored proteins, are involved in swift and appropriate responses to minor environmental changes in fungi. However, the roles of these proteins in the pathogenic Sclerotinia sclerotiorum remain largely unexplored. Here, we identified a novel GPI-anchored protein in S. sclerotiorum, SsGSP1, comprising a Kre9_KNH domain. SsGSP1 was upregulated during infection, and the loss-of-function mutants of SsGSP1 exhibited the compromised cell wall integrity and reduced β-glucan content. During inoculation on Arabidopsis thaliana, Nicotiana benthamiana, and Brassica napus, the SsGSP1-deletion strains demonstrated the decreased virulence. The transgenic A. thaliana line carrying the sRNA targeting SsGSP1 enhanced resistance to S. sclerotiorum via Host-Induced Gene Silencing (HIGS). The SsGSP1-deficient strains displayed the heightened sensitivity to various stresses, including osmotic pressure, oxidative stress, and heat shock. The yeast two-hybrid and BiFC assays confirmed that SsGSP1 interacted with the key stress-related proteins catalase SsCat2, heat shock protein Sshsp60, and ABC transporter SsBMR1. Accordingly, transcriptome analysis revealed that the disruption of SsGSP1 downregulated the expression of genes involved in oxidative stress response, heat shock response, and chemical agent resistance. These results collectively delineate the intricate role of GPI-anchored protein SsGSP1 in β-glucan, cell wall integrity, and virulence and may act as a potential surface sensor to elicit signal transduction in response to environmental stresses in S. sclerotiorum.
Collapse
Affiliation(s)
- Hongmei Liao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Yangui Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Yujia He
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Minghong Zou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Lintao Zheng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Jinghang Liao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Kusum Rana
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Wei Qian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Yijuan Ding
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| |
Collapse
|
2
|
Luo W, Wang G, Chang H, Liu G, Zhu H, Li H. Transcriptomics Uncovers Key Genes for Photodynamic Killing on Trichosporon asahii Biofilms. Mycopathologia 2025; 190:42. [PMID: 40382755 PMCID: PMC12086123 DOI: 10.1007/s11046-025-00949-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 04/18/2025] [Indexed: 05/20/2025]
Abstract
BACKGROUND The escalating threat of antifungal resistance stemming from Trichosporon asahii (T. asahii) biofilms necessitates the pursuit of innovative therapeutic strategies. Among these approaches, 5-aminolevulinic acid (ALA) photodynamic therapy (PDT), an emerging therapeutic modality, has exhibited promising potential in eradicating T. asahii biofilms. METHODS The inhibitory activity was evaluated by confocal laser scanning microscopy. To delve deeper into the efficacy of ALA-PDT in eliminating T. asahii biofilms, we conducted a comprehensive transcriptional analysis utilizing transcriptome sequencing. RESULTS ALA-PDT demonstrated a profound inhibitory effect on the viability of T. asahii biofilms. Our investigation unveiled 2720 differentially expressed genes following exposure to ALA-PDT. Subsequent meticulous scrutiny allowed for the annotation of genes with a ≥ twofold change in transcription, focusing on Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways. Particularly noteworthy were the upregulated genes associated with oxidation-reduction processes, oxidoreductase activity, and catalytic activity. Conversely, the downregulated genes were linked to ATP binding, protein phosphorylation, and protein kinase activity. Additionally, we observed a surge in the transcription of genes that may be involved in oxidative stress (e.g., A1Q1_05494) as well as genes that may be involved in morphogenesis and biofilm formation (e.g., A1Q1_04029, A1Q1_01345, A1Q1_08069, and A1Q1_01456) following ALA-PDT treatment. CONCLUSIONS Our findings underscore the substantial impact of ALA-PDT on the transcriptional regulation of genes related to oxidative stress, morphogenesis, and biofilm formation, paving the way for novel therapeutic avenues in combating T. asahii biofilms.
Collapse
Affiliation(s)
- Wanting Luo
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, No.5 Nanmencang, Dongcheng District, Beijing, 100700, China
- Department of Dermatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), No. 1017, Dongmen North Rd, Luohu District, Shenzhen, 518020, China
| | - Guoliang Wang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, No.11, Shuguang Huayuan Middle Road, Haidian District, Beijing, 100097, China
| | - Hongyu Chang
- Department of Pediatrics, the People's Liberation Army Rocket Force Characteristic Medical Center, No.6 Xinjijiekou Ouwai Street, Xicheng District, Beijing, 100088, China
| | - Guiming Liu
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, No.11, Shuguang Huayuan Middle Road, Haidian District, Beijing, 100097, China
| | - He Zhu
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, No.5 Nanmencang, Dongcheng District, Beijing, 100700, China.
| | - Haitao Li
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, No.5 Nanmencang, Dongcheng District, Beijing, 100700, China.
| |
Collapse
|
3
|
Futamura Y, Yamamoto K, Uson-Lopez R, Aono H, Shimizu T, Hori Y, Kino K, Osada H. Inhibitory effect of copper chelators on the budding in Candida albicans. Antimicrob Agents Chemother 2025; 69:e0003325. [PMID: 40202341 PMCID: PMC12057359 DOI: 10.1128/aac.00033-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/03/2025] [Indexed: 04/10/2025] Open
Abstract
Candida albicans exhibits a unique dimorphic behavior, allowing it to switch between unicellular budding yeast and filamentous hyphal growth. This dimorphism is crucial for its pathogenicity, influencing processes such as adhesion, invasion, immune evasion, and host response. A comprehensive understanding of the molecular mechanisms governing yeast and hyphal growth, as well as the switch between these forms, is crucial for the development of effective anticandidal therapies. In this study, we screened for small molecules that interfere with the dimorphism of C. albicans and identified the actinomycete metabolite RK-276A/SF2768 as a potent inhibitor of this process. Time-lapse microscopy revealed that SF2768 inhibited hyphal branching and lateral yeast budding during the hyphal-to-yeast transition. Interestingly, SF2768 also suppressed farnesol-induced yeast growth by inhibiting yeast bud formation. The effects of SF2768 were canceled with copper addition, and other copper chelators, such as trientine and d-penicillamine, induced similar phenotypes, indicating that the copper-chelating activity of SF2768 is crucial for its antifungal properties. Furthermore, copper ions induced both hyphal and yeast bud formation. These findings strongly suggest that copper ions play a role in Candida budding, and the copper chelators could be developed as novel antifungal agents against not only dimorphic Candida spp. but also non-dimorphic Candida spp.
Collapse
Affiliation(s)
- Yushi Futamura
- Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- Waseda Research Institute of Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
| | - Kai Yamamoto
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Rachael Uson-Lopez
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Harumi Aono
- Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Takeshi Shimizu
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Yasuhiro Hori
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Kuniki Kino
- Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- Waseda Research Institute of Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
- Institute of Microbial Chemistry (BIKAKEN), Shinagawa, Tokyo, Japan
| | - Hiroyuki Osada
- Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- Institute of Microbial Chemistry (BIKAKEN), Shinagawa, Tokyo, Japan
| |
Collapse
|
4
|
Schille TB, Sprague JL, Naglik JR, Brunke S, Hube B. Commensalism and pathogenesis of Candida albicans at the mucosal interface. Nat Rev Microbiol 2025:10.1038/s41579-025-01174-x. [PMID: 40247134 DOI: 10.1038/s41579-025-01174-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2025] [Indexed: 04/19/2025]
Abstract
Fungi are important and often underestimated human pathogens. Infections with fungi mostly originate from the environment, from soil or airborne spores. By contrast, Candida albicans, one of the most common and clinically important fungal pathogens, permanently exists in the vast majority of healthy individuals as a member of the human mucosal microbiota. Only under certain circumstances will these commensals cause infections. However, although the pathogenic behaviour and disease manifestation of C. albicans have been at the centre of research for many years, its asymptomatic colonization of mucosal surfaces remains surprisingly understudied. In this Review, we discuss the interplay of the fungus, the host and the microbiome on the dualism of commensal and pathogenic life of C. albicans, and how commensal growth is controlled and permitted. We explore hypotheses that could explain how the mucosal environment shapes C. albicans adaptations to its commensal lifestyle, while still maintaining or even increasing its pathogenic potential.
Collapse
Affiliation(s)
- Tim B Schille
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Jakob L Sprague
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany.
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
5
|
Liu X, Geng S, Ye D, Xu W, Zheng Y, Wang F, Lei J, Wu Y, Jiang H, Hu Y, Chen D, Yan T, Guo R, Qiu J. Global discovery, expression pattern, and regulatory role of miRNA-like RNAs in Ascosphaera apis infecting the Asian honeybee larvae. Front Microbiol 2025; 16:1551625. [PMID: 40104596 PMCID: PMC11914139 DOI: 10.3389/fmicb.2025.1551625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 02/19/2025] [Indexed: 03/20/2025] Open
Abstract
Ascosphaera apis, a specialized fungal pathogen, causes lethal infection in honeybee larvae. miRNA-like small RNAs (milRNAs) are fungal small non-coding RNAs similar to miRNAs, which have been shown to regulate fungal hyphal growth, spore formation, and pathogenesis. Based on the transcriptome data, differentially expressed miRNA-like RNAs (DEmilRNAs) in A. apis infecting the Apis cerana cerana worker 4-, 5-, and 6-day-old larvae (Aa-4, Aa-5, and Aa-6) were screened and subjected to trend analysis, followed by target prediction and annotation as well as investigation of regulatory networks, with a focus on sub-networks relative to MAPK signaling pathway, glycerolipid metabolism, superoxide dismutase, and enzymes related to chitin synthesis and degradation. A total of 606 milRNAs, with a length distribution ranging from 18 nt to 25 nt, were identified. The first nucleotide of these milRNAs presented a bias toward U, and the bias patterns across bases of milRNAs were similar in the aforementioned three groups. There were 253 milRNAs, of which 68 up-and 54 down-regulated milRNAs shared by these groups. Additionally, the expression and sequences of three milRNAs were validated by stem-loop RT-PCR and Sanger sequencing. Trend analysis indicated that 79 DEmilRNAs were classified into three significant profiles (Profile4, Profile6, and Profile7). Target mRNAs of DEmilRNAs in these three significant profiles were engaged in 42 GO terms such as localization, antioxidant activity, and nucleoid. These targets were also involved in 120 KEGG pathways including lysine biosynthesis, pyruvate metabolism, and biosynthesis of antibiotics. Further investigation suggested that DEmilRNA-targeted mRNAs were associated with the MAPK signaling pathway, glycerolipid metabolism, superoxide dismutase, and enzymes related to chitin synthesis and degradation. Moreover, the binding relationships between aap-milR10516-x and ChsD as well as between aap-milR-2478-y and mkh1 were confirmed utilizing a combination of dual-luciferase reporter gene assay and RT-qPCR. Our data not only provide new insights into the A. apis proliferation and invasion, but also lay a basis for illustrating the DEmilRNA-modulated mechanisms underlying the A. apis infection.
Collapse
Affiliation(s)
- Xiaoyu Liu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sihai Geng
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
- National and Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, China
- Apitherapy Research Institute of Fujian Province, Fuzhou, China
| | - Daoyou Ye
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenhua Xu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yidi Zheng
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fangji Wang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jianpeng Lei
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ying Wu
- Apiculture Science Institute of Jilin Province, Jiling, China
| | - Haibin Jiang
- Apiculture Science Institute of Jilin Province, Jiling, China
| | - Ying Hu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dafu Chen
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
- National and Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, China
- Apitherapy Research Institute of Fujian Province, Fuzhou, China
| | - Tizhen Yan
- Dongguan Maternal and Children Health Hospital, Dongguan, China
| | - Rui Guo
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
- National and Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, China
- Apitherapy Research Institute of Fujian Province, Fuzhou, China
| | - Jianfeng Qiu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
- National and Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, China
- Apitherapy Research Institute of Fujian Province, Fuzhou, China
| |
Collapse
|
6
|
Liao B, Zhang C, Shen J, Chen D, Wang J, Chen X, Zhou Y, Wei Y, Shi Y, Gou L, Guo Q, Zhou X, Xie H, Zhao L, Liao G, Zhu Z, Cheng L, Zhou X, Li Y, Ren B. Aloin remodels the cell wall of Candida albicans to reduce its hyphal virulence against oral candidiasis. Appl Microbiol Biotechnol 2025; 109:21. [PMID: 39853490 PMCID: PMC11761986 DOI: 10.1007/s00253-025-13411-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025]
Abstract
Aloe vera (L.) Burm.f. is a traditional Chinese medicine known for treating various ailments, including fungal infections. Aloin is one of the major components from A. vera, but its antifungal mechanism and therapeutic potential against oral candidiasis are not clear. This study aimed to examine the mechanism of aloin against Candida albicans and its inhibitory activity against oral candidiasis. In this study, we for the first time found that aloin could induce the formation of abnormal hyphae with smaller hyphal diameters and fewer branching points in C. albicans including 11 clinical isolates without growth inhibition. The transcriptome and further cell wall contents analysis indicated that aloin remodeled the cell wall to increase the contents of β-1,3-glucan and furtherly showed an antagonistic effect with micafungin. Aloin also significantly inhibited the cell damage of oral epithelial cells and oral candidiasis in mice infected by C. albicans due to its inhibitory actions on the hyphal development and expressions of virulence factors, including candidalysin (coded by ECE1). Our results suggest that aloin is a promising antifungal agent for controlling candidiasis and targeting hyphal development and pathogenesis represents a practical strategy for developing new antifungal drugs. KEY POINTS: • Aloin remodels the C. albicans cell wall to form avirulent hyphae. • Aloin inhibits C. albicans infections in oral epithelial cells and mouse mucosa without toxicity. • Aloin is a promising antifungal agent with therapeutic potential against C. albicans infections.
Collapse
Affiliation(s)
- Binyou Liao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chuanli Zhang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiawei Shen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ding Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiannan Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xi Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuan Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yu Wei
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yangyang Shi
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lichen Gou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qiang Guo
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xinxuan Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hongyu Xie
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lin Zhao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ga Liao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Information Management & Department of Stomatology Informatics, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhuoli Zhu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yan Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Biao Ren
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
7
|
Kim H, Heredia MY, Chen X, Ahmed M, Qasim M, Callender TL, Hernday AD, Rauceo JM. Mitochondrial targeting of Candida albicans SPFH proteins and requirement of stomatins for SDS-induced stress tolerance. Microbiol Spectr 2025; 13:e0173324. [PMID: 39641539 PMCID: PMC11705831 DOI: 10.1128/spectrum.01733-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
The SPFH (stomatin, prohibitin, flotillin, and HflK/HflC) protein superfamily is conserved across all domains of life. Fungal SPFH proteins are required for respiration, stress adaptation, and membrane scaffolding. In the yeast Candida albicans, stomatin-like protein 3 (Slp3) forms punctate foci at the plasma membrane, and SLP3 overexpression causes cell death following exposure to the surfactant, SDS, and the oxidative stressor, H2O2. Here, we sought to determine the cellular localization and functionally characterize stomatin-like protein 2 (Slp2), prohibitin-1 (Phb1), prohibitin-2 (Phb2), and prohibitin-12 (Phb12) in C. albicans. Cytological and western blotting results showed that Slp2-Gfp/Rfp and prohibitin-Gfp fusion proteins localize to the mitochondrion in yeast cells. Growth assay results did not identify any respiration defects in a panel of stomatin and prohibitin mutant strains, suggesting that SPFH respiratory function has diverged in C. albicans from other model eukaryotes. However, a slp2Δ/Δ/slp3Δ/Δ double mutant strain grew poorly in the presence of 0.08% SDS, accumulated intracellular reactive oxidative species, and displayed aberrant ergosterol distribution in the plasma membrane. These phenotypes were not observed in slp2Δ/Δ or slp3Δ/Δ single mutants, indicating a possible indirect genetic interaction between SLP2 and SLP3. In addition, slp2Δ/Δ and slp2Δ/Δ/slp3Δ/Δ mutant strains were slightly resistant to the antifungal drug, fluconazole. Collectively, these findings reveal the cellular localization of Slp2, Phb1, Phb2, and Phb12, highlight the significance of stomatins in C. albicans SDS stress tolerance, and, for the first time, associate stomatins with antifungal resistance. IMPORTANCE Stomatins and prohibitins coordinate respiration and stress adaptation in fungi. Invasive mycoses caused by Candida albicans are a significant cause of morbidity, and candidemia patients show high mortality rates worldwide. Mitochondria are essential for C. albicans commensalism and virulence, and mitochondrial proteins are targets for antifungal interventions. C. albicans encodes five SPFH proteins: two stomatin-like proteins and three prohibitins. We have previously shown that Slp3 is important for C. albicans adaptation to various types of environmental stress. Moreover, synthetic compounds that bind to mammalian prohibitins inhibit C. albicans filamentation and are fungicidal. However, there is limited information available regarding the remaining SPFH proteins. Our findings show that mitochondrial localization of SPFH proteins is conserved in C. albicans. In addition, we demonstrate the importance of stomatins in plasma membrane and mitochondrial stress tolerance.
Collapse
Affiliation(s)
- Hyunjeong Kim
- Department of Sciences, John Jay College of the City University of New York, New York, New York, USA
| | - Marienela Y. Heredia
- Department of Sciences, John Jay College of the City University of New York, New York, New York, USA
| | - Xiao Chen
- Department of Sciences, John Jay College of the City University of New York, New York, New York, USA
| | - Maisha Ahmed
- Department of Sciences, John Jay College of the City University of New York, New York, New York, USA
| | - Mohammad Qasim
- Department of Molecular and Cellular Biology, School of Natural Sciences, University of California, Merced, California, USA
| | - Tracy L. Callender
- Department of Biology, Farmingdale State College of the State University of New York, Farmingdale, New York, USA
| | - Aaron D. Hernday
- Department of Molecular and Cellular Biology, School of Natural Sciences, University of California, Merced, California, USA
| | - Jason M. Rauceo
- Department of Sciences, John Jay College of the City University of New York, New York, New York, USA
| |
Collapse
|
8
|
Shivarathri R, Chauhan M, Datta A, Das D, Karuli A, Aptekmann A, Jenull S, Kuchler K, Thangamani S, Chowdhary A, Desai JV, Chauhan N. The Candida auris Hog1 MAP kinase is essential for the colonization of murine skin and intradermal persistence. mBio 2024; 15:e0274824. [PMID: 39422509 PMCID: PMC11558994 DOI: 10.1128/mbio.02748-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Candida auris, a multidrug-resistant human fungal pathogen, was first identified in 2009 in Japan. Since then, systemic C. auris infections have now been reported in more than 50 countries, with mortality rates of 30%-60%. A major contributing factor to its high inter- and intrahospital clonal transmission is that C. auris, unlike most Candida species, displays unique skin tropism and can stay on human skin for a prolonged period. However, the molecular mechanisms responsible for C. auris skin colonization, intradermal persistence, and systemic virulence are poorly understood. Here, we report that C. auris Hog1 mitogen-activated protein kinase is essential for efficient skin colonization, intradermal persistence as well as systemic virulence. RNA-seq analysis of wild-type parental and hog1Δ mutant strains revealed marked downregulation of genes involved in processes such as cell adhesion, cell wall rearrangement, and pathogenesis in hog1Δ mutant compared to the wild-type parent. Consistent with these data, we found a prominent role for Hog1 in maintaining cell wall architecture, as the hog1Δ mutant demonstrated a significant increase in cell-surface β-glucan exposure and a concomitant reduction in chitin content. Additionally, we observed that Hog1 was required for biofilm formation in vitro and fungal survival when challenged with primary murine macrophages and neutrophils ex vivo. Collectively, these findings have important implications for understanding the C. auris skin adherence mechanisms and penetration of skin epithelial layers preceding bloodstream infections. IMPORTANCE Candida auris is a World Health Organization fungal priority pathogen and an urgent public health threat recognized by the Centers for Disease Control and Prevention. C. auris has a unique ability to colonize human skin. It also persists on abiotic surfaces in healthcare environments for an extended period of time. These attributes facilitate the inter- and intrahospital clonal transmission of C. auris. Therefore, understanding C. auris skin colonization mechanisms is critical for infection control, especially in hospitals and nursing homes. However, despite its profound clinical relevance, the molecular and genetic basis of C. auris skin colonization mechanisms are poorly understood. Herein, we present data on the identification of the Hog1 MAP kinase as a key regulator of C. auris skin colonization. These findings lay the foundation for further characterization of unique mechanisms that promote fungal persistence on human skin.
Collapse
Affiliation(s)
- Raju Shivarathri
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Manju Chauhan
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Abhishek Datta
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, Indiana, USA
| | - Diprasom Das
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, Indiana, USA
| | - Adela Karuli
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Ariel Aptekmann
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Sabrina Jenull
- Department of Medical Biochemistry, Medical University Vienna, Max Perutz Labs Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Karl Kuchler
- Department of Medical Biochemistry, Medical University Vienna, Max Perutz Labs Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Shankar Thangamani
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, Indiana, USA
| | - Anuradha Chowdhary
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Jigar V. Desai
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Neeraj Chauhan
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| |
Collapse
|
9
|
Brown GD, Ballou ER, Bates S, Bignell EM, Borman AM, Brand AC, Brown AJP, Coelho C, Cook PC, Farrer RA, Govender NP, Gow NAR, Hope W, Hoving JC, Dangarembizi R, Harrison TS, Johnson EM, Mukaremera L, Ramsdale M, Thornton CR, Usher J, Warris A, Wilson D. The pathobiology of human fungal infections. Nat Rev Microbiol 2024; 22:687-704. [PMID: 38918447 DOI: 10.1038/s41579-024-01062-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/27/2024]
Abstract
Human fungal infections are a historically neglected area of disease research, yet they cause more than 1.5 million deaths every year. Our understanding of the pathophysiology of these infections has increased considerably over the past decade, through major insights into both the host and pathogen factors that contribute to the phenotype and severity of these diseases. Recent studies are revealing multiple mechanisms by which fungi modify and manipulate the host, escape immune surveillance and generate complex comorbidities. Although the emergence of fungal strains that are less susceptible to antifungal drugs or that rapidly evolve drug resistance is posing new threats, greater understanding of immune mechanisms and host susceptibility factors is beginning to offer novel immunotherapeutic options for the future. In this Review, we provide a broad and comprehensive overview of the pathobiology of human fungal infections, focusing specifically on pathogens that can cause invasive life-threatening infections, highlighting recent discoveries from the pathogen, host and clinical perspectives. We conclude by discussing key future challenges including antifungal drug resistance, the emergence of new pathogens and new developments in modern medicine that are promoting susceptibility to infection.
Collapse
Affiliation(s)
- Gordon D Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK.
| | - Elizabeth R Ballou
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Steven Bates
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Elaine M Bignell
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Andrew M Borman
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Alexandra C Brand
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Alistair J P Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Carolina Coelho
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Peter C Cook
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Rhys A Farrer
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Nelesh P Govender
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Neil A R Gow
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - William Hope
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - J Claire Hoving
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Rachael Dangarembizi
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Thomas S Harrison
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Elizabeth M Johnson
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Liliane Mukaremera
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Mark Ramsdale
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | | | - Jane Usher
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Adilia Warris
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Duncan Wilson
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| |
Collapse
|
10
|
Almuhawish MA, Kotb E, Alkhaldi E, Ahmed AA. Production and Antibacterial Activity of Atypical Siderophore from Pseudomonas sp. QCS59 Recovered from Harpachene schimperi. Pharmaceuticals (Basel) 2024; 17:1126. [PMID: 39338291 PMCID: PMC11434927 DOI: 10.3390/ph17091126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Among sixty-eight pseudomonads, isolate QCS59 from the rhizosphere of H. schimperi was selected based on its siderophore level. Production was optimal in Kings B supplemented with 2% peptone and 0.5% fructose at pH 6.5 and 25 °C for 72 h. Additionally, the threshold potential of iron was found at a concentration of 10 µM. After purification, the acidified siderophore presented a maximum absorption peak of 360 nm, while the neutral form presented a maximum of 414 nm, confirming its pyoverdine (PVD) nature. Furthermore, a major peak appeared at a retention time (RT) of 27.5 min during RP-HPLC, confirming its homogeneity. Interestingly, it demonstrated effective antibacterial activity, especially against Escherichia coli ATCC 8739, with a minimum inhibitory concentration (MIC) of 6.3 µg/mL and a minimum bactericidal concentration (MBC) of 12.5 µg/mL. At ½ the MIC value, it inhibited 82.1% of well-established biofilms of Salmonella enterica. There was an increase in malondialdehyde (MDA) and antioxidative enzymes, especially catalase (CAT) in the treated bacteria because of the peroxidation of membrane lipids and oxidative stress, respectively. SEM proved cellular lysis and surface malformation in most of the treated bacteria. This study concludes that QCS59 siderophore is a promising antibacterial candidate for treating wastewater bacteria and skin pathogens.
Collapse
Affiliation(s)
- Mashael A. Almuhawish
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia;
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Essam Kotb
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia;
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Eida Alkhaldi
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Asmaa A. Ahmed
- Department of Statistics, Faculty of Commerce, Al-Azhar University, Cairo P.O. Box 11751, Egypt;
| |
Collapse
|
11
|
Zhou X, Hilk A, Solis NV, Pereira De Sa N, Hogan BM, Bierbaum TA, Del Poeta M, Filler SG, Burrack LS, Selmecki A. Erg251 has complex and pleiotropic effects on sterol composition, azole susceptibility, filamentation, and stress response phenotypes. PLoS Pathog 2024; 20:e1012389. [PMID: 39078851 PMCID: PMC11315318 DOI: 10.1371/journal.ppat.1012389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/09/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024] Open
Abstract
Ergosterol is essential for fungal cell membrane integrity and growth, and numerous antifungal drugs target ergosterol. Inactivation or modification of ergosterol biosynthetic genes can lead to changes in antifungal drug susceptibility, filamentation and stress response. Here, we found that the ergosterol biosynthesis gene ERG251 is a hotspot for point mutations during adaptation to antifungal drug stress within two distinct genetic backgrounds of Candida albicans. Heterozygous point mutations led to single allele dysfunction of ERG251 and resulted in azole tolerance in both genetic backgrounds. This is the first known example of point mutations causing azole tolerance in C. albicans. Importantly, single allele dysfunction of ERG251 in combination with recurrent chromosome aneuploidies resulted in bona fide azole resistance. Homozygous deletions of ERG251 caused increased fitness in low concentrations of fluconazole and decreased fitness in rich medium, especially at low initial cell density. Homozygous deletions of ERG251 resulted in accumulation of ergosterol intermediates consistent with the fitness defect in rich medium. Dysfunction of ERG251, together with FLC exposure, resulted in decreased accumulation of the toxic sterol (14-ɑ-methylergosta-8,24(28)-dien-3β,6α-diol) and increased accumulation of non-toxic alternative sterols. The altered sterol composition of the ERG251 mutants had pleiotropic effects on transcription, filamentation, and stress responses including cell membrane, osmotic and oxidative stress. Interestingly, while dysfunction of ERG251 resulted in azole tolerance, it also led to transcriptional upregulation of ZRT2, a membrane-bound Zinc transporter, in the presence of FLC, and overexpression of ZRT2 is sufficient to increase azole tolerance in wild-type C. albicans. Finally, in a murine model of systemic infection, homozygous deletion of ERG251 resulted in decreased virulence while the heterozygous deletion mutants maintain their pathogenicity. Overall, this study demonstrates that single allele dysfunction of ERG251 is a recurrent and effective mechanism of acquired azole tolerance. We propose that altered sterol composition resulting from ERG251 dysfunction mediates azole tolerance as well as pleiotropic effects on stress response, filamentation and virulence.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Audrey Hilk
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Norma V. Solis
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, California, United States of America
| | - Nivea Pereira De Sa
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
| | - Bode M. Hogan
- Gustavus Adolphus College, Department of Biology, Saint Peter, Minnesota, USA
| | - Tessa A. Bierbaum
- Gustavus Adolphus College, Department of Biology, Saint Peter, Minnesota, USA
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
- Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Veterans Administration Medical Center, Northport, New York, United States of America
| | - Scott G. Filler
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Laura S. Burrack
- Gustavus Adolphus College, Department of Biology, Saint Peter, Minnesota, USA
| | - Anna Selmecki
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
12
|
Katsipoulaki M, Stappers MHT, Malavia-Jones D, Brunke S, Hube B, Gow NAR. Candida albicans and Candida glabrata: global priority pathogens. Microbiol Mol Biol Rev 2024; 88:e0002123. [PMID: 38832801 PMCID: PMC11332356 DOI: 10.1128/mmbr.00021-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
SUMMARYA significant increase in the incidence of Candida-mediated infections has been observed in the last decade, mainly due to rising numbers of susceptible individuals. Recently, the World Health Organization published its first fungal pathogen priority list, with Candida species listed in medium, high, and critical priority categories. This review is a synthesis of information and recent advances in our understanding of two of these species-Candida albicans and Candida glabrata. Of these, C. albicans is the most common cause of candidemia around the world and is categorized as a critical priority pathogen. C. glabrata is considered a high-priority pathogen and has become an increasingly important cause of candidemia in recent years. It is now the second most common causative agent of candidemia in many geographical regions. Despite their differences and phylogenetic divergence, they are successful as pathogens and commensals of humans. Both species can cause a broad variety of infections, ranging from superficial to potentially lethal systemic infections. While they share similarities in certain infection strategies, including tissue adhesion and invasion, they differ significantly in key aspects of their biology, interaction with immune cells, host damage strategies, and metabolic adaptations. Here we provide insights on key aspects of their biology, epidemiology, commensal and pathogenic lifestyles, interactions with the immune system, and antifungal resistance.
Collapse
Affiliation(s)
- Myrto Katsipoulaki
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Mark H. T. Stappers
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Dhara Malavia-Jones
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Neil A. R. Gow
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
13
|
Chen B, Zhang J, Li J, Qian Y, Huang B, Wu X. Comparative Transcriptome Analysis of T. rubrum, T. mentagrophytes, and M. gypseum Dermatophyte Biofilms in Response to Photodynamic Therapy. Mycopathologia 2024; 189:59. [PMID: 38890181 DOI: 10.1007/s11046-024-00865-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/16/2024] [Indexed: 06/20/2024]
Abstract
Dermatophyte biofilms frequently count for inadequate responses and resistance to standard antifungal treatments, resulting in refractory chronic onychomycosis infection. Although antimicrobial photodynamic therapy (aPDT) has clinically proven to exert significant antifungal effects or even capable of eradicating dermatophyte biofilms, considerably less is known about the molecular mechanisms underlying aPDT and the potential dysregulation of signaling networks that could antagonize its action. The aim of this study is to elucidate the molecular mechanisms underlining aPDT combat against dermatophyte biofilm in recalcitrant onychomycosis and to decipher the potential detoxification processes elicited by aPDT, facilitating the development of more effective photodynamic interventions. We applied genome-wide comparative transcriptome analysis to investigate how aPDT disrupting onychomycosis biofilm formed by three distinct dermatophytes, including Trichophyton rubrum, Trichophyton mentagrophytes, and Microsporum gypseum, the most frequently occurring pathogenic species. In total, 352.13 Gb of clean data were obtained for the transcriptomes of dermatophyte biofilms with or without aPDT treatment, resulting in 2,422.42 million reads with GC content of 51.84%, covering 99.9%, 98.5% and 99.4% of annotated genes of T. rubrum, T. mentagrophytes, and M. gypseum, respectively. The genome-wide orthologous analysis identified 6624 transcribed single-copy orthologous genes in all three species, and 36.5%, 6.8% and 17.9% of which were differentially expressed following aPDT treatment. Integrative orthology analysis demonstrated the upregulation of oxidoreductase activities is a highly conserved detoxification signaling alteration in response to aPDT across all investigated dermatophyte biofilms. This study provided new insights into the molecular mechanisms underneath anti-dermatophyte biofilm effects of aPDT and successfully identified a conserved detoxification regulation upon the aPDT application.
Collapse
Affiliation(s)
- Borui Chen
- Dermatology Institute of Fuzhou, Dermatology Hospital of Fuzhou, Xihong Road 243, Fuzhou, 350025, China
- Department of Dermatology, First Hospital and Research Center for Medical Mycology, Peking University, Beijing, 100034, China
| | - Jinyan Zhang
- Department of Dermatology, First Hospital and Research Center for Medical Mycology, Peking University, Beijing, 100034, China
- Department of Dermatology, Fujian Provincial Geriatric Hospital, Fuzhou, 350025, China
| | - Juanjuan Li
- Dermatology Institute of Fuzhou, Dermatology Hospital of Fuzhou, Xihong Road 243, Fuzhou, 350025, China
| | - Yuwen Qian
- Fujun Genetics Technologies Company Limited, Fuzhou, 350003, China
| | - Binbin Huang
- Dermatology Institute of Fuzhou, Dermatology Hospital of Fuzhou, Xihong Road 243, Fuzhou, 350025, China
| | - Xiaomo Wu
- Dermatology Institute of Fuzhou, Dermatology Hospital of Fuzhou, Xihong Road 243, Fuzhou, 350025, China.
- Department of Biomedicine, University of Basel, Klingelbergstrass 70, 4056, Basel, Switzerland.
| |
Collapse
|
14
|
Brango-Vanegas J, Leite ML, Macedo MLR, Cardoso MH, Franco OL. Capping motifs in antimicrobial peptides and their relevance for improved biological activities. Front Chem 2024; 12:1382954. [PMID: 38873409 PMCID: PMC11169826 DOI: 10.3389/fchem.2024.1382954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
N-capping (N-cap) and C-capping (C-cap) in biologically active peptides, including specific amino acids or unconventional group motifs, have been shown to modulate activity against pharmacological targets by interfering with the peptide's secondary structure, thus generating unusual scaffolds. The insertion of capping motifs in linear peptides has been shown to prevent peptide degradation by reducing its susceptibility to proteolytic cleavage, and the replacement of some functional groups by unusual groups in N- or C-capping regions in linear peptides has led to optimized peptide variants with improved secondary structure and enhanced activity. Furthermore, some essential amino acid residues that, when placed in antimicrobial peptide (AMP) capping regions, are capable of complexing metals such as Cu2+, Ni2+, and Zn2+, give rise to the family known as metallo-AMPs, which are capable of boosting antimicrobial efficacy, as well as other activities. Therefore, this review presents and discusses the different strategies for creating N- and C-cap motifs in AMPs, aiming at fine-tuning this class of antimicrobials.
Collapse
Affiliation(s)
- José Brango-Vanegas
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Michel Lopes Leite
- Departamento de Biologia Molecular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, Brazil
| | - Maria L. R. Macedo
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Campo Grande, Brazil
| | - Marlon H. Cardoso
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Campo Grande, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| |
Collapse
|
15
|
Kotb E, Al-Abdalall AH, Ababutain I, AlAhmady NF, Aldossary S, Alkhaldi E, Alghamdi AI, Alzahrani HAS, Almuhawish MA, Alshammary MN, Ahmed AA. Anticandidal Activity of a Siderophore from Marine Endophyte Pseudomonas aeruginosa Mgrv7. Antibiotics (Basel) 2024; 13:347. [PMID: 38667023 PMCID: PMC11047651 DOI: 10.3390/antibiotics13040347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024] Open
Abstract
An endophytic symbiont P. aeruginosa-producing anticandidal siderophore was recovered from mangrove leaves for the first time. Production was optimal in a succinate medium supplemented with 0.4% citric acid and 15 µM iron at pH 7 and 35 °C after 60 h of fermentation. UV spectra of the acidic preparation after purification with Amberlite XAD-4 resin gave a peak at 400 nm, while the neutralized form gave a peak at 360 nm. A prominent peak with RP-HPLC was obtained at RT 18.95 min, confirming its homogeneity. It was pH stable at 5.0-9.5 and thermally stable at elevated temperatures, which encourages the possibility of its application in extreme environments. The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) against Candida spp. Were in the range of 128 µg/mL and lower. It enhanced the intracellular iron accumulation with 3.2-4.2-fold (as judged by atomic absorption spectrometry) with a subsequent increase in the intracellular antioxidative enzymes SOD and CAT. Furthermore, the malondialdehyde (MDA) concentration due to cellular lipid peroxidation increased to 3.8-fold and 7.3-fold in C. albicans and C. tropicalis, respectively. The scanning electron microscope (SEM) confirmed cellular damage in the form of roughness, malformation, and production of defensive exopolysaccharides and/or proteins after exposure to siderophore. In conclusion, this anticandidal siderophore may be a promising biocontrol, nonpolluting agent against waterborne pathogens and pathogens of the skin. It indirectly kills Candida spp. by ferroptosis and mediation of hyperaccumulation of iron rather than directly attacking the cell targets, which triggers the activation of antioxidative enzymes.
Collapse
Affiliation(s)
- Essam Kotb
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia; (A.H.A.-A.); (I.A.); (N.F.A.); (A.I.A.); (M.A.A.)
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Amira H. Al-Abdalall
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia; (A.H.A.-A.); (I.A.); (N.F.A.); (A.I.A.); (M.A.A.)
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Ibtisam Ababutain
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia; (A.H.A.-A.); (I.A.); (N.F.A.); (A.I.A.); (M.A.A.)
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Nada F. AlAhmady
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia; (A.H.A.-A.); (I.A.); (N.F.A.); (A.I.A.); (M.A.A.)
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Sahar Aldossary
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia; (A.H.A.-A.); (I.A.); (N.F.A.); (A.I.A.); (M.A.A.)
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Eida Alkhaldi
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia; (A.H.A.-A.); (I.A.); (N.F.A.); (A.I.A.); (M.A.A.)
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Azzah I. Alghamdi
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia; (A.H.A.-A.); (I.A.); (N.F.A.); (A.I.A.); (M.A.A.)
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Hind A. S. Alzahrani
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia; (A.H.A.-A.); (I.A.); (N.F.A.); (A.I.A.); (M.A.A.)
| | - Mashael A. Almuhawish
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia; (A.H.A.-A.); (I.A.); (N.F.A.); (A.I.A.); (M.A.A.)
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Moudhi N. Alshammary
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia; (A.H.A.-A.); (I.A.); (N.F.A.); (A.I.A.); (M.A.A.)
| | - Asmaa A. Ahmed
- Department of Statistics, Faculty of Commerce, Al-Azhar University, Cairo P.O. Box 11751, Egypt
| |
Collapse
|
16
|
Shivarathri R, Chauhan M, Datta A, Das D, Karuli A, Jenull S, Kuchler K, Thangamani S, Chowdhary A, Desai JV, Chauhan N. The Candida auris Hog1 MAP kinase is essential for the colonization of murine skin and intradermal persistence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585572. [PMID: 38562863 PMCID: PMC10983919 DOI: 10.1101/2024.03.18.585572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Candida auris , a multidrug-resistant human fungal pathogen, was first identified in 2009 in Japan. Since then, systemic C. auris infections have now been reported in more than 50 countries, with mortality rates of 30-60%. A major contributing factor to its high inter- and intrahospital clonal transmission is that C. auris, unlike most Candida species, displays unique skin tropism and can stay on human skin for a prolonged period. However, the molecular mechanisms responsible for C. auris skin colonization, intradermal persistence, and systemic virulence are poorly understood. Here, we report that C. auris Hog1 mitogen-activated protein kinase (MAPK) is essential for efficient skin colonization, intradermal persistence, as well as systemic virulence. RNA-seq analysis of wildtype parental and hog1 Δ mutant strains revealed marked down-regulation of genes involved in processes such as cell adhesion, cell-wall rearrangement, and pathogenesis in hog1 Δ mutant compared to the wildtype parent. Consistent with these data, we found a prominent role for Hog1 in maintaining cell-wall architecture, as the hog1 Δ mutant demonstrated a significant increase in cell-surface β-glucan exposure and a concomitant reduction in chitin content. Additionally, we observed that Hog1 was required for biofilm formation in vitro and fungal survival when challenged with primary murine macrophages and neutrophils ex vivo . Collectively, these findings have important implications for understanding the C. auris skin adherence mechanisms and penetration of skin epithelial layers preceding bloodstream infections. Importance Candida auris is a World Health Organization (WHO) fungal priority pathogen and an urgent public health threat recognized by the Centers for Disease Control and Prevention (CDC). C. auris has a unique ability to colonize human skin. It also persists on abiotic surfaces in healthcare environments for an extended period of time. These attributes facilitate the inter- and intrahospital clonal transmission of C. auris . Therefore, understanding C. auris skin colonization mechanisms are critical for infection control, especially in hospitals and nursing homes. However, despite its profound clinical relevance, the molecular and genetic basis of C. auris skin colonization mechanisms are poorly understood. Herein, we present data on the identification of the Hog1 MAP kinase as a key regulator of C. auris skin colonization. These findings lay foundation for further characterization of unique mechanisms that promote fungal persistence on human skin.
Collapse
|
17
|
Zhou X, Hilk A, Solis NV, Hogan BM, Bierbaum TA, Filler SG, Burrack LS, Selmecki A. Erg251 has complex and pleiotropic effects on azole susceptibility, filamentation, and stress response phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583770. [PMID: 38496635 PMCID: PMC10942443 DOI: 10.1101/2024.03.06.583770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Ergosterol is essential for fungal cell membrane integrity and growth, and numerous antifungal drugs target ergosterol. Inactivation or modification of ergosterol biosynthetic genes can lead to changes in antifungal drug susceptibility, filamentation and stress response. Here, we found that the ergosterol biosynthesis gene ERG251 is a hotspot for point mutations during adaptation to antifungal drug stress within two distinct genetic backgrounds of Candida albicans. Heterozygous point mutations led to single allele dysfunction of ERG251 and resulted in azole tolerance in both genetic backgrounds. This is the first known example of point mutations causing azole tolerance in C. albicans. Importantly, single allele dysfunction of ERG251 in combination with recurrent chromosome aneuploidies resulted in bona fide azole resistance. Homozygous deletions of ERG251 caused increased fitness in low concentrations of fluconazole and decreased fitness in rich medium, especially at low initial cell density. Dysfunction of ERG251 resulted in transcriptional upregulation of the alternate sterol biosynthesis pathway and ZRT2, a Zinc transporter. Notably, we determined that overexpression of ZRT2 is sufficient to increase azole tolerance in C. albicans. Our combined transcriptional and phenotypic analyses revealed the pleiotropic effects of ERG251 on stress responses including cell wall, osmotic and oxidative stress. Interestingly, while loss of either allele of ERG251 resulted in similar antifungal drug responses, we observed functional divergence in filamentation regulation between the two alleles of ERG251 (ERG251-A and ERG251-B) with ERG251-A exhibiting a dominant role in the SC5314 genetic background. Finally, in a murine model of systemic infection, homozygous deletion of ERG251 resulted in decreased virulence while the heterozygous deletion mutants maintain their pathogenicity. Overall, this study provides extensive genetic, transcriptional and phenotypic analysis for the effects of ERG251 on drug susceptibility, fitness, filamentation and stress responses.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Audrey Hilk
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Norma V. Solis
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, CA, USA
| | - Bode M. Hogan
- Gustavus Adolphus College, Department of Biology, Saint Peter, MN, USA
| | - Tessa A. Bierbaum
- Gustavus Adolphus College, Department of Biology, Saint Peter, MN, USA
| | - Scott G. Filler
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Laura S. Burrack
- Gustavus Adolphus College, Department of Biology, Saint Peter, MN, USA
| | - Anna Selmecki
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
18
|
Wu X, Sun L, Huang L, Huang C, Sun K, Li H. Proteomic alterations associated with the formation of monocyte extracellular trap induced by Candida albicans hyphae. Future Microbiol 2024; 19:307-316. [PMID: 38358357 DOI: 10.2217/fmb-2023-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 08/03/2023] [Indexed: 02/16/2024] Open
Abstract
Background: The interaction between the host and Candida albicans is dynamic and intricate. We performed proteomic analysis to explore monocyte-C. albicans hyphae interaction. Materials & methods: Primary human monocytes were stimulated by heat-killed C. albicans hyphae and their proteins were profiled by tandem liquid chromatography with mass spectrometry (LC-MS/MS). Results: Based on the protein database of different species for analysis, we found that stimulation of monocytes by hyphae was accompanied by upregulation of histones and activation of extracellular traps (ETs) formation pathway. Meanwhile, monocyte ETs (MoETs) were evoked by synthesis or alteration of C. albicans cell wall proteins expression during the morphological switch to hyphal. Conclusion: MoETs formation is linked to cell wall proteins of C. albicans hyphae.
Collapse
Affiliation(s)
- Xian Wu
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Liying Sun
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Lei Huang
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Chenwei Huang
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Kuixia Sun
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Haixia Li
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| |
Collapse
|
19
|
Liang SH, Sircaik S, Dainis J, Kakade P, Penumutchu S, McDonough LD, Chen YH, Frazer C, Schille TB, Allert S, Elshafee O, Hänel M, Mogavero S, Vaishnava S, Cadwell K, Belenky P, Perez JC, Hube B, Ene IV, Bennett RJ. The hyphal-specific toxin candidalysin promotes fungal gut commensalism. Nature 2024; 627:620-627. [PMID: 38448595 PMCID: PMC11230112 DOI: 10.1038/s41586-024-07142-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/31/2024] [Indexed: 03/08/2024]
Abstract
The fungus Candida albicans frequently colonizes the human gastrointestinal tract, from which it can disseminate to cause systemic disease. This polymorphic species can transition between growing as single-celled yeast and as multicellular hyphae to adapt to its environment. The current dogma of C. albicans commensalism is that the yeast form is optimal for gut colonization, whereas hyphal cells are detrimental to colonization but critical for virulence1-3. Here, we reveal that this paradigm does not apply to multi-kingdom communities in which a complex interplay between fungal morphology and bacteria dictates C. albicans fitness. Thus, whereas yeast-locked cells outcompete wild-type cells when gut bacteria are absent or depleted by antibiotics, hyphae-competent wild-type cells outcompete yeast-locked cells in hosts with replete bacterial populations. This increased fitness of wild-type cells involves the production of hyphal-specific factors including the toxin candidalysin4,5, which promotes the establishment of colonization. At later time points, adaptive immunity is engaged, and intestinal immunoglobulin A preferentially selects against hyphal cells1,6. Hyphal morphotypes are thus under both positive and negative selective pressures in the gut. Our study further shows that candidalysin has a direct inhibitory effect on bacterial species, including limiting their metabolic output. We therefore propose that C. albicans has evolved hyphal-specific factors, including candidalysin, to better compete with bacterial species in the intestinal niche.
Collapse
Affiliation(s)
- Shen-Huan Liang
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Shabnam Sircaik
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Joseph Dainis
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Pallavi Kakade
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Swathi Penumutchu
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Liam D McDonough
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Ying-Han Chen
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Corey Frazer
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Tim B Schille
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute (HKI), Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Stefanie Allert
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute (HKI), Jena, Germany
| | - Osama Elshafee
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute (HKI), Jena, Germany
| | - Maria Hänel
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute (HKI), Jena, Germany
| | - Selene Mogavero
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute (HKI), Jena, Germany
| | - Shipra Vaishnava
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Ken Cadwell
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - J Christian Perez
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute (HKI), Jena, Germany.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany.
| | - Iuliana V Ene
- Institut Pasteur, Université Paris Cité, Fungal Heterogeneity Group, Paris, France
| | - Richard J Bennett
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA.
| |
Collapse
|
20
|
Hefny ZA, Ji B, Elsemman IE, Nielsen J, Van Dijck P. Transcriptomic meta-analysis to identify potential antifungal targets in Candida albicans. BMC Microbiol 2024; 24:66. [PMID: 38413885 PMCID: PMC10898158 DOI: 10.1186/s12866-024-03213-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Candida albicans is a fungal pathogen causing human infections. Here we investigated differential gene expression patterns and functional enrichment in C. albicans strains grown under different conditions. METHODS A systematic GEO database search identified 239 "Candida albicans" datasets, of which 14 were selected after rigorous criteria application. Retrieval of raw sequencing data from the ENA database was accompanied by essential metadata extraction from dataset descriptions and original articles. Pre-processing via the tailored nf-core pipeline for C. albicans involved alignment, gene/transcript quantification, and diverse quality control measures. Quality assessment via PCA and DESeq2 identified significant genes (FDR < = 0.05, log2-fold change > = 1 or <= -1), while topGO conducted GO term enrichment analysis. Exclusions were made based on data quality and strain relevance, resulting in the selection of seven datasets from the SC5314 strain background for in-depth investigation. RESULTS The meta-analysis of seven selected studies unveiled a substantial number of genes exhibiting significant up-regulation (24,689) and down-regulation (18,074). These differentially expressed genes were further categorized into 2,497 significantly up-regulated and 2,573 significantly down-regulated Gene Ontology (GO) IDs. GO term enrichment analysis clustered these terms into distinct groups, providing insights into the functional implications. Three target gene lists were compiled based on previous studies, focusing on central metabolism, ion homeostasis, and pathogenicity. Frequency analysis revealed genes with higher occurrence within the identified GO clusters, suggesting their potential as antifungal targets. Notably, the genes TPS2, TPS1, RIM21, PRA1, SAP4, and SAP6 exhibited higher frequencies within the clusters. Through frequency analysis within the GO clusters, several key genes emerged as potential targets for antifungal therapies. These include RSP5, GLC7, SOD2, SOD5, SOD1, SOD6, SOD4, SOD3, and RIM101 which exhibited higher occurrence within the identified clusters. CONCLUSION This comprehensive study significantly advances our understanding of the dynamic nature of gene expression in C. albicans. The identification of genes with enhanced potential as antifungal drug targets underpins their value for future interventions. The highlighted genes, including TPS2, TPS1, RIM21, PRA1, SAP4, SAP6, RSP5, GLC7, SOD2, SOD5, SOD1, SOD6, SOD4, SOD3, and RIM101, hold promise for the development of targeted antifungal therapies.
Collapse
Affiliation(s)
- Zeinab Abdelmoghis Hefny
- Laboratory of Molecular Cell Biology, Department of Biology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 31, Leuven, B-3001, Belgium
| | - Boyang Ji
- BioInnovation Institute, Ole Maaløes Vej 3, Copenhagen, DK2200, Denmark
| | - Ibrahim E Elsemman
- Department of Information Systems, Faculty of Computers and Information, Assiut University, Assiut, 2071515, Egypt
| | - Jens Nielsen
- BioInnovation Institute, Ole Maaløes Vej 3, Copenhagen, DK2200, Denmark.
- Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, SE41296, Gothenburg, SE41296, Sweden.
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Department of Biology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 31, Leuven, B-3001, Belgium.
| |
Collapse
|
21
|
Sharma R, Gibb AA, Barnts K, Elrod JW, Puri S. Alternative oxidase promotes high iron tolerance in Candida albicans. Microbiol Spectr 2023; 11:e0215723. [PMID: 37929974 PMCID: PMC10714975 DOI: 10.1128/spectrum.02157-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023] Open
Abstract
IMPORTANCE The yeast C. albicans exhibits metabolic flexibility for adaptability to host niches with varying availability of nutrients including essential metals like iron. For example, blood is iron deplete, while the oral cavity and the intestinal lumen are considered iron replete. We show here that C. albicans can tolerate very high levels of environmental iron, despite an increase in high iron-induced reactive oxygen species (ROS) that it mitigates with the help of a unique oxidase, known as alternative oxidase (AOX). High iron induces AOX1/2 that limits mitochondrial accumulation of ROS. Genetic elimination of AOX1/2 resulted in diminished virulence during oropharyngeal candidiasis in high iron mice. Since human mitochondria lack AOX protein, it represents a unique target for treatment of fungal infections.
Collapse
Affiliation(s)
- Rishabh Sharma
- Oral Microbiome Research Laboratory, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania, USA
| | - Andrew A. Gibb
- Department of Cardiovascular Sciences, Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Kelcie Barnts
- Oral and Maxillofacial Pathology, Medicine and Surgery, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania, USA
| | - John W. Elrod
- Department of Cardiovascular Sciences, Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Sumant Puri
- Oral Microbiome Research Laboratory, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
22
|
Kulig K, Bednaruk K, Rudolphi-Szydło E, Barbasz A, Wronowska E, Barczyk-Woznicka O, Karnas E, Pyza E, Zuba-Surma E, Rapala-Kozik M, Karkowska-Kuleta J. Stress Conditions Affect the Immunomodulatory Potential of Candida albicans Extracellular Vesicles and Their Impact on Cytokine Release by THP-1 Human Macrophages. Int J Mol Sci 2023; 24:17179. [PMID: 38139005 PMCID: PMC10742962 DOI: 10.3390/ijms242417179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Human immune cells possess the ability to react complexly and effectively after contact with microbial virulence factors, including those transported in cell-derived structures of nanometer sizes termed extracellular vesicles (EVs). EVs are produced by organisms of all kingdoms, including fungi pathogenic to humans. In this work, the immunomodulatory properties of EVs produced under oxidative stress conditions or at host concentrations of CO2 by the fungal pathogen Candida albicans were investigated. The interaction of EVs with human pro-monocytes of the U-937 cell line was established, and the most notable effect was attributed to oxidative stress-related EVs. The immunomodulatory potential of tested EVs against human THP-1 macrophages was verified using cytotoxicity assay, ROS-production assay, and the measurement of cytokine production. All fungal EVs tested did not show a significant cytotoxic effect on THP-1 cells, although a slight pro-oxidative impact was indicated for EVs released by C. albicans cells grown under oxidative stress. Furthermore, for all tested types of EVs, the pro-inflammatory properties related to increased IL-8 and TNF-α production and decreased IL-10 secretion were demonstrated, with the most significant effect observed for EVs released under oxidative stress conditions.
Collapse
Affiliation(s)
- Kamila Kulig
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Katarzyna Bednaruk
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Elzbieta Rudolphi-Szydło
- Department of Biochemistry and Biophysics, Institute of Biology, University of the National Education Commission, Podchorazych 2, 30-084 Kraków, Poland
| | - Anna Barbasz
- Department of Biochemistry and Biophysics, Institute of Biology, University of the National Education Commission, Podchorazych 2, 30-084 Kraków, Poland
| | - Ewelina Wronowska
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Olga Barczyk-Woznicka
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Elzbieta Karnas
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Ewa Zuba-Surma
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
23
|
Yang D, Zhang M, Su C, Dong B, Lu Y. Candida albicans exploits N-acetylglucosamine as a gut signal to establish the balance between commensalism and pathogenesis. Nat Commun 2023; 14:3796. [PMID: 37365160 DOI: 10.1038/s41467-023-39284-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
Candida albicans is a benign member of gut microbiota, but also causes life-threatening disseminated infections, suggesting that this fungus commensalism has evolved with retention of virulence traits. Here we reveal that N-acetylglucosamine (GlcNAc) enables C. albicans to balance between commensalism and pathogenesis. Although GlcNAc catabolism is beneficial for commensal growth of C. albicans, deleting GlcNAc sensor-transducer Ngs1 confers enhanced fitness, indicating that GlcNAc signaling is detrimental to commensalism. Interestingly, addition of GlcNAc attenuates commensal fitness of gut-evolved C. albicans but retains its disease-causing potential. We further demonstrate that GlcNAc is a major inducer of hypha-associated transcription in the gut, which represents the key determinant for commensal-pathogenic equilibrium. In addition to yeast-to-hypha morphogenesis, we also identify other factors, including Sod5 and Ofi1, that contribute to the balance. Thus, C. albicans uses GlcNAc to build up a tradeoff between fungal programs supporting commensalism and virulence, which may explain its success as a commensal and pathogen.
Collapse
Affiliation(s)
- Dandan Yang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Mao Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Chang Su
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Bin Dong
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Yang Lu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
24
|
Wildeman AS, Patel NK, Cormack BP, Culotta VC. The role of manganese in morphogenesis and pathogenesis of the opportunistic fungal pathogen Candida albicans. PLoS Pathog 2023; 19:e1011478. [PMID: 37363924 PMCID: PMC10328360 DOI: 10.1371/journal.ppat.1011478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/07/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
Metals such as Fe, Cu, Zn, and Mn are essential trace nutrients for all kingdoms of life, including microbial pathogens and their hosts. During infection, the mammalian host attempts to starve invading microbes of these micronutrients through responses collectively known as nutritional immunity. Nutritional immunity for Zn, Fe and Cu has been well documented for fungal infections; however Mn handling at the host-fungal pathogen interface remains largely unexplored. This work establishes the foundation of fungal resistance against Mn associated nutritional immunity through the characterization of NRAMP divalent metal transporters in the opportunistic fungal pathogen, Candida albicans. Here, we identify C. albicans Smf12 and Smf13 as two NRAMP transporters required for cellular Mn accumulation. Single or combined smf12Δ/Δ and smf13Δ/Δ mutations result in a 10-80 fold reduction in cellular Mn with an additive effect of double mutations and no losses in cellular Cu, Fe or Zn. As a result of low cellular Mn, the mutants exhibit impaired activity of mitochondrial Mn-superoxide dismutase 2 (Sod2) and cytosolic Mn-Sod3 but no defects in cytosolic Cu/Zn-Sod1 activity. Mn is also required for activity of Golgi mannosyltransferases, and smf12Δ/Δ and smf13Δ/Δ mutants show a dramatic loss in cell surface phosphomannan and in glycosylation of proteins, including an intracellular acid phosphatase and a cell wall Cu-only Sod5 that is key for oxidative stress resistance. Importantly, smf12Δ/Δ and smf13Δ/Δ mutants are defective in formation of hyphal filaments, a deficiency rescuable by supplemental Mn. In a disseminated mouse model for candidiasis where kidney is the primary target tissue, we find a marked loss in total kidney Mn during fungal invasion, implying host restriction of Mn. In this model, smf12Δ/Δ and smf13Δ/Δ C. albicans mutants displayed a significant loss in virulence. These studies establish a role for Mn in Candida pathogenesis.
Collapse
Affiliation(s)
- Asia S Wildeman
- The Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Naisargi K Patel
- The Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Brendan P Cormack
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Valeria C Culotta
- The Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
25
|
Lange T, Kasper L, Gresnigt MS, Brunke S, Hube B. "Under Pressure" - How fungi evade, exploit, and modulate cells of the innate immune system. Semin Immunol 2023; 66:101738. [PMID: 36878023 PMCID: PMC10109127 DOI: 10.1016/j.smim.2023.101738] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Indexed: 03/06/2023]
Abstract
The human immune system uses an arsenal of effector mechanisms to prevent and counteract infections. Yet, some fungal species are extremely successful as human pathogens, which can be attributed to a wide variety of strategies by which these fungi evade, exploit, and modulate the immune system. These fungal pathogens normally are either harmless commensals or environmental fungi. In this review we discuss how commensalism, but also life in an environmental niche without human contact, can drive the evolution of diverse and specialized immune evasion mechanisms. Correspondingly, we discuss the mechanisms contributing to the ability of these fungi to cause superficial to life-threatening infections.
Collapse
Affiliation(s)
- Theresa Lange
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Mark S Gresnigt
- Junior Research Group Adaptive Pathogenicity Strategies, Hans Knoell Institute, Jena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany; Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
26
|
Alomeir N, Zeng Y, Fadaak A, Wu TT, Malmstrom H, Xiao J. Effect of Nystatin on Candida albicans - Streptococcus mutans duo-species biofilms. Arch Oral Biol 2023; 145:105582. [PMID: 36395564 PMCID: PMC9729470 DOI: 10.1016/j.archoralbio.2022.105582] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/23/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To assess the effect of Nystatin on Candida albicans and Streptococcus mutans duo-species biofilms using an in vitro cariogenic biofilm model. DESIGN Biofilms were formed on saliva-coated hydroxyapatite discs under high sugar challenge (1 % sucrose and 1 % glucose), with inoculation of 105CFU/ml S. mutans and 103CFU/ml C. albicans. Between 20 and 68 h, biofilms were treated with 28,000 IU Nystatin solution, 5 min/application, 4 times/day, to mimic the clinical application. Biofilm's three-dimensional structure was assessed using multi-photon confocal microscopy. The expression of C. albicans and S. mutans virulence genes was assessed via real-time PCR. Duplicate discs were used in 3 independent repeats. t-test and Mann-Whitney U test were used to compare outcomes between treatment and control group. RESULTS Nystatin treatment eliminated C. albicans in biofilms at 44 h. Nystatin-treated group had a significant reduction of biofilm dry-weight and reduced S. mutans abundance by 0.5 log CFU/ml at 44 and 68 h (p < 0.05). Worth noting that biomass distribution across the vertical layout was altered by Nystatin treatment, resulting in less volume on the substrate layers in Nystatin-treated biofilms compared to the control. Reduction of microcolonies size and volume was also observed in Nystatin-treated biofilms (p < 0.05). Nystatin-treated biofilms formed unique halo-shaped microcolonies with reduced core EPS coverage. Furthermore, Nystatin-treated biofilms had significant down-regulations of S. mutans gtfD and atpD genes (p < 0.05). CONCLUSIONS Nystatin application altered the formation and characteristics of C. albicans and S. mutans duo-species biofilms. Therefore, developing clinical regimens for preventing or treating dental caries from an antifungal perspective is warranted.
Collapse
Affiliation(s)
- Nora Alomeir
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, USA
| | - Yan Zeng
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, USA
| | - Ahmed Fadaak
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, USA
| | - Tong Tong Wu
- Department of Biostatistics and computational biology, University of Rochester Medical Center, Rochester, USA
| | - Hans Malmstrom
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, USA
| | - Jin Xiao
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, USA.
| |
Collapse
|
27
|
Mnsod1 promotes the development of Pleurotus ostreatus and enhances the tolerance of mycelia to heat stress. Microb Cell Fact 2022; 21:155. [PMID: 35934720 PMCID: PMC9358896 DOI: 10.1186/s12934-022-01878-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/17/2022] [Indexed: 12/02/2022] Open
Abstract
Background Superoxide dismutases (SODs, EC 1.15.1.1) are defense proteins that can be used as sweepers to clear reactive oxygen species (ROS). They have been widely studied in the plant. Intensive research demonstrates that SOD plays an essential role in plants. However, in Pleurotus ostreatus, the function and regulatory pathway of SOD in the growth and development and the abiotic stress response have not been clear. Results In this study, three MnSOD-encoding genes of the P. ostreatus CCMSSC00389 strain were cloned and identified. Mnsod1, Mnsod2, and Mnsod3 were interrupted by 3, 7, and 2 introns, and encoded proteins of 204, 220, and 344 amino acids, respectively. By comparing the relative expression of three MnSOD-encoding genes in mycelia, the results showed that the gene with the highest primary expression was Mnsod1. Subsequently, the function of P. ostreatus Mnsod1 was explored by overexpression (OE) and RNA interference (RNAi). The results showed that during the growth and development of P. ostreatus, MnSOD1 protein increased gradually from mycelia to the fruiting body, but decreased in spores. The change of Mnsod1 transcription level was not consistent with the changing trend of MnSOD1 protein. Further studies showed that during primordia formation, the expression of Mnsod1 gradually increased, reaching a peak at 48 h, and the transcription level was 2.05-folds compared to control. H2O2 content progressively accumulated during the formation of primordia, and its change trend was similar to that of Mnsod1 transcription. OE-Mnsod1-1 and OE-Mnsod1-21 strains accelerated the formation of primordia. The results suggested that Mnsod1 may participate in the formation rate of P. ostreatus primordium by regulating the signal molecule H2O2. In addition, OE-Mnsod1-1 and OE-Mnsod1-21 strains shortened the mycelial recovery time after heat stress and improved the tolerance of the strains to 2.5 mM and 5 mM H2O2, which showed that Mnsod1 was involved in the response of P. ostreatus mycelium to heat stress. Conclusions This study indicates that Mnsod1 plays an active role in the formation of P. ostreatus primordia and the response to abiotic stress. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01878-2.
Collapse
|
28
|
Buakaew W, Pankla Sranujit R, Noysang C, Krobthong S, Yingchutrakul Y, Thongsri Y, Potup P, Daowtak K, Usuwanthim K. Proteomic Analysis Reveals Proteins Involved in the Mode of Action of β-Citronellol Identified From Citrus hystrix DC. Leaf Against Candida albicans. Front Microbiol 2022; 13:894637. [PMID: 35677908 PMCID: PMC9168680 DOI: 10.3389/fmicb.2022.894637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/26/2022] [Indexed: 11/23/2022] Open
Abstract
Candida albicans is a fungus that lives primarily on the mucosal surfaces of healthy humans, such as the oral cavity, vagina, and gastrointestinal tract. This commensal organism can be controlled by other microbiota, while certain conditions can increase the risk of C. albicans outgrowth and cause disease. Prevalence of the drug-resistant phenotype, as well as the severity of C. albicans infection in immunocompromised patients, presents a challenge for scientists to develop novel, effective treatment, and prevention strategies. β-Citronellol is an intriguing active compound of several plants that has been linked to antifungal activity, but data on the mechanism of action in terms of proteomic profiling are lacking. Here, β-citronellol identified from Citrus hystrix DC. leaf against C. albicans were evaluated. A proteomic approach was used to identify potential target proteins involved in the mode of action of β-citronellol. This study identified and discussed three protein groups based on the 126 major proteins that were altered in response to β-citronellol treatment, 46 of which were downregulated and 80 of which were upregulated. Significant protein groups include cell wall proteins (e.g., Als2p, Rbt1p, and Pga4p), cellular stress response enzymes (e.g., Sod1p, Gst2p, and Ddr48p), and ATP synthesis-associated proteins (e.g., Atp3p, Atp7p, Cox1p, and Cobp). Results demonstrated the complexities of protein interactions influenced by β-citronellol treatment and highlighted the potential of antifungal activity for future clinical and drug development research.
Collapse
Affiliation(s)
- Watunyoo Buakaew
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| | - Rungnapa Pankla Sranujit
- Faculty of Integrative Medicine, Rajamangala University of Technology Thanyaburi, Pathum Thani, Thailand
| | - Chanai Noysang
- Faculty of Integrative Medicine, Rajamangala University of Technology Thanyaburi, Pathum Thani, Thailand
| | - Sucheewin Krobthong
- Interdisciplinary Graduate Program in Genetic Engineering, Kasetsart University, Bangkok, Thailand
- Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Yodying Yingchutrakul
- Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok, Thailand
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Yordhathai Thongsri
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| | - Pachuen Potup
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| | - Krai Daowtak
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| | - Kanchana Usuwanthim
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
29
|
Helmstetter N, Chybowska AD, Delaney C, Da Silva Dantas A, Gifford H, Wacker T, Munro C, Warris A, Jones B, Cuomo CA, Wilson D, Ramage G, Farrer RA. Population genetics and microevolution of clinical Candida glabrata reveals recombinant sequence types and hyper-variation within mitochondrial genomes, virulence genes, and drug targets. Genetics 2022; 221:iyac031. [PMID: 35199143 PMCID: PMC9071574 DOI: 10.1093/genetics/iyac031] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/16/2022] [Indexed: 12/02/2022] Open
Abstract
Candida glabrata is the second most common etiological cause of worldwide systemic candidiasis in adult patients. Genome analysis of 68 isolates from 8 hospitals across Scotland, together with 83 global isolates, revealed insights into the population genetics and evolution of C. glabrata. Clinical isolates of C. glabrata from across Scotland are highly genetically diverse, including at least 19 separate sequence types that have been recovered previously in globally diverse locations, and 1 newly discovered sequence type. Several sequence types had evidence for ancestral recombination, suggesting transmission between distinct geographical regions has coincided with genetic exchange arising in new clades. Three isolates were missing MATα1, potentially representing a second mating type. Signatures of positive selection were identified in every sequence type including enrichment for epithelial adhesins thought to facilitate fungal adhesin to human epithelial cells. In patent microevolution was identified from 7 sets of recurrent cases of candidiasis, revealing an enrichment for nonsynonymous and frameshift indels in cell surface proteins. Microevolution within patients also affected epithelial adhesins genes, and several genes involved in drug resistance including the ergosterol synthesis gene ERG4 and the echinocandin target FKS1/2, the latter coinciding with a marked drop in fluconazole minimum inhibitory concentration. In addition to nuclear genome diversity, the C. glabrata mitochondrial genome was particularly diverse, with reduced conserved sequence and conserved protein-encoding genes in all nonreference ST15 isolates. Together, this study highlights the genetic diversity within the C. glabrata population that may impact virulence and drug resistance, and 2 major mechanisms generating this diversity: microevolution and genetic exchange/recombination.
Collapse
Affiliation(s)
- Nicolas Helmstetter
- Medical Research Council, Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD UK
| | | | - Christopher Delaney
- School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | - Hugh Gifford
- Medical Research Council, Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD UK
| | - Theresa Wacker
- Medical Research Council, Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD UK
| | - Carol Munro
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Adilia Warris
- Medical Research Council, Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD UK
| | - Brian Jones
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | | | - Duncan Wilson
- Medical Research Council, Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD UK
| | - Gordon Ramage
- School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Rhys A Farrer
- Medical Research Council, Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD UK
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
30
|
Kolhe N, Damle E, Pradhan A, Zinjarde S. A comprehensive assessment of Yarrowia lipolytica and its interactions with metals: Current updates and future prospective. Biotechnol Adv 2022; 59:107967. [PMID: 35489656 DOI: 10.1016/j.biotechadv.2022.107967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022]
Abstract
The non-conventional yeast Yarrowia lipolytica has been popular as a model system for understanding biological processes such as dimorphism and lipid accumulation. The organism can efficiently utilize hydrophobic substrates (hydrocarbons and triglycerides) thereby rendering it relevant in bioremediation of oil polluted environments. The current review focuses on the interactions of this fungus with metal pollutants and its potential application in bioremediation of metal contaminated locales. This fungus is intrinsically equipped with a variety of physiological and biochemical features that enable it to tide over stress conditions induced by the presence of metals. Production of enzymes such as phosphatases, reductases and superoxide dismutases are worth a special mention. In the presence of metals, levels of inherently produced metal binding proteins (metallothioneins) and the pigment melanin are seen to be elevated. Morphological alterations with respect to biofilm formation and dimorphic transition from yeast to mycelial form are also induced by certain metals. The biomass of Y. lipolytica is inherently important as a biosorbent and cell surface modification, process optimization or whole cell immobilization techniques have aided in improving this capability. In the presence of metals such as mercury, cadmium, copper and uranium, the culture forms nanoparticulate deposits. In addition, on account of its intrinsic reductive ability, Y. lipolytica is being exploited for synthesizing nanoparticles of gold, silver, cadmium and selenium with applications as antimicrobial compounds, location agents for bioimaging and as feed supplements. This versatile organism thus has great potential in interacting with various metals and addressing problems related to their pollutant status.
Collapse
Affiliation(s)
- Nilesh Kolhe
- Department of Biotechnology (with jointly merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune 411007, India
| | - Eeshan Damle
- Department of Biotechnology (with jointly merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune 411007, India
| | - Aditya Pradhan
- Department of Biotechnology (with jointly merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune 411007, India
| | - Smita Zinjarde
- Department of Biotechnology (with jointly merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
31
|
Chandler CE, Hernandez FG, Totten M, Robinett NG, Schatzman SS, Zhang SX, Culotta VC. Biochemical Analysis of CaurSOD4, a Potential Therapeutic Target for the Emerging Fungal Pathogen Candida auris. ACS Infect Dis 2022; 8:584-595. [PMID: 35179882 PMCID: PMC9906785 DOI: 10.1021/acsinfecdis.1c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Candida auris is an emerging multidrug-resistant fungal pathogen. With high mortality rates, there is an urgent need for new antifungals to combat C. auris. Possible antifungal targets include Cu-only superoxide dismutases (SODs), extracellular SODs that are unique to fungi and effectively combat the superoxide burst of host immunity. Cu-only SODs are essential for the virulence of diverse fungal pathogens; however, little is understood about these enzymes in C. auris. We show here that C. auris secretes an enzymatically active Cu-only SOD (CaurSOD4) when cells are starved for Fe, a condition mimicking host environments. Although predicted to attach to cell walls, CaurSOD4 is detected as a soluble extracellular enzyme and can act at a distance to remove superoxide. CaurSOD4 selectively binds Cu and not Zn, and Cu binding is labile compared to bimetallic Cu/Zn SODs. Moreover, CaurSOD4 is susceptible to inhibition by various metal-binding drugs that are without effect on mammalian Cu/Zn SODs. Our studies highlight CaurSOD4 as a potential antifungal target worthy of consideration.
Collapse
Affiliation(s)
- Courtney E Chandler
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, United States
| | - Francisco G Hernandez
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, United States
| | - Marissa Totten
- Divsion of Medical Microbiology, Department of Pathology and Division of Microbiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Natalie G Robinett
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, United States
| | - Sabrina S Schatzman
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, United States
| | - Sean X Zhang
- Divsion of Medical Microbiology, Department of Pathology and Division of Microbiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Valeria C Culotta
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, United States
| |
Collapse
|
32
|
Arita GS, Faria DR, Capoci IR, Kioshima ES, Bonfim-Mendonça PS, Svidzinski TI. Cell wall associated proteins involved in filamentation with impact on the virulence of Candida albicans. Microbiol Res 2022; 258:126996. [DOI: 10.1016/j.micres.2022.126996] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/21/2022] [Accepted: 02/20/2022] [Indexed: 12/14/2022]
|
33
|
Frye KA, Sendra KM, Waldron KJ, Kehl-Fie TE. Old dogs, new tricks: New insights into the iron/manganese superoxide dismutase family. J Inorg Biochem 2022; 230:111748. [PMID: 35151099 PMCID: PMC9112591 DOI: 10.1016/j.jinorgbio.2022.111748] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/14/2022] [Accepted: 01/30/2022] [Indexed: 12/21/2022]
Abstract
Superoxide dismutases (SODs) are ancient enzymes of widespread importance present in all domains of life. Many insights have been gained into these important enzymes over the 50 years since their initial description, but recent studies in the context of microbial pathogenesis have resulted in findings that challenge long established dogmas. The repertoire of SODs that bacterial pathogens encode is diverse both in number and in metal dependencies, including copper, copper and zinc, manganese, iron, and cambialistic enzymes. Other bacteria also possess nickel dependent SODs. Compartmentalization of SODs only partially explains their diversity. The need for pathogens to maintain SOD activity across distinct hostile environments encountered during infection, including those limited for essential metals, is also a driver of repertoire diversity. SOD research using pathogenic microbes has also revealed the apparent biochemical ease with which metal specificity can change within the most common family of SODs. Collectively, these studies are revealing the dynamic nature of SOD evolution, both that of individual SOD enzymes that can change their metal specificity to adapt to fluctuating cellular metal availability, and of a cell's repertoire of SOD isozymes that can be differentially expressed to adapt to fluctuating environmental metal availability in a niche.
Collapse
|
34
|
The OxrA Protein of Aspergillus fumigatus Is Required for the Oxidative Stress Response and Fungal Pathogenesis. Appl Environ Microbiol 2021; 87:e0112021. [PMID: 34524893 DOI: 10.1128/aem.01120-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An efficient reactive oxygen species (ROS) detoxification system is vital for the survival of the pathogenic fungus Aspergillus fumigatus within the host high-ROS environment of the host. Therefore, identifying and targeting factors essential for oxidative stress response is one approach to developing novel treatments for fungal infections. The oxidation resistance 1 (Oxr1) protein is essential for protection against oxidative stress in mammals, but its functions in pathogenic fungi remain unknown. The present study aimed to characterize the role of an Oxr1 homolog in A. fumigatus. The results indicated that the OxrA protein plays an important role in oxidative stress resistance by regulating the catalase function in A. fumigatus, and overexpression of catalase can rescue the phenotype associated with OxrA deficiency. Importantly, the deficiency of oxrA decreased the virulence of A. fumigatus and altered the host immune response. Using the Aspergillus-induced lung infection model, we demonstrated that the ΔoxrA mutant strain induced less tissue damage along with decreased levels of lactate dehydrogenase (LDH) and albumin release. Additionally, the ΔoxrA mutant caused inflammation at a lower degree, along with a markedly reduced influx of neutrophils to the lungs and a decreased secretion of cytokine usually associated with recruitment of neutrophils in mice. These results characterize the role of OxrA in A. fumigatus as a core regulator of oxidative stress resistance and fungal pathogenesis. IMPORTANCE Knowledge of ROS detoxification in fungal pathogens is useful in the design of new antifungal drugs and could aid in the study of oxidative stress resistance mechanisms. In this study, we demonstrate that OxrA protein localizes to the mitochondria and functions to protect against oxidative damage. We demonstrate that OxrA contributes to oxidative stress resistance by regulating catalase function, and overexpression of catalase (CatA or CatB) can rescue the phenotype that is associated with OxrA deficiency. Remarkably, a loss of OxrA attenuated the fungal virulence in a mouse model of invasive pulmonary aspergillosis and altered the host immune response. Therefore, our finding indicates that inhibition of OxrA might be an effective approach for alleviating A. fumigatus infection. The present study is, to the best of our knowledge, a pioneer in reporting the vital role of Oxr1 protein in pathogenic fungi.
Collapse
|
35
|
Influence of Incubation Time on Ortho-Toluidine Blue Mediated Antimicrobial Photodynamic Therapy Directed against Selected Candida Strains-An In Vitro Study. Int J Mol Sci 2021; 22:ijms222010971. [PMID: 34681632 PMCID: PMC8536188 DOI: 10.3390/ijms222010971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/28/2021] [Accepted: 10/03/2021] [Indexed: 12/25/2022] Open
Abstract
(1) Background and the aim: The appropriate incubation time in the antimicrobial photodynamic therapy protocol seems to have a huge impact on the efficacy of this process. This is particularly important in relation to Candida strains, due to the size of these cells and the presence of the cell wall. The aims of this study were to determine the optimal incubation time needed for the absorption of toluidine blue by cells of C. albicans, C. glabrata, C. krusei and C. parapsilosis using direct observation by optical microscopy, and to evaluate the efficacy of TBO-mediated aPDT on planktonic cells of these strains. (2) Methods: The microscopic evaluation consisted of taking a series of images at a magnification of 600× and counting the % of stained cells. The in vitro effect of TBO-mediated aPDT combined with a diode laser (635 nm, 400mW, 12 J/cm2, CW) on the viability of yeast cells with different incubation times was evaluated. (3) Results: The presence of TBO within the cytoplasm was observed in all tested Candida strains and at all microscopic evaluation times. However, the highest percentages of cells were stained at 7 and 10 min. The highest % reduction of CFU/mL after TBO-mediated aPDT against Candida was obtained for the strain C. albicans ATCC 10,231 and it was 78.55%. (4) Conclusions: TBO-mediated aPDT against Candida was effective in reducing the number of CFU/mL at all assessed incubation times. However, the most efficient period for almost all strains was 7–10 min.
Collapse
|
36
|
Montoya C, Kurylec J, Baraniya D, Tripathi A, Puri S, Orrego S. Antifungal Effect of Piezoelectric Charges on PMMA Dentures. ACS Biomater Sci Eng 2021; 7:4838-4846. [PMID: 34596379 DOI: 10.1021/acsbiomaterials.1c00926] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Candida-associated denture stomatitis is a recurring disease affecting up to 67% of denture wearers. Poly(methyl methacrylate) (PMMA) remains the main material employed in the fabrication of dentures due to its desirable physical, mechanical, and aesthetic properties. However, the improvement of its antimicrobial properties remains a challenge. To address this need, we developed PMMA composite filled with piezoelectric nanoparticles of barium titanate (BaTiO3) for therapeutic effects. Candida albicans biofilms were cultivated on the surface of the composites under continuous cyclic mechanical loading to activate the piezoelectric charges and to resemble mastication patterns. The interactions between biofilms and biomaterials were evaluated by measuring the biofilm biomass, metabolic activity, and the number of viable cells. To explore the antifungal mechanisms, changes in the expression of genes encoding adhesins and superoxide dismutase were assessed using reverse transcription-polymerase chain reaction. With the addition of piezoelectric nanoparticles, we observed a significant reduction in the biofilm formation and interference in the yeast-to-hyphae transition compared to the standard PMMA. Moreover, we observed that the cyclic deformation of biomaterial surfaces without antifungal agents produced increased biomass, metabolic activity, and a number of viable cells compared to the static/no-deformed surfaces. Cyclic deformation appears to be a novel mechanobiological signal that enables pathogenicity and virulence of C. albicans cells with increased expression of the yeast-to-hyphae transition genes. The outcome of this study opens new opportunities for the design of antifungal dentures for improved clinical service and reduced need for cleaning methods.
Collapse
Affiliation(s)
- Carolina Montoya
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University. Philadelphia, Pennsylvania 19140, United States
| | - Julia Kurylec
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University. Philadelphia, Pennsylvania 19140, United States
| | - Divyashri Baraniya
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University. Philadelphia, Pennsylvania 19140, United States
| | - Aparna Tripathi
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University. Philadelphia, Pennsylvania 19140, United States
| | - Sumant Puri
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University. Philadelphia, Pennsylvania 19140, United States
| | - Santiago Orrego
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University. Philadelphia, Pennsylvania 19140, United States.,Bioengineering Department, College of Engineering, Temple University. Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
37
|
The Role of B-Cells and Antibodies against Candida Vaccine Antigens in Invasive Candidiasis. Vaccines (Basel) 2021; 9:vaccines9101159. [PMID: 34696267 PMCID: PMC8540628 DOI: 10.3390/vaccines9101159] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 01/08/2023] Open
Abstract
Systemic candidiasis is an invasive fungal infection caused by members of the genus Candida. The recent emergence of antifungal drug resistance and increased incidences of infections caused by non-albicans Candida species merit the need for developing immune therapies against Candida infections. Although the role of cellular immune responses in anti-Candida immunity is well established, less is known about the role of humoral immunity against systemic candidiasis. This review summarizes currently available information on humoral immune responses induced by several promising Candida vaccine candidates, which have been identified in the past few decades. The protective antibody and B-cell responses generated by polysaccharide antigens such as mannan, β-glucan, and laminarin, as well as protein antigens like agglutinin-like sequence gene (Als3), secreted aspartyl proteinase (Sap2), heat shock protein (Hsp90), hyphally-regulated protein (Hyr1), hyphal wall protein (Hwp1), enolase (Eno), phospholipase (PLB), pyruvate kinase (Pk), fructose bisphosphate aldolase (Fba1), superoxide dismutase gene (Sod5) and malate dehydrogenase (Mdh1), are outlined. As per studies reviewed, antibodies induced in response to leading Candida vaccine candidates contribute to protection against systemic candidiasis by utilizing a variety of mechanisms such as opsonization, complement fixation, neutralization, biofilm inhibition, direct candidacidal activity, etc. The contributions of B-cells in controlling fungal infections are also discussed. Promising results using anti-Candida monoclonal antibodies for passive antibody therapy reinforces the need for developing antibody-based therapeutics including anti-idiotypic antibodies, single-chain variable fragments, peptide mimotopes, and antibody-derived peptides. Future research involving combinatorial immunotherapies using humanized monoclonal antibodies along with antifungal drugs/cytokines may prove beneficial for treating invasive fungal infections.
Collapse
|
38
|
Ibe C, Munro CA. Fungal Cell Wall Proteins and Signaling Pathways Form a Cytoprotective Network to Combat Stresses. J Fungi (Basel) 2021; 7:jof7090739. [PMID: 34575777 PMCID: PMC8466366 DOI: 10.3390/jof7090739] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 12/13/2022] Open
Abstract
Candida species are part of the normal flora of humans, but once the immune system of the host is impaired and they escape from commensal niches, they shift from commensal to pathogen causing candidiasis. Candida albicans remains the primary cause of candidiasis, accounting for about 60% of the global candidiasis burden. The cell wall of C. albicans and related fungal pathogens forms the interface with the host, gives fungal cells their shape, and also provides protection against stresses. The cell wall is a dynamic organelle with great adaptive flexibility that allows remodeling, morphogenesis, and changes in its components in response to the environment. It is mainly composed of the inner polysaccharide rich layer (chitin, and β-glucan) and the outer protein coat (mannoproteins). The highly glycosylated protein coat mediates interactions between C. albicans cells and their environment, including reprograming of wall architecture in response to several conditions, such as carbon source, pH, high temperature, and morphogenesis. The mannoproteins are also associated with C. albicans adherence, drug resistance, and virulence. Vitally, the mannoproteins contribute to cell wall construction and especially cell wall remodeling when cells encounter physical and chemical stresses. This review describes the interconnected cell wall integrity (CWI) and stress-activated pathways (e.g., Hog1, Cek1, and Mkc1 mediated pathways) that regulates cell wall remodeling and the expression of some of the mannoproteins in C. albicans and other species. The mannoproteins of the surface coat is of great importance to pathogen survival, growth, and virulence, thus understanding their structure and function as well as regulatory mechanisms can pave the way for better management of candidiasis.
Collapse
Affiliation(s)
- Chibuike Ibe
- Department of Microbiology, Faculty of Biological Sciences, Abia State University, Uturu 441107, Nigeria
- Correspondence:
| | - Carol A. Munro
- Aberdeen Fungal Group, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB24 3FX, UK;
| |
Collapse
|
39
|
Alamir OF, Oladele RO, Ibe C. Nutritional immunity: targeting fungal zinc homeostasis. Heliyon 2021; 7:e07805. [PMID: 34466697 PMCID: PMC8384899 DOI: 10.1016/j.heliyon.2021.e07805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/22/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022] Open
Abstract
Transition metals, such as Zn2+, are essential dietary constituents of all biological life, including mammalian hosts and the pathogens that infect them. Therefore, to thrive and cause infection, pathogens must successfully assimilate these elements from the host milieu. Consequently, mammalian immunity has evolved to actively restrict and/or pool metals to toxic concentrations in an effort to attenuate microbial pathogenicity - a process termed nutritional immunity. Despite host-induced Zn2+ nutritional immunity, pathogens such as Candida albicans, are still capable of causing disease and thus must be equipped with robust Zn2+ sensory, uptake and detoxification machinery. This review will discuss the strategies employed by mammalian hosts to limit Zn2+ during infection, and the subsequent fungal interventions that counteract Zn2+ nutritional immunity.
Collapse
Affiliation(s)
- Omran F Alamir
- Department of Natural Sciences, College of Health Sciences, The Public Authority for Applied Education and Training, Al Asimah, Kuwait
| | - Rita O Oladele
- Department of Medical Microbiology & Parasitology, College of Medicine, University of Lagos, Lagos State, Nigeria
| | - C Ibe
- Department of Microbiology, Abia State University, PMB 2000, Uturu, Abia State, Nigeria
| |
Collapse
|
40
|
Staerck C, Yaakoub H, Vandeputte P, Tabiasco J, Godon C, Gastebois A, Giraud S, Guillemette T, Calenda A, Delneste Y, Fleury M, Bouchara JP. The Glycosylphosphatidylinositol-Anchored Superoxide Dismutase of Scedosporium apiospermum Protects the Conidia from Oxidative Stress. J Fungi (Basel) 2021; 7:575. [PMID: 34356954 PMCID: PMC8304446 DOI: 10.3390/jof7070575] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023] Open
Abstract
Scedosporium species are common fungal pathogens in patients with cystic fibrosis (CF). To colonize the CF lungs, fungi must cope with the host immune response, especially the reactive oxygen species (ROS) released by phagocytic cells. To this aim, pathogens have developed various antioxidant systems, including superoxide dismutases (SODs) which constitute the first-line protection against oxidative stress. Interestingly, one of the S. apiospermum SOD-encoding genes (SODD gene) exhibits a glycosylphosphatidylinositol (GPI) anchor-binding site and encodes a conidial-specific surface SOD. In this study, a SODDΔ mutant was engineered from a non-homologous end joining-deficient strain (KU70Δ) of S. apiospermum. Compared to its parent strain, the double mutant KU70Δ/SODDΔ exhibited increased susceptibility to various oxidizing agents and triazole antifungals. In addition, the loss of SodD resulted in an increased intracellular killing of the conidia by M1 macrophages derived from human blood monocytes, suggesting the involvement of this superoxide dismutase in the evasion to the host defenses. Nevertheless, one cannot disregard an indirect role of the enzyme in the synthesis or assembly of the cell wall components since transmission electron microscopic analysis revealed a thickening of the inner cell wall layer of the conidia. Further studies are needed to confirm the role of this enzyme in the pathogenesis of Scedosporium infections, including the production of a recombinant protein and study of its protective effect against the infection in a mouse model of scedosporiosis.
Collapse
Affiliation(s)
- Cindy Staerck
- Université d’Angers, Université de Bretagne Occidentale, CHU Angers, Groupe d’Etude des Interactions Hôte-Pathogène (GEIHP, EA3142), SFR ICAT, F-49000 Angers, France; (C.S.); (H.Y.); (P.V.); (C.G.); (A.G.); (S.G.); (A.C.); (M.F.)
| | - Hajar Yaakoub
- Université d’Angers, Université de Bretagne Occidentale, CHU Angers, Groupe d’Etude des Interactions Hôte-Pathogène (GEIHP, EA3142), SFR ICAT, F-49000 Angers, France; (C.S.); (H.Y.); (P.V.); (C.G.); (A.G.); (S.G.); (A.C.); (M.F.)
| | - Patrick Vandeputte
- Université d’Angers, Université de Bretagne Occidentale, CHU Angers, Groupe d’Etude des Interactions Hôte-Pathogène (GEIHP, EA3142), SFR ICAT, F-49000 Angers, France; (C.S.); (H.Y.); (P.V.); (C.G.); (A.G.); (S.G.); (A.C.); (M.F.)
| | - Julie Tabiasco
- Université d’Angers, Université de Nantes, CHU Angers, Inserm, CRCINA, SFR ICAT, F-49000 Angers, France; (J.T.); (Y.D.)
| | - Charlotte Godon
- Université d’Angers, Université de Bretagne Occidentale, CHU Angers, Groupe d’Etude des Interactions Hôte-Pathogène (GEIHP, EA3142), SFR ICAT, F-49000 Angers, France; (C.S.); (H.Y.); (P.V.); (C.G.); (A.G.); (S.G.); (A.C.); (M.F.)
| | - Amandine Gastebois
- Université d’Angers, Université de Bretagne Occidentale, CHU Angers, Groupe d’Etude des Interactions Hôte-Pathogène (GEIHP, EA3142), SFR ICAT, F-49000 Angers, France; (C.S.); (H.Y.); (P.V.); (C.G.); (A.G.); (S.G.); (A.C.); (M.F.)
| | - Sandrine Giraud
- Université d’Angers, Université de Bretagne Occidentale, CHU Angers, Groupe d’Etude des Interactions Hôte-Pathogène (GEIHP, EA3142), SFR ICAT, F-49000 Angers, France; (C.S.); (H.Y.); (P.V.); (C.G.); (A.G.); (S.G.); (A.C.); (M.F.)
| | - Thomas Guillemette
- Université d’Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France;
| | - Alphonse Calenda
- Université d’Angers, Université de Bretagne Occidentale, CHU Angers, Groupe d’Etude des Interactions Hôte-Pathogène (GEIHP, EA3142), SFR ICAT, F-49000 Angers, France; (C.S.); (H.Y.); (P.V.); (C.G.); (A.G.); (S.G.); (A.C.); (M.F.)
| | - Yves Delneste
- Université d’Angers, Université de Nantes, CHU Angers, Inserm, CRCINA, SFR ICAT, F-49000 Angers, France; (J.T.); (Y.D.)
| | - Maxime Fleury
- Université d’Angers, Université de Bretagne Occidentale, CHU Angers, Groupe d’Etude des Interactions Hôte-Pathogène (GEIHP, EA3142), SFR ICAT, F-49000 Angers, France; (C.S.); (H.Y.); (P.V.); (C.G.); (A.G.); (S.G.); (A.C.); (M.F.)
| | - Jean-Philippe Bouchara
- Université d’Angers, Université de Bretagne Occidentale, CHU Angers, Groupe d’Etude des Interactions Hôte-Pathogène (GEIHP, EA3142), SFR ICAT, F-49000 Angers, France; (C.S.); (H.Y.); (P.V.); (C.G.); (A.G.); (S.G.); (A.C.); (M.F.)
| |
Collapse
|
41
|
Gonçales RA, Salamanca AL, Júnior LR, E Silva KS, de Vasconcelos EJ, Dos Reis TF, Castro RC, C Ruy PD, Romagnoli B, Ruiz J, Pereira M, de A Soares CM, Coelho PS. In silico identification of glycosylphosphatidylinositol-anchored proteins in Paracoccidioides spp. Future Microbiol 2021; 16:589-606. [PMID: 33998266 DOI: 10.2217/fmb-2020-0282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To predict glycosylphosphatidylinositol (GPI)-anchored proteins in the genome of Paracoccidioides brasiliensis and Paracoccidioides lutzii. Materials & methods: Five different bioinformatics tools were used for predicting GPI-anchored proteins; we considered as GPI-anchored proteins those detected by at least two in silico analysis methods. We also performed the proteomic analysis of P. brasiliensis cell wall by mass spectrometry. Results: Hundred GPI-anchored proteins were predicted in P. brasiliensis and P. lutzii genomes. A series of 57 proteins were classified in functional categories and 43 conserved proteins were reported with unknown functions. Four proteins identified by in silico analyses were also identified in the cell wall proteome. Conclusion: The data obtained in this study are important resources for future research of GPI-anchored proteins in Paracoccidioides spp. to identify targets for new diagnostic tools, drugs and immunological tests.
Collapse
Affiliation(s)
- Relber A Gonçales
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal, ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ayda Lm Salamanca
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas II (ICB II), Universidade Federal de Goiás (UFG), Goiânia, Goiás, 74690-900, Brazil
| | - Luiz Rb Júnior
- Department of Cellular & Molecular Biology and Pathogenic Bioagents, Faculty of Medicine of Ribeirão Preto (FMRP), University of São Paulo (USP), Ribeirão Preto, 14049-900, Brazil
| | - Kleber Sf E Silva
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas II (ICB II), Universidade Federal de Goiás (UFG), Goiânia, Goiás, 74690-900, Brazil
| | - Elton Jr de Vasconcelos
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Thaila F Dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, 14040-900, Brazil
| | - Ricardo C Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, 14040-900, Brazil
| | - Patrícia de C Ruy
- Department of Cellular & Molecular Biology and Pathogenic Bioagents, Faculty of Medicine of Ribeirão Preto (FMRP), University of São Paulo (USP), Ribeirão Preto, 14049-900, Brazil
| | - Bárbara Romagnoli
- Department of Cellular & Molecular Biology and Pathogenic Bioagents, Faculty of Medicine of Ribeirão Preto (FMRP), University of São Paulo (USP), Ribeirão Preto, 14049-900, Brazil
| | - Jerônimo Ruiz
- Fundação Oswaldo Cruz, Instituto Rene Rachaou (IRR), Belo Horizonte, Minas Gerais, 30190-002, Brazil
| | - Maristela Pereira
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas II (ICB II), Universidade Federal de Goiás (UFG), Goiânia, Goiás, 74690-900, Brazil
| | - Célia M de A Soares
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas II (ICB II), Universidade Federal de Goiás (UFG), Goiânia, Goiás, 74690-900, Brazil
| | - Paulo Sr Coelho
- Department of Cellular & Molecular Biology and Pathogenic Bioagents, Faculty of Medicine of Ribeirão Preto (FMRP), University of São Paulo (USP), Ribeirão Preto, 14049-900, Brazil
| |
Collapse
|
42
|
Alonso GC, Klein MI, Jordão CC, Carmello JC, Pavarina AC. Gene expression of Candida albicans strains isolates from patients with denture stomatitis submitted to treatments with photodynamic therapy and nystatin. Photodiagnosis Photodyn Ther 2021; 35:102292. [PMID: 33857598 DOI: 10.1016/j.pdpdt.2021.102292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 12/19/2022]
Abstract
The study evaluated the effect of antimicrobial photodynamic therapy (aPDT) and nystatin (NYS) in the expression of genes (ACT1, ALS1, CAP1, CAT1, EFG1, HWP1, LIP3, PLB1, SAP1, and SOD1) involved in the virulence of Candida albicans strains recovered from patients with denture stomatitis (DS). These strains were isolated from the patients before (initial) and after treatment (final), and 45 days after the treatments (follow-up). For gene expression analyses, RNA was isolated from the clinical strains, followed by cDNA synthesis and qPCR using specific primers for each target gene. The samples that present integrity were pooled to increase the RNA yield. In the end, four patients treated with aPDT and five patients treated with NYS had the clinical isolates of C. albicans submitted to gene expression evaluation. The data demonstrated a statistical difference in the expression of PLB1 and ACT1 for the different therapies (aPDT versus NYS). Also, there was a statistical difference in the expression of CAT1, SOD1, and LIP3 at the time intervals assessed (initial, final, and follow-up). In contrast, no statistical difference was found in the expression of ALS1, HWP1, EFG1, CAP1, CAT1, SOD1, LIP3, and SAP1 between the therapies, while no significant difference was detected at the time intervals evaluated for ALS1, HWP1, EFG1, CAP1, and SAP1. Therefore, the topical treatments for DS with aPDT or NYS did not effect the expression of most C. albicans virulence genes evaluated.
Collapse
Affiliation(s)
- Gabriela Caroline Alonso
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Univ Estadual Paulista - UNESP, Rua Humaitá, 1680, 14801-903, Araraquara, SP, Brazil
| | - Marlise Inêz Klein
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Univ Estadual Paulista - UNESP, Rua Humaitá, 1680, 14801-903, Araraquara, SP, Brazil
| | - Cláudia Carolina Jordão
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Univ Estadual Paulista - UNESP, Rua Humaitá, 1680, 14801-903, Araraquara, SP, Brazil
| | - Juliana Cabrini Carmello
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Univ Estadual Paulista - UNESP, Rua Humaitá, 1680, 14801-903, Araraquara, SP, Brazil
| | - Ana Cláudia Pavarina
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Univ Estadual Paulista - UNESP, Rua Humaitá, 1680, 14801-903, Araraquara, SP, Brazil.
| |
Collapse
|
43
|
Fourie R, Cason ED, Albertyn J, Pohl CH. Transcriptional response of Candida albicans to Pseudomonas aeruginosa in a polymicrobial biofilm. G3-GENES GENOMES GENETICS 2021; 11:6134339. [PMID: 33580263 PMCID: PMC8049422 DOI: 10.1093/g3journal/jkab042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/05/2021] [Indexed: 01/05/2023]
Abstract
Candida albicans is frequently co-isolated with the Gram-negative bacterium, Pseudomonas aeruginosa. In vitro, the interaction is complex, with both species influencing each other. Not only does the bacterium kill hyphal cells of C. albicans through physical interaction, it also affects C. albicans biofilm formation and morphogenesis, through various secreted factors and cell wall components. The present study sought to expand the current knowledge regarding the interaction between C. albicans and P. aeruginosa, using transcriptome analyses of early static biofilms. Under these conditions, a total of 2,537 open reading frames (approximately 40% of the C. albicans transcriptome) was differentially regulated in the presence of P. aeruginosa. Upon deeper analyses it became evident that the response of C. albicans toward P. aeruginosa was dominated by a response to hypoxia, and included those associated with stress as well as iron and zinc homeostasis. These conditions may also lead to the observed differential regulation of genes associated with cell membrane synthesis, morphology, biofilm formation and phenotypic switching. Thus, C. albicans in polymicrobial biofilms with P. aeruginosa have unique transcriptional profiles that may influence commensalism as well as pathogenesis.
Collapse
Affiliation(s)
- Ruan Fourie
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, 9301, South Africa
| | - Errol D Cason
- Department of Animal Wildlife and Grassland Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - Jacobus Albertyn
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, 9301, South Africa
| | - Carolina H Pohl
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, 9301, South Africa
| |
Collapse
|
44
|
Effect of Antifungal-Treated Host Macrophages on Candida glabrata. ACTA ACUST UNITED AC 2021; 2021:8838444. [PMID: 33680221 PMCID: PMC7906804 DOI: 10.1155/2021/8838444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 11/17/2022]
Abstract
Objective Candida glabrata (C. glabrata) causes infections associated with severe sepsis and high mortality. This study describes the effects of micafungin (MCF), itraconazole (ICZ), and amphotericin B (AmB) on the function of macrophages during C. glabrata infection. Methods RAW264.1 macrophages were treated with MCF, ICZ, or AmB and then challenged with C. glabrata. Cytokines from infected macrophage supernatants and the levels of superoxide dismutase (SOD) in macrophages were measured at different time points after phagocytosis. Results The activity of SOD was significantly increased in RAW264.1 cells that phagocytized C. glabrata and reached a peak level at 6 hours (P < 0.05). ICZ and AmB did not affect the SOD activity in cells that phagocytized C. glabrata versus that in untreated macrophage. C. glabrata stimulated macrophages to secrete cytokines. Neither ICZ nor AmB affected the secretion of interleukin-6 (IL-6), interleukin-8 (IL-8), or tumor necrosis factor-α (TNF-α) by C. glabrata-infected macrophages. However, MCF downregulated the secretion of TNF-α by infected macrophages and reduced the SOD activity of C. glabrata compared with those in untreated controls. Conclusion Echinocandins may increase their antifungal efficacy by altering the innate immune response of macrophages and attenuating antioxidants of this organism.
Collapse
|
45
|
Wang Q, Pokhrel A, Coleman JJ. The Extracellular Superoxide Dismutase Sod5 From Fusarium oxysporum Is Localized in Response to External Stimuli and Contributes to Fungal Pathogenicity. FRONTIERS IN PLANT SCIENCE 2021; 12:608861. [PMID: 33737941 PMCID: PMC7960929 DOI: 10.3389/fpls.2021.608861] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Reactive oxygen species (ROS) produced by hosts serve as a general defense mechanism against various pathogens. At the interaction site between the host and pathogen, host cells rapidly accumulate high concentrations of ROS, called the oxidative burst, that damage and kill the invading microbes. However, successful pathogens usually survive in a high ROS environment and have evolved strategies to overcome these detrimental effects. Here we characterized the biological function of the extracellular superoxide dismutase (SOD) FoSod5 from Fusarium oxysporum f. sp. vasinfectum. FoSOD5 is strongly up-regulated during infection of cotton, and a ΔFoSOD5 mutant was significantly reduced in virulence on cotton. Purified 6 × His-FoSod5 could significantly inhibit the reduction of NBT and WST-1, indicating that FoSod5 was a functional SOD protein. Based on CRISPR/Cas9 technology, several different FoSod5 variants were generated and used to assess the secretion, expression, and subcellular localization of FoSod5 in F. oxysporum. The subcellular localization of FoSod5 is altered under different environmental conditions. During normal growth conditions, FoSod5 was primarily localized to the phialides; however, in a nutrient-limited environment, FoSod5 was localized to a wide array of fungal structures including the septum and cell wall. FoSod5 is an alkaline-induced glycosylphosphatidylinositol (GPI) protein and the GPI anchor was required for proper protein subcellular localization. The multiple mechanisms fungi utilize to tolerate the oxidative burst is indicative of the importance of this plant defense response; however, the presence of a conserved extracellular SOD in many phytopathogenic fungi suggests tolerance to ROS is initiated prior to the ROS entering the fungal cell.
Collapse
|
46
|
Mechanism of Antifungal Activity by 5-Aminoimidazole-4-Carbohydrazonamide Derivatives against Candida albicans and Candida krusei. Antibiotics (Basel) 2021; 10:antibiotics10020183. [PMID: 33673152 PMCID: PMC7917925 DOI: 10.3390/antibiotics10020183] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/30/2022] Open
Abstract
Systemic mycoses are one major cause of morbidity/mortality among immunocompromised/debilitated individuals. Studying the mechanism of action is a strategy to develop safer/potent antifungals, warning resistance emergence. The major goal of this study was to elucidate the mechanism of action of three (Z)-5-amino-N’-aryl-1-methyl-1H-imidazole-4-carbohydrazonamides (2h, 2k, 2l) that had previously demonstrated strong antifungal activity against Candida krusei and C. albicans ATCC strains. Activity was confirmed against clinical isolates, susceptible or resistant to fluconazole by broth microdilution assay. Ergosterol content (HPLC-DAD), mitochondrial dehydrogenase activity (MTT), reactive oxygen species (ROS) generation (flow cytometry), germ tube inhibition and drug interaction were evaluated. None of the compounds inhibited ergosterol synthesis. Ascorbic acid reduced the antifungal effect of compounds and significantly decreased ROS production. The metabolic viability of C. krusei was significantly reduced for values of 2MIC. Compounds 2h and 2k caused a significant increase in ROS production for MIC values while for 2l a significant increase was only observed for concentrations above MIC. ROS production seems to be involved in antifungal activity and the higher activity against C. krusei versus C. albicans may be related to their unequal sensitivity to different ROS. No synergism with fluconazole or amphotericin was observed, but the association of 2h with fluconazole might be valuable due to the significant inhibition of the dimorphic transition, a C. albicans virulence mechanism.
Collapse
|
47
|
Consecutive treatments with photodynamic therapy and nystatin altered the expression of virulence and ergosterol biosynthesis genes of a fluconazole-resistant Candida albicans in vivo. Photodiagnosis Photodyn Ther 2021; 33:102155. [PMID: 33444787 DOI: 10.1016/j.pdpdt.2020.102155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/02/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022]
Abstract
This investigation assessed the effect of five consecutive daily topical treatments of antimicrobial photodynamic therapy (aPDT), nystatin (NYS), and an association of treatments on a fluconazole-resistant strain of Candida albicans colonizing the tongues of mice. After the last treatments application, colonies of C. albicans were recovered from the tongues and used to determine their fluconazole susceptibility. After 24 hours of the last treatment, the mice tongues were processed to evaluate the expression of C. albicans genes related to the virulence and ergosterol production. The fluconazole susceptibility test yielded a resistance profile similar for all treatment groups and the control group (no treatment). The treatments aPDT, NYS, NYS+aPDT, and aPDT+NYS promoted a reduction in ALS1, EFG1, CAP1, SOD1, SAP1, and LIP3 expression. The expression of HWP1 was higher in the three groups containing nystatin. In contrast, the treatments produced a significative increase in CAT1 gene expression, mainly in the groups in which aPDT was performed. The expression of genes related to ergosterol production was significantly reduced by the treatments evaluated (aPDT, NYS, NYS+aPDT, and aPDT+NYS). Thus, the consecutive topical treatments performed on mice tongues promoted a reduction in the expression of virulence and ergosterol biosynthesis genes of a fluconazole-resistant C. albicans.
Collapse
|
48
|
Joaquim AR, Reginatto P, Lopes MS, Bazana LCG, Gionbelli MP, de Cesare MA, Kaminski TFA, Teixeira ML, Abegg MA, Fuentefria AM, de Andrade SF. New 8-hydroxyquinoline derivatives highlight the potential of this class for treatment of fungal infections. NEW J CHEM 2021. [DOI: 10.1039/d0nj06188c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Compound 5h has interesting antifungal activity and a good toxicity profile and seems to act as an ion scavenger in fungi.
Collapse
Affiliation(s)
- Angélica Rocha Joaquim
- Pharmaceutical Synthesis Group (PHARSG), Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752 – Azenha, Porto Alegre, RS, 90610-000, Brazil
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Paula Reginatto
- Programa de Pós-graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marcela Silva Lopes
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luana Candice Genz Bazana
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mariana Pies Gionbelli
- Pharmaceutical Synthesis Group (PHARSG), Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752 – Azenha, Porto Alegre, RS, 90610-000, Brazil
| | - Maycon Antonio de Cesare
- Pharmaceutical Synthesis Group (PHARSG), Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752 – Azenha, Porto Alegre, RS, 90610-000, Brazil
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Mário Lettieri Teixeira
- Laboratório de Farmacologia, Instituto Federal Catarinense, Campus Concórdia, Concórdia, SC, Brazil
| | - Maxwel Adriano Abegg
- Instituto de Ciências Exatas e Tecnologia, Universidade Federal do Amazonas, Itacoatiara, AM, Brazil
| | - Alexandre Meneghello Fuentefria
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Saulo Fernandes de Andrade
- Pharmaceutical Synthesis Group (PHARSG), Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752 – Azenha, Porto Alegre, RS, 90610-000, Brazil
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
49
|
Tamez-Castrellón AK, Romeo O, García-Carnero LC, Lozoya-Pérez NE, Mora-Montes HM. Virulence Factors in Sporothrix schenckii, One of the Causative Agents of Sporotrichosis. Curr Protein Pept Sci 2021; 21:295-312. [PMID: 31589121 DOI: 10.2174/1389203720666191007103004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/02/2019] [Accepted: 08/08/2019] [Indexed: 11/22/2022]
Abstract
Sporothrix schenckii is one of the etiological agents of sporotrichosis, a fungal infection distributed worldwide. Both, the causative organism and the disease have currently received limited attention by the medical mycology community, most likely because of the low mortality rates associated with it. Nonetheless, morbidity is high in endemic regions and the versatility of S. schenckii to cause zoonosis and sapronosis has attracted attention. Thus far, virulence factors associated with this organism are poorly described. Here, comparing the S. schenckii genome sequence with other medically relevant fungi, genes involved in morphological change, cell wall synthesis, immune evasion, thermotolerance, adhesion, biofilm formation, melanin production, nutrient uptake, response to stress, extracellular vesicle formation, and toxin production are predicted and discussed as putative virulence factors in S. schenckii.
Collapse
Affiliation(s)
- Alma K Tamez-Castrellón
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050, Guanajuato, Gto., Mexico
| | - Orazio Romeo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Laura C García-Carnero
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050, Guanajuato, Gto., Mexico
| | - Nancy E Lozoya-Pérez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050, Guanajuato, Gto., Mexico
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050, Guanajuato, Gto., Mexico
| |
Collapse
|
50
|
Poopedi E, Marimani M, AlOmar SY, Aldahmash B, Ahmad A. Modulation of antioxidant defence system in response to berberine in Candida albicans. Yeast 2020; 38:157-169. [PMID: 33141949 DOI: 10.1002/yea.3531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022] Open
Abstract
Emergence of multidrug resistant species of Candida is evolving, which advocates an urgent need for the development of new therapeutic strategies and antifungal drugs. Activation of antioxidant defence system in Candida albicans is known as forefront mechanism to escape drug toxicity. This study evaluated the role of antioxidant defence genes in the susceptibility to fluconazole in C. albicans and also determined the effect of berberine on growth, antioxidant enzymes and the expression of their genes in C. albicans isolates. Expression of major antioxidant genes was significantly increased in fluconazole-resistant isolates in comparison with the susceptible group. Antifungal susceptibility against berberine showed MIC values ranging from 125 to 500 μg/ml. Berberine treatment caused upregulation of mRNA expression and enzymatic activities of the targeted major antioxidants. Interestingly, C. albicans exhibited efficient antioxidant response at lower concentrations but could not sufficiently alleviate berberine-induced oxidative stress occurring at concentrations greater than 250 μg/ml. Therefore, berberine could serve as a potent Reactive Oxygen Species (ROS)-inducing agent, disrupting the antioxidant system especially in fluconazole-resistant C. albicans to overcome antifungal drug resistance. TAKE AWAYS: Evaluated the role of antioxidant enzymes in FLC resistance in C. albicans Studied the effect of berberine on growth of different C. albicans isolates Investigated the modulation of antioxidant enzymes by berberine in C. albicans Studied the effect of berberine on antioxidant gene expression in C. albicans.
Collapse
Affiliation(s)
- Evida Poopedi
- Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Musa Marimani
- Department of Anatomical Pathology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Suliman Yousef AlOmar
- Doping Research, Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Badr Aldahmash
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa.,Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg, 2193, South Africa
| |
Collapse
|