1
|
Ljubič M, Perdih A, Borišek J. All-Atom Simulations Reveal the Effect of Membrane Composition on the Signaling of the NKG2A/CD94/HLA-E Immune Receptor Complex. J Chem Inf Model 2024; 64:9374-9387. [PMID: 39621690 DOI: 10.1021/acs.jcim.4c01357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Understanding how membrane composition influences the dynamics and function of transmembrane proteins is crucial for the comprehensive elucidation of cellular signaling mechanisms and the development of targeted therapeutics. In this study, we employed all-atom molecular dynamics simulations to investigate the impact of different membrane compositions on the conformational dynamics of the NKG2A/CD94/HLA-E immune receptor complex, a key negative regulator of natural killer cell cytotoxic activity. Our results reveal significant variations in the behavior of the immune complex structure across five different membrane compositions, which include POPC, POPA, DPPC, and DLPC phospholipids, and a mixed POPC/cholesterol system. These variations are particularly evident in the intracellular domain of NKG2A, manifested as changes in mobility, tyrosine exposure, and interdomain communication. Additionally, we found that a large concentration of negative charge at the surface of the POPA-based membrane greatly increased the number of contacts with lipid molecules and significantly decreased the exposure of intracellular NKG2A ITIM regions to water molecules, thus likely halting the signal transduction process. Furthermore, the DPPC model with a membrane possessing a high transition temperature in a gel-like state became curved, affecting the exposure of one ITIM region. The decreased membrane thickness in the DPLC model caused a significant transmembrane domain tilt, altering the linker protrusion angle and potentially disrupting the hydrogen bonding network in the extracellular domain. Overall, our findings highlight the importance of considering membrane composition in the analysis of transmembrane protein dynamics and in the exploration of novel strategies for the external modulation of their signaling pathways.
Collapse
Affiliation(s)
- Martin Ljubič
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Andrej Perdih
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Jure Borišek
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Patwekar M, Sehar N, Patwekar F, Medikeri A, Ali S, Aldossri RM, Rehman MU. Novel immune checkpoint targets: A promising therapy for cancer treatments. Int Immunopharmacol 2024; 126:111186. [PMID: 37979454 DOI: 10.1016/j.intimp.2023.111186] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/20/2023]
Abstract
The immune system frequently comprises immunological checkpoints. They serve as a barrier to keep the immune system from overreacting and damaging cells that are robust. Immune checkpoint inhibitors (ICIs) are utilized in immunotherapy to prevent the synergy of partner proteins of checkpoint proteins with auxiliary proteins. Moreover, the T cells may target malignant cells since the "off" signal cannot be conveyed. ICIs, which are mostly composed of monoclonal antibodies (mAbs) against cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) and anti- programmed death-1/programmed ligand 1 (anti-PD-1/PD-L1), might transform the context of cancer therapy. Further, more patients continued to exhibit adaptive resistance, even though several ICIs demonstrated convincing therapeutic benefits in selective tumor types. Immune checkpoint therapy's overall effectiveness is still lacking at this time. A popular area of study involves investigating additional immune checkpoint molecules. Recent research has found a number of fresh immune checkpoint targets, including NKG2A ligands, TIGIT, B7-H6 ligands, Galectin 3, TIM3, and so on. These targets have been focus of the study, and recent investigational approaches have shown encouraging outcomes. In this review article, we covered the development and present level understanding of these recently identified immune checkpoint molecules, its effectiveness and limitations.
Collapse
Affiliation(s)
| | - Nouroz Sehar
- Centre for Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard University, New Delhi, 110062, India
| | - Faheem Patwekar
- Luqman College of Pharmacy, Gulbarga, 585102, Karnataka, India
| | | | - Shafat Ali
- Cytogenetics and Molecular Biology Laboratory, Centre of Research for Development, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India.
| | - Rana M Aldossri
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
3
|
Li Y, Orange JS. Assessment of membrane lipid state at the natural killer cell immunological synapse. Methods Cell Biol 2022; 173:77-89. [PMID: 36653087 PMCID: PMC10182816 DOI: 10.1016/bs.mcb.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The plasma membrane is a fluid structure that protects cells as one of their first barriers and actively participates in numerous biological processes in many ways including through distinct membrane sub-regions. For immunological cells, highly organized sub-compartments of plasma membranes are vital for them to sense and react to environmental changes. This includes a varying spectrum of lipid ordering in the plasma membrane which signifies or enables cellular functions. Thus, comprehensive analyses of the plasma membrane can facilitate understanding of important cell biological elements which include insights into immune cells. Here, we describe two methods that can be used to assess membrane lipid state at the natural killer cell immunological synapse via high-resolution live cell imaging techniques.
Collapse
Affiliation(s)
- Yu Li
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, United States
| | - Jordan S Orange
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, United States.
| |
Collapse
|
4
|
Wang X, Xiong H, Ning Z. Implications of NKG2A in immunity and immune-mediated diseases. Front Immunol 2022; 13:960852. [PMID: 36032104 PMCID: PMC9399941 DOI: 10.3389/fimmu.2022.960852] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/21/2022] [Indexed: 11/22/2022] Open
Abstract
In recent studies, NKG2A is revealed to be a key immune checkpoint for both natural killer (NK) cells and CD8+ T cells. It form heterodimer receptors with CD94, and targets the peptide-presenting human leukocyte antigen-E (HLA-E) molecules. Upon crosslinking, NKG2A/CD94 delivers inhibitory signals for NK cells and CD8+ T cells, while blocking NKG2A can effectively unleash functions of these cytotoxic lymphocytes. The interaction between NKG2A and HLA-E contributes to tumor immune escape, and NKG2A-mediated mechanisms are currently being exploited to develop potential antitumor therapeutic strategies. In addition, growing evidence shows that NKG2A also plays important roles in other immune-related diseases including viral infections, autoimmune diseases, inflammatory diseases, parasite infections and transplant rejection. Therefore, the current work focuses on describing the effect of NKG2A on immune regulation and exploring its potential role in immune-mediated disorders.
Collapse
Affiliation(s)
- Xiaotong Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
- *Correspondence: Zhaochen Ning, ; Huabao Xiong,
| | - Zhaochen Ning
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
- *Correspondence: Zhaochen Ning, ; Huabao Xiong,
| |
Collapse
|
5
|
Degranulation enhances presynaptic membrane packing, which protects NK cells from perforin-mediated autolysis. PLoS Biol 2021. [DOI: 10.1371/journal.pbio.3001328
expr 949426982 + 863878017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Natural killer (NK) cells kill a target cell by secreting perforin into the lytic immunological synapse, a specialized interface formed between the NK cell and its target. Perforin creates pores in target cell membranes allowing delivery of proapoptotic enzymes. Despite the fact that secreted perforin is in close range to both the NK and target cell membranes, the NK cell typically survives while the target cell does not. How NK cells preferentially avoid death during the secretion of perforin via the degranulation of their perforin-containing organelles (lytic granules) is perplexing. Here, we demonstrate that NK cells are protected from perforin-mediated autolysis by densely packed and highly ordered presynaptic lipid membranes, which increase packing upon synapse formation. When treated with 7-ketocholesterol, lipid packing is reduced in NK cells making them susceptible to perforin-mediated lysis after degranulation. Using high-resolution imaging and lipidomics, we identified lytic granules themselves as having endogenously densely packed lipid membranes. During degranulation, lytic granule–cell membrane fusion thereby further augments presynaptic membrane packing, enhancing membrane protection at the specific sites where NK cells would face maximum concentrations of secreted perforin. Additionally, we found that an aggressive breast cancer cell line is perforin resistant and evades NK cell–mediated killing owing to a densely packed postsynaptic membrane. By disrupting membrane packing, these cells were switched to an NK-susceptible state, which could suggest strategies for improving cytotoxic cell-based cancer therapies. Thus, lipid membranes serve an unexpected role in NK cell functionality protecting them from autolysis, while degranulation allows for the inherent lytic granule membrane properties to create local ordered lipid “shields” against self-destruction.
Collapse
|
6
|
Li Y, Orange JS. Degranulation enhances presynaptic membrane packing, which protects NK cells from perforin-mediated autolysis. PLoS Biol 2021; 19:e3001328. [PMID: 34343168 PMCID: PMC8330931 DOI: 10.1371/journal.pbio.3001328&set/a 870330320+893642561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Natural killer (NK) cells kill a target cell by secreting perforin into the lytic immunological synapse, a specialized interface formed between the NK cell and its target. Perforin creates pores in target cell membranes allowing delivery of proapoptotic enzymes. Despite the fact that secreted perforin is in close range to both the NK and target cell membranes, the NK cell typically survives while the target cell does not. How NK cells preferentially avoid death during the secretion of perforin via the degranulation of their perforin-containing organelles (lytic granules) is perplexing. Here, we demonstrate that NK cells are protected from perforin-mediated autolysis by densely packed and highly ordered presynaptic lipid membranes, which increase packing upon synapse formation. When treated with 7-ketocholesterol, lipid packing is reduced in NK cells making them susceptible to perforin-mediated lysis after degranulation. Using high-resolution imaging and lipidomics, we identified lytic granules themselves as having endogenously densely packed lipid membranes. During degranulation, lytic granule-cell membrane fusion thereby further augments presynaptic membrane packing, enhancing membrane protection at the specific sites where NK cells would face maximum concentrations of secreted perforin. Additionally, we found that an aggressive breast cancer cell line is perforin resistant and evades NK cell-mediated killing owing to a densely packed postsynaptic membrane. By disrupting membrane packing, these cells were switched to an NK-susceptible state, which could suggest strategies for improving cytotoxic cell-based cancer therapies. Thus, lipid membranes serve an unexpected role in NK cell functionality protecting them from autolysis, while degranulation allows for the inherent lytic granule membrane properties to create local ordered lipid "shields" against self-destruction.
Collapse
Affiliation(s)
- Yu Li
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America.,Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Jordan S Orange
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, United States of America
| |
Collapse
|
7
|
Li Y, Orange JS. Degranulation enhances presynaptic membrane packing, which protects NK cells from perforin-mediated autolysis. PLoS Biol 2021; 19:e3001328. [PMID: 34343168 PMCID: PMC8330931 DOI: 10.1371/journal.pbio.3001328] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 06/16/2021] [Indexed: 12/27/2022] Open
Abstract
Natural killer (NK) cells kill a target cell by secreting perforin into the lytic immunological synapse, a specialized interface formed between the NK cell and its target. Perforin creates pores in target cell membranes allowing delivery of proapoptotic enzymes. Despite the fact that secreted perforin is in close range to both the NK and target cell membranes, the NK cell typically survives while the target cell does not. How NK cells preferentially avoid death during the secretion of perforin via the degranulation of their perforin-containing organelles (lytic granules) is perplexing. Here, we demonstrate that NK cells are protected from perforin-mediated autolysis by densely packed and highly ordered presynaptic lipid membranes, which increase packing upon synapse formation. When treated with 7-ketocholesterol, lipid packing is reduced in NK cells making them susceptible to perforin-mediated lysis after degranulation. Using high-resolution imaging and lipidomics, we identified lytic granules themselves as having endogenously densely packed lipid membranes. During degranulation, lytic granule-cell membrane fusion thereby further augments presynaptic membrane packing, enhancing membrane protection at the specific sites where NK cells would face maximum concentrations of secreted perforin. Additionally, we found that an aggressive breast cancer cell line is perforin resistant and evades NK cell-mediated killing owing to a densely packed postsynaptic membrane. By disrupting membrane packing, these cells were switched to an NK-susceptible state, which could suggest strategies for improving cytotoxic cell-based cancer therapies. Thus, lipid membranes serve an unexpected role in NK cell functionality protecting them from autolysis, while degranulation allows for the inherent lytic granule membrane properties to create local ordered lipid "shields" against self-destruction.
Collapse
Affiliation(s)
- Yu Li
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Jordan S. Orange
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, United States of America
| |
Collapse
|
8
|
Cantoni C, Wurzer H, Thomas C, Vitale M. Escape of tumor cells from the NK cell cytotoxic activity. J Leukoc Biol 2020; 108:1339-1360. [PMID: 32930468 DOI: 10.1002/jlb.2mr0820-652r] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
In recent years, NK cells, initially identified as potent cytotoxic effector cells, have revealed an unexpected complexity, both at phenotypic and functional levels. The discovery of different NK cell subsets, characterized by distinct gene expression and phenotypes, was combined with the characterization of the diverse functions NK cells can exert, not only as circulating cells, but also as cells localized or recruited in lymphoid organs and in multiple tissues. Besides the elimination of tumor and virus-infected cells, these functions include the production of cytokines and chemokines, the regulation of innate and adaptive immune cells, the influence on tissue homeostasis. In addition, NK cells display a remarkable functional plasticity, being able to adapt to the environment and to develop a kind of memory. Nevertheless, the powerful cytotoxic activity of NK cells remains one of their most relevant properties, particularly in the antitumor response. In this review, the process of tumor cell recognition and killing mediated by NK cells, starting from the generation of cytolytic granules and recognition of target cell, to the establishment of the NK cell immunological synapse, the release of cytotoxic molecules, and consequent tumor cell death is described. Next, the review focuses on the heterogeneous mechanisms, either intrinsic to tumors or induced by the tumor microenvironment, by which cancer cells can escape the NK cell-mediated attack.
Collapse
Affiliation(s)
- Claudia Cantoni
- Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy.,Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - Hannah Wurzer
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Clément Thomas
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Massimo Vitale
- UO Immunologia, IRCCS Ospedale Policlinico San Martino Genova, Genoa, Italy
| |
Collapse
|
9
|
Murin CD. Considerations of Antibody Geometric Constraints on NK Cell Antibody Dependent Cellular Cytotoxicity. Front Immunol 2020; 11:1635. [PMID: 32849559 PMCID: PMC7406664 DOI: 10.3389/fimmu.2020.01635] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/18/2020] [Indexed: 12/31/2022] Open
Abstract
It has been well-established that antibody isotype, glycosylation, and epitope all play roles in the process of antibody dependent cellular cytotoxicity (ADCC). For natural killer (NK) cells, these phenotypes are linked to cellular activation through interaction with the IgG receptor FcγRIIIa, a single pass transmembrane receptor that participates in cytoplasmic signaling complexes. Therefore, it has been hypothesized that there may be underlying spatial and geometric principles that guide proper assembly of an activation complex within the NK cell immune synapse. Further, synergy of antibody phenotypic properties as well as allosteric changes upon antigen binding may also play an as-of-yet unknown role in ADCC. Understanding these facets, however, remains hampered by difficulties associated with studying immune synapse dynamics using classical approaches. In this review, I will discuss relevant NK cell biology related to ADCC, including the structural biology of Fc gamma receptors, and how the dynamics of the NK cell immune synapse are being studied using innovative microscopy techniques. I will provide examples from the literature demonstrating the effects of spatial and geometric constraints on the T cell receptor complex and how this relates to intracellular signaling and the molecular nature of lymphocyte activation complexes, including those of NK cells. Finally, I will examine how the integration of high-throughput and "omics" technologies will influence basic NK cell biology research moving forward. Overall, the goal of this review is to lay a basis for understanding the development of drugs and therapeutic antibodies aimed at augmenting appropriate NK cell ADCC activity in patients being treated for a wide range of illnesses.
Collapse
Affiliation(s)
- Charles D. Murin
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, United States
| |
Collapse
|
10
|
Deng S, Zhou X, Xu J. Checkpoints Under Traffic Control: From and to Organelles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:431-453. [DOI: 10.1007/978-981-15-3266-5_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Pageon SV, Aquino G, Lagrue K, Köhler K, Endres RG, Davis DM. Dynamics of natural killer cell receptor revealed by quantitative analysis of photoswitchable protein. Biophys J 2014; 105:1987-96. [PMID: 24209843 DOI: 10.1016/j.bpj.2013.09.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/27/2013] [Accepted: 09/18/2013] [Indexed: 10/26/2022] Open
Abstract
Natural Killer (NK) cell activation is dynamically regulated by numerous activating and inhibitory surface receptors that accumulate at the immune synapse. Quantitative analysis of receptor dynamics has been limited by methodologies that rely on indirect measurements such as fluorescence recovery after photobleaching. Here, we report an apparently novel approach to study how proteins traffic to and from the immune synapse using NK cell receptors tagged with the photoswitchable fluorescent protein tdEosFP, which can be irreversibly photoswitched from a green to red fluorescent state by ultraviolet light. Thus, after a localized switching event, the movement of the photoswitched molecules can be temporally and spatially resolved by monitoring fluorescence in two regions of interest. By comparing images with mathematical models, we evaluated the diffusion coefficient of the receptor KIR2DL1 (0.23 ± 0.06 μm(2) s(-1)) and assessed how synapse formation affects receptor dynamics. Our data conclude that the inhibitory NK cell receptor KIR2DL1 is continually trafficked into the synapse, and remains surprisingly stable there. Unexpectedly, however, in NK cells forming synapses with multiple target cells simultaneously, KIR2DL1 at one synapse can relocate to another synapse. Thus, our results reveal a previously undetected intersynaptic exchange of protein.
Collapse
Affiliation(s)
- Sophie V Pageon
- Department of Life Sciences, Imperial College London, Exhibition Road, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
12
|
Serrano-Pertierra E, Cernuda-Morollón E, Brdička T, Hoøejši V, López-Larrea C. L-plastin is involved in NKG2D recruitment into lipid rafts and NKG2D-mediated NK cell migration. J Leukoc Biol 2014; 96:437-45. [PMID: 24803550 DOI: 10.1189/jlb.2a1013-564r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Membrane rafts are microdomains of the plasma membrane that have multiple biological functions. The involvement of these structures in the biology of T cells, namely in signal transduction by the TCR, has been widely studied. However, the role of membrane rafts in immunoreceptor signaling in NK cells is less well known. We studied the distribution of the activating NKG2D receptor in lipid rafts by isolating DRMs in a sucrose density gradient or by raft fractionation by β-OG-selective solubility in the NKL cell line. We found that the NKG2D-DAP10 complex and pVav are recruited into rafts upon receptor stimulation. Qualitative proteomic analysis of these fractions showed that the actin cytoskeleton is involved in this process. In particular, we found that the actin-bundling protein L-plastin plays an important role in the clustering of NKG2D into lipid rafts. Moreover, coengagement of the inhibitory receptor NKG2A partially disrupted NKG2D recruitment into rafts. Furthermore, we demonstrated that L-plastin participates in NKG2D-mediated inhibition of NK cell chemotaxis.
Collapse
Affiliation(s)
| | - Eva Cernuda-Morollón
- Neurology Departments, Hospital Universitario Central de Asturias, Oviedo, Asturias, Spain
| | - Tomáš Brdička
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic; and
| | - Václav Hoøejši
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic; and
| | | |
Collapse
|
13
|
Dolganiuc A. Role of lipid rafts in liver health and disease. World J Gastroenterol 2011; 17:2520-35. [PMID: 21633657 PMCID: PMC3103810 DOI: 10.3748/wjg.v17.i20.2520] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 02/24/2011] [Accepted: 03/03/2011] [Indexed: 02/06/2023] Open
Abstract
Liver diseases are an increasingly common cause of morbidity and mortality; new approaches for investigation of mechanisms of liver diseases and identification of therapeutic targets are emergent. Lipid rafts (LRs) are specialized domains of cellular membranes that are enriched in saturated lipids; they are small, mobile, and are key components of cellular architecture, protein partition to cellular membranes, and signaling events. LRs have been identified in the membranes of all liver cells, parenchymal and non-parenchymal; more importantly, LRs are active participants in multiple physiological and pathological conditions in individual types of liver cells. This article aims to review experimental-based evidence with regard to LRs in the liver, from the perspective of the liver as a whole organ composed of a multitude of cell types. We have gathered up-to-date information related to the role of LRs in individual types of liver cells, in liver health and diseases, and identified the possibilities of LR-dependent therapeutic targets in liver diseases.
Collapse
|
14
|
Abstract
Cell contact-dependent inhibition and regulation of immune responses play an essential role in balancing the need for rapid and efficient responses to a wide variety of pathological challenges, while at the same time maintaining self-tolerance. Much attention has been given to immune synapses that lead to the activation of, for example, cell-mediated cytotoxicity, and here we compare the supramolecular dynamics of synapses that lead to inhibition or regulatory functions. We focus on natural killer cells where such different synapses have been best studied. An emergent principle is that inhibition or regulatory responses are commonly achieved by selective recruitment of signalling proteins to the synapse and exclusion of membrane-proximal intracellular proteins needed for activation. We also discuss evidence that an inhibitory synapse triggers or maintains effector cells in a migratory configuration, which serves to break the synapse before the steps needed for effector cell activation can be completed. This model implies that the concept of kinetic-proofreading, previously used to describe activation of individual T-cell receptors, can also apply in determining the outcome of intercellular conjugation.
Collapse
|
15
|
Masilamani M, Peruzzi G, Borrego F, Coligan JE. Endocytosis and intracellular trafficking of human natural killer cell receptors. Traffic 2009; 10:1735-44. [PMID: 19719476 DOI: 10.1111/j.1600-0854.2009.00973.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Natural killer (NK) cells play a vital role in the defense against viral infections and tumor development. NK cell function is primarily regulated by the sum of signals from a broad array of activation and inhibitory receptors. Key to generating the input level of either activating or inhibitory signals is the maintenance of receptor expression levels on the cell surface. Although the mechanisms of endocytosis and trafficking for some cell surface receptors, such as transferrin receptor and certain immune receptors, are very well known, that is not the situation for receptors expressed by NK cells. Recent studies have uncovered that endocytosis and trafficking routes characteristic for specific activation and inhibitory receptors can regulate the functional responses of NK cells. In this review, we summarize the current knowledge of receptor endocytosis and trafficking, and integrate this with our current understanding of NK cell receptor trafficking.
Collapse
Affiliation(s)
- Madhan Masilamani
- The Jaffe Food Allergy Institute, Department of Pediatrics, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029, USA.
| | | | | | | |
Collapse
|
16
|
Cryptococcus neoformans directly stimulates perforin production and rearms NK cells for enhanced anticryptococcal microbicidal activity. Infect Immun 2009; 77:2436-46. [PMID: 19307209 DOI: 10.1128/iai.01232-08] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NK cells, in addition to possessing antitumor and antiviral activity, exhibit perforin-dependent microbicidal activity against the opportunistic pathogen Cryptococcus neoformans. However, the factors controlling this response, particularly whether the pathogen itself provides an activation or rearming signal, are largely unknown. The current studies were performed to determine whether exposure to this fungus alters subsequent NK cell anticryptococcal activity. NK cells lost perforin and mobilized lysosome-associated membrane protein 1 to the cell surface following incubation with the fungus, indicating that degranulation had occurred. Despite a reduced perforin content during killing, NK cells acquired an enhanced ability to kill C. neoformans, as demonstrated using auxotrophs that allowed independent assessment of the killing of two strains. De novo protein synthesis was required for optimal killing; however, there was no evidence that a soluble factor contributed to the enhanced anticryptococcal activity. Exposure of NK cells to C. neoformans caused the cells to rearm, as demonstrated by increased perforin mRNA levels and enhanced loss of perforin when transcription was blocked. Degranulation alone was insufficient to provide the activation signal as NK cells lost anticryptococcal activity following treatment with strontium chloride. However, NK cells regained the activity upon prolonged exposure to C. neoformans, which is consistent with activation by the microbe. The enhanced cytotoxicity did not extend to tumor killing since NK cells exposed to C. neoformans failed to kill NK-sensitive tumor targets (K562 cells). These studies demonstrate that there is contact-mediated microbe-specific rearming and activation of microbicidal activity that are necessary for optimal killing of C. neoformans.
Collapse
|
17
|
Lieto LD, Maasho K, West D, Borrego F, Coligan JE. The human CD94 gene encodes multiple, expressible transcripts including a new partner of NKG2A/B. Genes Immun 2009; 7:36-43. [PMID: 16237464 DOI: 10.1038/sj.gene.6364268] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
CD94/NKG2A is an inhibitory receptor expressed by natural killer (NK) cells and a subset of CD8+ T cells. Ligation of CD94/NKG2A by its ligand HLA-E results in tyrosine phosphorylation of the NKG2A immunoreceptor tyrosine-based inhibitory motifs, and recruitment and activation of the SH2 domain-bearing tyrosine phosphatase-1, which in turn suppresses activation signals. The nkg2a gene encodes two isoforms, NKG2A and NKG2B, with the latter lacking the stem region. We identified three new alternative transcripts of the cd94 gene in addition to the originally described canonical CD94Full. One of the transcripts, termed CD94-T4, lacks the portion that encodes the stem region. CD94-T4 associates with both NKG2A and NKG2B, but preferentially associates with the latter. This is probably due to the absence of a stem region in both CD94-T4 and NKG2B. CD94-T4/NKG2B is capable of binding HLA-E and, when expressed in E6-1 Jurkat T cells, inhibits TCR mediated signals, demonstrating that this heterodimer is functional. Coevolution of stemless isoforms of CD94 and NKG2A that preferentially pair with each other to produce a functional heterodimer indicates that this may be more than a serendipitous event. CD94-T4/NKG2B may contribute to the plasticity of the NK immunological synapse by insuring an adequate inhibitory signal.
Collapse
Affiliation(s)
- L D Lieto
- Receptor Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | | | | | | | | |
Collapse
|
18
|
Peruzzi G, Masilamani M, Borrego F, Coligan JE. Endocytosis as a mechanism of regulating natural killer cell function: unique endocytic and trafficking pathway for CD94/NKG2A. Immunol Res 2009; 43:210-22. [PMID: 18979076 PMCID: PMC2752144 DOI: 10.1007/s12026-008-8072-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Natural killer (NK) cells are lymphocytes generally recognized as sentinels of the innate immune system due to their inherent capacity to deal with diseased (stressed) cells, including malignant and infected. This ability to recognize many potentially pathogenic situations is due to the expression of a diverse panel of activation receptors. Because NK cell activation triggers an aggressive inflammatory response, it is important to have a means of throttling this response. Hence, NK cells also express a panel of inhibitory receptors that recognize ligands expressed by "normal" cells. Little or nothing is known about the endocytosis and trafficking of NK cell receptors, which are of great relevance to understanding how NK cells maintain the appropriate balance of activating and inhibitory receptors on their cell surface. In this review, we focus on the ITIM-containing inhibitory receptor CD94/NKG2A showing that it is endocytosed by a previously undescribed macropinocytic-like process that may be related to the maintenance of its surface expression.
Collapse
Affiliation(s)
- Giovanna Peruzzi
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Twinbrook II, Room 205, MS 8180 12441 Parklawn Drive, Rockville, MD 20852, USA
| | | | | | | |
Collapse
|
19
|
Abstract
The natural killer (NK)-cell immunological synapse is the dynamic interface formed between an NK cell and its target cell. Formation of the NK-cell immunological synapse involves several distinct stages, from the initiation of contact with a target cell to the directed delivery of lytic-granule contents for target-cell lysis. Progression through the individual stages is regulated, and this tight regulation underlies the precision with which NK cells select and kill susceptible target cells (including virally infected cells and cancerous cells) that they encounter during their routine surveillance of the body.
Collapse
Affiliation(s)
- Jordan S Orange
- University of Pennsylvania School of Medicine, Joseph Stokes Jr Research Institute of The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, ARC 1016H, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
20
|
Krzewski K, Strominger JL. The killer's kiss: the many functions of NK cell immunological synapses. Curr Opin Cell Biol 2008; 20:597-605. [PMID: 18639449 DOI: 10.1016/j.ceb.2008.05.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 05/15/2008] [Accepted: 05/19/2008] [Indexed: 01/18/2023]
Abstract
Natural killer (NK) cells comprise a subset of lymphocytes involved in protection against microbial pathogens and tumors. NK cells recognize host cells that are missing MHC class I molecules and eliminate them through localized delivery of lytic granules. The majority of NK cell effector functions require direct cell-to-cell contact. Binding to a target cell is accompanied by creation of complex structures at the cell-cell interface known as immunological synapses. Recent studies have contributed immensely to the characterization of several types of NK cell immunological synapses and understanding of the variety of processes originating at this intriguing place. The emerging picture illustrates NK cell immune synapses as the sites of highly complex regulation of NK cell activity.
Collapse
Affiliation(s)
- Konrad Krzewski
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | | |
Collapse
|
21
|
Brilot F, Strowig T, Roberts SM, Arrey F, Münz C. NK cell survival mediated through the regulatory synapse with human DCs requires IL-15Ralpha. J Clin Invest 2008; 117:3316-29. [PMID: 17948125 DOI: 10.1172/jci31751] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Accepted: 08/15/2007] [Indexed: 11/17/2022] Open
Abstract
DCs activate NK cells during innate immune responses to viral infections. However, the composition and kinetics of the immunological synapse mediating this interaction are largely unknown. Here, we report the rapid formation of an immunological synapse between human resting NK cells and mature DCs. Although inhibitory NK cell receptors were polarized to this synapse, where they are known to protect mature DCs from NK cell lysis, the NK cell also received activation signals that induced mobilization of intracellular calcium and CD69 upregulation. The high-affinity component of the receptor for IL-15, IL-15Ralpha, accumulated at the synapse center on NK cells, and blocking of IL-15Ralpha increased NK cell apoptosis and diminished NK cell survival during their interaction with DCs. Furthermore, IL-15Ralpha-deficient NK cells, obtained from donors with a history of infectious mononucleosis, showed diminished survival in culture with DCs. Synapse formation was required for IL-15Ralpha-mediated NK cell survival, because synapse disruption by adhesion molecule blocking decreased DC-induced NK cell survival. These results identify what we believe to be a novel regulatory NK cell synapse with hallmarks of spatially separated inhibitory and activating interactions at its center. We suggest that this synapse formation enables optimal NK cell activation by DCs during innate immune responses.
Collapse
Affiliation(s)
- Fabienne Brilot
- Laboratory of Viral Immunobiology and Christopher H. Browne Center for Immunology and Immune Diseases, Rockefeller University, New York, New York 10065, USA
| | | | | | | | | |
Collapse
|
22
|
Masilamani M, Narayanan S, Prieto M, Borrego F, Coligan JE. Uncommon endocytic and trafficking pathway of the natural killer cell CD94/NKG2A inhibitory receptor. Traffic 2008; 9:1019-34. [PMID: 18363778 DOI: 10.1111/j.1600-0854.2008.00738.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The CD94/NKG2A inhibitory receptor, expressed by natural killer and T cells, is constantly exposed to its HLA-E ligand expressed by surrounding cells. Ligand exposure often induces receptor downregulation. For CD94/NKG2A, this could potentiate activation receptor(s) induced responses to normal bystander cells. We investigated CD94/NKG2A endocytosis and found that it occurs by an amiloride-sensitive, Rac1-dependent macropinocytic-like process; however, it does not require clathrin, dynamin, ADP ribosylation factor-6, phosphoinositide-3 kinase or the actin cytoskeleton. Once endocytosed, CD94/NKG2A traffics to early endosomal antigen 1(+), Rab5(+) early endosomes. It does appear in Rab4(+) early/sorting endosome, but, in the time period examined, fails to reach Rab11(+) recycling or Rab7(+) late endosomes or lysosome-associated membrane protein-1(+) lysosomes. These results indicate that CD94/NKG2A utilizes a previously undescribed endocytic mechanism coupled with an abbreviated trafficking pattern, perhaps to insure surface expression.
Collapse
Affiliation(s)
- Madhan Masilamani
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | | | | | | | | |
Collapse
|
23
|
Roda-Navarro P, Reyburn HT. Intercellular protein transfer at the NK cell immune synapse: mechanisms and physiological significance. FASEB J 2007; 21:1636-46. [PMID: 17314139 DOI: 10.1096/fj.06-7488rev] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Immune synapses (IS) are supramolecular clusters providing intercellular communication among cells of the immune system. While the physiological role and consequences of IS formation are beginning to be understood, these studies have given rise to a new research topic in the biology of lymphocyte interactions: synaptic transfer of proteins between lymphocytes. During natural killer (NK) cell immunosurveillance, clustering and transfer of receptor and ligand molecules have been observed at both the inhibitory and cytotoxic NK cell immune synapse (NK-IS). The transfer of activating receptors seems to be associated with receptor distribution to thin membrane connective structures (MCS)/nanotubes that communicate effector and susceptible target cells. Strikingly, bidirectional transfer of the activating receptor NKG2D and its cellular ligand MICB correlates with a reduction in NK cell cytotoxic function. In this regard, synaptic uptake of MICB may represent a novel strategy of tumor immune evasion. Finally, synaptic acquisition of receptors by NK cells may also favor the spread of pathogens. In this review we discuss possible mechanisms of synaptic protein transfer and propose different testable hypotheses about the physiological and pathological significance of this process for NK cell function.
Collapse
|
24
|
Borrego F, Masilamani M, Marusina AI, Tang X, Coligan JE. The CD94/NKG2 family of receptors: from molecules and cells to clinical relevance. Immunol Res 2007; 35:263-78. [PMID: 17172651 DOI: 10.1385/ir:35:3:263] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/21/2022]
Abstract
Immune responses must be tightly regulated to avoid hyporesponsiveness on one hand or excessive inflammation and the development of autoimmunity (hyperresponsiveness) on the other hand. This balance is attained through the throttling of activating signals by inhibitory signals that ideally leads to an adequate immune response against an invader without excessive and extended inflammatory signals that promote the development of autoimmunity. The CD94/NKG2 family of receptors is composed of members with activating or inhibitory potential. These receptors are expressed predominantly on NK cells and a subset of CD8+ T cells, and they have been shown to play an important role in regulating responses against infected and tumorigenic cells. In this review, we discuss the current knowledge about this family of receptors, including ligand and receptor interaction, signaling, membrane dynamics, regulation of gene expression and their roles in disease regulation, infections, and cancer, and bone marrow transplantation.
Collapse
Affiliation(s)
- Francisco Borrego
- Receptor Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | | | | | | | | |
Collapse
|
25
|
Masilamani M, Nguyen C, Kabat J, Borrego F, Coligan JE. CD94/NKG2A inhibits NK cell activation by disrupting the actin network at the immunological synapse. THE JOURNAL OF IMMUNOLOGY 2006; 177:3590-6. [PMID: 16951318 DOI: 10.4049/jimmunol.177.6.3590] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
An adequate immune response is the result of the fine balance between activation and inhibitory signals. The exact means by which inhibitory signals obviate activation signals in immune cells are not totally elucidated. Human CD94/NKG2A is an ITIM-containing inhibitory receptor expressed by NK cells and some CD8+ T cells that recognize HLA-E. We show that the engagement of this receptor prevents NK cell activation by disruption of the actin network and exclusion of lipid rafts at the point of contact with its ligand (inhibitory NK cell immunological synapse, iNKIS). CD94/NKG2A engagement leads to recruitment and activation of src homology 2 domain-bearing tyrosine phosphatase 1. This likely explains the observed dephosphorylation of guanine nucleotide exchange factor and regulator of actin, Vav1, as well as ezrin-radixin-moesin proteins that connect actin filaments to membrane structures. In contrast, NK cell activation by NKG2D induced Vav1 and ezrin-radixin-moesin phosphorylation. Thus, CD94/NKG2A prevents actin-dependent recruitment of raft-associated activation receptors complexes to the activating synapse. This was further substantiated by showing that inhibition of actin polymerization abolished lipid rafts exclusion at the iNKIS, whereas cholesterol depletion had no effect on actin disruption at the iNKIS. These data indicate that the lipid rafts exclusion at the iNKIS is an active process which requires an intact cytoskeleton to maintain lipid rafts outside the inhibitory synapse. The net effect is to maintain an inhibitory state in the proximity of the iNKIS, while allowing the formation of activation synapse at distal points within the same NK cell.
Collapse
Affiliation(s)
- Madhan Masilamani
- Receptor Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | | | | | | | | |
Collapse
|
26
|
Hillyard DZ, Nutt CD, Thomson J, McDonald KJ, Wan RK, Cameron AJM, Mark PB, Jardine AG. Statins inhibit NK cell cytotoxicity by membrane raft depletion rather than inhibition of isoprenylation. Atherosclerosis 2006; 191:319-25. [PMID: 16814295 DOI: 10.1016/j.atherosclerosis.2006.05.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 05/19/2006] [Accepted: 05/22/2006] [Indexed: 11/19/2022]
Abstract
To investigate the potential determinants of the pleiotropic effects of statins, we measured NK cell cytotoxicity in samples from normal subjects and patients, including patients receiving statin therapy. In a multivariate analysis, NK cell cytotoxicity was related to total plasma cholesterol concentration rather than statin use. In vitro, we investigated the role of lipid modification, specifically the effects on membrane rafts and raft-dependent signal transduction. We demonstrate that statins reduce NK cell cytotoxicity and that membrane cholesterol depletion by cyclodextrins has a similar effect. In contrast, isoprenyl transferase inhibitors had little or no effect on NK cell function. We hypothesise that the pleiotropic effects of statins reflect changes in membrane cholesterol and, specifically, the density of membrane rafts. Moreover, there is likely to be a relationship between membrane cholesterol, membrane rafts and cell function that may be involved in the pathogenesis of cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Dianne Z Hillyard
- Renal Research Group, BHF Cardiovascular Research Centre, Division of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Henel G, Singh K, Cui D, Pryshchep S, Lee WW, Weyand CM, Goronzy JJ. Uncoupling of T-cell effector functions by inhibitory killer immunoglobulin-like receptors. Blood 2006; 107:4449-57. [PMID: 16469873 PMCID: PMC1895796 DOI: 10.1182/blood-2005-06-2519] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Killer immunoglobulin-like receptors (KIRs) are a family of regulatory cell-surface molecules expressed on natural killer (NK) cells and memory T-cell subsets. Their ability to prevent the formation of an activation platform and to inhibit NK cell activation is the basis of the missing self model of NK cell function. The benefits of KIR expression for T-cell biology are unclear. We studied how KIR2DL2 regulates T-cell function. Engagement of KIR2DL2 by the ligand human leukocyte antigen (HLA)-Cw3 did not affect conjugate formation between CD4(+)KIR2DL2(+) T cells and superantigen-pulsed target cells or the development of mature immune synapses with lipid rafts. KIR2DL2 and the corresponding HLA-C ligand were initially recruited to the peripheral supramolecular activation cluster (pSMAC). Consequently, KIR2DL2 engagement did not inhibit the phosphorylation of early signaling proteins and T-cell-receptor (TCR)-mediated cytotoxicity or granule exocytosis. After 15-30 minutes, KIR2DL2 moved to the central supramolecular activation cluster (cSMAC), colocalizing with CD3. TCR synapses dissociated, and phosphorylated phospholipase C (PLC)-gamma1, Vav1, and extracellular signal-regulated kinase 1/2 (ERK1/2) were reduced 90 minutes after stimulation. Gene array studies documented that the inhibition of late signaling events by KIR2DL2 affected transcriptional gene activation. We propose that KIRs on memory T cells operate to uncouple effector functions by modifying the transcriptional profile while leaving granule exocytosis unabated.
Collapse
Affiliation(s)
- Gabriella Henel
- Kathleen B. and Mason I Lowance Center for Human Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Tolerance of natural killer (NK) cells toward normal cells is mediated through their expression of inhibitory receptors that detect the normal expression of self in the form of class I major histocompatibility complex (MHC-I) molecules on target cells. These MHC-I-binding inhibitory receptors recruit tyrosine phosphatases, which are believed to counteract activating receptor-stimulated tyrosine kinases. The perpetual balance between signals derived from inhibitory and activating receptors controls NK cell responsiveness and provides an interesting paradigm of signaling cross talk. This review summarizes our knowledge of the intracellular mechanisms by which cell surface receptors influence biological responses by NK cells. Special emphasis focuses on the dynamic signaling events at the NK immune synapse and the unique signaling characteristics of specific receptors, such as NKG2D, 2B4, and KIR2DL4.
Collapse
Affiliation(s)
- A W MacFarlane
- Fox Chase Cancer Center, Division of Basic Science, Institute for Cancer Research, 333 Cottman Ave., Philadelphia, PA 19111, USA
| | | |
Collapse
|
29
|
Marusina AI, Kim DK, Lieto LD, Borrego F, Coligan JE. GATA-3 Is an Important Transcription Factor for Regulating Human NKG2A Gene Expression. THE JOURNAL OF IMMUNOLOGY 2005; 174:2152-9. [PMID: 15699146 DOI: 10.4049/jimmunol.174.4.2152] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD94/NKG2A is an inhibitory receptor expressed by most human NK cells and a subset of T cells that recognizes HLA-E on potential target cells. To study the transcriptional regulation of the human NKG2A gene, we cloned a 3.9-kb genomic fragment that contains a 1.65-kb region upstream of the exon 1, as well as exon 1 (untranslated), intron 1 and exon 2. Using deletion mutants, we identified a region immediately upstream from the most upstream transcriptional initiation site that led to increased transcriptional activity from a luciferase reporter construct in YT-Indy (NKG2A positive) cells relative to Jurkat and K562 (both NKG2A negative) cells. We also localized a DNase I hypersensitivity site to this region. Within this 80-bp segment, we identified two GATA binding sites. Mutation of GATA binding site II (-2302 bp) but not GATA binding site I (-2332 bp) led to decreased transcriptional activity. Pull-down assays revealed that GATA-3 could bind oligonucleotide probes containing the wild type but not a mutated GATA site II. Using chromatin immunoprecipitation assays, we showed that GATA-3 specifically binds to the NKG2A promoter in situ in NKL and primary NK cells, but not in Jurkat T cells. Moreover, coexpression of human GATA-3 with an NKG2A promoter construct in K562 cells led to enhanced promoter activity, and transfection of NKL cells with small interfering RNA specific for GATA-3 reduced NKG2A cell surface expression. Taken together, our data indicate that GATA-3 is an important transcription factor for regulating NKG2A gene expression.
Collapse
MESH Headings
- Base Sequence
- Cell Line, Tumor
- Cells, Cultured
- DNA Mutational Analysis
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Deoxyribonuclease I/metabolism
- GATA3 Transcription Factor
- Gene Expression Regulation/immunology
- Humans
- Jurkat Cells
- K562 Cells
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Molecular Sequence Data
- NK Cell Lectin-Like Receptor Subfamily C
- Oligonucleotide Array Sequence Analysis
- Promoter Regions, Genetic/genetics
- Protein Binding/genetics
- RNA, Small Interfering/genetics
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/biosynthesis
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, Natural Killer Cell
- Trans-Activators/metabolism
- Trans-Activators/physiology
- Transcriptional Activation
- Transfection
Collapse
Affiliation(s)
- Alina I Marusina
- Receptor Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | | | | | | | | |
Collapse
|
30
|
Borrego F, Masilamani M, Kabat J, Sanni TB, Coligan JE. The cell biology of the human natural killer cell CD94/NKG2A inhibitory receptor. Mol Immunol 2005; 42:485-8. [PMID: 15607803 DOI: 10.1016/j.molimm.2004.07.031] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To avoid destruction of normal bystander cells, natural killer (NK) cells must provide a continuous supply of functional inhibitory receptors to their cell surface. After interaction with its ligand HLA-E, which is expressed on normal cells, the C-type lectin inhibitory receptor CD94/NKG2A suppresses activation signaling processes. CD94/NKG2A receptors continuously recycle from the cell surface through endosomal compartments and back again in a process that requires energy and the cytoskeleton. This steady state process appears to be largely unaffected by exposure to ligand. CD94/NKG2A receptors move freely within the plasma membrane and accumulate at the site of contact with the ligand bearing target cells (or monoclonal antibodies (mAb) coated beads). As expected, ligated CD94/NKG2A receptors are less mobile than the nonligated receptors, and the lipid raft marker cholera toxin B is excluded from the CD94/NKG2A enriched target cell contact sites. Also, methylcyclodextrin does not interfere with CD94/NKG2A accumulation at these contact sites. The constant renewal of CD94/NKG2A receptors at the cell surface and their free mobility within the plasma membrane likely facilitates and insures inhibitory capacity.
Collapse
Affiliation(s)
- Francisco Borrego
- Receptor Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| | | | | | | | | |
Collapse
|