1
|
Zhang L, Wei X. The Lego hypothesis of tissue morphogenesis: stereotypic organization of parallel orientational cell adhesions for epithelial self-assembly. Biol Rev Camb Philos Soc 2025; 100:445-460. [PMID: 39308450 PMCID: PMC11718597 DOI: 10.1111/brv.13147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 01/11/2025]
Abstract
How tissues develop distinct structures remains poorly understood. We propose herein the Lego hypothesis of tissue morphogenesis, which states that during tissue morphogenesis, the topographical properties of cell surface adhesion molecules can be dynamically altered and polarised by regulating the spatiotemporal expression and localization of orientational cell adhesion (OCA) molecules cell-autonomously and non-cell-autonomously, thus modulating cells into unique Lego pieces for self-assembling into distinct cytoarchitectures. This concept can be exemplified by epithelial morphogenesis, in which cells are coalesced into a sheet by many types of adhesions. Among them, parallel OCAs (pOCAs) at the lateral cell membranes are essential for configuring cells in parallel. Major pOCAs include Na+/K+-ATPase-mediated adhesions, Crumbs-mediated adhesions, tight junctions, adherens junctions, and desmosomes. These pOCAs align in stereotypical orders along the apical-to-basal axis, and their absolute positioning is also regulated. Such spatial organization of pOCAs underlies proper epithelial morphogenesis. Thus, a key open question about tissue morphogenesis is how to regulate OCAs to make compatible adhesive cellular Lego pieces for tissue construction.
Collapse
Affiliation(s)
- Lili Zhang
- Department of PsychologyDalian Medical University9 Lvshun South Road WestDalian116044Liaoning ProvinceChina
| | - Xiangyun Wei
- Departments of Ophthalmology and Microbiology & Molecular GeneticsUniversity of Pittsburgh1622 Locust StreetPittsburgh15219PAUSA
| |
Collapse
|
2
|
Rabino A, Awadia S, Ali N, Edson A, Garcia-Mata R. The Scribble-SGEF-Dlg1 complex regulates E-cadherin and ZO-1 stability, turnover and transcription in epithelial cells. J Cell Sci 2024; 137:jcs262181. [PMID: 39350674 PMCID: PMC11529605 DOI: 10.1242/jcs.262181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
SGEF (also known as ARHGEF26), a RhoG specific GEF, can form a ternary complex with the Scribble polarity complex proteins Scribble and Dlg1, which regulates the formation and maintenance of adherens junctions and barrier function of epithelial cells. Notably, silencing SGEF results in a dramatic downregulation of both E-cadherin and ZO-1 (also known as TJP1) protein levels. However, the molecular mechanisms involved in the regulation of this pathway are not known. Here, we describe a novel signaling pathway governed by the Scribble-SGEF-Dlg1 complex. Our results show that the three members of the ternary complex are required to maintain the stability of the apical junctions, ZO-1 protein levels and tight junction (TJ) permeability. In contrast, only SGEF is necessary to regulate E-cadherin levels. The absence of SGEF destabilizes the E-cadherin-catenin complex at the membrane, triggering a positive feedback loop that exacerbates the phenotype through the repression of E-cadherin transcription in a process that involves the internalization of E-cadherin by endocytosis, β-catenin signaling and the transcriptional repressor Slug (also known as SNAI2).
Collapse
Affiliation(s)
- Agustin Rabino
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Sahezeel Awadia
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Nabaa Ali
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Amber Edson
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Rafael Garcia-Mata
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
3
|
Zheng S, Zhao Y, Zheng Z, Liu Y, Liu S, Han J. Transport of glycinin, the major soybean allergen, across intestinal epithelial IPEC-J2 cell monolayers. J Anim Physiol Anim Nutr (Berl) 2024; 108:1360-1369. [PMID: 38689491 DOI: 10.1111/jpn.13975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/21/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
Soybean allergen entering the body is the initial step to trigger intestinal allergic response. However, it remains unclear how glycinin, the major soybean allergen, is transported through the intestinal mucosal barrier. The objective of this study was to elucidate the pathway and mechanism of glycinin hydrolysates transport through the intestinal epithelial barrier using IPEC-J2 cell model. Purified glycinin was digested by in vitro static digestion model. The pathway and mechanism of glycinin hydrolysates transport through intestinal epithelial cells were investigated by cellular transcytosis assay, cellular uptake assay, immunoelectron microscopy and endocytosis inhibition assay. The glycinin hydrolysates were transported across IPEC-J2 cell monolayers in a time/dose-dependent manner following the Michaelis equation. Immunoelectron microscopy showed a number of glycinin hydrolysates appeared in the cytoplasm, but no glycinin hydrolysates were observed in the intercellular space of IPEC-J2 cells. The inhibitors, colchicine, chlorpromazine and methyl-β-cyclodextrin, significantly inhibited the cellular uptake of glycinin hydrolysates. The glycinin hydrolysates crossed IPEC-J2 cell monolayers through the transcellular pathway. Both clathrin- and caveolae-dependent endocytosis were involved in the epithelial uptake of the hydrolysates. These findings provided potential targets for the prevention and treatment of soybean allergy.
Collapse
Affiliation(s)
- Shugui Zheng
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, PR China
| | - Yintong Zhao
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, PR China
| | - Ziang Zheng
- College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning, PR China
| | - Yajing Liu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, PR China
| | - Simiao Liu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, PR China
| | - Junfeng Han
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, PR China
| |
Collapse
|
4
|
Ansari I, Mandal A, Kansal K, Walling P, Khan S, Aijaz S. The C-terminal proline-rich repeats of Enteropathogenic E. coli effector EspF are sufficient for the depletion of tight junction membrane proteins and interactions with early and recycling endosomes. Gut Pathog 2024; 16:36. [PMID: 38972985 PMCID: PMC11229284 DOI: 10.1186/s13099-024-00626-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/28/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Enteropathogenic E. coli (EPEC) causes acute infantile diarrhea accounting for significant morbidity and mortality in developing countries. EPEC uses a type three secretion system to translocate more than twenty effectors into the host intestinal cells. At least four of these effectors, namely EspF, Map, EspG1/G2 and NleA, are reported to disrupt the intestinal tight junction barrier. We have reported earlier that the expression of EspF and Map in MDCK cells causes the depletion of the TJ membrane proteins and compromises the integrity of the intestinal barrier. In the present study, we have examined the role of the proline-rich repeats (PRRs) within the C-terminus of EspF in the depletion of the tight junction membrane proteins and identified key endocytosis markers that interact with EspF via these repeats. RESULTS We generated mutant EspF proteins which lacked one or more proline-rich repeats (PRRs) from the N-terminus of EspF and examined the effect of their expression on the cellular localization of tight junction membrane proteins. In lysates derived from cells expressing the mutant EspF proteins, we found that the C-terminal PRRs of EspF are sufficient to cause the depletion of TJ membrane proteins. Pull-down assays revealed that the PRRs mediate interactions with the TJ adaptor proteins ZO-1 and ZO-2 as well as with the proteins involved in endocytosis such as caveolin-1, Rab5A and Rab11. CONCLUSIONS Our study demonstrates the direct role of the proline-rich repeats of EspF in the depletion of the TJ membrane proteins and a possible involvement of the PRRs in the endocytosis of host proteins. New therapeutic strategies can target these PRR domains to prevent intestinal barrier dysfunction in EPEC infections.
Collapse
Affiliation(s)
- Imran Ansari
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Anupam Mandal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Kritika Kansal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pangertoshi Walling
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sumbul Khan
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Saima Aijaz
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
5
|
Zheng Z, Han J, Chen X, Zheng S. A Quantity-Dependent Nonlinear Model of Sodium Cromoglycate Suppression on Beta-Conglycinin Transport. Int J Mol Sci 2024; 25:6636. [PMID: 38928351 PMCID: PMC11204204 DOI: 10.3390/ijms25126636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Understanding the transport mechanism is crucial for developing inhibitors that block allergen absorption and transport and prevent allergic reactions. However, the process of how beta-conglycinin, the primary allergen in soybeans, crosses the intestinal mucosal barrier remains unclear. The present study indicated that the transport of beta-conglycinin hydrolysates by IPEC-J2 monolayers occurred in a time- and quantity-dependent manner. The beta-conglycinin hydrolysates were absorbed into the cytoplasm of IPEC-J2 monolayers, while none were detected in the intercellular spaces. Furthermore, inhibitors such as methyl-beta-cyclodextrin (MβCD) and chlorpromazine (CPZ) significantly suppressed the absorption and transport of beta-conglycinin hydrolysates. Of particular interest, sodium cromoglycate (SCG) exhibited a quantity-dependent nonlinear suppression model on the absorption and transport of beta-conglycinin hydrolysates. In conclusion, beta-conglycinin crossed the IPEC-J2 monolayers through a transcellular pathway, involving both clathrin-mediated and caveolae-dependent endocytosis mechanisms. SCG suppressed the absorption and transport of beta-conglycinin hydrolysates by the IPEC-J2 monolayers by a quantity-dependent nonlinear model via clathrin-mediated and caveolae-dependent endocytosis. These findings provide promising targets for both the prevention and treatment of soybean allergies.
Collapse
Affiliation(s)
- Ziang Zheng
- College of Information Science and Engineering, Northeastern University, NO. 3-11, Wenhua Road, Shenyang 110819, China; (Z.Z.)
| | - Junfeng Han
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Xinyi Chen
- College of Information Science and Engineering, Northeastern University, NO. 3-11, Wenhua Road, Shenyang 110819, China; (Z.Z.)
| | - Shugui Zheng
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| |
Collapse
|
6
|
Dithmer S, Blasig IE, Fraser PA, Qin Z, Haseloff RF. The Basic Requirement of Tight Junction Proteins in Blood-Brain Barrier Function and Their Role in Pathologies. Int J Mol Sci 2024; 25:5601. [PMID: 38891789 PMCID: PMC11172262 DOI: 10.3390/ijms25115601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/10/2024] [Accepted: 03/28/2024] [Indexed: 06/21/2024] Open
Abstract
This review addresses the role of tight junction proteins at the blood-brain barrier (BBB). Their expression is described, and their role in physiological and pathological processes at the BBB is discussed. Based on this, new approaches are depicted for paracellular drug delivery and diagnostics in the treatment of cerebral diseases. Recent data provide convincing evidence that, in addition to its impairment in the course of diseases, the BBB could be involved in the aetiology of CNS disorders. Further progress will be expected based on new insights in tight junction protein structure and in their involvement in signalling pathways.
Collapse
Affiliation(s)
- Sophie Dithmer
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany (I.E.B.)
| | - Ingolf E. Blasig
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany (I.E.B.)
| | | | - Zhihai Qin
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100049, China
| | - Reiner F. Haseloff
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany (I.E.B.)
| |
Collapse
|
7
|
Rabino A, Awadia S, Ali N, Edson A, Garcia-Mata R. The Scribble/SGEF/Dlg1 complex regulates the stability of apical junctions in epithelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586884. [PMID: 38585765 PMCID: PMC10996629 DOI: 10.1101/2024.03.26.586884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
SGEF, a RhoG specific GEF, can form a ternary complex with the Scribble polarity complex proteins Scribble and Dlg1, which regulates the formation and maintenance of adherens junctions and barrier function of epithelial cells. Notably, silencing SGEF results in a dramatic downregulation of the expression of both E-cadherin and ZO-1. However, the molecular mechanisms involved in the regulation of this pathway are not known. Here, we describe a novel signaling pathway governed by the Scribble/SGEF/Dlg1 complex. Our results show that an intact ternary complex is required to maintain the stability of the apical junctions, the expression of ZO-1, and TJ permeability. In contrast, only SGEF is necessary to regulate E-cadherin expression. The absence of SGEF destabilizes the E-cadherin/catenin complex at the membrane, triggering a positive feedback loop that exacerbates the phenotype through the repression of E-cadherin transcription in a process that involves the internalization of E-cadherin by endocytosis, β-catenin signaling and the transcriptional repressor Slug.
Collapse
Affiliation(s)
- Agustin Rabino
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Sahezeel Awadia
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Nabaa Ali
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Amber Edson
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Rafael Garcia-Mata
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| |
Collapse
|
8
|
Yang X, He Z, Dong Q, Nai S, Duan X, Yu J, Zhao N, Du X, Chen L. Btbd8 deficiency reduces susceptibility to colitis by enhancing intestinal barrier function and suppressing inflammation. Front Immunol 2024; 15:1382661. [PMID: 38558797 PMCID: PMC10978791 DOI: 10.3389/fimmu.2024.1382661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction BTBD8 has been identified as a susceptible gene for inflammatory bowel diseases (IBD). However, the function of BTBD8 in normal development and IBD pathogenesis remains unknown. Methods We administered drinking water with 3% dextran sodium sulfate (DSS) to wild-type (WT) and Btbd8 knockout (KO) mice for seven consecutive days to induce IBD. Subsequently, we further examined whether Btbd8 KO affects intestinal barrier and inflammation. Results We demonstrated that Btbd8 deficiency partially protects mice from DSS-induced IBD, even though no obvious phenotypes were observed in Btbd8 KO mice. Btbd8 deletion leads to strengthened tight junctions between intestinal epithelial cells, elevated intestinal stem cell activity, and enhanced mucus layer. All these three mechanisms work together to improve the intestinal barrier integrity in Btbd8 KO mice. In addition, Btbd8 deficiency mitigates inflammation by reducing the expression of IL-1β and IL-6 by macrophages. Discussion Our studies validate the crucial role of Btbd8 in IBD pathogenesis, and reveal that Btbd8 deficiency may ameliorate DSS-induced IBD through improving the intestinal barrier integrity, as well as suppressing inflammatory response mediated by macrophages. These findings suggest that Btbd8 could be a promising therapeutic target for the treatment of IBD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lingyi Chen
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
9
|
Dalton CM, Schlegel C, Hunter CJ. Caveolin-1: A Review of Intracellular Functions, Tissue-Specific Roles, and Epithelial Tight Junction Regulation. BIOLOGY 2023; 12:1402. [PMID: 37998001 PMCID: PMC10669080 DOI: 10.3390/biology12111402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
Caveolin-1 (Cav1) is a vital protein for many cellular processes and is involved in both the positive and negative regulation of these processes. Cav1 exists in multiple cellular compartments depending on its role. Of particular interest is its contribution to the formation of plasma membrane invaginations called caveolae and its involvement in cytoskeletal interactions, endocytosis, and cholesterol trafficking. Cav1 participates in stem cell differentiation as well as proliferation and cell death pathways, which is implicated in tumor growth and metastasis. Additionally, Cav1 has tissue-specific functions that are adapted to the requirements of the cells within those tissues. Its role has been described in adipose, lung, pancreatic, and vascular tissue and in epithelial barrier maintenance. In both the intestinal and the blood brain barriers, Cav1 has significant interactions with junctional complexes that manage barrier integrity. Tight junctions have a close relationship with Cav1 and this relationship affects both their level of expression and their location within the cell. The ubiquitous nature of Cav1 both within the cell and within specific tissues is what makes the protein important for ongoing research as it can assist in further understanding pathophysiologic processes and can potentially be a target for therapies.
Collapse
Affiliation(s)
- Cody M. Dalton
- Division of Pediatric Surgery, Oklahoma Children’s Hospital, 1200 Everett Drive, ET NP 2320, Oklahoma City, OK 73104, USA; (C.S.); (C.J.H.)
- Health Sciences Center, Department of Surgery, University of Oklahoma, 800 Research Parkway, Suite 449, Oklahoma City, OK 73104, USA
| | - Camille Schlegel
- Division of Pediatric Surgery, Oklahoma Children’s Hospital, 1200 Everett Drive, ET NP 2320, Oklahoma City, OK 73104, USA; (C.S.); (C.J.H.)
- Health Sciences Center, Department of Surgery, University of Oklahoma, 800 Research Parkway, Suite 449, Oklahoma City, OK 73104, USA
| | - Catherine J. Hunter
- Division of Pediatric Surgery, Oklahoma Children’s Hospital, 1200 Everett Drive, ET NP 2320, Oklahoma City, OK 73104, USA; (C.S.); (C.J.H.)
- Health Sciences Center, Department of Surgery, University of Oklahoma, 800 Research Parkway, Suite 449, Oklahoma City, OK 73104, USA
| |
Collapse
|
10
|
Li P, Zheng Z, Qi J, Gao Y, Yang L, Li L, Gao C. HDAC3 improves intestinal function of mice by regulating cGAS-Sting pathway of intestinal glial cells. Mol Immunol 2023; 162:95-101. [PMID: 37666082 DOI: 10.1016/j.molimm.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023]
Abstract
It is found that HDAC3 may be a potential therapeutic target for intestinal related diseases. At present, the role and mechanism of HDAC3 in the pathogenesis of severe acute pancreatitis (SAP) have not been reported, which needs to be further explored. The SAP mouse model was established and the expression of HDAC3 was detected by immunohistochemistry. H&E staining showed the intestinal pathological state of SAP mice. The expression of HDAC3 was measured by real-time quantitative PCR (RT qPCR) and Western blot. Apoptosis kit was used to determine cell apoptosis rate. The level of inflammatory factors was detected by ELISA kits. The expressions of HDAC3, cGAS and Sting were significantly increased in SAP patients and SAP mice. Silencing HDAC3 promoted the proliferation and adhesion of intestinal glial cells and inhibited the inflammation and apoptosis of intestinal epithelial cells. In addition, silencing HDAC3 inhibited oxidative stress in intestinal epithelial cells. Furthermore, silencing HDAC3 inhibited the activation of cGAS-Sting pathway in intestinal glial cells. More importantly, silencing HDAC3 alleviates intestinal barrier function in SAP mice. HDAC3 inhibition improves acute pancreatitis in mice by regulating cGAS-Sting pathway of intestinal glial cells.
Collapse
Affiliation(s)
- Pu Li
- Department of Critical Care Medicine, The Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, Shaanxi, China
| | - Zhaohui Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, Shaanxi, China
| | - Jing Qi
- Department of Experiential Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, Shaanxi, China
| | - Yanyao Gao
- Department of Exocrine Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, Shaanxi, China
| | - Liu Yang
- Department of Cardiovascular Medicine, Baoji High-tech Hospital, Baoji 721013, Shaanxi, China
| | - Lu Li
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, Shaanxi, China
| | - Changjun Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, Shaanxi, China.
| |
Collapse
|
11
|
Patel K, Nguyen J, Shaha S, Brightwell A, Duan W, Zubkowski A, Domingo IK, Riddell M. Loss of polarity regulators initiates gasdermin-E-mediated pyroptosis in syncytiotrophoblasts. Life Sci Alliance 2023; 6:e202301946. [PMID: 37468163 PMCID: PMC10355286 DOI: 10.26508/lsa.202301946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
The syncytiotrophoblast is a human epithelial cell that is bathed in maternal blood on the maternal-facing surface of the human placenta. It therefore acts as a barrier and exchange interface between the mother and fetus. Syncytiotrophoblast dysfunction is a feature of pregnancy pathologies, like preeclampsia. Dysfunctional syncytiotrophoblasts display a loss of microvilli, which is a marker of aberrant apical-basal polarization, but little data exist about the regulation of syncytiotrophoblast polarity. Atypical PKC isoforms are conserved polarity regulators. Thus, we hypothesized that aPKC isoforms regulate syncytiotrophoblast polarity. Using human placental explant culture and primary trophoblasts, we found that loss of aPKC activity or expression induces syncytiotrophoblast gasdermin-E-dependent pyroptosis, a form of programmed necrosis. We also establish that TNF-α induces an isoform-specific decrease in aPKC expression and gasdermin-E-dependent pyroptosis. Therefore, aPKCs are homeostatic regulators of the syncytiotrophoblast function and a pathogenically relevant pro-inflammatory cytokine leads to the induction of programmed necrosis at the maternal-fetal interface. Hence, our results have important implications for the pathobiology of placental disorders like preeclampsia.
Collapse
Affiliation(s)
- Khushali Patel
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Canada
| | - Jasmine Nguyen
- Department of Physiology, University of Alberta, Edmonton, Canada
| | - Sumaiyah Shaha
- Department of Physiology, University of Alberta, Edmonton, Canada
| | - Amy Brightwell
- Department of Physiology, University of Alberta, Edmonton, Canada
| | - Wendy Duan
- Department of Physiology, University of Alberta, Edmonton, Canada
| | - Ashley Zubkowski
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Ivan K Domingo
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Canada
| | - Meghan Riddell
- Department of Physiology, University of Alberta, Edmonton, Canada
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Canada
| |
Collapse
|
12
|
Zhang X, Shan M, Li S, Zhao J, Pang X, Yang G, Shan Y. Investigating the trans-membrane transport of HAIYPRH peptide-decorated nano-drugs. Phys Chem Chem Phys 2023; 25:9766-9771. [PMID: 36946095 DOI: 10.1039/d3cp00342f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Transferrin (Tf) has been effectively used to promote the cellular uptake of HAIYPRH (T7) peptide-conjugated nano-drugs. In this study, the enhancing effect of Tf on T7-decorated nano-drug transport was investigated using force tracing and nano-indentation techniques at a single-particle/cell level. Furthermore, the results were confirmed by ensemble fluorescence imaging.
Collapse
Affiliation(s)
- Xiaowan Zhang
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China.
| | - Meirong Shan
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China.
| | - Siying Li
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China.
| | - Jing Zhao
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China.
| | - Xuelei Pang
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China.
| | - Guocheng Yang
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China.
| | - Yuping Shan
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China.
| |
Collapse
|
13
|
Wei W, Li W, Yang L, Weeramantry S, Ma L, Fu P, Zhao Y. Tight junctions and acute kidney injury. J Cell Physiol 2023; 238:727-741. [PMID: 36815285 DOI: 10.1002/jcp.30976] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/27/2023] [Accepted: 02/04/2023] [Indexed: 02/24/2023]
Abstract
Acute kidney injury (AKI) is characterized by a rapid reduction in kidney function caused by various etiologies. Tubular epithelial cell dysregulation plays a pivotal role in the pathogenesis of AKI. Tight junction (TJ) is the major molecular structure that connects adjacent epithelial cells and is critical in maintaining barrier function and determining the permeability of epithelia. TJ proteins are dysregulated in various types of AKI, and some reno-protective drugs can reverse TJ changes caused by insult. An in-depth understanding of TJ regulation and its causality with AKI will provide more insight to the disease pathogenesis and will shed light on the potential role of TJs to serve as novel therapeutic targets in AKI.
Collapse
Affiliation(s)
- Wei Wei
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weiying Li
- Department of Internal Medicine, Florida Hospital/AdventHealth, Orlando, Florida, USA
| | - Letian Yang
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Savidya Weeramantry
- Department of Internal Medicine, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Liang Ma
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ping Fu
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuliang Zhao
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Insights of Endocytosis Signaling in Health and Disease. Int J Mol Sci 2023; 24:ijms24032971. [PMID: 36769293 PMCID: PMC9918140 DOI: 10.3390/ijms24032971] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Endocytosis in mammalian cells is a fundamental cellular machinery that regulates vital physiological processes, such as the absorption of metabolites, release of neurotransmitters, uptake of hormone cellular defense, and delivery of biomolecules across the plasma membrane. A remarkable characteristic of the endocytic machinery is the sequential assembly of the complex proteins at the plasma membrane, followed by internalization and fusion of various biomolecules to different cellular compartments. In all eukaryotic cells, functional characterization of endocytic pathways is based on dynamics of the protein complex and signal transduction modules. To coordinate the assembly and functions of the numerous parts of the endocytic machinery, the endocytic proteins interact significantly within and between the modules. Clathrin-dependent and -independent endocytosis, caveolar pathway, and receptor mediated endocytosis have been attributed to a greater variety of physiological and pathophysiological roles such as, autophagy, metabolism, cell division, apoptosis, cellular defense, and intestinal permeabilization. Notably, any defect or alteration in the endocytic machinery results in the development of pathological consequences associated with human diseases such as cancer, cardiovascular diseases, neurological diseases, and inflammatory diseases. In this review, an in-depth endeavor has been made to illustrate the process of endocytosis, and associated mechanisms describing pathological manifestation associated with dysregulated endocytosis machinery.
Collapse
|
15
|
Delon LC, Faria M, Jia Z, Johnston S, Gibson R, Prestidge CA, Thierry B. Capturing and Quantifying Particle Transcytosis with Microphysiological Intestine-on-Chip Models. SMALL METHODS 2023; 7:e2200989. [PMID: 36549695 DOI: 10.1002/smtd.202200989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/02/2022] [Indexed: 06/17/2023]
Abstract
Understanding the intestinal transport of particles is critical in several fields ranging from optimizing drug delivery systems to capturing health risks from the increased presence of nano- and micro-sized particles in human environment. While Caco-2 cell monolayers grown on permeable supports are the traditional in vitro model used to probe intestinal absorption of dissolved molecules, they fail to recapitulate the transcytotic activity of polarized enterocytes. Here, an intestine-on-chip model is combined with in silico modeling to demonstrate that the rate of particle transcytosis is ≈350× higher across Caco-2 cell monolayers exposed to fluid shear stress compared to Caco-2 cells in standard "static" configuration. This relates to profound phenotypical alterations and highly polarized state of cells grown under mechanical stimulation and it is shown that transcytosis in the microphysiological model is energy-dependent and involves both clathrin and macropinocytosis mediated endocytic pathways. Finally, it is demonstrated that the increased rate of transcytosis through cells exposed to flow is explained by a higher rate of internal particle transport (i.e., vesicular cellular trafficking and basolateral exocytosis), rather than a change in apical uptake (i.e., binding and endocytosis). Taken together, the findings have important implications for addressing research questions concerning intestinal transport of engineered and environmental particles.
Collapse
Affiliation(s)
- Ludivine C Delon
- Future Industries Institute, University of South Australia, Adelaide, SA, 5095, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Matthew Faria
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Zhengyang Jia
- Future Industries Institute, University of South Australia, Adelaide, SA, 5095, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Stuart Johnston
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Rachel Gibson
- School of Allied Health Science and Practice, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5050, Australia
| | - Clive A Prestidge
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Benjamin Thierry
- Future Industries Institute, University of South Australia, Adelaide, SA, 5095, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| |
Collapse
|
16
|
Zhang JY, Liu XX, Lin JY, Bao XY, Peng JQ, Gong ZP, Luan X, Chen Y. Biomimetic engineered nanocarriers inspired by viruses for oral-drug delivery. Int J Pharm 2022; 624:121979. [DOI: 10.1016/j.ijpharm.2022.121979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 10/17/2022]
|
17
|
Puerta-Guardo H, Biering SB, de Sousa FTG, Shu J, Glasner DR, Li J, Blanc SF, Beatty PR, Harris E. Flavivirus NS1 Triggers Tissue-Specific Disassembly of Intercellular Junctions Leading to Barrier Dysfunction and Vascular Leak in a GSK-3β-Dependent Manner. Pathogens 2022; 11:615. [PMID: 35745469 PMCID: PMC9228372 DOI: 10.3390/pathogens11060615] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/13/2022] [Accepted: 05/19/2022] [Indexed: 02/05/2023] Open
Abstract
The flavivirus nonstructural protein 1 (NS1) is secreted from infected cells and contributes to endothelial barrier dysfunction and vascular leak in a tissue-dependent manner. This phenomenon occurs in part via disruption of the endothelial glycocalyx layer (EGL) lining the endothelium. Additionally, we and others have shown that soluble DENV NS1 induces disassembly of intercellular junctions (IJCs), a group of cellular proteins critical for maintaining endothelial homeostasis and regulating vascular permeability; however, the specific mechanisms by which NS1 mediates IJC disruption remain unclear. Here, we investigated the relative contribution of five flavivirus NS1 proteins, from dengue (DENV), Zika (ZIKV), West Nile (WNV), Japanese encephalitis (JEV), and yellow fever (YFV) viruses, to the expression and localization of the intercellular junction proteins β-catenin and VE-cadherin in endothelial cells from human umbilical vein and brain tissues. We found that flavivirus NS1 induced the mislocalization of β-catenin and VE-cadherin in a tissue-dependent manner, reflecting flavivirus disease tropism. Mechanistically, we observed that NS1 treatment of cells triggered internalization of VE-cadherin, likely via clathrin-mediated endocytosis, and phosphorylation of β-catenin, part of a canonical IJC remodeling pathway during breakdown of endothelial barriers that activates glycogen synthase kinase-3β (GSK-3β). Supporting this model, we found that a chemical inhibitor of GSK-3β reduced both NS1-induced permeability of human umbilical vein and brain microvascular endothelial cell monolayers in vitro and vascular leakage in a mouse dorsal intradermal model. These findings provide insight into the molecular mechanisms regulating NS1-mediated endothelial dysfunction and identify GSK-3β as a potential therapeutic target for treatment of vascular leakage during severe dengue disease.
Collapse
Affiliation(s)
- Henry Puerta-Guardo
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720-3370, USA; (S.B.B.); (F.T.G.d.S.); (J.S.); (D.R.G.); (J.L.); (S.F.B.); (P.R.B.)
- Laboratorio de Virologia, CIR-Biomedicas y Unidad Colaborativa de Bioensayos Entomologicos (UCBE), Universidad Autonoma de Yucatan, Merida 97000, Mexico
| | - Scott B. Biering
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720-3370, USA; (S.B.B.); (F.T.G.d.S.); (J.S.); (D.R.G.); (J.L.); (S.F.B.); (P.R.B.)
| | - Francielle Tramontini Gomes de Sousa
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720-3370, USA; (S.B.B.); (F.T.G.d.S.); (J.S.); (D.R.G.); (J.L.); (S.F.B.); (P.R.B.)
| | - Jeffrey Shu
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720-3370, USA; (S.B.B.); (F.T.G.d.S.); (J.S.); (D.R.G.); (J.L.); (S.F.B.); (P.R.B.)
| | - Dustin R. Glasner
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720-3370, USA; (S.B.B.); (F.T.G.d.S.); (J.S.); (D.R.G.); (J.L.); (S.F.B.); (P.R.B.)
| | - Jeffrey Li
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720-3370, USA; (S.B.B.); (F.T.G.d.S.); (J.S.); (D.R.G.); (J.L.); (S.F.B.); (P.R.B.)
| | - Sophie F. Blanc
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720-3370, USA; (S.B.B.); (F.T.G.d.S.); (J.S.); (D.R.G.); (J.L.); (S.F.B.); (P.R.B.)
| | - P. Robert Beatty
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720-3370, USA; (S.B.B.); (F.T.G.d.S.); (J.S.); (D.R.G.); (J.L.); (S.F.B.); (P.R.B.)
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720-3370, USA; (S.B.B.); (F.T.G.d.S.); (J.S.); (D.R.G.); (J.L.); (S.F.B.); (P.R.B.)
| |
Collapse
|
18
|
Corgnac S, Damei I, Gros G, Caidi A, Terry S, Chouaib S, Deloger M, Mami-Chouaib F. Cancer stem-like cells evade CD8 +CD103 + tumor-resident memory T (T RM) lymphocytes by initiating an epithelial-to-mesenchymal transition program in a human lung tumor model. J Immunother Cancer 2022; 10:jitc-2022-004527. [PMID: 35418483 PMCID: PMC9014106 DOI: 10.1136/jitc-2022-004527] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 02/06/2023] Open
Abstract
Background Cancer stem cells (CSC) define a population of rare malignant cells endowed with ‘stemness’ properties, such as self-renewing, multipotency and tumorigenicity. They are responsible for tumor initiation and progression, and could be associated with resistance to immunotherapies by negatively regulating antitumor immune response and acquiring molecular features enabling escape from CD8 T-cell immunity. However, the immunological hallmarks of human lung CSC and their potential interactions with resident memory T (TRM) cells within the tumor microenvironment have not been investigated. Methods We generated a non-small cell lung cancer model, including CSC line and clones, and autologous CD8+CD103+ TRM and CD8+CD103− non-TRM clones, to dissect out immune properties of CSC and their susceptibility to specific T-cell-mediated cytotoxic activity. Results Unlike their parental tumor cells, lung CSC are characterized by the initiation of an epithelial-to-mesenchymal transition program defined by upregulation of the SNAIL1 transcription factor and downregulation of phosphorylated-GSK-3β and cell surface E-cadherin. Acquisition of a CSC profile results in partial resistance to TRM-cell-mediated cytotoxicity, which correlates with decreased surface expression of the CD103 ligand E-cadherin and human leukocyte antigen-A2-neoepitope complexes. On the other hand, CSC gained expression of intercellular adhesion molecule (ICAM)-1 and thereby sensitivity to leukocyte function-associated antigen (LFA)-1-dependent non-TRM-cell-mediated killing. Cytotoxicity is inhibited by anti-ICAM-1 and anti-major histocompatibility complex class I neutralizing antibodies further emphasizing the role of LFA-1/ICAM-1 interaction in T-cell receptor-dependent lytic function. Conclusion Our data support the rational design of immunotherapeutic strategies targeting CSC to optimize their responsiveness to local CD8+CD103+ TRM cells for more efficient anticancer treatments.
Collapse
Affiliation(s)
- Stéphanie Corgnac
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Isabelle Damei
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Gwendoline Gros
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Aziza Caidi
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France.,Gustave Roussy, Plateforme de Bioinformatique, Université Paris-Saclay, INSERM US23, CNRS UMS 3655, Villejuif, France
| | - Stéphane Terry
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Salem Chouaib
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France.,Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, UAE
| | - Marc Deloger
- Gustave Roussy, Plateforme de Bioinformatique, Université Paris-Saclay, INSERM US23, CNRS UMS 3655, Villejuif, France
| | - Fathia Mami-Chouaib
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
19
|
Sekulic-Jablanovic M, Paproth J, Sgambato C, Albano G, Fuster DG, Bodmer D, Petkovic V. Lack of NHE6 and Inhibition of NKCC1 Associated With Increased Permeability in Blood Labyrinth Barrier-Derived Endothelial Cell Layer. Front Cell Neurosci 2022; 16:862119. [PMID: 35496913 PMCID: PMC9039518 DOI: 10.3389/fncel.2022.862119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/17/2022] [Indexed: 12/20/2022] Open
Abstract
Acoustic trauma, autoimmune inner ear disease, and presbycusis feature loss of the integrity of the blood-labyrinth barrier (BLB). Normal BLB function depends on endothelial structural integrity, which is supported and maintained by tight junctions and adherens junctions within the microvascular endothelial layer. When these junctions are disrupted, vascular leakage occurs. Tight junctions and adherens junctions are functionally and structurally linked, but the exact signaling pathways underlying their interaction remain unknown. In addition, solute carriers (SC) are essential for optimal exchange through BLB. Previously, we found that SC family member, the sodium–hydrogen exchanger NHE6, was expressed in all wildtype cochlear tissues, and that Nhe6-knockout mice displayed moderate hearing loss. Moreover, NHE6 depletion affected Trk protein turnover and endosomal signaling. Here, we investigated whether NHE6 might impact BLB integrity. We found that Nhe6-knockout, BLB-derived endothelial cells showed reduced expression of major junctional genes: Tjp1, F11r, Ocln, Cdh5, and Cldn5. Co-culturing BLB-derived endothelial cells with pericytes and/or perivascular resident macrophage-like melanocytes in a transwell system showed that monolayers of Nhe6-knockout BLB-derived cells had lower electrical resistance and higher permeability, compared to wildtype endothelial monolayers. Additionally, another SC, NKCC1, which was previously linked to congenital deafness, was downregulated in our Nhe6-knockout mouse model. Blocking NKCC1 with a NKCC1-specific inhibitor, bumetanide, in wildtype BLB-derived endothelial cells also caused the downregulation of major junctional proteins, particularly Tjp1 and F11r, which encode the zonula occludens and junctional adhesion molecule-1 proteins, respectively. Moreover, bumetanide treatment increased cell permeability. In conclusion, we showed that the lack or inhibition of NHE6 or NKCC1 affected the permeability of endothelial BLB-derived cells. These findings suggested that NHE6 and NKCC1 could serve as potential targets for modifying BLB permeability to facilitate drug delivery across the BLB to the cochlea or to protect the cochlea from ototoxic insults.
Collapse
Affiliation(s)
- Marijana Sekulic-Jablanovic
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- *Correspondence: Marijana Sekulic-Jablanovic,
| | - Jessica Paproth
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Cinzia Sgambato
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Giuseppe Albano
- Inselspital Bern, Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Daniel G. Fuster
- Inselspital Bern, Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Daniel Bodmer
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Clinic for Otolaryngology, Head and Neck Surgery, University Hospital Basel, Basel, Switzerland
| | - Vesna Petkovic
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
20
|
Ashley B, Simner C, Manousopoulou A, Jenkinson C, Hey F, Frost JM, Rezwan FI, White CH, Lofthouse EM, Hyde E, Cooke LDF, Barton S, Mahon P, Curtis EM, Moon RJ, Crozier SR, Inskip HM, Godfrey KM, Holloway JW, Cooper C, Jones KS, Lewis RM, Hewison M, Garbis SDD, Branco MR, Harvey NC, Cleal JK. Placental uptake and metabolism of 25(OH)vitamin D determine its activity within the fetoplacental unit. eLife 2022; 11:e71094. [PMID: 35256050 PMCID: PMC8903835 DOI: 10.7554/elife.71094] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 01/20/2022] [Indexed: 12/13/2022] Open
Abstract
Pregnancy 25-hydroxyvitamin D [25(OH)D] concentrations are associated with maternal and fetal health outcomes. Using physiological human placental perfusion and villous explants, we investigate the role of the placenta in regulating the relationships between maternal 25(OH)D and fetal physiology. We demonstrate active placental uptake of 25(OH)D3 by endocytosis, placental metabolism of 25(OH)D3 into 24,25-dihydroxyvitamin D3 and active 1,25-dihydroxyvitamin D [1,25(OH)2D3], with subsequent release of these metabolites into both the maternal and fetal circulations. Active placental transport of 25(OH)D3 and synthesis of 1,25(OH)2D3 demonstrate that fetal supply is dependent on placental function rather than simply the availability of maternal 25(OH)D3. We demonstrate that 25(OH)D3 exposure induces rapid effects on the placental transcriptome and proteome. These map to multiple pathways central to placental function and thereby fetal development, independent of vitamin D transfer. Our data suggest that the underlying epigenetic landscape helps dictate the transcriptional response to vitamin D treatment. This is the first quantitative study demonstrating vitamin D transfer and metabolism by the human placenta, with widespread effects on the placenta itself. These data demonstrate a complex interplay between vitamin D and the placenta and will inform future interventions using vitamin D to support fetal development and maternal adaptations to pregnancy.
Collapse
Affiliation(s)
- Brogan Ashley
- The Institute of Developmental Sciences, Human Development and Health, Faculty of Medicine University of SouthamptonSouthamptonUnited Kingdom
| | - Claire Simner
- The Institute of Developmental Sciences, Human Development and Health, Faculty of Medicine University of SouthamptonSouthamptonUnited Kingdom
| | - Antigoni Manousopoulou
- Beckman Research Institute, City of Hope National Medical CenterDuarteUnited States
- Proteas Bioanalytics Inc, BioLabs at the Lundquist InstituteTorranceUnited States
| | - Carl Jenkinson
- Institute of Metabolism and Systems Research, The University of BirminghamBirminghamUnited Kingdom
| | - Felicity Hey
- NIHR Cambridge Biomedical Research Centre, Nutritional Biomarker Laboratory. MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Clifford Allbutt Building, Cambridge Biomedical CampusCambridgeUnited Kingdom
- Formerly at MRC Elsie Widdowson Laboratory, Cambridge, CB1 9NL l Merck Exploratory Science Center, Merck Research LaboratoriesCambridgeUnited States
| | - Jennifer M Frost
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of LondonLondonUnited Kingdom
| | - Faisal I Rezwan
- The Institute of Developmental Sciences, Human Development and Health, Faculty of Medicine University of SouthamptonSouthamptonUnited Kingdom
- School of Water, Energy and Environment, Cranfield UniversityCranfieldUnited Kingdom
| | - Cory H White
- The Institute of Developmental Sciences, Human Development and Health, Faculty of Medicine University of SouthamptonSouthamptonUnited Kingdom
- Merck Exploratory Science Center, Merck Research LaboratoriesCambridgeUnited States
| | - Emma M Lofthouse
- The Institute of Developmental Sciences, Human Development and Health, Faculty of Medicine University of SouthamptonSouthamptonUnited Kingdom
| | - Emily Hyde
- The Institute of Developmental Sciences, Human Development and Health, Faculty of Medicine University of SouthamptonSouthamptonUnited Kingdom
| | - Laura DF Cooke
- The Institute of Developmental Sciences, Human Development and Health, Faculty of Medicine University of SouthamptonSouthamptonUnited Kingdom
| | - Sheila Barton
- MRC Lifecourse Epidemiology Centre, University of SouthamptonSouthamptonUnited Kingdom
| | - Pamela Mahon
- MRC Lifecourse Epidemiology Centre, University of SouthamptonSouthamptonUnited Kingdom
| | - Elizabeth M Curtis
- MRC Lifecourse Epidemiology Centre, University of SouthamptonSouthamptonUnited Kingdom
| | - Rebecca J Moon
- MRC Lifecourse Epidemiology Centre, University of SouthamptonSouthamptonUnited Kingdom
| | - Sarah R Crozier
- MRC Lifecourse Epidemiology Centre, University of SouthamptonSouthamptonUnited Kingdom
- NIHR Applied Research Collaboration Wessex, Southampton Science ParkSouthamptonUnited Kingdom
| | - Hazel M Inskip
- MRC Lifecourse Epidemiology Centre, University of SouthamptonSouthamptonUnited Kingdom
| | - Keith M Godfrey
- MRC Lifecourse Epidemiology Centre, University of SouthamptonSouthamptonUnited Kingdom
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation TrustSouthamptonUnited Kingdom
| | - John W Holloway
- The Institute of Developmental Sciences, Human Development and Health, Faculty of Medicine University of SouthamptonSouthamptonUnited Kingdom
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Centre, University of SouthamptonSouthamptonUnited Kingdom
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation TrustSouthamptonUnited Kingdom
- NIHR Oxford Biomedical Research Center, University of OxfordOxfordUnited Kingdom
| | - Kerry S Jones
- NIHR Cambridge Biomedical Research Centre, Nutritional Biomarker Laboratory. MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Clifford Allbutt Building, Cambridge Biomedical CampusCambridgeUnited Kingdom
- Formerly at MRC Elsie Widdowson Laboratory, Cambridge, CB1 9NL l Merck Exploratory Science Center, Merck Research LaboratoriesCambridgeUnited States
| | - Rohan M Lewis
- The Institute of Developmental Sciences, Human Development and Health, Faculty of Medicine University of SouthamptonSouthamptonUnited Kingdom
| | - Martin Hewison
- Institute of Metabolism and Systems Research, The University of BirminghamBirminghamUnited Kingdom
| | - Spiros DD Garbis
- Proteas Bioanalytics Inc, BioLabs at the Lundquist InstituteTorranceUnited States
| | - Miguel R Branco
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of LondonLondonUnited Kingdom
| | - Nicholas C Harvey
- MRC Lifecourse Epidemiology Centre, University of SouthamptonSouthamptonUnited Kingdom
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation TrustSouthamptonUnited Kingdom
| | - Jane K Cleal
- The Institute of Developmental Sciences, Human Development and Health, Faculty of Medicine University of SouthamptonSouthamptonUnited Kingdom
| |
Collapse
|
21
|
The Autophagic Route of E-Cadherin and Cell Adhesion Molecules in Cancer Progression. Cancers (Basel) 2021; 13:cancers13246328. [PMID: 34944948 PMCID: PMC8699259 DOI: 10.3390/cancers13246328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary A hallmark of carcinoma progression is the loss of epithelial integrity. In this context, the deregulation of adhesion molecules, such as E-cadherin, affects epithelial structures and associates with epithelial to mesenchymal transition (EMT). This, in turn, fosters cancer progression. Autophagy endows cancer cells with the ability to overcome intracellular and environmental stress stimuli, such as anoikis, nutrient deprivation, hypoxia, and drugs. Furthermore, it plays an important role in the degradation of cell adhesion proteins and in EMT. This review focuses on the interplay between the turnover of adhesion molecules, primarily E-cadherin, and autophagy in cancer progression. Abstract Cell-to-cell adhesion is a key element in epithelial tissue integrity and homeostasis during embryogenesis, response to damage, and differentiation. Loss of cell adhesion and gain of mesenchymal features, a phenomenon known as epithelial to mesenchymal transition (EMT), are essential steps in cancer progression. Interestingly, downregulation or degradation by endocytosis of epithelial adhesion molecules (e.g., E-cadherin) associates with EMT and promotes cell migration. Autophagy is a physiological intracellular degradation and recycling process. In cancer, it is thought to exert a tumor suppressive role in the early phases of cell transformation but, once cells have gained a fully transformed phenotype, autophagy may fuel malignant progression by promoting EMT and conferring drug resistance. In this review, we discuss the crosstalk between autophagy, EMT, and turnover of epithelial cell adhesion molecules, with particular attention to E-cadherin.
Collapse
|
22
|
Rehman S, Gora AH, Siriyappagouder P, Brugman S, Fernandes JMO, Dias J, Kiron V. Zebrafish intestinal transcriptome highlights subdued inflammatory responses to dietary soya bean and efficacy of yeast β-glucan. JOURNAL OF FISH DISEASES 2021; 44:1619-1637. [PMID: 34237181 DOI: 10.1111/jfd.13484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Anti-nutritional factors in dietary components can have a negative impact on the intestinal barrier. Here, we present soya bean-induced changes in the intestine of juvenile zebrafish and the effect of yeast β-glucan through a transcriptomic approach. The inclusion of soya bean meal affected the expression of several intestinal barrier function-related genes like arl4ca, rab25b, rhoub, muc5ac, muc5d, clcn2c and cltb in zebrafish. Several metabolic genes like cyp2x10.2, cyp2aa2, aldh3a2b, crata, elovl4, elovl6, slc51a, gpat2 and ATP-dependent peptidase activity (lonrf, clpxb) were altered in the intestinal tissue. The expression of immune-related genes like nlrc3, nlrp12, gimap8, prdm1 and tph1a, and genes related to cell cycle, DNA damage and DNA repair (e.g. spo11, rad21l1, nabp1b, spata22, tdrd9) were also affected in the soya bean fed group. Furthermore, our study suggests the plausible effect of yeast β-glucan through the modulation of several genes that regulate immune responses and barrier integrity. Our findings indicate a subdued inflammation in juvenile zebrafish fed soya bean meal and the efficacy of β-glucan to counter these subtle inflammatory responses.
Collapse
Affiliation(s)
- Saima Rehman
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Adnan H Gora
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Sylvia Brugman
- Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | | | | | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|
23
|
He P, Zhang C, Chen G, Shen S. Loss of lncRNA SNHG8 promotes epithelial-mesenchymal transition by destabilizing CDH1 mRNA. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1858-1867. [PMID: 33754289 DOI: 10.1007/s11427-020-1895-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/22/2021] [Indexed: 10/21/2022]
Abstract
Long non-coding RNAs (lncRNAs) are widely involved in a variety of biological processes, including epithelial-mesenchymal transition (EMT). In the current study, we found that lncRNA small nucleolar RNA host gene 8 (SNHG8) was tightly correlated with EMT-associated gene signatures, and was down-regulated by Zinc finger E-box-binding homeobox 1 (ZEB1) during EMT progress. Functionally, knockdown of SNHG8 induced EMT in epithelial cells, through destabilizing the CDH1 mRNA dependent on a 17-nucleotide sequence shared by SNHG8 and CDH1. In addition, analysis with public database showed that SNHG8 tended to be down-regulated in different cancer types and the lower expression of SNHG8 predicted poorer prognosis. Taken together, our study reports a ZEB1-repressed lncRNA SNHG8 which is important for stabilizing CDH1 mRNA, thereby maintaining the epithelial status of epithelial cells.
Collapse
Affiliation(s)
- Ping He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, State Key Laboratory of Oncogenes and Related Genes and Chinese Academy of Medical Sciences Research Unit (NO.2019RU043), Shanghai Cancer Institute, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Cheng Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, State Key Laboratory of Oncogenes and Related Genes and Chinese Academy of Medical Sciences Research Unit (NO.2019RU043), Shanghai Cancer Institute, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Guoqiang Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, State Key Laboratory of Oncogenes and Related Genes and Chinese Academy of Medical Sciences Research Unit (NO.2019RU043), Shanghai Cancer Institute, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shaoming Shen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, State Key Laboratory of Oncogenes and Related Genes and Chinese Academy of Medical Sciences Research Unit (NO.2019RU043), Shanghai Cancer Institute, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
24
|
Transport of environmental natural organic matter coated silver nanoparticle across cell membrane based on membrane etching treatment and inhibitors. Sci Rep 2021; 11:507. [PMID: 33436771 PMCID: PMC7803783 DOI: 10.1038/s41598-020-79901-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 12/14/2020] [Indexed: 12/24/2022] Open
Abstract
Environmental natural organic matters (NOMs) have great effects on the physicochemical properties of engineering nanoparticles, which may impact the transport of nanoparticles across plasma membrane and the cytotoxicity. Therefore, the kinetics, uptake pathway and mass of transporting into A549 cell membrane of silver nanoparticles (AgNPs) coated with citric acid (CA), tartaric acid (TA) and fulvic acid (FA) were investigated, respectively. CA, FA and TA enhanced the colloidal stability of AgNPs in culture medium and have greatly changed the surface plasmon resonance spectrum of AgNPs due to the absorption of CA, FA and TA on surface of AgNPs. Internalizing model showed that velocity of CA-, TA- and FA-nAg transporting into A549 cell were 5.82-, 1.69- and 0.29-fold higher than those of the control group, respectively. Intracellular mass of Ag was dependent on mass of AgNPs delivered to cell from suspension, which obeyed Logistic model and was affected by NOMs that CA- and TA-nAg showed a large promotion on intracellular mass of Ag. The lipid raft/caveolae-mediated endocytosis (LME) of A549 cell uptake of AgNPs were susceptible to CA, TA and FA that uptake of CA-, TA- and FA-nAg showed lower degree of dependent on LME than that of the control (uncoated AgNPs). Actin-involved uptake pathway and macropinocytosis would have less contribution to uptake of FA-nAg. Overall, transmembrane transport of NOMs-coated AgNPs differs greatly from that of the pristine AgNPs.
Collapse
|
25
|
Role of Actin Cytoskeleton in E-cadherin-Based Cell–Cell Adhesion Assembly and Maintenance. J Indian Inst Sci 2021. [DOI: 10.1007/s41745-020-00214-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Eguchi H, Matsunaga H, Onuma S, Yoshino Y, Matsunaga T, Ikari A. Down-Regulation of Claudin-2 Expression by Cyanidin-3-Glucoside Enhances Sensitivity to Anticancer Drugs in the Spheroid of Human Lung Adenocarcinoma A549 Cells. Int J Mol Sci 2021; 22:ijms22020499. [PMID: 33419064 PMCID: PMC7825397 DOI: 10.3390/ijms22020499] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022] Open
Abstract
Claudin-2 (CLDN2), an integral membrane protein located at tight junctions, is abnormally expressed in human lung adenocarcinoma tissues, and is linked to drug resistance in human lung adenocarcinoma A549 cells. CLDN2 may be a target for the prevention of lung adenocarcinoma, but there are few compounds which can reduce CLDN2 expression. We found that cyanidin-3-glucoside (C3G), the anthocyanin with two hydroxyl groups on the B-ring, and cyanidin significantly reduce the protein level of CLDN2 in A549 cells. In contrast, pelargonidin-3-glucoside (P3G), the anthocyanin with one hydroxyl group on the B-ring, had no effect. These results suggest that cyanidin and the hydroxyl group at the 3-position on the B-ring play an important role in the reduction of CLDN2 expression. The phosphorylation of Akt, an activator of CLDN2 expression at the transcriptional level, was inhibited by C3G, but not by P3G. The endocytosis and lysosomal degradation are suggested to be involved in the C3G-induced decrease in CLDN2 protein expression. C3G increased the phosphorylation of p38 and the p38 inhibitor SB203580 rescued the C3G-induced decrease in CLDN2 expression. In addition, SB203580 rescued the protein stability of CLDN2. C3G may reduce CLDN2 expression at the transcriptional and post-translational steps mediated by inhibiting Akt and activating p38, respectively. C3G enhanced the accumulation and cytotoxicity of doxorubicin (DXR) in the spheroid models. The percentages of apoptotic and necrotic cells induced by DXR were increased by C3G. Our data suggest that C3G-rich foods can prevent the chemoresistance of lung adenocarcinoma A549 cells through the reduction of CLDN2 expression.
Collapse
Affiliation(s)
- Hiroaki Eguchi
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan; (H.E.); (H.M.); (S.O.); (Y.Y.)
| | - Haruka Matsunaga
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan; (H.E.); (H.M.); (S.O.); (Y.Y.)
| | - Saki Onuma
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan; (H.E.); (H.M.); (S.O.); (Y.Y.)
| | - Yuta Yoshino
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan; (H.E.); (H.M.); (S.O.); (Y.Y.)
| | - Toshiyuki Matsunaga
- Education Center of Green Pharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 502-8585, Japan;
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan; (H.E.); (H.M.); (S.O.); (Y.Y.)
- Correspondence: ; Tel./Fax: +81-58-230-8124
| |
Collapse
|
27
|
Zhao Y, Xiong S, Liu P, Liu W, Wang Q, Liu Y, Tan H, Chen X, Shi X, Wang Q, Chen T. Polymeric Nanoparticles-Based Brain Delivery with Improved Therapeutic Efficacy of Ginkgolide B in Parkinson's Disease. Int J Nanomedicine 2020; 15:10453-10467. [PMID: 33380795 PMCID: PMC7769078 DOI: 10.2147/ijn.s272831] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 11/20/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose Ginkgolide B (GB) is a terpene lactone derivative of Ginkgo biloba that is believed to function in a neuroprotective manner ideal for treating Parkinson’s disease (PD). Despite its promising therapeutic properties, GB has poor bioavailability following oral administration and cannot readily achieve sufficient exposure in treated patients, limiting its clinical application for the treatment of PD. In an effort to improve its efficacy, we utilized poly(ethylene glycol)-co-poly(ε-caprolactone) (PEG-PCL) nanoparticles as a means of encapsulating GB (GB-NPs). These NPs facilitated the sustained release of GB into the blood, thereby improving its ability to accumulate in the brain and to treat PD. Methods and Results Using Madin-Darby canine kidney (MDCK) cells, we were able to confirm that these NPs could be taken into cells via multiple nonspecific mechanisms including micropinocytosis, clathrin-dependent endocytosis, and lipid raft/caveolae-mediated endocytosis. Once internalized, these NPs tended to accumulate in the endoplasmic reticulum and lysosomes. In zebrafish, we determined that these NPs were readily able to undergo transport across the chorion, gastrointestinal, blood–brain, and blood-retinal barriers. In a 1-methyl-4-phenylpyridinium ion (MPP+)-induced neuronal damage model system, we confirmed the neuroprotective potential of these NPs. Following oral administration to rats, GB-NPs exhibited more desirable pharmacokinetics than did free GB, achieving higher GB concentrations in both the brain and the blood. Using a murine PD model, we demonstrated that these GB-NPs achieved superior therapeutic efficacy and reduced toxicity relative to free GB. Conclusion In conclusion, these results indicate that NPs encapsulation of GB can significantly improve its oral bioavailability, cerebral accumulation, and bioactivity via mediating its sustained release in vivo.
Collapse
Affiliation(s)
- Yuying Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, People's Republic of China
| | - Sha Xiong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, People's Republic of China
| | - Piaoxue Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, People's Republic of China
| | - Wei Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, People's Republic of China
| | - Qun Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, People's Republic of China
| | - Yao Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, People's Republic of China
| | - Hanxu Tan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, People's Republic of China
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, People's Republic of China
| | - Xuguang Shi
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, People's Republic of China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, People's Republic of China
| |
Collapse
|
28
|
Characterization of the interaction between β-catenin and sorting nexin 27: contribution of the type I PDZ-binding motif to Wnt signaling. Biosci Rep 2020; 39:220894. [PMID: 31696214 PMCID: PMC6851508 DOI: 10.1042/bsr20191692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/05/2019] [Accepted: 10/16/2019] [Indexed: 12/31/2022] Open
Abstract
Background: Sorting Nexin 27 (SNX27) is a 62-kDa protein localized to early endosomes and known to regulate the intracellular trafficking of ion channels and receptors. In addition to a PX domain common among all of the sorting nexin family, SNX27 is the only sorting family member that contains a PDZ domain. To identify novel SNX27–PDZ binding partners, we performed a proteomic screen in mouse principal kidney cortical collecting duct cells (mpkCCD) using a GST-SNX27 fusion construct as bait. We found that the C-terminal type I PDZ binding motif (DTDL) of β-catenin, an adherens junction scaffolding protein and transcriptional co-activator, interacts directly with SNX27. Using biochemical and immunofluorescent techniques, β-catenin was identified in endosomal compartments where co-localization with SNX27 was observed. Furthermore, E-cadherin, but not Axin, GSK3 or Lef-1 was located in SNX27 protein complexes. While overexpression of wild-type β-catenin protein increased TCF-LEF dependent transcriptional activity, an enhanced transcriptional activity was not observed in cells expressing β-Catenin ΔFDTDL or diminished SNX27 expression. These results imply importance of the C-terminal PDZ binding motif for the transcriptional activity of β-catenin and propose that SNX27 might be involved in the assembly of β-catenin complexes in the endosome.
Collapse
|
29
|
Smallcombe CC, Harford TJ, Linfield DT, Lechuga S, Bokun V, Piedimonte G, Rezaee F. Titanium dioxide nanoparticles exaggerate respiratory syncytial virus-induced airway epithelial barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 2020; 319:L481-L496. [PMID: 32640839 PMCID: PMC7518063 DOI: 10.1152/ajplung.00104.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/30/2020] [Accepted: 07/08/2020] [Indexed: 12/24/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in children worldwide. While most develop a mild, self-limiting illness, some develop severe acute lower respiratory infection and persistent airway disease. Exposure to ambient particulate matter has been linked to asthma, bronchitis, and viral infection in multiple epidemiological studies. We hypothesized that coexposure to nanoparticles worsens RSV-induced airway epithelial barrier dysfunction. Bronchial epithelial cells were incubated with titanium dioxide nanoparticles (TiO2-NP) or a combination of TiO2-NP and RSV. Structure and function of epithelial cell barrier were analyzed. Viral titer and the role of reactive oxygen species (ROS) generation were evaluated. In vivo, mice were intranasally incubated with TiO2-NP, RSV, or a combination. Lungs and bronchoalveolar lavage (BAL) fluid were harvested for analysis of airway inflammation and apical junctional complex (AJC) disruption. RSV-induced AJC disruption was amplified by TiO2-NP. Nanoparticle exposure increased viral infection in epithelial cells. TiO2-NP induced generation of ROS, and pretreatment with antioxidant, N-acetylcysteine, reversed said barrier dysfunction. In vivo, RSV-induced injury and AJC disruption were augmented in the lungs of mice given TiO2-NP. Airway inflammation was exacerbated, as evidenced by increased white blood cell infiltration into the BAL, along with exaggeration of peribronchial inflammation and AJC disruption. These data demonstrate that TiO2-NP exposure exacerbates RSV-induced AJC dysfunction and increases inflammation by mechanisms involving generation of ROS. Further studies are required to determine whether NP exposure plays a role in the health disparities of asthma and other lung diseases, and why some children experience more severe airway disease with RSV infection.
Collapse
Affiliation(s)
- Carrie C Smallcombe
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Terri J Harford
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Debra T Linfield
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - Susana Lechuga
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Vladimir Bokun
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | | | - Fariba Rezaee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
- Centre for Pediatric Pulmonary Medicine, Cleveland Clinic Children's, Cleveland, Ohio
| |
Collapse
|
30
|
Norouzi M, Yathindranath V, Thliveris JA, Kopec BM, Siahaan TJ, Miller DW. Doxorubicin-loaded iron oxide nanoparticles for glioblastoma therapy: a combinational approach for enhanced delivery of nanoparticles. Sci Rep 2020; 10:11292. [PMID: 32647151 PMCID: PMC7347880 DOI: 10.1038/s41598-020-68017-y] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/16/2020] [Indexed: 01/05/2023] Open
Abstract
Although doxorubicin (DOX) is an effective anti-cancer drug with cytotoxicity in a variety of different tumors, its effectiveness in treating glioblastoma multiforme (GBM) is constrained by insufficient penetration across the blood–brain barrier (BBB). In this study, biocompatible magnetic iron oxide nanoparticles (IONPs) stabilized with trimethoxysilylpropyl-ethylenediamine triacetic acid (EDT) were developed as a carrier of DOX for GBM chemotherapy. The DOX-loaded EDT-IONPs (DOX-EDT-IONPs) released DOX within 4 days with the capability of an accelerated release in acidic microenvironments. The DOX-loaded EDT-IONPs (DOX-EDT-IONPs) demonstrated an efficient uptake in mouse brain-derived microvessel endothelial, bEnd.3, Madin–Darby canine kidney transfected with multi-drug resistant protein 1 (MDCK-MDR1), and human U251 GBM cells. The DOX-EDT-IONPs could augment DOX’s uptake in U251 cells by 2.8-fold and significantly inhibited U251 cell proliferation. Moreover, the DOX-EDT-IONPs were found to be effective in apoptotic-induced GBM cell death (over 90%) within 48 h of treatment. Gene expression studies revealed a significant downregulation of TOP II and Ku70, crucial enzymes for DNA repair and replication, as well as MiR-155 oncogene, concomitant with an upregulation of caspase 3 and tumor suppressors i.e., p53, MEG3 and GAS5, in U251 cells upon treatment with DOX-EDT-IONPs. An in vitro MDCK-MDR1-GBM co-culture model was used to assess the BBB permeability and anti-tumor activity of the DOX-EDT-IONPs and DOX treatments. While DOX-EDT-IONP showed improved permeability of DOX across MDCK-MDR1 monolayers compared to DOX alone, cytotoxicity in U251 cells was similar in both treatment groups. Using a cadherin binding peptide (ADTC5) to transiently open tight junctions, in combination with an external magnetic field, significantly enhanced both DOX-EDT-IONP permeability and cytotoxicity in the MDCK-MDR1-GBM co-culture model. Therefore, the combination of magnetic enhanced convective diffusion and the cadherin binding peptide for transiently opening the BBB tight junctions are expected to enhance the efficacy of GBM chemotherapy using the DOX-EDT-IONPs. In general, the developed approach enables the chemotherapeutic to overcome both BBB and multidrug resistance (MDR) glioma cells while providing site-specific magnetic targeting.
Collapse
Affiliation(s)
- Mohammad Norouzi
- Department of Biomedical Engineering, University of Manitoba, Winnipeg, MB, Canada.,Department of Pharmacology and Therapeutics, University of Manitoba, A205 Chown Bldg., 753 McDermot Avenue, Winnipeg, MB, Canada
| | - Vinith Yathindranath
- Department of Pharmacology and Therapeutics, University of Manitoba, A205 Chown Bldg., 753 McDermot Avenue, Winnipeg, MB, Canada
| | - James A Thliveris
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
| | - Brian M Kopec
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Teruna J Siahaan
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Donald W Miller
- Department of Biomedical Engineering, University of Manitoba, Winnipeg, MB, Canada. .,Department of Pharmacology and Therapeutics, University of Manitoba, A205 Chown Bldg., 753 McDermot Avenue, Winnipeg, MB, Canada.
| |
Collapse
|
31
|
Nighot P, Ma T. Endocytosis of Intestinal Tight Junction Proteins: In Time and Space. Inflamm Bowel Dis 2020; 27:283-290. [PMID: 32497180 PMCID: PMC7813749 DOI: 10.1093/ibd/izaa141] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Indexed: 12/12/2022]
Abstract
Eukaryotic cells take up macromolecules and particles from the surrounding milieu and also internalize membrane proteins via a precise process of endocytosis. The role of endocytosis in diverse physiological processes such as cell adhesion, cell signaling, tissue remodeling, and healing is well recognized. The epithelial tight junctions (TJs), present at the apical lateral membrane, play a key role in cell adhesion and regulation of paracellular pathway. These vital functions of the TJ are achieved through the dynamic regulation of the presence of pore and barrier-forming proteins within the TJ complex on the plasma membrane. In response to various intracellular and extracellular clues, the TJ complexes are actively regulated by intracellular trafficking. The intracellular trafficking consists of endocytosis and recycling cargos to the plasma membrane or targeting them to the lysosomes for degradation. Increased intestinal TJ permeability is a pathological factor in inflammatory bowel disease (IBD), and the TJ permeability could be increased due to the altered endocytosis or recycling of TJ proteins. This review discusses the current information on endocytosis of intestinal epithelial TJ proteins. The knowledge of the endocytic regulation of the epithelial TJ barrier will provide further understanding of pathogenesis and potential targets for IBD and a wide variety of human disease conditions.
Collapse
Affiliation(s)
- Prashant Nighot
- Department of Medicine, College of Medicine, Penn State University, Hershey, PA, USA,Address correspondence to: Prashant Nighot, Department of Medicine, College of Medicine, Pennsylvania State University, 500 University Drive, Room C5814B, Hershey, PA, 17033, USA. E-mail:
| | - Thomas Ma
- Department of Medicine, College of Medicine, Penn State University, Hershey, PA, USA
| |
Collapse
|
32
|
Rizzelli F, Malabarba MG, Sigismund S, Mapelli M. The crosstalk between microtubules, actin and membranes shapes cell division. Open Biol 2020; 10:190314. [PMID: 32183618 PMCID: PMC7125961 DOI: 10.1098/rsob.190314] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
Mitotic progression is orchestrated by morphological and mechanical changes promoted by the coordinated activities of the microtubule (MT) cytoskeleton, the actin cytoskeleton and the plasma membrane (PM). MTs assemble the mitotic spindle, which assists sister chromatid separation, and contact the rigid and tensile actomyosin cortex rounded-up underneath the PM. Here, we highlight the dynamic crosstalk between MTs, actin and cell membranes during mitosis, and discuss the molecular connections between them. We also summarize recent views on how MT traction forces, the actomyosin cortex and membrane trafficking contribute to spindle positioning in isolated cells in culture and in epithelial sheets. Finally, we describe the emerging role of membrane trafficking in synchronizing actomyosin tension and cell shape changes with cell-substrate adhesion, cell-cell contacts and extracellular signalling events regulating proliferation.
Collapse
Affiliation(s)
| | - Maria Grazia Malabarba
- IEO, Istituto Europeo di Oncologia IRCCS, Milan, Italy
- Dipartimento di Oncologia ed Emato-oncologia, Università degli Studi di Milano, Milan, Italy
| | - Sara Sigismund
- IEO, Istituto Europeo di Oncologia IRCCS, Milan, Italy
- Dipartimento di Oncologia ed Emato-oncologia, Università degli Studi di Milano, Milan, Italy
| | | |
Collapse
|
33
|
Roehlen N, Roca Suarez AA, El Saghire H, Saviano A, Schuster C, Lupberger J, Baumert TF. Tight Junction Proteins and the Biology of Hepatobiliary Disease. Int J Mol Sci 2020; 21:ijms21030825. [PMID: 32012812 PMCID: PMC7038100 DOI: 10.3390/ijms21030825] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/10/2020] [Accepted: 01/21/2020] [Indexed: 12/24/2022] Open
Abstract
Tight junctions (TJ) are intercellular adhesion complexes on epithelial cells and composed of integral membrane proteins as well as cytosolic adaptor proteins. Tight junction proteins have been recognized to play a key role in health and disease. In the liver, TJ proteins have several functions: they contribute as gatekeepers for paracellular diffusion between adherent hepatocytes or cholangiocytes to shape the blood-biliary barrier (BBIB) and maintain tissue homeostasis. At non-junctional localizations, TJ proteins are involved in key regulatory cell functions such as differentiation, proliferation, and migration by recruiting signaling proteins in response to extracellular stimuli. Moreover, TJ proteins are hepatocyte entry factors for the hepatitis C virus (HCV)—a major cause of liver disease and cancer worldwide. Perturbation of TJ protein expression has been reported in chronic HCV infection, cholestatic liver diseases as well as hepatobiliary carcinoma. Here we review the physiological function of TJ proteins in the liver and their implications in hepatobiliary diseases.
Collapse
Affiliation(s)
- Natascha Roehlen
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Armando Andres Roca Suarez
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Houssein El Saghire
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Antonio Saviano
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
- Pôle Hepato-digestif, Institut Hopitalo-universitaire, Hôpitaux Universitaires de Strasbourg, F-67000 Strasbourg, France
| | - Catherine Schuster
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Joachim Lupberger
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Thomas F. Baumert
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
- Pôle Hepato-digestif, Institut Hopitalo-universitaire, Hôpitaux Universitaires de Strasbourg, F-67000 Strasbourg, France
- Correspondence: ; Tel.: +33-3688-53703
| |
Collapse
|
34
|
Endosome-Mediated Epithelial Remodeling Downstream of Hedgehog-Gli Is Required for Tracheoesophageal Separation. Dev Cell 2019; 51:665-674.e6. [PMID: 31813796 DOI: 10.1016/j.devcel.2019.11.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/18/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023]
Abstract
The trachea and esophagus arise from the separation of a common foregut tube during early fetal development. Mutations in key signaling pathways such as Hedgehog (HH)/Gli can disrupt tracheoesophageal (TE) morphogenesis and cause life-threatening birth defects (TEDs); however, the underlying cellular mechanisms are unknown. Here, we use mouse and Xenopus to define the HH/Gli-dependent processes orchestrating TE morphogenesis. We show that downstream of Gli the Foxf1+ splanchnic mesenchyme promotes medial constriction of the foregut at the boundary between the presumptive Sox2+ esophageal and Nkx2-1+ tracheal epithelium. We identify a unique boundary epithelium co-expressing Sox2 and Nkx2-1 that fuses to form a transient septum. Septum formation and resolution into distinct trachea and esophagus requires endosome-mediated epithelial remodeling involving the small GTPase Rab11 and localized extracellular matrix degradation. These are disrupted in Gli-deficient embryos. This work provides a new mechanistic framework for TE morphogenesis and informs the cellular basis of human TEDs.
Collapse
|
35
|
Takahashi T, Honsho M, Abe Y, Fujiki Y. Plasmalogen mediates integration of adherens junction. J Biochem 2019; 166:423-432. [PMID: 31236591 DOI: 10.1093/jb/mvz049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 06/19/2019] [Indexed: 11/13/2022] Open
Abstract
Ether glycerolipids, plasmalogens are found in various mammalian cells and tissues. However, physiological role of plasmalogens in epithelial cells remains unknown. We herein show that synthesis of ethanolamine-containing plasmalogens, plasmenylethanolamine (PlsEtn), is deficient in MCF7 cells, an epithelial cell line, with severely reduced expression of alkyl-dihydroxyacetonephosphate synthase (ADAPS), the second enzyme in the PlsEtn biosynthesis. Moreover, expression of ADAPS or supplementation of PlsEtn containing C18-alkenyl residue delays the migration of MCF7 cells as compared to that mock-treated MCF7 and C16-alkenyl-PlsEtn-supplemented MCF7 cells. Localization of E-cadherin to cell-cell junctions is highly augmented in cells containing C18-alkenyl-PlsEtn. Together, these results suggest that PlsEtn containing C18-alkenyl residue plays a distinct role in the integrity of E-cadherin-mediated adherens junction.
Collapse
Affiliation(s)
- Takanori Takahashi
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan
| | - Masanori Honsho
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Yuichi Abe
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Yukio Fujiki
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
36
|
Niño CA, Sala S, Polo S. When ubiquitin meets E-cadherin: Plasticity of the epithelial cellular barrier. Semin Cell Dev Biol 2019; 93:136-144. [DOI: 10.1016/j.semcdb.2018.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/28/2018] [Accepted: 12/13/2018] [Indexed: 12/22/2022]
|
37
|
Di ZS, Yang ZJ, Zhu MJ, Wang FF, Li LS, Xu JD. Regulation of intestinal epithelial barrier by and dysfunction of intestinal glial cells. Shijie Huaren Xiaohua Zazhi 2019; 27:1013-1021. [DOI: 10.11569/wcjd.v27.i16.1013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The enteric glia is an important component of the enteric nervous system and forms a broad network in the mucosa of the gastrointestinal tract. Enteric glial cells (EGC) are located in all layers of the intestinal wall and respond to neurotransmitters and neuromodulators through signal transduction pathways. The enteric nervous system interacts with resident glial cells in the gut, and there is increasing evidence that EGC are involved in the regulation of epithelial function. Epithelial cells have important absorption and secretion functions and are also involved in the formation of intestinal epithelial barrier. Studies have found that the enteric glia is not only involved in the regulation of gastrointestinal motility and epithelial barrier function, but also in the formation of cellular molecular bridges between intestinal neurons, enteroendocrine cells, immune cells, and epithelial cells. This article reviews the recent progress in the understanding of the role of EGC in the intestinal barrier and defense functions.
Collapse
Affiliation(s)
- Zhi-Shan Di
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing 100069, China
| | - Ze-Jun Yang
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing 100069, China
| | - Min-Jia Zhu
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing 100069, China
| | - Fei-Fei Wang
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing 100069, China
| | - Li-Sheng Li
- School of Basic Medicine, Capital Medical University, Beijing 100069, China
| | - Jing-Dong Xu
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing 100069, China
| |
Collapse
|
38
|
Lavie M, Linna L, Moustafa RI, Belouzard S, Fukasawa M, Dubuisson J. Role of the cytosolic domain of occludin in trafficking and hepatitis C virus infection. Traffic 2019; 20:753-773. [PMID: 31328852 DOI: 10.1111/tra.12680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022]
Abstract
The role of the tight-junction (TJ) protein occludin (OCLN) in hepatitis C virus (HCV) entry remains elusive. Here, we investigated the OCLN C-terminal cytosolic domain in HCV infection. We expressed a series of C-terminal deletion mutants in Huh-7 cells KO for OCLN and characterized their functionality in HCV infection and trafficking. Deleting the OCLN cytosolic domain led to protein instability and intracellular retention. The first 15 residues (OCLN-C15 mutant) of the cytosolic domain were sufficient for OCLN stability, but led to its accumulation in the trans-Golgi network (TGN) due to a deficient cell surface export after synthesis. In contrast, the OCLN-C18 mutant, containing the first 18 residues of the cytosolic domain, was expressed at the cell surface and could mediate HCV infection. Point mutations in the context of C18 showed that I279 and W281 are crucial residues for cell surface expression of OCLN-C18. However, in the context of full-length OCLN, mutation of these residues only partially affected infection and cell surface localization. Importantly, the characterization of OCLN-C18 in human-polarized hepatocytes revealed a defect in its TJ localization without affecting HCV infection. These data suggest that TJ localization of OCLN is not a prerequisite for HCV infection in polarized hepatocytes.
Collapse
Affiliation(s)
- Muriel Lavie
- Universite de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Lydia Linna
- Universite de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Rehab I Moustafa
- Universite de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, Lille, France.,Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Division, National Research Center, Cairo, Egypt
| | - Sandrine Belouzard
- Universite de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Masayoshi Fukasawa
- Department of Biochemistry & Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Jean Dubuisson
- Universite de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
39
|
Bustamante FA, Miró MP, VelÁsquez ZD, Molina L, Ehrenfeld P, Rivera FJ, BÁtiz LF. Role of adherens junctions and apical-basal polarity of neural stem/progenitor cells in the pathogenesis of neurodevelopmental disorders: a novel perspective on congenital Zika syndrome. Transl Res 2019; 210:57-79. [PMID: 30904442 DOI: 10.1016/j.trsl.2019.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 01/08/2019] [Accepted: 02/28/2019] [Indexed: 12/18/2022]
Abstract
Radial glial cells (RGCs) are the neural stem/progenitor cells (NSPCs) that give rise to most of neurons and glial cells that constitute the adult central nervous system. A hallmark of RGCs is their polarization along the apical-basal axis. They extend a long basal process that contacts the pial surface and a short apical process to the ventricular surface. Adherens junctions (AJs) are organized as belt-like structures at the most-apical lateral plasma membrane of the apical processes. These junctional complexes anchor RGCs to each other and allow the recruitment of cytoplasmic proteins that act as apical-basal determinants. It has been proposed that disruption of AJs underlies the onset of different neurodevelopmental disorders. In fact, studies performed in different animal models indicate that loss of function of AJs-related proteins in NSPCs can disrupt cell polarity, imbalance proliferation and/or differentiation rates and increase cell death, which, in turn, lead to disruption of the cytoarchitecture of the ventricular zone, protrusion of non-polarized cells into the ventricles, cortical thinning, and ventriculomegaly/hydrocephalus, among other neuropathological findings. Recent Zika virus (ZIKV) outbreaks and the high comorbidity of ZIKV infection with congenital neurodevelopmental defects have led to the World Health Organization to declare a public emergency of international concern. Thus, noteworthy advances have been made in clinical and experimental ZIKV research. This review summarizes the current knowledge regarding the function of AJs in normal and pathological corticogenesis and focuses on the neuropathological and cellular mechanisms involved in congenital ZIKV syndrome, highlighting the potential role of cell-to-cell junctions between NSPCs in the etiopathogenesis of such syndrome.
Collapse
Affiliation(s)
- Felipe A Bustamante
- Laboratory of Developmental Neuropathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile; Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile
| | - MarÍa Paz Miró
- Laboratory of Developmental Neuropathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile; Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile
| | - Zahady D VelÁsquez
- Laboratory of Developmental Neuropathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile; Institute für Parasitologie, Biomedizinisches Forschungszentrum Seltersberg, Justus Liebig Universität, Gießen, Germany
| | - Luis Molina
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile; Departamento de Ciencias Biológicas y Químicas, Facultad de Ciencia, Universidad San Sebastián, Puerto Montt, Chile
| | - Pamela Ehrenfeld
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile; Laboratory of Cellular Pathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Francisco J Rivera
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile; Laboratory of Stem Cells and Neuroregeneration, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile; Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Luis Federico BÁtiz
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile; Centro de Investigación Biomédica (CIB), Facultad de Medicina, Universidad de los Andes, Santiago, Chile.
| |
Collapse
|
40
|
Shigetomi K, Ikenouchi J. Cell Adhesion Structures in Epithelial Cells Are Formed in Dynamic and Cooperative Ways. Bioessays 2019; 41:e1800227. [PMID: 31187900 DOI: 10.1002/bies.201800227] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/16/2019] [Indexed: 01/13/2023]
Abstract
There are many morphologically distinct membrane structures with different functions at the surface of epithelial cells. Among these, adherens junctions (AJ) and tight junctions (TJ) are responsible for the mechanical linkage of epithelial cells and epithelial barrier function, respectively. In the process of new cell-cell adhesion formation between two epithelial cells, such as after wounding, AJ form first and then TJ form on the apical side of AJ. This process is very complicated because AJ formation triggers drastic changes in the organization of actin cytoskeleton, the activity of Rho family of small GTPases, and the lipid composition of the plasma membrane, all of which are required for subsequent TJ formation. In this review, the authors focus on the relationship between AJ and TJ as a representative example of specialization of plasma membrane regions and introduce recent findings on how AJ formation promotes the subsequent formation of TJ.
Collapse
Affiliation(s)
- Kenta Shigetomi
- Department of Biology, Faculty of Sciences, Kyushu University, 774 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Junichi Ikenouchi
- Department of Biology, Faculty of Sciences, Kyushu University, 774 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.,Japan Science and Technology Agency, Saitama, 332-0012, Japan.,AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan
| |
Collapse
|
41
|
Van Itallie CM, Lidman KF, Tietgens AJ, Anderson JM. Newly synthesized claudins but not occludin are added to the basal side of the tight junction. Mol Biol Cell 2019; 30:1406-1424. [PMID: 30943107 PMCID: PMC6724697 DOI: 10.1091/mbc.e19-01-0008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A network of claudin strands creates continuous cell–cell contacts to form the intercellular tight junction barrier; a second protein, occludin, is associated along these strands. The physiological barrier remains stable despite protein turnover, which involves removal and replacement of claudins both in the steady state and during junction remodeling. Here we use a pulse–block–pulse labeling protocol with fluorescent ligands to label SNAP/CLIP-tags fused to claudins and occludin to identify their spatial trafficking pathways and kinetics in Madin–Darby canine kidney monolayers. We find that claudins are first delivered to the lateral membrane and, over time, enter the junction strand network from the basal side; this is followed by slow replacement of older claudins in the strands. In contrast, even at early times, newly synthesized occludin is found throughout the network. Taking the results together with our previous documentation of the mechanism for claudin strand assembly in a fibroblast model, we speculate that newly synthesized claudins are added at strand breaks and free ends; these are most common in the basalmost edge of the junction. In contrast, occludin can be added directly within the strand network. We further demonstrate that claudin trafficking and half-life depend on carboxy-terminal sequences and that different claudins compete for tight junction localization.
Collapse
Affiliation(s)
- Christina M Van Itallie
- Laboratory of Tight Junction Structure and Function, National Institutes of Health, Bethesda, MD 20892
| | - Karin Fredriksson Lidman
- Laboratory of Tight Junction Structure and Function, National Institutes of Health, Bethesda, MD 20892
| | - Amber Jean Tietgens
- Laboratory of Tight Junction Structure and Function, National Institutes of Health, Bethesda, MD 20892
| | - James Melvin Anderson
- Laboratory of Tight Junction Structure and Function, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
42
|
Stevens LM, Moffat K, Cooke L, Nomikou K, Mertens PPC, Jackson T, Darpel KE. A low-passage insect-cell isolate of bluetongue virus uses a macropinocytosis-like entry pathway to infect natural target cells derived from the bovine host. J Gen Virol 2019; 100:568-582. [PMID: 30843784 DOI: 10.1099/jgv.0.001240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Bluetongue virus (BTV) causes an economically important disease in domestic and wildlife ruminants and is transmitted by Culicoides biting midges. In ruminants, BTV has a wide cell tropism that includes endothelial cells of vascular and lymphatic vessels as important cell targets for virus replication, and several cell types of the immune system including monocytes, macrophages and dendritic cells. Thus, cell-entry represents a particular challenge for BTV as it infects many different cell types in widely diverse vertebrate and invertebrate hosts. Improved understanding of BTV cell-entry could lead to novel antiviral approaches that can block virus transmission from cell to cell between its invertebrate and vertebrate hosts. Here, we have investigated BTV cell-entry using endothelial cells derived from the natural bovine host (BFA cells) and purified whole virus particles of a low-passage, insect-cell isolate of a virulent strain of BTV-1. Our results show that the main entry pathway for infection of BFA cells is dependent on actin and dynamin, and shares certain characteristics with macropinocytosis. The ability to use a macropinocytosis-like entry route could explain the diverse cell tropism of BTV and contribute to the efficiency of transmission between vertebrate and invertebrate hosts.
Collapse
Affiliation(s)
- Lisa M Stevens
- 1The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK.,2University of Surrey, Guildford, Surrey, GU2 7XH, UK.,‡Present address: Animal and Plant Health Agency, Woodham Lane, New Haw, KT15 3NB, UK
| | - Katy Moffat
- 1The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
| | - Lyndsay Cooke
- 1The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK.,2University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Kyriaki Nomikou
- 1The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK.,§Present address: School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonnington, Leicestershire, LE12 5RD, UK
| | - Peter P C Mertens
- 1The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK.,§Present address: School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonnington, Leicestershire, LE12 5RD, UK
| | - Terry Jackson
- 1The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
| | - Karin E Darpel
- 2University of Surrey, Guildford, Surrey, GU2 7XH, UK.,1The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
| |
Collapse
|
43
|
Wong M, Ganapathy AS, Suchanec E, Laidler L, Ma T, Nighot P. Intestinal epithelial tight junction barrier regulation by autophagy-related protein ATG6/beclin 1. Am J Physiol Cell Physiol 2019; 316:C753-C765. [PMID: 30892937 DOI: 10.1152/ajpcell.00246.2018] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A defective tight junction (TJ) barrier is a key pathogenic factor for inflammatory bowel disease. Previously, we have shown that autophagy, a cell survival mechanism, enhances intestinal epithelial TJ barrier function. Autophagy-related protein-6 (ATG6/beclin 1), a key protein in the autophagy pathway, also plays a role in the endocytic pathway. The constitutive role of beclin 1 in the intestinal TJ barrier is not known. In Caco-2 cells, beclin 1 was found to be coimmunoprecipitated with the TJ protein occludin and colocalized with occludin on the membrane. Treatment of Caco-2 cells with beclin 1 peptide [transactivating regulatory protein (Tat)-beclin 1] reduced TJ barrier function. Activation of beclin 1 increased occludin endocytosis and reduced total occludin protein level. In contrast, beclin 1 siRNA transfection enhanced Caco-2 TJ barrier function. In pharmacologic and genetic autophagy inhibition studies, the constitutive function of beclin 1 in the TJ barrier was found to be autophagy independent. However, de novo induction of autophagy with starvation or rapamycin prevented Tat-beclin 1-induced increase in TJ permeability and reduction in occludin level. Induction of autophagy also resulted in reduced beclin 1-occludin association. In mouse colon, beclin 1 colocalized with occludin on the epithelial membrane. Perfusion of mouse colon with beclin 1 peptide caused an increase in colonic TJ permeability that was prevented by in vivo induction of autophagy. These findings show that beclin 1 plays a constitutive, autophagy-independent role in the regulation of intestinal TJ barrier function via endocytosis of occludin. Autophagy terminates constitutive beclin 1 function in the TJ barrier and enhances the TJ barrier.
Collapse
Affiliation(s)
- Morgan Wong
- Department of Internal Medicine, University of New Mexico School of Medicine , Albuquerque, New Mexico
| | | | - Eric Suchanec
- Department of Medicine, College of Medicine, Pennsylvania State University , Hershey, Pennsylvania
| | - Laura Laidler
- Department of Internal Medicine, University of New Mexico School of Medicine , Albuquerque, New Mexico
| | - Thomas Ma
- Department of Medicine, College of Medicine, Pennsylvania State University , Hershey, Pennsylvania
| | - Prashant Nighot
- Department of Medicine, College of Medicine, Pennsylvania State University , Hershey, Pennsylvania
| |
Collapse
|
44
|
Wan LY, Yuan WF, Ai WB, Ai YW, Wang JJ, Chu LY, Zhang YQ, Wu JF. An exploration of aptamer internalization mechanisms and their applications in drug delivery. Expert Opin Drug Deliv 2019; 16:207-218. [PMID: 30691313 DOI: 10.1080/17425247.2019.1575808] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/25/2019] [Indexed: 12/21/2022]
Abstract
INTRODUCTION As 'chemical antibodies', aptamers have some advantages, such as lack of immunogenicity, rapid tissue penetration, cell internalization and so on. Consequently, more and more aptamers have been screened out by the systematic evolution of ligands through exponential enrichment for the desired cells or membrane receptors. On the basis of the result, researchers use aptamers to guide drug targeting to the desired cells and internalization in vivo. AREAS COVERED In this review, we explore the mechanisms of cargo- or aptamer-mediated internalization, and then briefly summarize five strategies for exploring the mechanism of aptamer internalization. Finally, we focus on four types of applications involving aptamer internalization: aptamers as drugs, aptamers as chemical drug-delivery systems, aptamer-based chimeras and aptamer-conjugated nanoparticles or block copolymer micelles. EXPERT OPINION Two aptamer-internalization mechanisms are known, namely receptor-mediated endocytosis and macropinocytosis. The latter mechanism, which is has only been verified in the internalization of nucleolin aptamer shuttles between the nucleus and cytoplasm, may be important for nuclear internalization and cargo molecule escape from the endosomal compartment. Thus, it is feasible to use some strategies to further explore the macropinocytosis internalization mechanism and then to screen for aptamers similar to the nucleolin aptamer for use with the desired cell types as a targeted delivery tool.
Collapse
Affiliation(s)
- Lin-Yan Wan
- a The People's Hospital , China Three Gorges University , Yichang , China
- b Institute of Organ Fibrosis and Targeted Drug Delivery , China Three Gorges University , Yichang , China
| | - Wen-Fang Yuan
- b Institute of Organ Fibrosis and Targeted Drug Delivery , China Three Gorges University , Yichang , China
- c Medical College , China Three Gorges University , Yichang , China
| | - Wen-Bing Ai
- d The Yiling Hospital of Yichang , Yichang , Hubei , China
| | - Yao-Wei Ai
- a The People's Hospital , China Three Gorges University , Yichang , China
- b Institute of Organ Fibrosis and Targeted Drug Delivery , China Three Gorges University , Yichang , China
| | - Jiao-Jiao Wang
- c Medical College , China Three Gorges University , Yichang , China
| | - Liang-Yin Chu
- e School of Chemical Engineering , Sichuan University , Chengdu , China
| | - Yan-Qiong Zhang
- b Institute of Organ Fibrosis and Targeted Drug Delivery , China Three Gorges University , Yichang , China
- c Medical College , China Three Gorges University , Yichang , China
| | - Jiang-Feng Wu
- a The People's Hospital , China Three Gorges University , Yichang , China
- b Institute of Organ Fibrosis and Targeted Drug Delivery , China Three Gorges University , Yichang , China
- c Medical College , China Three Gorges University , Yichang , China
- d The Yiling Hospital of Yichang , Yichang , Hubei , China
| |
Collapse
|
45
|
Shen MY, Liu TI, Yu TW, Kv R, Chiang WH, Tsai YC, Chen HH, Lin SC, Chiu HC. Hierarchically targetable polysaccharide-coated solid lipid nanoparticles as an oral chemo/thermotherapy delivery system for local treatment of colon cancer. Biomaterials 2019; 197:86-100. [DOI: 10.1016/j.biomaterials.2019.01.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 02/06/2023]
|
46
|
Fujii Y, Ochi Y, Tuchiya M, Kajita M, Fujita Y, Ishimoto Y, Okajima T. Spontaneous Spatial Correlation of Elastic Modulus in Jammed Epithelial Monolayers Observed by AFM. Biophys J 2019; 116:1152-1158. [PMID: 30826009 DOI: 10.1016/j.bpj.2019.01.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 01/19/2019] [Accepted: 01/28/2019] [Indexed: 12/28/2022] Open
Abstract
For isolated single cells on a substrate, the intracellular stiffness, which is often measured as the Young's modulus, E, by atomic force microscopy (AFM), depends on the substrate rigidity. However, little is known about how the E of cells is influenced by the surrounding cells in a cell population system in which cells physically and tightly contact adjacent cells. In this study, we investigated the spatial heterogeneities of E in a jammed epithelial monolayer in which cell migration was highly inhibited, allowing us to precisely measure the spatial distribution of E in large-scale regions by AFM. The AFM measurements showed that E can be characterized using two spatial correlation lengths: the shorter correlation length, lS, is within the single cell size, whereas the longer correlation length, lL, is longer than the distance between adjacent cells and corresponds to the intercellular correlation of E. We found that lL decreased significantly when the actin filaments were disrupted or calcium ions were chelated using chemical treatments, and the decreased lL recovered to the value in the control condition after the treatments were washed out. Moreover, we found that lL decreased significantly when E-cadherin was knocked down. These results indicate that the observed long-range correlation of E is not fixed within the jammed state but inherently arises from the formation of a large-scale actin filament structure via E-cadherin-dependent cell-cell junctions.
Collapse
Affiliation(s)
- Yuki Fujii
- Graduate School of Information Science and Technology, Sapporo, Japan
| | - Yuki Ochi
- Graduate School of Information Science and Technology, Sapporo, Japan
| | - Masahiro Tuchiya
- Graduate School of Information Science and Technology, Sapporo, Japan
| | - Mihoko Kajita
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuyuki Fujita
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Yukitaka Ishimoto
- Department of Machine Intelligence and Systems Engineering, Akita Prefectural University, Yurihonjo City, Japan
| | - Takaharu Okajima
- Graduate School of Information Science and Technology, Sapporo, Japan.
| |
Collapse
|
47
|
Chen X, Ling X, Zhao L, Xiong F, Hollett G, Kang Y, Barrett A, Wu J. Biomimetic Shells Endow Sub-50 nm Nanoparticles with Ultrahigh Paclitaxel Payloads for Specific and Robust Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:33976-33985. [PMID: 30203956 DOI: 10.1021/acsami.8b11571] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Poor loading capacity and nonspecific tumor accumulation of current drug delivery system remain the critical challenges that prevent nanomedicine from maximizing therapeutic efficacy in cancer treatment. Herein, poly(ester amide) polymers composed of cationic and hydrophobic segments were formulated with a paclitaxel/human serum albumin (PTX/HSA) complex, as well as free PTX, to construct a core-shell nanoparticle (NP) platform with the interior simultaneously reserving PTX and PTX/HSA complex, while the exterior absorbing the PTX/HSA complex. Following systematic screening, the optimized NPs, namely, APP1i@e NPs, exhibited small particle size (43.95 nm), maximal PTX loading (42.23%), excellent dynamic stability (at least 1 week), and acid-triggered release. In vitro results showed that after being trafficked through caveolae-mediated endocytosis, APP1i@e NPs successfully escaped from endo-/lysosomes and then rapidly released cargos in the acidic cytosol, which continued to enhance cytotoxicity by mitochondrial control of apoptosis and suppression of microtubule dynamics. Longer circulation time and superior targeting efficiency post-intravenous injection confirmed that surface PEGylation imparted APP1i@e NPs with the ability to control their pharmacokinetics and biodistribution. The biomimetic shell design with HSA, which enlarged PTX stock and improved biosafety, made APP1i@e NPs more suitable for in vivo applications. Furthermore, in vivo safety and efficacy demonstrated that APP1i@e NPs effectively inhibited the growth of ovarian xenograft tumors, whereas significantly avoiding toxic issues associated with PTX. APP1i@e NPs with surface PEG coating and biomimetic HSA design, therefore, may provide a remarkable improvement in the therapeutic index of taxanes used in the clinic.
Collapse
Affiliation(s)
- Xing Chen
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering , Sun Yat-sen University , Guangzhou , Guangdong 510006 , China
| | - Xiang Ling
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering , Sun Yat-sen University , Guangzhou , Guangdong 510006 , China
| | - Lili Zhao
- Digestive Endoscopy Center , Jiangsu Province Hospital, the First Affiliated Hospital with Nanjing Medical University , Nanjing , Jiangsu 210029 , China
| | - Fei Xiong
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering , Sun Yat-sen University , Guangzhou , Guangdong 510006 , China
| | - Geoffrey Hollett
- Materials Science and Engineering Program , University of California , San Diego , California 92093 , United States
| | - Yang Kang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering , Sun Yat-sen University , Guangzhou , Guangdong 510006 , China
| | - Austin Barrett
- Center for Nanomedicine and Department of Anesthesiology , Brigham and Women's Hospital, Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering , Sun Yat-sen University , Guangzhou , Guangdong 510006 , China
| |
Collapse
|
48
|
Löser R, Bader M, Kuchar M, Wodtke R, Lenk J, Wodtke J, Kuhne K, Bergmann R, Haase-Kohn C, Urbanová M, Steinbach J, Pietzsch J. Synthesis, 18F-labelling and radiopharmacological characterisation of the C-terminal 30mer of Clostridium perfringens enterotoxin as a potential claudin-targeting peptide. Amino Acids 2018; 51:219-244. [PMID: 30264172 DOI: 10.1007/s00726-018-2657-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/17/2018] [Indexed: 12/26/2022]
Abstract
The cell surface receptor claudin-4 (Cld-4) is upregulated in various tumours and represents an important emerging target for both diagnosis and treatment of solid tumours of epithelial origin. The C-terminal fragment of the Clostridium perfringens enterotoxin cCPE290-319 appears as a suitable ligand for targeting Cld-4. The synthesis of this 30mer peptide was attempted via several approaches, which has revealed sequential SPPS using three pseudoproline dipeptide building blocks to be the most efficient one. Labelling with fluorine-18 was achieved on solid phase using N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB) and 4-[18F]fluorobenzoyl chloride as 18F-acylating agents, which was the most advantageous when [18F]SFB was reacted with the resin-bound 30mer containing an N-terminal 6-aminohexanoic spacer. Binding to Cld-4 was demonstrated via surface plasmon resonance using a protein construct containing both extracellular loops of Cld-4. In addition, cell binding experiments were performed for 18F-labelled cCPE290-319 with the Cld-4 expressing tumour cell lines HT-29 and A431 that were complemented by fluorescence microscopy studies using the corresponding fluorescein isothiocyanate-conjugated peptide. The 30mer peptide proved to be sufficiently stable in blood plasma. Studying the in vivo behaviour of 18F-labelled cCPE290-319 in healthy mice and rats by dynamic PET imaging and radiometabolite analyses has revealed that the peptide is subject to substantial liver uptake and rapid metabolic degradation in vivo, which limits its suitability as imaging probe for tumour-associated Cld-4.
Collapse
Affiliation(s)
- Reik Löser
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany.
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01062, Dresden, Germany.
| | - Miriam Bader
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01062, Dresden, Germany
| | - Manuela Kuchar
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01062, Dresden, Germany
| | - Robert Wodtke
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01062, Dresden, Germany
| | - Jens Lenk
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01062, Dresden, Germany
| | - Johanna Wodtke
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Konstantin Kuhne
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01062, Dresden, Germany
| | - Ralf Bergmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Cathleen Haase-Kohn
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Marie Urbanová
- Department of Physics and Measurements, University of Chemistry and Technology, 166 28, Prague, Czech Republic
| | - Jörg Steinbach
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01062, Dresden, Germany
| | - Jens Pietzsch
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01062, Dresden, Germany
| |
Collapse
|
49
|
Jajack A, Brothers M, Kasting G, Heikenfeld J. Enhancing glucose flux into sweat by increasing paracellular permeability of the sweat gland. PLoS One 2018; 13:e0200009. [PMID: 30011292 PMCID: PMC6047769 DOI: 10.1371/journal.pone.0200009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/18/2018] [Indexed: 11/24/2022] Open
Abstract
Non-invasive wearable biosensors provide real-time, continuous, and actionable health information. However, difficulties detecting diluted biomarkers in excreted biofluids limit practical applications. Most biomarkers of interest are transported paracellularly into excreted biofluids from biomarker-rich blood and interstitial fluid during normal modulation of cellular tight junctions. Calcium chelators are reversible tight junction modulators that have been shown to increase absorption across the intestinal epithelium. However, calcium chelators have not yet been shown to improve the extraction of biomarkers. Here we show that for glucose, a paracellularly transported biomarker, the flux into sweat can be increased by >10x using citrate, a calcium chelator, in combination with electroosmosis. Our results demonstrate a method of increasing glucose flux through the sweat gland epithelium, thereby increasing the concentration in sweat. Future work should examine if this method enhances flux for other paracellularly transported biomarkers to make it possible to detect more biomarkers with currently available biosensors.
Collapse
Affiliation(s)
- Andrew Jajack
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| | - Michael Brothers
- UES, Incorporated, Dayton, Ohio, United States of America
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio, United States of America
| | - Gerald Kasting
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Jason Heikenfeld
- Department of Electrical Engineering and Computing Systems, University of Cincinnati, Cincinnati, Ohio, United States of America
- Eccrine Systems, Incorporated, Cincinnati, Ohio, United States of America
| |
Collapse
|
50
|
Canonico B, Di Sario G, Cesarini E, Campana R, Luchetti F, Zamai L, Ortolani C, Nasoni MG, Baffone W, Papa S. Monocyte Response to Different Campylobacter jejuni Lysates Involves Endoplasmic Reticulum Stress and the Lysosomal⁻Mitochondrial Axis: When Cell Death Is Better Than Cell Survival. Toxins (Basel) 2018; 10:E239. [PMID: 29899248 PMCID: PMC6024708 DOI: 10.3390/toxins10060239] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/06/2018] [Accepted: 06/11/2018] [Indexed: 12/18/2022] Open
Abstract
Campylobacter jejuni is a Gram-negative spiral-shaped bacterium, commonly associated with gastroenteritis in humans. It explicates its virulence also by the cytolethal distending toxin (CDT), able to cause irreversible cell cycle arrest. Infection by C. jejuni may result in the development of the Guillain⁻Barré Syndrome, an acute peripheral neuropathy. Symptoms of this disease could be caused by CDT-induced cell death and a subsequent inflammatory response. We tested C. jejuni lysates from different strains on donor monocytes: in fact, monocytes are potent producers of both pro- and anti-inflammatory cytokines, playing a major role in innate immunity and in non-specific host responses. We found, by cytometric and confocal analyses, that mitochondria and lysosomes were differently targeted: The C. jejuni strain that induced the most relevant mitochondrial alterations was the ATCC 33291, confirming an intrinsic apoptotic pathway, whereas the C. jejuni ISS 1 wild-type strain mostly induced lysosomal alterations. Lysates from all strains induced endoplasmic reticulum (ER) stress in monocytes, suggesting that ER stress was not associated with CDT but to other C. jejuni virulence factors. The ER data were consistent with an increase in cytosolic Ca2+ content induced by the lysates. On the contrary, the changes in lysosomal acidic compartments and p53 expression (occurring together from time 0, T0, to 24 h) were mainly due to CDT. The loss of p53 may prevent or impede cell death and it was not observable with the mutant strain. CDT not only was responsible for specific death effects but also seemed to promote an apoptotic stimuli-resisting pathway.
Collapse
Affiliation(s)
- Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy.
| | - Gianna Di Sario
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy.
| | - Erica Cesarini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy.
| | - Raffaella Campana
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy.
| | - Francesca Luchetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy.
| | - Loris Zamai
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy.
| | - Claudio Ortolani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy.
| | - Maria Gemma Nasoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy.
| | - Wally Baffone
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy.
| | - Stefano Papa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy.
| |
Collapse
|