1
|
Wasserman JS, Kurimchak AM, Herrera-Montávez C, Doyle GA, Fox BD, Kodikara IKM, Hu X, Hu J, Jin J, Duncan JS. Characterization of MEK1/2 Degraders Uncovers a Kinase-Independent Role for MEK1/2 in the Stabilization and Maturation of CRAF. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.11.642495. [PMID: 40161716 PMCID: PMC11952388 DOI: 10.1101/2025.03.11.642495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Altered MAPK signaling frequently occurs in human disease. MEK1 and MEK2 (MEK1/2) are central protein kinases in the MAPK signaling cascade that phosphorylate ERK1/2 promoting cell growth. MEK1/2 degraders offer a strategy to characterize both kinase-dependent and independent functions of MEK1/2. Here, we discovered that MEK1/2 degradation, but not kinase inhibition, caused the subsequent degradation of upstream kinase CRAF via a cell-intrinsic mechanism. MEK1/2 binding to CRAF, but not MEK1/2 catalytic activity, was required for CRAF protein stability and maturation to a functional kinase. In the absence of MEK1/2, a minor pool of newly synthesized immature CRAF that had anti-apoptotic functions remained. Finally, we showed that a stable primed CRAF-MEK1/2 signaling complex existed in cells that required RAS binding to potentiate MEK-ERK phosphorylation. Together, we've discovered a previously unrecognized kinase-independent function of MEK1/2, while contextualizing MEK1/2 as an integral component of the CRAF activation cycle beyond the conventional CRAF-MEK kinase-substrate paradigm.
Collapse
Affiliation(s)
- Jason S Wasserman
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Alison M Kurimchak
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Carlos Herrera-Montávez
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Glenn A Doyle
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Brandon D Fox
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Ishadi K M Kodikara
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Xiaoping Hu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jianping Hu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - James S Duncan
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| |
Collapse
|
2
|
Hossain MA. A comprehensive review of targeting RAF kinase in cancer. Eur J Pharmacol 2025; 986:177142. [PMID: 39577552 DOI: 10.1016/j.ejphar.2024.177142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/11/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024]
Abstract
RAF kinases, particularly the BRAF isoform, play a crucial role in the MAPK/ERK signaling pathway, regulating key cellular processes such as proliferation, differentiation, and survival. Dysregulation of this pathway often caused by mutations in the BRAF gene or alterations in upstream regulators like Ras and receptor tyrosine kinases contributes significantly to cancer development. Mutations, such as BRAF-V600E, are present in a variety of malignancies, with the highest prevalence in melanoma. Targeted therapies against RAF kinases have achieved substantial success, especially in BRAF-V600E-mutant melanomas, where inhibitors like vemurafenib and dabrafenib have demonstrated remarkable efficacy, leading to improved patient outcomes. These inhibitors have also shown clinical benefits in cancers such as thyroid and colorectal carcinoma, although to a lesser extent. Despite these successes, therapeutic resistance remains a major hurdle. Resistance mechanisms, including RAF dimerization, feedback reactivation of the MAPK pathway, and paradoxical activation of ERK signaling, often lead to diminished efficacy over time, resulting in disease progression or even secondary malignancies. In response, current research is focusing on novel therapeutic strategies, including combination therapies that target multiple components of the pathway simultaneously, such as MEK inhibitors used in tandem with RAF inhibitors. Additionally, next-generation RAF inhibitors are being developed to address resistance and enhance therapeutic specificity. This review discusses the clinical advancements in RAF-targeted therapies, with a focus on ongoing efforts to overcome therapeutic resistance and enhance outcomes for cancer patients. It also underscores the persistent challenges in effectively targeting RAF kinase in oncology.
Collapse
Affiliation(s)
- Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| |
Collapse
|
3
|
Riaud M, Maxwell J, Soria-Bretones I, Dankner M, Li M, Rose AAN. The role of CRAF in cancer progression: from molecular mechanisms to precision therapies. Nat Rev Cancer 2024; 24:105-122. [PMID: 38195917 DOI: 10.1038/s41568-023-00650-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 01/11/2024]
Abstract
The RAF family of kinases includes key activators of the pro-tumourigenic mitogen-activated protein kinase pathway. Hyperactivation of RAF proteins, particularly BRAF and CRAF, drives tumour progression and drug resistance in many types of cancer. Although BRAF is the most studied RAF protein, partially owing to its high mutation incidence in melanoma, the role of CRAF in tumourigenesis and drug resistance is becoming increasingly clinically relevant. Here, we summarize the main known regulatory mechanisms and gene alterations that contribute to CRAF activity, highlighting the different oncogenic roles of CRAF, and categorize RAF1 (CRAF) mutations according to the effect on kinase activity. Additionally, we emphasize the effect that CRAF alterations may have on drug resistance and how precision therapies could effectively target CRAF-dependent tumours. Here, we discuss preclinical and clinical findings that may lead to improved treatments for all types of oncogenic RAF1 alterations in cancer.
Collapse
Affiliation(s)
- Melody Riaud
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
| | - Jennifer Maxwell
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Isabel Soria-Bretones
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Matthew Dankner
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
- Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Meredith Li
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - April A N Rose
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada.
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada.
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
4
|
Zhao J, Luo Z. Discovery of Raf Family Is a Milestone in Deciphering the Ras-Mediated Intracellular Signaling Pathway. Int J Mol Sci 2022; 23:ijms23095158. [PMID: 35563547 PMCID: PMC9101324 DOI: 10.3390/ijms23095158] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 01/27/2023] Open
Abstract
The Ras-Raf-MEK-ERK signaling pathway, the first well-established MAPK pathway, plays essential roles in cell proliferation, survival, differentiation and development. It is activated in over 40% of human cancers owing to mutations of Ras, membrane receptor tyrosine kinases and other oncogenes. The Raf family consists of three isoforms, A-Raf, B-Raf and C-Raf. Since the first discovery of a truncated mutant of C-Raf as a transforming oncogene carried by a murine retrovirus, forty years of extensive studies have provided a wealth of information on the mechanisms underlying the activation, regulation and biological functions of the Raf family. However, the mechanisms by which activation of A-Raf and C-Raf is accomplished are still not completely understood. In contrast, B-Raf can be easily activated by binding of Ras-GTP, followed by cis-autophosphorylation of the activation loop, which accounts for the fact that this isoform is frequently mutated in many cancers, especially melanoma. The identification of oncogenic B-Raf mutations has led to accelerated drug development that targets Raf signaling in cancer. However, the effort has not proved as effective as anticipated, inasmuch as the mechanism of Raf activation involves multiple steps, factors and phosphorylation of different sites, as well as complex interactions between Raf isoforms. In this review, we will focus on the physiological complexity of the regulation of Raf kinases and their connection to the ERK phosphorylation cascade and then discuss the role of Raf in tumorigenesis and the clinical application of Raf inhibitors in the treatment of cancer.
Collapse
Affiliation(s)
- Jingtong Zhao
- Queen Mary School, Nanchang University, Nanchang 330031, China;
| | - Zhijun Luo
- Queen Mary School, Nanchang University, Nanchang 330031, China;
- Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University, Nanchang 330031, China
- NCU-QMUL Joint Research Institute of Precision Medical Science, Nanchang 330031, China
- Correspondence:
| |
Collapse
|
5
|
Rajpurohit T, Bhattacharya S. Moving Towards Dawn: KRas Signaling and Treatment in Pancreatic Ductal Adenocarcinoma. Curr Mol Pharmacol 2022; 15:904-928. [PMID: 35088684 DOI: 10.2174/1874467215666220128161647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/20/2021] [Accepted: 11/17/2021] [Indexed: 12/24/2022]
Abstract
"Pancreatic ductal adenocarcinoma (PDAC)" is robust, nearly clueless, and all-around deadly among all tumors. Below 10 %, the general 5-year endurance period has remained adamantly unaltered in the last 30 years, regardless of enormous clinical and therapeutic endeavors. The yearly number of deaths is more than the number of recently analyzed cases. Not a classic one, but "Carbohydrate Antigen CA19- 9" remains the prevailing tool for diagnosis. MicroRNAs and non-invasive techniques are now incorporated for the effective prognosis of PDAC than just CA19-9. Mutated "Rat sarcoma virus Ras" conformation "V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog KRas" is 95 % accountable for PDAC, and its active (GTP-bound) formation activates signaling cascade comprising "Rapidly accelerated fibrosarcoma Raf"/"Mitogen-activated protein kinase MEK"/ "Extracellular signal-regulated kinase ERK" with "Phosphoinositide 3-kinase PI3K"/ "protein kinase B Akt"/ "mammalian target of rapamycin mTOR" pathways. KRas has acquired the label of 'undruggable' since the crosstalk in the nexus of pathways compensates for Raf and PI3K signaling cascade blocking. It is arduous to totally regulate KRascoordinated PDAC with traditional medicaments like "gemcitabine GEM" plus nabpaclitaxel/ FOLFIRINOX. For long-haul accomplishments aiming at KRas, future endeavors should be directed to combinatorial methodologies to adequately block KRas pathways at different standpoints. Currently they are contributing to healing PDAC. In this review article, we outline the function of KRas in carcinogenesis in PDAC, its signaling cascade, former techniques utilized in hindering Kras, current and future possibilities for targeting Kras.
Collapse
Affiliation(s)
- Tarun Rajpurohit
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| |
Collapse
|
6
|
Amin K, El‐Badry O, Abdel Rahman D, Ammar U. Synthesis and In Vitro Biological Evaluation of New Pyrido[2,3‐
b
]pyrazinone‐Based Cytotoxic Agents and Molecular Docking as BRAF Inhibitors. ChemistrySelect 2019. [DOI: 10.1002/slct.201901487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kamelia Amin
- Pharmaceutical Chemistry DepartmentFaculty of PharmacyCairo University, Cairo 11562) Egypt
| | - Ossama El‐Badry
- Pharmaceutical Chemistry DepartmentFaculty of PharmacyAhram Canadian University (ACU) Giza 12566) Egypt
| | - Doaa Abdel Rahman
- Pharmaceutical Chemistry DepartmentFaculty of PharmacyCairo University, Cairo 11562) Egypt
| | - Usama Ammar
- Pharmaceutical Chemistry DepartmentFaculty of PharmacyAhram Canadian University (ACU) Giza 12566) Egypt
- Center for BiomaterialsKorea Institute of Science & Technology (KIST School) Seoul 02792) Republic of Korea
- Department of Biomolecular ScienceUniversity of Science & Technology (UST) Daejeon 34113) Republic of Korea
| |
Collapse
|
7
|
Wei X, Zhao T, Ai K, Zhang Y, Li H, Yang J. c-Raf participates in adaptive immune response of Nile tilapia via regulating lymphocyte activation. FISH & SHELLFISH IMMUNOLOGY 2019; 86:507-515. [PMID: 30513386 DOI: 10.1016/j.fsi.2018.11.072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
RAF proto-oncogene serine/threonine-protein kinase (c-Raf) is a MAP kinase kinase kinase (MAPKKK) that participates in the Erk1/2 pathway and plays an important role in lymphocyte activation. However, the study on how c-Raf regulates adaptive immunity in non-mammal is still limited. In present study, based on analysis of sequence characteristics of c-Raf from Oreochromis niloticus (On-c-Raf), we investigated its regulation roles on teleost lymphocyte activation. The On-c-Raf was highly conserved during evolution, which was composed of a Raf-like Ras-binding domain (RBD), a protein kinase C conserved region 1 (C1) domain and a serine/threonine protein kinase catalytic (S_TKc) domain. Its mRNA showed a wide distribution in tissues of O. niloticus and with the highest expression in gill. After Aeromonas hydrophila infection, during the adaptive immune stage transcription level of On-c-Raf was significantly upregulated on day 8, but came back to original level on day 16 and 30, suggesting the potential involvement of On-c-Raf in primary response but not memory formation. Furthermore, On-c-Raf mRNA in leukocytes of Nile tilapias was obviously induced by in vitro stimulation of T cell mitogen PHA. More importantly, in vitro stimulation of lymphocytes agonist PMA augmented phosphorylation level of On-c-Raf in leukocytes detected by western-blot and immunofluorescent. Thus, c-Raf regulated lymphocyte activation of Nile tilapia on both mRNA and phosphorylation level. Together, our results revealed that the c-Raf from teleost Nile tilapia engaged in adaptive immune response by regulating lymphocytes activation. Since the regulatory mechanism of lymphocyte-mediated adaptive immunity is largely unknown in teleost, our study provided important evidences to understand teleost adaptive immunity, and also shed a novel perspective for the evolution of adaptive immune system.
Collapse
Affiliation(s)
- Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Tianyu Zhao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Kete Ai
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yu Zhang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Huiying Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
8
|
Abstract
The MAPK pathway is a prominent intracellular signaling pathway regulating various intracellular functions. Components of this pathway are mutated in a related collection of congenital syndromes collectively referred to as neuro-cardio-facio-cutaneous syndromes (NCFC) or Rasopathies. Recently, it has been appreciated that these disorders are associated with autism spectrum disorders (ASD). In addition, idiopathic ASD has also implicated the MAPK signaling cascade as a common pathway that is affected by many of the genetic variants that have been found to be linked to ASDs. This chapter describes the components of the MAPK pathway and how it is regulated. Furthermore, this chapter will highlight the various functions of the MAPK pathway during both embryonic development of the central nervous system (CNS) and its roles in neuronal physiology and ultimately, behavior. Finally, we will summarize the perturbations to MAPK signaling in various models of autism spectrum disorders and Rasopathies to highlight how dysregulation of this pivotal pathway may contribute to the pathogenesis of autism.
Collapse
|
9
|
78495111110.3390/cancers9050052" />
Abstract
The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that is commonly upregulated in cancers such as in non-small-cell lung cancer, metastatic colorectal cancer, glioblastoma, head and neck cancer, pancreatic cancer, and breast cancer. Various mechanisms mediate the upregulation of EGFR activity, including common mutations and truncations to its extracellular domain, such as in the EGFRvIII truncations, as well as to its kinase domain, such as the L858R and T790M mutations, or the exon 19 truncation. These EGFR aberrations over-activate downstream pro-oncogenic signaling pathways, including the RAS-RAF-MEK-ERK MAPK and AKT-PI3K-mTOR pathways. These pathways then activate many biological outputs that are beneficial to cancer cell proliferation, including their chronic initiation and progression through the cell cycle. Here, we review the molecular mechanisms that regulate EGFR signal transduction, including the EGFR structure and its mutations, ligand binding and EGFR dimerization, as well as the signaling pathways that lead to G1 cell cycle progression. We focus on the induction of CYCLIN D expression, CDK4/6 activation, and the repression of cyclin-dependent kinase inhibitor proteins (CDKi) by EGFR signaling pathways. We also discuss the successes and challenges of EGFR-targeted therapies, and the potential for their use in combination with CDK4/6 inhibitors.
Collapse
|
10
|
Wee P, Wang Z. Epidermal Growth Factor Receptor Cell Proliferation Signaling Pathways. Cancers (Basel) 2017; 9:cancers9050052. [PMID: 28513565 PMCID: PMC5447962 DOI: 10.3390/cancers9050052] [Citation(s) in RCA: 1211] [Impact Index Per Article: 151.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 12/12/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that is commonly upregulated in cancers such as in non-small-cell lung cancer, metastatic colorectal cancer, glioblastoma, head and neck cancer, pancreatic cancer, and breast cancer. Various mechanisms mediate the upregulation of EGFR activity, including common mutations and truncations to its extracellular domain, such as in the EGFRvIII truncations, as well as to its kinase domain, such as the L858R and T790M mutations, or the exon 19 truncation. These EGFR aberrations over-activate downstream pro-oncogenic signaling pathways, including the RAS-RAF-MEK-ERK MAPK and AKT-PI3K-mTOR pathways. These pathways then activate many biological outputs that are beneficial to cancer cell proliferation, including their chronic initiation and progression through the cell cycle. Here, we review the molecular mechanisms that regulate EGFR signal transduction, including the EGFR structure and its mutations, ligand binding and EGFR dimerization, as well as the signaling pathways that lead to G1 cell cycle progression. We focus on the induction of CYCLIN D expression, CDK4/6 activation, and the repression of cyclin-dependent kinase inhibitor proteins (CDKi) by EGFR signaling pathways. We also discuss the successes and challenges of EGFR-targeted therapies, and the potential for their use in combination with CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Ping Wee
- Department of Medical Genetics and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Zhixiang Wang
- Department of Medical Genetics and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
11
|
Jang H, Muratcioglu S, Gursoy A, Keskin O, Nussinov R. Membrane-associated Ras dimers are isoform-specific: K-Ras dimers differ from H-Ras dimers. Biochem J 2016; 473:1719-32. [PMID: 27057007 PMCID: PMC7830773 DOI: 10.1042/bcj20160031] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/07/2016] [Indexed: 02/07/2023]
Abstract
Are the dimer structures of active Ras isoforms similar? This question is significant since Ras can activate its effectors as a monomer; however, as a dimer, it promotes Raf's activation and MAPK (mitogen-activated protein kinase) cell signalling. In the present study, we model possible catalytic domain dimer interfaces of membrane-anchored GTP-bound K-Ras4B and H-Ras, and compare their conformations. The active helical dimers formed by the allosteric lobe are isoform-specific: K-Ras4B-GTP favours the α3 and α4 interface; H-Ras-GTP favours α4 and α5. Both isoforms also populate a stable β-sheet dimer interface formed by the effector lobe; a less stable β-sandwich interface is sustained by salt bridges of the β-sheet side chains. Raf's high-affinity β-sheet interaction is promoted by the active helical interface. Collectively, Ras isoforms' dimer conformations are not uniform; instead, the isoform-specific dimers reflect the favoured interactions of the HVRs (hypervariable regions) with cell membrane microdomains, biasing the effector-binding site orientations, thus isoform binding selectivity.
Collapse
Affiliation(s)
- Hyunbum Jang
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, U.S.A
| | - Serena Muratcioglu
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Attila Gursoy
- Department of Computer Engineering, Koc University, Istanbul, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Ruth Nussinov
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, U.S.A. Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
12
|
Asati V, Mahapatra DK, Bharti SK. PI3K/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways inhibitors as anticancer agents: Structural and pharmacological perspectives. Eur J Med Chem 2016; 109:314-41. [PMID: 26807863 DOI: 10.1016/j.ejmech.2016.01.012] [Citation(s) in RCA: 430] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/08/2016] [Accepted: 01/09/2016] [Indexed: 12/17/2022]
Abstract
The protein kinases regulate cellular functions such as transcription, translation, proliferation, growth and survival by the process of phosphorylation. Over activation of signaling pathways play a major role in oncogenesis. The PI3K signaling pathway is dysregulated almost in all cancers due to the amplification, genetic mutation of PI3K gene and the components of the PI3K pathway themselves. Stimulation of the PI3K/Akt/mTOR and Ras/Raf/MEK/ERK pathways enhances growth, survival, and metabolism of cancer cells. Recently, the PI3K/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways have been identified as promising therapeutic targets for cancer therapy. The kinase inhibitors with enhanced specificity and improved pharmacokinetics have been considered for design and development of anticancer agents. This review focuses primarily on the Ras/Raf/MEK/ERK and PI3K/Akt/mTOR signaling pathways as therapeutic targets of anticancer drugs, their specific and dual inhibitors, structure activity relationships (SARs) and inhibitors under clinical trials.
Collapse
Affiliation(s)
- Vivek Asati
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| | - Debarshi Kar Mahapatra
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| | - Sanjay Kumar Bharti
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India.
| |
Collapse
|
13
|
An S, Yang Y, Ward R, Liu Y, Guo XX, Xu TR. A-Raf: A new star of the family of raf kinases. Crit Rev Biochem Mol Biol 2015; 50:520-31. [PMID: 26508523 DOI: 10.3109/10409238.2015.1102858] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Ras-Raf-MEK-MAPK (mitogen-activated protein kinase)-signaling pathway plays a key role in the regulation of many cellular functions, including cell proliferation, differentiation and transformation, by transmitting signals from membrane receptors to various cytoplasmic and nuclear targets. One of the key components of this pathway is the serine/threonine protein kinase, Raf. The Raf family kinases (A-Raf, B-Raf and C-Raf) have been intensively studied since being identified in the early 1980s as retroviral oncogenes, especially with respect to the discovery of activating mutations of B-Raf in a large number of tumors which led to intensified efforts to develop drugs targeting Raf kinases. This also resulted in a rapid increase in our knowledge of the biological functions of the B-Raf and C-Raf isoforms, which may in turn be contrasted with the little that is known about A-Raf. The biological functions of A-Raf remain mysterious, although it appears to share some of the basic properties of the other two isoforms. Recently, emerging evidence has begun to reveal the functions of A-Raf, of which some are kinase-independent. These include the inhibition of apoptosis by binding to MST2, acting as safeguard against oncogenic transformation by suppressing extracellular signal-regulated kinases (ERK) activation and playing a role in resistance to Raf inhibitors. In this review, we discuss the regulation of A-Raf protein expression, and the roles of A-Raf in apoptosis and cancer, with a special focus on its role in resistance to Raf inhibitors. We also describe the scaffold functions of A-Raf and summarize the unexpected complexity of Raf signaling.
Collapse
Affiliation(s)
- Su An
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , Yunnan , China and
| | - Yang Yang
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , Yunnan , China and
| | - Richard Ward
- b Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow , Scotland , UK
| | - Ying Liu
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , Yunnan , China and
| | - Xiao-Xi Guo
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , Yunnan , China and
| | - Tian-Rui Xu
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , Yunnan , China and
| |
Collapse
|
14
|
Chavan TS, Muratcioglu S, Marszalek R, Jang H, Keskin O, Gursoy A, Nussinov R, Gaponenko V. Plasma membrane regulates Ras signaling networks. CELLULAR LOGISTICS 2015; 5:e1136374. [PMID: 27054048 PMCID: PMC4820813 DOI: 10.1080/21592799.2015.1136374] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 12/17/2015] [Indexed: 12/31/2022]
Abstract
Ras GTPases activate more than 20 signaling pathways, regulating such essential cellular functions as proliferation, survival, and migration. How Ras proteins control their signaling diversity is still a mystery. Several pieces of evidence suggest that the plasma membrane plays a critical role. Among these are: (1) selective recruitment of Ras and its effectors to particular localities allowing access to Ras regulators and effectors; (2) specific membrane-induced conformational changes promoting Ras functional diversity; and (3) oligomerization of membrane-anchored Ras to recruit and activate Raf. Taken together, the membrane does not only attract and retain Ras but also is a key regulator of Ras signaling. This can already be gleaned from the large variability in the sequences of Ras membrane targeting domains, suggesting that localization, environment and orientation are important factors in optimizing the function of Ras isoforms.
Collapse
Affiliation(s)
- Tanmay Sanjeev Chavan
- Department of Medicinal Chemistry; University of Illinois at Chicago; Chicago, IL USA
| | - Serena Muratcioglu
- Center for Computational Biology and Bioinformatics; Koc University; Istanbul, Turkey
| | - Richard Marszalek
- Department of Biochemistry and Molecular Genetics; University of Illinois at Chicago; Chicago, IL USA
| | - Hyunbum Jang
- Cancer and Inflammation Program; Basic Science Program; Leidos Biomedical Research, Inc.; Frederick National Laboratory for Cancer Research; National Cancer Institute at Frederick; Frederick, MD USA
| | - Ozlem Keskin
- Center for Computational Biology and Bioinformatics; Koc University; Istanbul, Turkey
| | - Attila Gursoy
- Center for Computational Biology and Bioinformatics; Koc University; Istanbul, Turkey
| | - Ruth Nussinov
- Cancer and Inflammation Program; Basic Science Program; Leidos Biomedical Research, Inc.; Frederick National Laboratory for Cancer Research; National Cancer Institute at Frederick; Frederick, MD USA
- Sackler Institute of Molecular Medicine; Department of Human Genetics and Molecular Medicine; Sackler School of Medicine; Tel Aviv University; Tel Aviv, Israel
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics; University of Illinois at Chicago; Chicago, IL USA
| |
Collapse
|
15
|
An S, Yang Y, Ward R, Liu Y, Guo XX, Xu TR. Raf-interactome in tuning the complexity and diversity of Raf function. FEBS J 2014; 282:32-53. [PMID: 25333451 DOI: 10.1111/febs.13113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/06/2014] [Accepted: 10/14/2014] [Indexed: 12/23/2022]
Abstract
Raf kinases have been intensely studied subsequent to their discovery 30 years ago. The Ras-Raf-mitogen-activated protein kinase/extracellular signal-regulated kinase kinase-extracellular signal-regulated kinase/mitogen-activated protein kinase (Ras-Raf-MEK-ERK/MAPK) signaling pathway is at the heart of the signaling networks that control many fundamental cellular processes and Raf kinases takes centre stage in the MAPK pathway, which is now appreciated to be one of the most common sources of the oncogenic mutations in cancer. The dependency of tumors on this pathway has been clearly demonstrated by targeting its key nodes; however, blockade of the central components of the MAPK pathway may have some unexpected side effects. Over recent years, the Raf-interactome or Raf-interacting proteins have emerged as promising targets for protein-directed cancer therapy. This review focuses on the diversity of Raf-interacting proteins and discusses the mechanisms by which these proteins regulate Raf function, as well as the implications of targeting Raf-interacting proteins in the treatment of human cancer.
Collapse
Affiliation(s)
- Su An
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, China
| | | | | | | | | | | |
Collapse
|
16
|
Ramakrishnan G, Davaakhuu G, Kaplun L, Chung WC, Rana A, Atfi A, Miele L, Tzivion G. Sirt2 deacetylase is a novel AKT binding partner critical for AKT activation by insulin. J Biol Chem 2014; 289:6054-66. [PMID: 24446434 DOI: 10.1074/jbc.m113.537266] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
AKT/PKB kinases transmit insulin and growth factor signals downstream of phosphatidylinositol 3-kinase (PI3K). AKT activation involves phosphorylation at two residues, Thr(308) and Ser(473), mediated by PDK1 and the mammalian target of rapamycin complex 2 (mTORC2), respectively. Impaired AKT activation is a key factor in metabolic disorders involving insulin resistance, whereas hyperactivation of AKT is linked to cancer pathogenesis. Here, we identify the cytoplasmic NAD(+)-dependent deacetylase, Sirt2, as a novel AKT interactor, required for optimal AKT activation. Pharmacological inhibition or genetic down-regulation of Sirt2 diminished AKT activation in insulin and growth factor-responsive cells, whereas Sirt2 overexpression enhanced the activation of AKT and its downstream targets. AKT was prebound with Sirt2 in serum or glucose-deprived cells, and the complex dissociated following insulin treatment. The binding was mediated by the pleckstrin homology and the kinase domains of AKT and was dependent on AMP-activated kinase. This regulation involved a novel AMP-activated kinase-dependent Sirt2 phosphorylation at Thr(101). In cells with constitutive PI3K activation, we found that AKT also associated with a nuclear sirtuin, Sirt1; however, inhibition of PI3K resulted in dissociation from Sirt1 and increased association with Sirt2. Sirt1 and Sirt2 inhibitors additively inhibited the constitutive AKT activity in these cells. Our results suggest potential usefulness of Sirt1 and Sirt2 inhibitors in the treatment of cancer cells with up-regulated PI3K activity and of Sirt2 activators in the treatment of insulin-resistant metabolic disorders.
Collapse
Affiliation(s)
- Gopalakrishnan Ramakrishnan
- From the Cancer Institute and Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | | | | | | | | | | | | | | |
Collapse
|
17
|
MEK-1 activates C-Raf through a Ras-independent mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:976-86. [PMID: 23360980 DOI: 10.1016/j.bbamcr.2013.01.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 12/29/2012] [Accepted: 01/15/2013] [Indexed: 12/16/2022]
Abstract
C-Raf is a member of the Ras-Raf-MEK-ERK mitogen-activated protein kinase (MAPK) signaling pathway that plays key roles in diverse physiological processes and is upregulated in many human cancers. C-Raf activation involves binding to Ras, increased phosphorylation and interactions with co-factors. Here, we describe a Ras-independent in vivo pathway for C-Raf activation by its downstream target MEK. Using (32)P-metabolic labeling and 2D-phosphopeptide mapping experiments, we show that MEK increases C-Raf phosphorylation by up-to 10-fold. This increase was associated with C-Raf kinase activation, matching the activity seen with growth factor stimulation. Consequently, coexpression of wildtype C-Raf and MEK was sufficient for full and constitutive activation of ERK. Notably, the ability of MEK to activate C-Raf was completely Ras independent, since mutants impaired in Ras binding that are irresponsive to growth factors or Ras were fully activated by MEK. The ability of MEK to activate C-Raf was only partially dependent on MEK kinase activity but required MEK binding to C-Raf, suggesting that the binding results in a conformational change that increases C-Raf susceptibility to phosphorylation and activation or in the stabilization of the phosphorylated-active form. These findings propose a novel Ras-independent mechanism for activating the C-Raf and the MAPK pathway without the need for mutations in the pathway. This mechanism could be of significance in pathological conditions or cancers overexpressing C-Raf and MEK or in conditions where C-Raf-MEK interaction is enhanced due to the down-regulation of RKIP and MST2.
Collapse
|
18
|
Kyriakis JM, Avruch J. Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update. Physiol Rev 2012; 92:689-737. [PMID: 22535895 DOI: 10.1152/physrev.00028.2011] [Citation(s) in RCA: 1062] [Impact Index Per Article: 81.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The mammalian stress-activated families of mitogen-activated protein kinases (MAPKs) were first elucidated in 1994, and by 2001, substantial progress had been made in identifying the architecture of the pathways upstream of these kinases as well as in cataloguing candidate substrates. This information remains largely sound. Nevertheless, an informed understanding of the physiological and pathophysiological roles of these kinases remained to be accomplished. In the past decade, there has been an explosion of new work using RNAi in cells, as well as transgenic, knockout and conditional knockout technology in mice that has provided valuable insight into the functions of stress-activated MAPK pathways. These findings have important implications in our understanding of organ development, innate and acquired immunity, and diseases such as atherosclerosis, tumorigenesis, and type 2 diabetes. These new developments bring us within striking distance of the development and validation of novel treatment strategies. Herein we first summarize the molecular components of the mammalian stress-regulated MAPK pathways and their regulation as described thus far. We then review some of the in vivo functions of these pathways.
Collapse
Affiliation(s)
- John M Kyriakis
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington St., Box 8486, Boston, MA 02111, USA.
| | | |
Collapse
|
19
|
Hibino K, Shibata T, Yanagida T, Sako Y. Activation kinetics of RAF protein in the ternary complex of RAF, RAS-GTP, and kinase on the plasma membrane of living cells: single-molecule imaging analysis. J Biol Chem 2011; 286:36460-8. [PMID: 21862573 DOI: 10.1074/jbc.m111.262675] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RAS is an important cell signaling molecule, regulating the activities of various effector proteins, including the kinase c-RAF (RAF). Despite the critical function of RAS signaling, the activation kinetics have not been analyzed experimentally in living cells for any of the RAS effectors. Here, we analyzed the kinetics of RAF activation on the plasma membrane in living HeLa cells after stimulation with EGF to activate RAS. RAF is recruited by the active form of RAS (RAS-GTP) from the cytoplasm to the plasma membrane through two RAS-binding sites (the RAS-binding domain and the cysteine-rich domain (CRD)) and is activated by its phosphorylation by still undetermined kinases on the plasma membrane. Using single-molecule imaging, we measured the dissociation time courses of GFP-tagged molecules of wild type RAF and fragments or mutants of RAF containing one or two of the three functional domains (the RAS-binding domain, the CRD, and the catalytic domain) to determine their interaction with membrane components. Each molecule showed a unique dissociation time course, indicating that both its interaction with RAS-GTP and its phosphorylation by the kinases are rate-limiting steps in RAF activation. Based on our experimental results, we propose a kinetic model for the activation of RAF. The model suggests the importance of the interaction between RAS-GTP and CRD for the effective activation of RAF, which is triggered by rapid RAS-GTP-induced conformational changes in RAF and the subsequent presentation of RAF to the kinase. The model also suggests necessary properties of the kinases that activate RAF.
Collapse
Affiliation(s)
- Kayo Hibino
- Cellular Informatics Laboratory, RIKEN, Advanced Science Institute, 2-1 Hirosawa, Wako 351-0198, Japan
| | | | | | | |
Collapse
|
20
|
Matallanas D, Birtwistle M, Romano D, Zebisch A, Rauch J, von Kriegsheim A, Kolch W. Raf family kinases: old dogs have learned new tricks. Genes Cancer 2011; 2:232-60. [PMID: 21779496 PMCID: PMC3128629 DOI: 10.1177/1947601911407323] [Citation(s) in RCA: 281] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
First identified in the early 1980s as retroviral oncogenes, the Raf proteins have been the objects of intense research. The discoveries 10 years later that the Raf family members (Raf-1, B-Raf, and A-Raf) are bona fide Ras effectors and upstream activators of the ubiquitous ERK pathway increased the interest in these proteins primarily because of the central role that this cascade plays in cancer development. The important role of Raf in cancer was corroborated in 2002 with the discovery of B-Raf genetic mutations in a large number of tumors. This led to intensified drug development efforts to target Raf signaling in cancer. This work yielded not only recent clinical successes but also surprising insights into the regulation of Raf proteins by homodimerization and heterodimerization. Surprising insights also came from the hunt for new Raf targets. Although MEK remains the only widely accepted Raf substrate, new kinase-independent roles for Raf proteins have emerged. These include the regulation of apoptosis by suppressing the activity of the proapoptotic kinases, ASK1 and MST2, and the regulation of cell motility and differentiation by controlling the activity of Rok-α. In this review, we discuss the regulation of Raf proteins and their role in cancer, with special focus on the interacting proteins that modulate Raf signaling. We also describe the new pathways controlled by Raf proteins and summarize the successes and failures in the development of efficient anticancer therapies targeting Raf. Finally, we also argue for the necessity of more systemic approaches to obtain a better understanding of how the Ras-Raf signaling network generates biological specificity.
Collapse
Affiliation(s)
- David Matallanas
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|
21
|
Bonfiglio JJ, Maccarrone G, Rewerts C, Holsboer F, Arzt E, Turck CW, Silberstein S. Characterization of the B-Raf interactome in mouse hippocampal neuronal cells. J Proteomics 2010; 74:186-98. [PMID: 21055488 DOI: 10.1016/j.jprot.2010.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 10/18/2010] [Accepted: 10/20/2010] [Indexed: 01/13/2023]
Abstract
B-Raf links a variety of extracellular stimuli downstream of cell surface receptors, constituting a determining factor in the ability of neurons to activate ERK. A detailed study of the B-Raf interactome is necessary to clarify the intricacy of B-Raf-dependent signal transduction. We used a mouse hippocampal cell line (HT22) that expresses B-Raf at high levels, to identify B-Raf associated proteins under endogenous expression conditions, avoiding artificial interactions from overexpression studies. We used stringent procedures to co-immunoprecipitate proteins that specifically associate with endogenous B-Raf with the help of gel electrophoresis separation and off-line LC-MALDI-MS/MS proteomic analysis. Our stringent protein identification criteria allowed confident identification of B-Raf interacting proteins under non-stimulating conditions. The presence of previously reported B-Raf interactors among the list of proteins identified confirms the quality of proteomic data. We identified tubulin and actin as B-Raf interactors for the first time, among structural and accessory proteins of cell cytoskeleton, molecular chaperones (Hsc70, GRP78), and cellular components involved in aspects of mRNA metabolism and translation. Interactions were validated in HT22 cells and in the neuronal cell line Neuro-2a providing further evidence that the identified proteins are B-Raf interactors, which constitute a basis for understanding MAPK pathway regulation in neurons.
Collapse
Affiliation(s)
- Juan J Bonfiglio
- Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires, IFIBYNE-CONICET, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
22
|
Roskoski R. RAF protein-serine/threonine kinases: structure and regulation. Biochem Biophys Res Commun 2010; 399:313-7. [PMID: 20674547 DOI: 10.1016/j.bbrc.2010.07.092] [Citation(s) in RCA: 252] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 07/25/2010] [Indexed: 01/02/2023]
Abstract
A-RAF, B-RAF, and C-RAF are a family of three protein-serine/threonine kinases that participate in the RAS-RAF-MEK-ERK signal transduction cascade. This cascade participates in the regulation of a large variety of processes including apoptosis, cell cycle progression, differentiation, proliferation, and transformation to the cancerous state. RAS mutations occur in 15-30% of all human cancers, and B-RAF mutations occur in 30-60% of melanomas, 30-50% of thyroid cancers, and 5-20% of colorectal cancers. Activation of the RAF kinases requires their interaction with RAS-GTP along with dephosphorylation and also phosphorylation by SRC family protein-tyrosine kinases and other protein-serine/threonine kinases. The formation of unique side-to-side RAF dimers is required for full kinase activity. RAF kinase inhibitors are effective in blocking MEK1/2 and ERK1/2 activation in cells containing the oncogenic B-RAF Val600Glu activating mutation. RAF kinase inhibitors lead to the paradoxical increase in RAF kinase activity in cells containing wild-type B-RAF and wild-type or activated mutant RAS. C-RAF plays a key role in this paradoxical increase in downstream MEK-ERK activation.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 3754 Brevard Road, Suite 116, Box 19, Horse Shoe, NC 28742, USA.
| |
Collapse
|
23
|
Hibino K, Shibata T, Yanagida T, Sako Y. A RasGTP-induced conformational change in C-RAF is essential for accurate molecular recognition. Biophys J 2009; 97:1277-87. [PMID: 19720015 DOI: 10.1016/j.bpj.2009.05.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 05/22/2009] [Accepted: 05/28/2009] [Indexed: 10/20/2022] Open
Abstract
The dysregulation of Ras-RAF signaling is associated with many types of human cancer. However, the kinetic and dynamic features of the mutual molecular recognition of Ras and RAF remain unknown. Here, we developed a technique for imaging single-pair fluorescence resonance energy transfer in living cells, and coupled this technique to single-molecule kinetic analysis to investigate how C-RAF (a subtype of RAF) molecules distinguish the active form of Ras (RasGTP) from the inactive form (RasGDP). Functional fragments of C-RAF containing the Ras-binding domains did not detect the switch in Ras activity in living cells as efficiently as did C-RAF. Single-molecule analysis showed that RasGDP associates with closed-conformation C-RAF, whereas the association of C-RAF with RasGTP immediately triggers the open RAF conformation, which induces an effective interaction between C-RAF and RasGTP. Spontaneous conformational changes from closed C-RAF to the open form rarely occur in quiescent cells. The conformational change in C-RAF is so important to Ras-RAF molecular recognition that C-RAF mutants lacking the conformational change cannot distinguish between RasGDP and RasGTP. The manipulation of the conformation of an effector molecule is a newly identified function of RasGTP.
Collapse
Affiliation(s)
- Kayo Hibino
- Cellular Informatics Laboratory, RIKEN, Wako, Japan
| | | | | | | |
Collapse
|
24
|
Yu C, Han W, Shi T, Lv B, He Q, Zhang Y, Li T, Zhang Y, Song Q, Wang L, Ma D. PTPIP51, a novel 14–3–3 binding protein, regulates cell morphology and motility via Raf–ERK pathway. Cell Signal 2008; 20:2208-20. [DOI: 10.1016/j.cellsig.2008.07.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 07/29/2008] [Accepted: 07/29/2008] [Indexed: 11/30/2022]
|
25
|
Zang M, Gong J, Luo L, Zhou J, Xiang X, Huang W, Huang Q, Luo X, Olbrot M, Peng Y, Chen C, Luo Z. Characterization of Ser338 phosphorylation for Raf-1 activation. J Biol Chem 2008; 283:31429-37. [PMID: 18775988 DOI: 10.1074/jbc.m802855200] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Raf kinases are essential for regulating cell proliferation, survival, and tumorigenesis. However, the mechanisms by which Raf is activated are still incompletely understood. Phosphorylation plays a critical role in Raf activation in response to mitogens. The present study characterizes phosphorylation of Ser338, a crucial event for Raf-1 activation. Here we report that mutation of Lys375 to Met diminishes phosphorylation of Ser338 on both wild type Raf-1 in cells treated with epidermal growth factor (EGF) or 12-O-tetradecanoylphorbol-13-acetate (TPA) and a constitutively active mutant in which Tyr340/Tyr341 are replaced by 2 aspartic acids, a conserved substitution present in natural B-Raf. The loss of Ser338 phosphorylation in these Raf mutants is not engendered by a mutation-induced conformational change, inasmuch as mutation of another site (Ser471 to Ala) in the activation segment also abolishes Ser338 phosphorylation, whereas both the kinase-dead mutants of Raf-1 are phosphorylated well by active Pak1. Furthermore, our data demonstrate that EGF-stimulated phosphorylation of Ser338 is inhibited by Sorafenib, a Raf kinase inhibitor, but not by the MEK inhibitor U0126. Interestingly, a kinase-dead mutation and Sorafenib also markedly reduce phosphorylation of Ser445 on B-Raf, a site equivalent to Raf-1 Ser338. Finally, our data reveal that Ser338 is phosphorylated on inactive Raf-1 by an active mutant of Raf-1 when they are dimerized in cells and that artificial dimerization of Raf-1 causes Ser338 phosphorylation, accompanied by activation of ERK1/2. Altogether, our data suggest that Ser338 on Raf-1 is autophosphorylated in response to mitogens.
Collapse
Affiliation(s)
- Mengwei Zang
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Baljuls A, Schmitz W, Mueller T, Zahedi RP, Sickmann A, Hekman M, Rapp UR. Positive regulation of A-RAF by phosphorylation of isoform-specific hinge segment and identification of novel phosphorylation sites. J Biol Chem 2008; 283:27239-54. [PMID: 18662992 DOI: 10.1074/jbc.m801782200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In mammals the RAF family of serine/threonine kinases consists of three members, A-, B-, and C-RAF. Activation of RAF kinases involves a complex series of phosphorylations. Although the most prominent phosphorylation sites of B- and C-RAF are well characterized, little is known about regulatory phosphorylation of A-RAF. Using mass spectrometry, we identified here a number of novel in vivo phosphorylation sites in A-RAF. In particular, we found that Ser-432 participates in MEK binding and is indispensable for A-RAF signaling. On the other hand, phosphorylation within the activation segment does not contribute to epidermal growth factor-mediated activation. Furthermore, we show that the potential 14-3-3 binding domains in A-RAF are phosphorylated independently of its activation status. Of importance, we identified a novel regulatory domain in A-RAF (referred to as IH-segment) positioned between amino acids 248 and 267 that contains seven putative phosphorylation sites. Three of these sites, serines 257, 262, and 264, regulate A-RAF activation in a stimulatory manner. The spatial model of the A-RAF fragment, including residues between Ser-246 and Glu-277, revealed a switch of charge at the molecular surface of the IH-region upon phosphorylation, suggesting a mechanism in which the high accumulation of negative charges may lead to an electrostatic destabilization of protein-membrane interaction resulting in depletion of A-RAF from the plasma membrane. Together, we provide here for the first time a detailed analysis of in vivo A-RAF phosphorylation status and demonstrate that regulation of A-RAF by phosphorylation exhibits unique features compared with B- and C-RAF.
Collapse
Affiliation(s)
- Angela Baljuls
- Institute for Medical Radiation and Cell Research, University of Wuerzburg, 97078 Wuerzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Using plasma membrane nanoclusters to build better signaling circuits. Trends Cell Biol 2008; 18:364-71. [PMID: 18620858 DOI: 10.1016/j.tcb.2008.05.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 05/15/2008] [Accepted: 05/19/2008] [Indexed: 01/06/2023]
Abstract
Cellular signaling pathways do not simply transmit data; they integrate and process signals to operate as switches, oscillators, logic gates, memory modules and many other types of control system. These complex processing capabilities enable cells to respond appropriately to the myriad of external cues that direct growth and development. The idea that crosstalk and feedback loops are used as control systems in biological signaling networks is well established. Signaling networks are also subject to exquisite spatial regulation, yet how spatial control modulates signal outputs is less well understood. Here, we explore the spatial organization of two different signal transduction circuits: receptor tyrosine kinase activation of the mitogen-activated protein kinase module; and glycosylphosphatidylinositol-anchored receptor activation of phospholipase C. With regards to these pathways, recent results have refocused attention on the crucial role of lipid rafts and plasma membrane nanodomains in signal transmission. We identify common design principals that highlight how the spatial organization of signal transduction circuits can be used as a fundamental control mechanism to modulate system outputs in vivo.
Collapse
|
28
|
The SH3 domain of Lck modulates T-cell receptor-dependent activation of extracellular signal-regulated kinase through activation of Raf-1. Mol Cell Biol 2007; 28:630-41. [PMID: 17998336 DOI: 10.1128/mcb.00150-07] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Engagement of the T-cell antigen receptor (TCR) results in the proximal activation of the Src family tyrosine kinase Lck. The activation of Lck leads to the downstream activation of the Ras/Raf/MEK/ERK signaling pathway (where ERK is extracellular signal-related kinase). Under conditions of weak, but not strong, stimulation through the TCR, a version of Lck that contains a single point mutation in the SH3 (Src homology 3) domain (W97ALck) fails to support the activation of ERK, despite initiating signaling through the TCR, as demonstrated by the robust activation of ZAP-70, PLC-gamma, and Ras. We determined that the signaling lesion in W97ALck-expressing cells lies at the level of Raf-1 activation and is dependent on the presence of tyrosines 340/341 in the Raf-1 sequence. These data demonstrate a second function for Lck in TCR-mediated signaling to ERK. Additionally, we found that a significant fraction of Lck is localized to the Golgi apparatus and that, compared with wild-type Lck, W97ALck displays aberrant Golgi membrane localization. Our results support a model where under conditions of weak stimulation through the TCR, in addition to activated Ras, Golgi apparatus-localized Lck is needed for the full activation of Raf-1.
Collapse
|
29
|
Harding A, Hancock JF. Ras nanoclusters: combining digital and analog signaling. Cell Cycle 2007; 7:127-34. [PMID: 18212529 DOI: 10.4161/cc.7.2.5237] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cellular signaling pathways respond to external inputs to drive pivotal cellular decisions. Far from being mere data relay systems, signaling cascades form complex interacting networks with multiple layers of feedback and feed-forward control loops regulated in both space and time. While it may be intuitively obvious that this complexity allows cells to assess and respond appropriately to a myriad of external cues, untangling the wires to understand precisely how complex networks function as control and computational systems presents a daunting challenge to theoretical and experimental biologists alike. In this review we have focused on activation of the canonical MAP kinase cascade by receptor tyrosine kinases (RTKs) in order to examine some of the fundamental design principles used to build biological circuits and control systems. In particular, we explore how cells can reconfigure signaling cascades to generate distinct biological outputs by utilizing the unique spatial constraints available in biological membranes.
Collapse
Affiliation(s)
- Angus Harding
- Queensland Brain Institute, University of Queensland, Brisbane, Australia.
| | | |
Collapse
|
30
|
Baljuls A, Mueller T, Drexler HCA, Hekman M, Rapp UR. Unique N-region Determines Low Basal Activity and Limited Inducibility of A-RAF Kinase. J Biol Chem 2007; 282:26575-90. [PMID: 17613527 DOI: 10.1074/jbc.m702429200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In mammals the RAF family of serine/threonine kinases consists of three members, A-, B-, and C-RAF. A prominent feature of RAF isoforms regards differences in basal and inducible kinase activities. To elucidate the nature of these differences, we studied the role of the nonconserved residues within the N-region (Negative-charge regulatory region). The nonconserved amino acids in positions -3 and +1 relative to the highly conserved serine 299 in A-RAF and serine 338 in C-RAF have so far not been considered as regulatory residues. Here we demonstrate the essential role of these residues in the RAF activation process. Substitution of tyrosine 296 in A-RAF to arginine led to a constitutively active kinase. In contrast, substitution of glycine 300 by serine (mimicking B- and C-RAF) acts in an inhibitory manner. Consistent with these data, the introduction of glycine in the analogous position of C-RAF (S339G mutant) led to a constitutively active C-RAF kinase. Based on the three-dimensional structure of the catalytic domain of B-RAF and using the sequences of the N-regions of A- and C-RAF, we searched by molecular modeling for the putative contact points between these two moieties. A tight interaction between the N-region residue serine 339 of C-RAF and arginine 398 of the catalytic domain was identified and proposed to inhibit the kinase activity of RAF proteins, because abrogation of this interaction contributes to RAF activation. Furthermore, tyrosine 296 in A-RAF favors a spatial orientation of the N-region segment, which enables a tighter contact to the catalytic domain, whereas a glutamine residue at this position in C-RAF abrogates this interaction. Considering this observation, we suggest that tyrosine 296, which is unique for A-RAF, is a major determinant of the low activating potency of this RAF isoform.
Collapse
Affiliation(s)
- Angela Baljuls
- Institute for Medical Radiation and Cell Research, University of Wuerzburg, 97078 Wuerzburg, Germany
| | | | | | | | | |
Collapse
|
31
|
Leicht DT, Balan V, Kaplun A, Singh-Gupta V, Kaplun L, Dobson M, Tzivion G. Raf kinases: function, regulation and role in human cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:1196-212. [PMID: 17555829 PMCID: PMC1986673 DOI: 10.1016/j.bbamcr.2007.05.001] [Citation(s) in RCA: 207] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2006] [Revised: 05/01/2007] [Accepted: 05/02/2007] [Indexed: 12/25/2022]
Abstract
The Ras-Raf-MAPK pathway regulates diverse physiological processes by transmitting signals from membrane based receptors to various nuclear, cytoplasmic and membrane-bound targets, coordinating a large variety of cellular responses. Function of Raf family kinases has been shown to play a role during organism development, cell cycle regulation, cell proliferation and differentiation, cell survival and apoptosis and many other cellular and physiological processes. Aberrations along the Ras-Raf-MAPK pathway play an integral role in various biological processes concerning human health and disease. Overexpression or activation of the pathway components is a common indicator in proliferative diseases such as cancer and contributes to tumor initiation, progression and metastasis. In this review, we focus on the physiological roles of Raf kinases in normal and disease conditions, specifically cancer, and the current thoughts on Raf regulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guri Tzivion
- To whom correspondence should be addressed: Karmanos Cancer Institute, Wayne State University, 4100 John R., HWCRC 716, Detroit, MI 48201, Tel: 313-576-8311, Fax: 313-576-8308, E-mail:
| |
Collapse
|
32
|
Kyriakis JM. The integration of signaling by multiprotein complexes containing Raf kinases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1773:1238-47. [PMID: 17276528 DOI: 10.1016/j.bbamcr.2006.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 10/27/2006] [Accepted: 11/01/2006] [Indexed: 12/18/2022]
Abstract
In vivo, eukaryotic cells are subjected simultaneously to a broad array of signals ranging from mitogens and inflammatory inputs to environmental stresses and developmental cues. The combinatorial nature of cellular signaling necessitates that a cell integrate its signal transduction pathways so as to implement rapidly and efficiently an appropriate suite of responses. Emerging evidence indicates that, over the course of evolution, cells have developed multiprotein signaling complexes, or "signalosomes" that mediate the coordinate regulation of different signaling pathways. Such molecular signal integration contrasts with the classical notion of signaling complexes assembled by scaffold proteins-entities that function to segregate specific pathways from one another. This review will focus on two signal integrating multiprotein complexes that involve Raf family kinases: the MLK3-B-Raf-Raf-1 complex and the Raf-1-Mst-2 complex.
Collapse
Affiliation(s)
- John M Kyriakis
- The Molecular Cardiology Research Institute, Tufts-New England Medical Center and the Department of Medicine, Tufts University School of Medicine, 750 Washington Street, Boston, MA 02111, USA.
| |
Collapse
|
33
|
Brummer T, Martin P, Herzog S, Misawa Y, Daly RJ, Reth M. Functional analysis of the regulatory requirements of B-Raf and the B-Raf(V600E) oncoprotein. Oncogene 2006; 25:6262-76. [PMID: 16702958 DOI: 10.1038/sj.onc.1209640] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The BRAF(V600E) mutation is found in approximately 6% of human cancers and mimics the phosphorylation of the kinase domain activation segment. In wild-type B-Raf (B-Raf(wt)), activation segment phosphorylation is thought to cooperate with negative charges within the N-region for full activation. In contrast to Raf-1, the N-region of B-Raf is constitutively negatively charged owing to the presence of residues D447/D448 and the phosphorylation of S446. Therefore, it has been suggested that this hallmark predisposes B-Raf for oncogenic activation. In this study, we demonstrate that neutralizing mutations of these residues (in particular S446 and S447), or uncoupling of B-Raf from Ras-guanine 5'-triphosphate (GTP), strongly reduce the biological activity of B-Raf in a PC12 cell differentiation assay. We also confirm that S365 is a 14-3-3 binding site, and determine that mutation of this residue rescues the impaired biological activity of B-Raf proteins with a neutralized N-region, suggesting that the N-region opposes a 14-3-3-mediated transition into an inactive conformation. However, in the case of B-Raf(V600E), although complete N-region neutralization resulted in a 2.5-fold reduction in kinase activity in vitro, this oncoprotein strongly induced PC12 differentiation or transformation and epithelial-mesenchymal transition of MCF-10A cells regardless of its N-region charge. Furthermore, the biological activity of B-Raf(V600E) was independent of its ability to bind Ras-GTP. Our analysis identifies important regulatory differences between B-Raf(wt) and B-Raf(V600E) and suggests that B-Raf(V600E) cannot be inhibited by strategies aimed at blocking S446 phosphorylation or Ras activation.
Collapse
Affiliation(s)
- T Brummer
- Cancer Research Program, The Garvan Institute of Medical Research, Sydney, NSW, Australia.
| | | | | | | | | | | |
Collapse
|
34
|
Johnson SE, Winner DG, Wang X. Ran binding protein 9 interacts with Raf kinase but does not contribute to downstream ERK1/2 activation in skeletal myoblasts. Biochem Biophys Res Commun 2006; 340:409-16. [PMID: 16364241 DOI: 10.1016/j.bbrc.2005.12.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 12/06/2005] [Indexed: 10/25/2022]
Abstract
Raf kinase is the upstream activator of MEK1/2 leading to phosphorylation and activation of ERK1/2. Sustained activation of Raf represses skeletal muscle-specific reporter gene transcription and formation of multinucleated myofibers. Inhibition of myogenesis by activated Raf involves downstream ERK1/2 as well as undefined mediators. To identify Raf-interacting proteins that may influence repression of muscle formation, a yeast two-hybrid screen was performed using a MEK1-binding defective Raf (RafBXB-T481A) as bait. Twenty cDNAs coding for Raf-interacting proteins were identified including Ran binding protein 9 (RanBP9), a protein previously reported to interact with receptor tyrosine kinases. Forced expression of RanBP9 in myogenic cells did not alter myogenesis. Co-expression of RanBP9 with constitutively active RafBXB, but not RafBXB-T481A, synergistically inhibited MyoD-directed muscle reporter gene transcription. Knockdown of RanBP9 expression did not restore the differentiation program to Raf-expressing myoblasts. Thus, RanBP9 physically associates with Raf but does not substantially contribute to the inhibitory actions of the kinase.
Collapse
|
35
|
Balan V, Leicht DT, Zhu J, Balan K, Kaplun A, Singh-Gupta V, Qin J, Ruan H, Comb MJ, Tzivion G. Identification of novel in vivo Raf-1 phosphorylation sites mediating positive feedback Raf-1 regulation by extracellular signal-regulated kinase. Mol Biol Cell 2006; 17:1141-53. [PMID: 16407412 PMCID: PMC1382304 DOI: 10.1091/mbc.e04-12-1123] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Ras-Raf-mitogen-activated protein kinase cascade is a key growth-signaling pathway, which uncontrolled activation results in transformation. Although the exact mechanisms underlying Raf-1 regulation remain incompletely understood, phosphorylation has been proposed to play a critical role in this regulation. We report here three novel epidermal growth factor-induced in vivo Raf-1 phosphorylation sites that mediate positive feedback Raf-1 regulation. Using mass spectrometry, we identified Raf-1 phosphorylation on three SP motif sites: S289/S296/S301 and confirmed their identity using two-dimensional-phosphopeptide mapping and phosphospecific antibodies. These sites were phosphorylated by extracellular signal-regulated kinase (ERK)-1 in vitro, and their phosphorylation in vivo was dependent on endogenous ERK activity. Functionally, ERK-1 expression sustains Raf-1 activation in a manner dependent on Raf-1 phosphorylation on the identified sites, and S289/296/301A substitution markedly decreases the in vivo activity of Raf-1 S259A. Importantly, the ERK-phosphorylated Raf-1 pool has 4 times higher specific kinase activity than total Raf-1, and its phosphopeptide composition is similar to that of the general Raf-1 population, suggesting that the preexisting, phosphorylated Raf-1, representing the activatable Raf-1 pool, is the Raf-1 subpopulation targeted by ERK. Our study describes the identification of new in vivo Raf-1 phosphorylation sites targeted by ERK and provides a novel mechanism for a positive feedback Raf-1 regulation.
Collapse
Affiliation(s)
- Vitaly Balan
- Karmanos Cancer Institute, Department of Pathology, Wayne State University, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
RAF research is booming since the discovery of mutant B-RAF in approximately 8% of human cancer. One reason for the excitement is the availability of RAF-targeted therapies. RAF inhibitors have been developed because RAF functions at a convergence point of signal transduction. Two recent papers by the groups of Rosen and Marais dramatically advance our understanding of RAF oncogenes in human tumors. The results confirm that the mitogenic cascade (RAF-MEK-ERK) is essential for RAF transformation, that RAF kinases work in concert, and that RAF-transformed cells are hooked on MEK, making them sensitive to growth inhibition by kinase inhibitors.
Collapse
Affiliation(s)
- Ulf R Rapp
- Institut für Medizinische Strahlenkunde und Zellforschung,Versbacher Strasse 5, 97078 Würzburg, Germany.
| | | | | |
Collapse
|