1
|
Uyeda TQP, Yamazaki Y, Kijima ST, Noguchi TQP, Ngo KX. Multiple Mechanisms to Regulate Actin Functions: "Fundamental" Versus Lineage-Specific Mechanisms and Hierarchical Relationships. Biomolecules 2025; 15:279. [PMID: 40001582 PMCID: PMC11853071 DOI: 10.3390/biom15020279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Eukaryotic actin filaments play a central role in numerous cellular functions, with each function relying on the interaction of actin filaments with specific actin-binding proteins. Understanding the mechanisms that regulate these interactions is key to uncovering how actin filaments perform diverse roles at different cellular locations. Several distinct classes of actin regulatory mechanisms have been proposed and experimentally supported. However, these mechanisms vary in their nature and hierarchy. For instance, some operate under the control of others, highlighting hierarchical relationships. Additionally, while certain mechanisms are fundamental and ubiquitous across eukaryotes, others are lineage-specific. Here, we emphasize the fundamental importance and functional significance of the following actin regulatory mechanisms: the biochemical regulation of actin nucleators, the ATP hydrolysis-dependent aging of actin filaments, thermal fluctuation- and mechanical strain-dependent conformational changes of actin filaments, and cooperative conformational changes induced by actin-binding proteins.
Collapse
Affiliation(s)
- Taro Q. P. Uyeda
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Shinjuku, Japan
| | - Yosuke Yamazaki
- RIKEN Center for Biosystems Dynamics Research, Yokohama 230-0045, Kanagawa, Japan;
| | - Saku T. Kijima
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Ibaraki, Japan;
| | - Taro Q. P. Noguchi
- Department of Chemical Science and Engineering, National Institute of Technology, Miyakonojo College, Miyakonojo 885-0006, Miyazaki, Japan;
| | - Kien Xuan Ngo
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Ishikawa, Japan;
| |
Collapse
|
2
|
Ishida M, Uwamichi M, Nakajima A, Sawai S. Traveling-wave chemotaxis of neutrophil-like HL-60 cells. Mol Biol Cell 2025; 36:ar17. [PMID: 39718770 PMCID: PMC11809305 DOI: 10.1091/mbc.e24-06-0245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/19/2024] [Accepted: 12/09/2024] [Indexed: 12/25/2024] Open
Abstract
The question of how changes in chemoattractant concentration translate into the chemotactic response of immune cells serves as a paradigm for the quantitative understanding of how cells perceive and process temporal and spatial information. Here, using a microfluidic approach, we analyzed the migration of neutrophil-like HL-60 cells to a traveling wave of the chemoattractants N-formyl-methionyl-leucyl-phenylalanine (fMLP) and leukotriene B4 (LTB4). We found that under a pulsatile wave that travels at a speed of 95 and 170 µm/min, cells move forward in the front of the wave but slow down and randomly orient at the back due to temporal decrease in the attractant concentration. Under a slower wave, cells reorient and migrate at the back of the wave; thus, cell displacement is canceled out or even becomes negative as cells chase the receding wave. Fluorescence resonance energy transfer (FRET)-based analysis indicated that these patterns of movement correlated well with spatiotemporal changes in Cdc42 activity. Furthermore, pharmacological perturbations showed that (re)orientation in front and back of the wave had different susceptibility to Cdc42 and ROCK inhibition. These results suggest that pulsatile attractant waves may recruit or disperse neutrophils, depending on their speed and degree of cell polarization.
Collapse
Affiliation(s)
- Motohiko Ishida
- Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Masahito Uwamichi
- Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Akihiko Nakajima
- Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
- Research Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Satoshi Sawai
- Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
- Research Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
3
|
Dolgitzer D, Plaza-Rodríguez AI, Iglesias MA, Jacob MAC, Todd BA, Robinson DN, Iglesias PA. A continuum model of mechanosensation based on contractility kit assembly. Biophys J 2025; 124:62-76. [PMID: 39521955 PMCID: PMC11739882 DOI: 10.1016/j.bpj.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/07/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
The ability of cells to sense and respond to mechanical forces is crucial for navigating their environment and interacting with neighboring cells. Myosin II and cortexillin I form complexes known as contractility kits (CKs) in the cytosol, which facilitate a cytoskeletal response by accumulating locally at the site of inflicted stress. Here, we present a computational model for mechanoresponsiveness in Dictyostelium, analyzing the role of CKs within the mechanoresponsive mechanism grounded in experimentally measured parameters. Our model further elaborates on the established distributions and channeling of contractile proteins before and after mechanical force application. We rigorously validate our computational findings by comparing the responses of wild-type cells, null mutants, overexpression mutants, and cells deficient in CK formation to mechanical stresses. Parallel in vivo experiments measuring myosin II cortical distributions at equilibrium provide additional validation. Our results highlight the essential functions of CKs in cellular mechanosensitivity and suggest new insights into the regulatory dynamics of mechanoresponsiveness.
Collapse
Affiliation(s)
- David Dolgitzer
- Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland.
| | - Alma I Plaza-Rodríguez
- Oncology-Quantitative Sciences Department, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Miguel A Iglesias
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey
| | - Mark Allan C Jacob
- Department of Cell Biology, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Bethany A Todd
- Department of Cell Biology, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Douglas N Robinson
- Department of Cell Biology, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Pablo A Iglesias
- Department of Cell Biology, The Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Electrical and Computer Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
4
|
Kuhn J, Banerjee P, Haye A, Robinson DN, Iglesias PA, Devreotes PN. Complementary Cytoskeletal Feedback Loops Control Signal Transduction Excitability and Cell Polarity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580131. [PMID: 38405988 PMCID: PMC10888828 DOI: 10.1101/2024.02.13.580131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
To move through complex environments, cells must constantly integrate chemical and mechanical cues. Signaling networks, such as those comprising Ras and PI3K, transmit chemical cues to the cytoskeleton, but the cytoskeleton must also relay mechanical information back to those signaling systems. Using novel synthetic tools to acutely control specific elements of the cytoskeleton in Dictyostelium and neutrophils, we delineate feedback mechanisms that alter the signaling network and promote front- or back-states of the cell membrane and cortex. First, increasing branched actin assembly increases Ras/PI3K activation while reducing polymeric actin levels overall decreases activation. Second, reducing myosin II assembly immediately increases Ras/PI3K activation and sensitivity to chemotactic stimuli. Third, inhibiting branched actin alone increases cortical actin assembly and strongly blocks Ras/PI3K activation. This effect is mitigated by reducing filamentous actin levels and in cells lacking myosin II. Finally, increasing actin crosslinking with a controllable activator of cytoskeletal regulator RacE leads to a large decrease in Ras activation both globally and locally. Curiously, RacE activation can trigger cell spreading and protrusion with no detectable activation of branched actin nucleators. Taken together with legacy data that Ras/PI3K promotes branched actin assembly and myosin II disassembly, our results define front- and back-promoting positive feedback loops. We propose that these loops play a crucial role in establishing cell polarity and mediating signal integration by controlling the excitable state of the signal transduction networks in respective regions of the membrane and cortex. This interplay enables cells to navigate intricate topologies like tissues containing other cells, the extracellular matrix, and fluids.
Collapse
Affiliation(s)
- Jonathan Kuhn
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Parijat Banerjee
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD
| | - Andrew Haye
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD
| | | | - Pablo A. Iglesias
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD
| | - Peter N. Devreotes
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
5
|
Arima T, Okita K, Yumura S. Dynamics of actomyosin filaments in the contractile ring revealed by ultrastructural analysis. Genes Cells 2023; 28:845-856. [PMID: 37844904 DOI: 10.1111/gtc.13073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/18/2023]
Abstract
Cytokinesis, the final process of cell division, involves the accumulation of actin and myosin II filaments at the cell's equator, forming a contractile ring that facilitates the division into two daughter cells. While light microscopy has provided valuable insights into the molecular mechanism of this process, it has limitations in examining individual filaments in vivo. In this study, we utilized transmission electron microscopy to observe actin and myosin II filaments in the contractile rings of dividing Dictyostelium cells. To synchronize cytokinesis, we developed a novel method that allowed us to visualize dividing cells undergoing cytokinesis with a frequency as high as 18%. This improvement enabled us to examine the lengths and alignments of individual filaments within the contractile rings. As the furrow constricted, the length of actin filaments gradually decreased. Moreover, both actin and myosin II filaments reoriented perpendicularly to the long axis during furrow constriction. Through experiments involving myosin II null cells, we discovered that myosin II plays a role in regulating both the lengths and alignments of actin filaments. Additionally, dynamin-like protein A was found to contribute to regulating the length of actin filaments, while cortexillins were involved in regulating their alignment.
Collapse
Affiliation(s)
- Takeru Arima
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Keisuke Okita
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Shigehiko Yumura
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
6
|
Yumura S, Nakano M, Honda A, Hashimoto Y, Kondo T. Dynamics of intracellular cGMP during chemotaxis in Dictyostelium cells. J Cell Sci 2023; 136:286882. [PMID: 36601895 DOI: 10.1242/jcs.260591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Abstract
Cyclic guanosine 3',5'-monophosphate (cGMP) is a ubiquitous important second messenger involved in various physiological functions. Here, intracellular cGMP (cGMPi) was visualized in chemotactic Dictyostelium cells using the fluorescent probe, D-Green cGull. When wild-type cells were stimulated with a chemoattractant, fluorescence transiently increased, but guanylate cyclase-null cells did not show a change in fluorescence, suggesting that D-Green cGull is a reliable indicator of cGMPi. In the aggregation stage, the responses of cGMPi propagated in a wave-like fashion from the aggregation center. The oscillation of the cGMPi wave was synchronized almost in phase with those of other second messengers, such as the intracellular cAMP and Ca2+. The phases of these waves preceded those of the oscillations of actomyosin and cell velocity, suggesting that these second messengers are upstream of the actomyosin and chemotactic migration. An acute increase in cGMPi concentration released from membrane-permeable caged cGMP induced a transient shuttle of myosin II between the cytosol and cell cortex, suggesting a direct link between cGMP signaling and myosin II dynamics.
Collapse
Affiliation(s)
- Shigehiko Yumura
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Masaki Nakano
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Aika Honda
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Yuuki Hashimoto
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Tomo Kondo
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan.,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|
7
|
Aurora-B phosphorylates the myosin II heavy chain to promote cytokinesis. J Biol Chem 2021; 297:101024. [PMID: 34343568 PMCID: PMC8385403 DOI: 10.1016/j.jbc.2021.101024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 12/22/2022] Open
Abstract
Cytokinesis, the final step of mitosis, is mediated by an actomyosin contractile ring, the formation of which is temporally and spatially regulated following anaphase onset. Aurora-B is a member of the chromosomal passenger complex, which regulates various processes during mitosis; it is not understood, however, how Aurora-B is involved in cytokinesis. Here, we show that Aurora-B and myosin-IIB form a complex in vivo during telophase. Aurora-B phosphorylates the myosin-IIB rod domain at threonine 1847 (T1847), abrogating the ability of myosin-IIB monomers to form filaments. Furthermore, phosphorylation of myosin-IIB filaments by Aurora-B also promotes filament disassembly. We show that myosin-IIB possessing a phosphomimetic mutation at T1847 was unable to rescue cytokinesis failure caused by myosin-IIB depletion. Cells expressing a phosphoresistant mutation at T1847 had significantly longer intercellular bridges, implying that Aurora-B-mediated phosphorylation of myosin-IIB is important for abscission. We propose that myosin-IIB is a substrate of Aurora-B and reveal a new mechanism of myosin-IIB regulation by Aurora-B in the late stages of mitosis.
Collapse
|
8
|
Dynamics of Myosin II Filaments during Wound Repair in Dividing Cells. Cells 2021; 10:cells10051229. [PMID: 34067877 PMCID: PMC8156316 DOI: 10.3390/cells10051229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 12/16/2022] Open
Abstract
Wound repair of cell membranes is essential for cell survival. Myosin II contributes to wound pore closure by interacting with actin filaments in larger cells; however, its role in smaller cells is unclear. In this study, we observed wound repair in dividing cells for the first time. The cell membrane in the cleavage furrow, where myosin II localized, was wounded by laserporation. Upon wounding, actin transiently accumulated, and myosin II transiently disappeared from the wound site. Ca2+ influx from the external medium triggered both actin and myosin II dynamics. Inhibition of calmodulin reduced both actin and myosin II dynamics. The wound closure time in myosin II-null cells was the same as that in wild-type cells, suggesting that myosin II is not essential for wound repair. We also found that disassembly of myosin II filaments by phosphorylation did not contribute to their disappearance, indicating a novel mechanism for myosin II delocalization from the cortex. Furthermore, we observed that several furrow-localizing proteins such as GAPA, PakA, myosin heavy chain kinase C, PTEN, and dynamin disappeared upon wounding. Herein, we discuss the possible mechanisms of myosin dynamics during wound repair.
Collapse
|
9
|
Dynamin-Like Protein B of Dictyostelium Contributes to Cytokinesis Cooperatively with Other Dynamins. Cells 2019; 8:cells8080781. [PMID: 31357517 PMCID: PMC6721605 DOI: 10.3390/cells8080781] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/19/2019] [Accepted: 07/25/2019] [Indexed: 01/31/2023] Open
Abstract
Dynamin is a large GTPase responsible for diverse cellular processes, such as endocytosis, division of organelles, and cytokinesis. The social amoebozoan, Dictyostelium discoideum, has five dynamin-like proteins: dymA, dymB, dlpA, dlpB, and dlpC. DymA, dlpA, or dlpB-deficient cells exhibited defects in cytokinesis. DlpA and dlpB were found to colocalize at cleavage furrows from the early phase, and dymA localized at the intercellular bridge connecting the two daughter cells, indicating that these dynamins contribute to cytokinesis at distinct dividing stages. Total internal reflection fluorescence microscopy revealed that dlpA and dlpB colocalized at individual dots at the furrow cortex. However, dlpA and dlpB did not colocalize with clathrin, suggesting that they are not involved in clathrin-mediated endocytosis. The fact that dlpA did not localize at the furrow in dlpB null cells and vice versa, as well as other several lines of evidence, suggests that hetero-oligomerization of dlpA and dlpB is required for them to bind to the furrow. The hetero-oligomers directly or indirectly associate with actin filaments, stabilizing them in the contractile rings. Interestingly, dlpA, but not dlpB, accumulated at the phagocytic cups independently of dlpB. Our results suggest that the hetero-oligomers of dlpA and dlpB contribute to cytokinesis cooperatively with dymA.
Collapse
|
10
|
The Cytoskeleton of the Retinal Pigment Epithelium: from Normal Aging to Age-Related Macular Degeneration. Int J Mol Sci 2019; 20:ijms20143578. [PMID: 31336621 PMCID: PMC6678077 DOI: 10.3390/ijms20143578] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022] Open
Abstract
The retinal pigment epithelium (RPE) is a unique epithelium, with major roles which are essential in the visual cycle and homeostasis of the outer retina. The RPE is a monolayer of polygonal and pigmented cells strategically placed between the neuroretina and Bruch membrane, adjacent to the fenestrated capillaries of the choriocapillaris. It shows strong apical (towards photoreceptors) to basal/basolateral (towards Bruch membrane) polarization. Multiple functions are bound to a complex structure of highly organized and polarized intracellular components: the cytoskeleton. A strong connection between the intracellular cytoskeleton and extracellular matrix is indispensable to maintaining the function of the RPE and thus, the photoreceptors. Impairments of these intracellular structures and the regular architecture they maintain often result in a disrupted cytoskeleton, which can be found in many retinal diseases, including age-related macular degeneration (AMD). This review article will give an overview of current knowledge on the molecules and proteins involved in cytoskeleton formation in cells, including RPE and how the cytoskeleton is affected under stress conditions—especially in AMD.
Collapse
|
11
|
The Cytoskeleton-A Complex Interacting Meshwork. Cells 2019; 8:cells8040362. [PMID: 31003495 PMCID: PMC6523135 DOI: 10.3390/cells8040362] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/22/2022] Open
Abstract
The cytoskeleton of animal cells is one of the most complicated and functionally versatile structures, involved in processes such as endocytosis, cell division, intra-cellular transport, motility, force transmission, reaction to external forces, adhesion and preservation, and adaptation of cell shape. These functions are mediated by three classical cytoskeletal filament types, as follows: Actin, microtubules, and intermediate filaments. The named filaments form a network that is highly structured and dynamic, responding to external and internal cues with a quick reorganization that is orchestrated on the time scale of minutes and has to be tightly regulated. Especially in brain tumors, the cytoskeleton plays an important role in spreading and migration of tumor cells. As the cytoskeletal organization and regulation is complex and many-faceted, this review aims to summarize the findings about cytoskeletal filament types, including substructures formed by them, such as lamellipodia, stress fibers, and interactions between intermediate filaments, microtubules and actin. Additionally, crucial regulatory aspects of the cytoskeletal filaments and the formed substructures are discussed and integrated into the concepts of cell motility. Even though little is known about the impact of cytoskeletal alterations on the progress of glioma, a final point discussed will be the impact of established cytoskeletal alterations in the cellular behavior and invasion of glioma.
Collapse
|
12
|
Schiffhauer ES, Ren Y, Iglesias VA, Kothari P, Iglesias PA, Robinson DN. Myosin IIB assembly state determines its mechanosensitive dynamics. J Cell Biol 2019; 218:895-908. [PMID: 30655296 PMCID: PMC6400566 DOI: 10.1083/jcb.201806058] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 11/20/2018] [Accepted: 12/19/2018] [Indexed: 11/22/2022] Open
Abstract
Dynamical cell shape changes require a highly sensitive cellular system that can respond to chemical and mechanical inputs. Myosin IIs are key players in the cell's ability to react to mechanical inputs, demonstrating an ability to accumulate in response to applied stress. Here, we show that inputs that influence the ability of myosin II to assemble into filaments impact the ability of myosin to respond to stress in a predictable manner. Using mathematical modeling for Dictyostelium myosin II, we predict that myosin II mechanoresponsiveness will be biphasic with an optimum established by the percentage of myosin II assembled into bipolar filaments. In HeLa and NIH 3T3 cells, heavy chain phosphorylation of NMIIB by PKCζ, as well as expression of NMIIA, can control the ability of NMIIB to mechanorespond by influencing its assembly state. These data demonstrate that multiple inputs to the myosin II assembly state integrate at the level of myosin II to govern the cellular response to mechanical inputs.
Collapse
Affiliation(s)
- Eric S Schiffhauer
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Yixin Ren
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Vicente A Iglesias
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD
| | - Priyanka Kothari
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Pablo A Iglesias
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD.,Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD
| | - Douglas N Robinson
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD .,Department of Pharmacology and Molecular Sciences School of Medicine, Johns Hopkins University, Baltimore, MD.,Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD.,Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
13
|
Müller R, Stumpf M, Wehrstedt R, Sukumaran SK, Karow MA, Marko M, Noegel AA, Eichinger L. The regulatory subunit phr2AB of Dictyostelium discoideum phosphatase PP2A interacts with the centrosomal protein CEP161, a CDK5RAP2 ortholog. Genes Cells 2018; 23:923-931. [PMID: 30133996 DOI: 10.1111/gtc.12637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 11/29/2022]
Abstract
phr2AB is the regulatory subunit of the Dictyostelium discoideum phosphatase PP2A and is the ortholog of the human B55 regulatory subunit of PP2A. phr2AB was isolated as a binding partner of the centrosomal protein CEP161, an ortholog of mammalian CDK5RAP2. CEP161 is presumably a phosphoprotein and a component of the Hippo pathway. The interaction site was located in the N-terminal half of CEP161 which encompasses the γTURC binding domain in CEP161. This binding domain is responsible for binding of the γ-tubulin ring complex which allows microtubule nucleation at the centrosome. GFP-tagged phr2AB is diffusely distributed throughout the cell and enriched at the centrosome. Ectopic expression of phr2AB as GFP fusion protein led to multinucleation, aberrant nucleus centrosome ratios and an altered sensitivity to okadaic acid. Some of these features were also affected in cells over-expressing domains of CEP161 and in cells from patients suffering from primary microcephaly, which carried a mutated CDK5RAP2 gene.
Collapse
Affiliation(s)
- Rolf Müller
- Institute for Biochemistry I, Medical Faculty, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne and Cologne Cluster on Cellular Stress Responses in Aging-Associated Diseases, Medical Faculty, University of Cologne, Cologne, Germany
| | - Maria Stumpf
- Institute for Biochemistry I, Medical Faculty, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne and Cologne Cluster on Cellular Stress Responses in Aging-Associated Diseases, Medical Faculty, University of Cologne, Cologne, Germany
| | - Regina Wehrstedt
- Institute for Biochemistry I, Medical Faculty, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne and Cologne Cluster on Cellular Stress Responses in Aging-Associated Diseases, Medical Faculty, University of Cologne, Cologne, Germany
| | - Salil K Sukumaran
- Institute for Biochemistry I, Medical Faculty, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne and Cologne Cluster on Cellular Stress Responses in Aging-Associated Diseases, Medical Faculty, University of Cologne, Cologne, Germany
| | - Malte A Karow
- Institute for Biochemistry I, Medical Faculty, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne and Cologne Cluster on Cellular Stress Responses in Aging-Associated Diseases, Medical Faculty, University of Cologne, Cologne, Germany
| | - Marija Marko
- Institute for Biochemistry I, Medical Faculty, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne and Cologne Cluster on Cellular Stress Responses in Aging-Associated Diseases, Medical Faculty, University of Cologne, Cologne, Germany
| | - Angelika A Noegel
- Institute for Biochemistry I, Medical Faculty, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne and Cologne Cluster on Cellular Stress Responses in Aging-Associated Diseases, Medical Faculty, University of Cologne, Cologne, Germany
| | - Ludwig Eichinger
- Institute for Biochemistry I, Medical Faculty, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne and Cologne Cluster on Cellular Stress Responses in Aging-Associated Diseases, Medical Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|
14
|
Abstract
The role of cell membrane dynamics in cell migration is unclear. To examine whether total cell surface area changes are required for cell migration, Dictyostelium cells were flattened by agar-overlay. Scanning electron microscopy demonstrated that flattened migrating cells have no membrane reservoirs such as projections and membrane folds. Similarly, optical sectioning fluorescence microscopy showed that the cell surface area does not change during migration. Interestingly, staining of the cell membrane with a fluorescent lipid analogue demonstrated that the turnover rate of cell membrane is closely related to the cell migration velocity. Next, to clarify the mechanism of cell membrane circulation, local photobleaching was separately performed on the dorsal and ventral cell membranes of rapidly moving cells. The bleached zones on both sides moved rearward relative to the cell. Thus, the cell membrane moves in a fountain-like fashion, accompanied by a high membrane turnover rate and actively contributing to cell migration.
Collapse
|
15
|
Ye Q, Yang Y, van Staalduinen L, Crawley SW, Liu L, Brennan S, Côté GP, Jia Z. Structure of the Dictyostelium Myosin-II Heavy Chain Kinase A (MHCK-A) α-kinase domain apoenzyme reveals a novel autoinhibited conformation. Sci Rep 2016; 6:26634. [PMID: 27211275 PMCID: PMC4876393 DOI: 10.1038/srep26634] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 05/04/2016] [Indexed: 02/06/2023] Open
Abstract
The α-kinases are a family of a typical protein kinases present in organisms ranging from protozoa to mammals. Here we report an autoinhibited conformation for the α-kinase domain of Dictyostelium myosin-II heavy chain kinase A (MHCK-A) in which nucleotide binding to the catalytic cleft, located at the interface between an N-terminal and C-terminal lobe, is sterically blocked by the side chain of a conserved arginine residue (Arg592). Previous α-kinase structures have shown that an invariant catalytic aspartic acid residue (Asp766) is phosphorylated. Unexpectedly, in the autoinhibited conformation the phosphoryl group is transferred to the adjacent Asp663, creating an interaction network that stabilizes the autoinhibited state. The results suggest that Asp766 phosphorylation may play both catalytic and regulatory roles. The autoinhibited structure also provides the first view of a phosphothreonine residue docked into the phospho-specific allosteric binding site (Pi-pocket) in the C-lobe of the α-kinase domain.
Collapse
Affiliation(s)
- Qilu Ye
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Yidai Yang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Laura van Staalduinen
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Scott William Crawley
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Linda Liu
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Stephanie Brennan
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Graham P Côté
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| |
Collapse
|
16
|
Mohan K, Luo T, Robinson DN, Iglesias PA. Cell shape regulation through mechanosensory feedback control. J R Soc Interface 2016. [PMID: 26224568 DOI: 10.1098/rsif.2015.0512] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cells undergo controlled changes in morphology in response to intracellular and extracellular signals. These changes require a means for sensing and interpreting the signalling cues, for generating the forces that act on the cell's physical material, and a control system to regulate this process. Experiments on Dictyostelium amoebae have shown that force-generating proteins can localize in response to external mechanical perturbations. This mechanosensing, and the ensuing mechanical feedback, plays an important role in minimizing the effect of mechanical disturbances in the course of changes in cell shape, especially during cell division, and likely in other contexts, such as during three-dimensional migration. Owing to the complexity of the feedback system, which couples mechanical and biochemical signals involved in shape regulation, theoretical approaches can guide further investigation by providing insights that are difficult to decipher experimentally. Here, we present a computational model that explains the different mechanosensory and mechanoresponsive behaviours observed in Dictyostelium cells. The model features a multiscale description of myosin II bipolar thick filament assembly that includes cooperative and force-dependent myosin-actin binding, and identifies the feedback mechanisms hidden in the observed mechanoresponsive behaviours of Dictyostelium cells during micropipette aspiration experiments. These feedbacks provide a mechanistic explanation of cellular retraction and hence cell shape regulation.
Collapse
Affiliation(s)
- Krithika Mohan
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tianzhi Luo
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Douglas N Robinson
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Pablo A Iglesias
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
17
|
Srivastava V, Iglesias PA, Robinson DN. Cytokinesis: Robust cell shape regulation. Semin Cell Dev Biol 2015; 53:39-44. [PMID: 26481973 DOI: 10.1016/j.semcdb.2015.10.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/13/2015] [Indexed: 11/25/2022]
Abstract
Cytokinesis, the final step of cell division, is a great example of robust cell shape regulation. A wide variety of cells ranging from the unicellular Dictyostelium to human cells in tissues proceed through highly similar, stereotypical cell shape changes during cell division. Typically, cells first round up forming a cleavage furrow in the middle, which constricts resulting in the formation of two daughter cells. Tight control of cytokinesis is essential for proper segregation of genetic and cellular materials, and its failure is deleterious to cell viability. Thus, biological systems have developed elaborate mechanisms to ensure high fidelity of cytokinesis, including the existence of multiple biochemical and mechanical pathways regulated through feedback. In this review, we focus on the built-in redundancy of the cytoskeletal machinery that allows cells to divide successfully in a variety of biological and mechanical contexts. Using Dictyostelium cytokinesis as an example, we demonstrate that the crosstalk between biochemical and mechanical signaling through feedback ensures correct assembly and function of the cell division machinery.
Collapse
Affiliation(s)
- Vasudha Srivastava
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Pablo A Iglesias
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States; Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Douglas N Robinson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, United States.
| |
Collapse
|
18
|
Yang Y, Ye Q, Jia Z, Côté GP. Characterization of the Catalytic and Nucleotide Binding Properties of the α-Kinase Domain of Dictyostelium Myosin-II Heavy Chain Kinase A. J Biol Chem 2015; 290:23935-46. [PMID: 26260792 DOI: 10.1074/jbc.m115.672410] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Indexed: 11/06/2022] Open
Abstract
The α-kinases are a widely expressed family of serine/threonine protein kinases that exhibit no sequence identity with conventional eukaryotic protein kinases. In this report, we provide new information on the catalytic properties of the α-kinase domain of Dictyostelium myosin-II heavy chain kinase-A (termed A-CAT). Crystallization of A-CAT in the presence of MgATP yielded structures with AMP or adenosine in the catalytic cleft together with a phosphorylated Asp-766 residue. The results show that the β- and α-phosphoryl groups are transferred either directly or indirectly to the catalytically essential Asp-766. Biochemical assays confirmed that A-CAT hydrolyzed ATP, ADP, and AMP with kcat values of 1.9, 0.6, and 0.32 min(-1), respectively, and showed that A-CAT can use ADP to phosphorylate peptides and proteins. Binding assays using fluorescent 2'/3'-O-(N-methylanthraniloyl) analogs of ATP and ADP yielded Kd values for ATP, ADP, AMP, and adenosine of 20 ± 3, 60 ± 20, 160 ± 60, and 45 ± 15 μM, respectively. Site-directed mutagenesis showed that Glu-713, Leu-716, and Lys-645, all of which interact with the adenine base, were critical for nucleotide binding. Mutation of the highly conserved Gln-758, which chelates a nucleotide-associated Mg(2+) ion, eliminated catalytic activity, whereas loss of the highly conserved Lys-722 and Arg-592 decreased kcat values for kinase and ATPase activities by 3-6-fold. Mutation of Asp-663 impaired kinase activity to a much greater extent than ATPase, indicating a specific role in peptide substrate binding, whereas mutation of Gln-768 doubled ATPase activity, suggesting that it may act to exclude water from the active site.
Collapse
Affiliation(s)
- Yidai Yang
- From the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Qilu Ye
- From the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Zongchao Jia
- From the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Graham P Côté
- From the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
19
|
Pharmacological activation of myosin II paralogs to correct cell mechanics defects. Proc Natl Acad Sci U S A 2015; 112:1428-33. [PMID: 25605895 DOI: 10.1073/pnas.1412592112] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Current approaches to cancer treatment focus on targeting signal transduction pathways. Here, we develop an alternative system for targeting cell mechanics for the discovery of novel therapeutics. We designed a live-cell, high-throughput chemical screen to identify mechanical modulators. We characterized 4-hydroxyacetophenone (4-HAP), which enhances the cortical localization of the mechanoenzyme myosin II, independent of myosin heavy-chain phosphorylation, thus increasing cellular cortical tension. To shift cell mechanics, 4-HAP requires myosin II, including its full power stroke, specifically activating human myosin IIB (MYH10) and human myosin IIC (MYH14), but not human myosin IIA (MYH9). We further demonstrated that invasive pancreatic cancer cells are more deformable than normal pancreatic ductal epithelial cells, a mechanical profile that was partially corrected with 4-HAP, which also decreased the invasion and migration of these cancer cells. Overall, 4-HAP modifies nonmuscle myosin II-based cell mechanics across phylogeny and disease states and provides proof of concept that cell mechanics offer a rich drug target space, allowing for possible corrective modulation of tumor cell behavior.
Collapse
|
20
|
Luo T, Robinson DN. Kinetic Monte Carlo simulations of the assembly of filamentous biomacromolecules by dimer addition mechanism. RSC Adv 2015; 5:3922-3929. [PMID: 25574377 PMCID: PMC4283931 DOI: 10.1039/c4ra09189b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In cells, several important biomacromolecules form oligomers through a dimer addition mechanism. Rate equations based on mean field approximations are usually employed to describe the assembly process. However, such equations often require multiple assumptions that mask some detailed changes of the biomolecular configurations during aggregations. Here, we present a Kinetic Monte Carlo simulation scheme to account for the diffusion and rotation of dimers on two-dimensional hexagonal lattices while naturally including the stochastic features. We investigate the effects of the interaction energy between dimers, the diffusion coefficient and the concentration of dimers on the aggregation by dimer addition mechanism. Our simulations identified unusual double-S shape evolutions of aggregation kinetics, which are probably associated with the formation of metastable clusters.
Collapse
Affiliation(s)
- Tianzhi Luo
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Douglas N. Robinson
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
21
|
Ren Y, West-Foyle H, Surcel A, Miller C, Robinson DN. Genetic suppression of a phosphomimic myosin II identifies system-level factors that promote myosin II cleavage furrow accumulation. Mol Biol Cell 2014; 25:4150-65. [PMID: 25318674 PMCID: PMC4263456 DOI: 10.1091/mbc.e14-08-1322] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
How myosin II localizes to the cleavage furrow in Dictyostelium and metazoan cells remains largely unknown despite significant advances in understanding its regulation. We designed a genetic selection using cDNA library suppression of 3xAsp myosin II to identify factors involved in myosin cleavage furrow accumulation. The 3xAsp mutant is deficient in bipolar thick filament assembly, fails to accumulate at the cleavage furrow, cannot rescue myoII-null cytokinesis, and has impaired mechanosensitive accumulation. Eleven genes suppressed this dominant cytokinesis deficiency when 3xAsp was expressed in wild-type cells. 3xAsp myosin II's localization to the cleavage furrow was rescued by constructs encoding rcdBB, mmsdh, RMD1, actin, one novel protein, and a 14-3-3 hairpin. Further characterization showed that RMD1 is required for myosin II cleavage furrow accumulation, acting in parallel with mechanical stress. Analysis of several mutant strains revealed that different thresholds of myosin II activity are required for daughter cell symmetry than for furrow ingression dynamics. Finally, an engineered myosin II with a longer lever arm (2xELC), producing a highly mechanosensitive motor, could also partially suppress the intragenic 3xAsp. Overall, myosin II accumulation is the result of multiple parallel and partially redundant pathways that comprise a cellular contractility control system.
Collapse
Affiliation(s)
- Yixin Ren
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Hoku West-Foyle
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Alexandra Surcel
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Christopher Miller
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 Summer Academic Research Experience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Douglas N Robinson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205 Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
22
|
Mansuri MS, Bhattacharya S, Bhattacharya A. A novel alpha kinase EhAK1 phosphorylates actin and regulates phagocytosis in Entamoeba histolytica. PLoS Pathog 2014; 10:e1004411. [PMID: 25299184 PMCID: PMC4192601 DOI: 10.1371/journal.ppat.1004411] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 08/19/2014] [Indexed: 01/09/2023] Open
Abstract
Phagocytosis plays a key role in nutrient uptake and virulence of the protist parasite Entamoeba histolytica. Phagosomes have been characterized by proteomics, and their maturation in the cells has been studied. However, there is so far not much understanding about initiation of phagocytosis and formation of phagosomes at the molecular level. Our group has been studying initiation of phagocytosis and formation of phagosomes in E. histolytica, and have described some of the molecules that play key roles in the process. Here we show the involvement of EhAK1, an alpha kinase and a SH3 domain containing protein in the pathway that leads to formation of phagosomes using red blood cell as ligand particle. A number of approaches, such as proteomics, biochemical, confocal imaging using specific antibodies or GFP tagged molecules, expression down regulation by antisense RNA, over expression of wild type and mutant proteins, were used to understand the role of EhAK1 in phagocytosis. EhAK1 was found in the phagocytic cups during the progression of cups, until closure of phagosomes, but not in the phagosomes themselves. It is recruited to the phagosomes through interaction with the calcium binding protein EhCaBP1. A reduction in phagocytosis was observed when EhAK1 was down regulated by antisense RNA, or by over expression of the kinase dead mutant. G-actin was identified as one of the major substrates of EhAK1. Phosphorylated actin preferentially accumulated at the phagocytic cups and over expression of a phosphorylation defective actin led to defects in phagocytosis. In conclusion, we describe an important component of the pathway that is initiated on attachment of red blood cells to E. histolytica cells. The main function of EhAK1 is to couple signalling events initiated after accumulation of EhC2PK to actin dynamics.
Collapse
Affiliation(s)
- M. Shahid Mansuri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sudha Bhattacharya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- * E-mail:
| |
Collapse
|
23
|
Wessels D, Lusche DF, Scherer A, Kuhl S, Myre MA, Soll DR. Huntingtin regulates Ca(2+) chemotaxis and K(+)-facilitated cAMP chemotaxis, in conjunction with the monovalent cation/H(+) exchanger Nhe1, in a model developmental system: insights into its possible role in Huntington׳s disease. Dev Biol 2014; 394:24-38. [PMID: 25149514 DOI: 10.1016/j.ydbio.2014.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/07/2014] [Accepted: 08/07/2014] [Indexed: 11/29/2022]
Abstract
Huntington׳s disease is a neurodegenerative disorder, attributable to an expanded trinucleotide repeat in the coding region of the human HTT gene, which encodes the protein huntingtin. These mutations lead to huntingtin fragment inclusions in the striatum of the brain. However, the exact function of normal huntingtin and the defect causing the disease remain obscure. Because there are indications that huntingtin plays a role in Ca(2+) homeostasis, we studied the deletion mutant of the HTT ortholog in the model developmental system Dictyostelium discoideum, in which Ca(2+) plays a role in receptor-regulated behavior related to the aggregation process that leads to multicellular morphogenesis. The D. discoideum htt(-)-mutant failed to undergo both K(+)-facilitated chemotaxis in spatial gradients of the major chemoattractant cAMP, and chemotaxis up a spatial gradient of Ca(2+), but behaved normally in Ca(2+)-facilitated cAMP chemotaxis and Ca(2+)-dependent flow-directed motility. This was the same phenotypic profile of the null mutant of Nhel, a monovalent cation/H(+)exchanger. The htt(-)-mutant also failed to orient correctly during natural aggregation, as was the case for the Nhel mutant. Moreover, in a K(+)-based buffer the normal localization of actin was similarly defective in both htt(-) and nhe1(-) cells in a K(+)-based buffer, and the normal localization of Nhe1 was disrupted in the htt(-) mutant. These observations demonstrate that Htt and Nhel play roles in the same specific cation-facilitated behaviors and that Nhel localization is directly or indirectly regulated by Htt. Similar cation-dependent behaviors and a similar relationship between Htt and Nhe1 have not been reported for mammalian neurons and deserves investigation, especially as it may relate to Huntington׳s disease.
Collapse
Affiliation(s)
- Deborah Wessels
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Daniel F Lusche
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Amanda Scherer
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Spencer Kuhl
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Michael A Myre
- Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - David R Soll
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
24
|
Betapudi V. Life without double-headed non-muscle myosin II motor proteins. Front Chem 2014; 2:45. [PMID: 25072053 PMCID: PMC4083560 DOI: 10.3389/fchem.2014.00045] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 06/19/2014] [Indexed: 11/20/2022] Open
Abstract
Non-muscle myosin II motor proteins (myosin IIA, myosin IIB, and myosin IIC) belong to a class of molecular motor proteins that are known to transduce cellular free-energy into biological work more efficiently than man-made combustion engines. Nature has given a single myosin II motor protein for lower eukaryotes and multiple for mammals but none for plants in order to provide impetus for their life. These specialized nanomachines drive cellular activities necessary for embryogenesis, organogenesis, and immunity. However, these multifunctional myosin II motor proteins are believed to go awry due to unknown reasons and contribute for the onset and progression of many autosomal-dominant disorders, cataract, deafness, infertility, cancer, kidney, neuronal, and inflammatory diseases. Many pathogens like HIV, Dengue, hepatitis C, and Lymphoma viruses as well as Salmonella and Mycobacteria are now known to take hostage of these dedicated myosin II motor proteins for their efficient pathogenesis. Even after four decades since their discovery, we still have a limited knowledge of how these motor proteins drive cell migration and cytokinesis. We need to enrich our current knowledge on these fundamental cellular processes and develop novel therapeutic strategies to fix mutated myosin II motor proteins in pathological conditions. This is the time to think how to relieve the hijacked myosins from pathogens in order to provide a renewed impetus for patients' life. Understanding how to steer these molecular motors in proliferating and differentiating stem cells will improve stem cell based-therapeutics development. Given the plethora of cellular activities non-muscle myosin motor proteins are involved in, their importance is apparent for human life.
Collapse
Affiliation(s)
- Venkaiah Betapudi
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic Cleveland, OH, USA ; Department of Physiology and Biophysics, Case Western Reserve University Cleveland, OH, USA
| |
Collapse
|
25
|
Kortholt A, Keizer-Gunnink I, Kataria R, Van Haastert PJM. Ras activation and symmetry breaking during Dictyostelium chemotaxis. J Cell Sci 2013; 126:4502-13. [PMID: 23886948 DOI: 10.1242/jcs.132340] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Central to chemotaxis is the molecular mechanism by which a shallow spatial gradient of chemoattractant induces symmetry breaking of activated signaling molecules. Previously, we have used Dictyostelium mutants to investigate the minimal requirements for chemotaxis, and identified a basal signaling module providing activation of Ras and F-actin at the leading edge. Here, we show that Ras activation after application of a pipette releasing the chemoattractant cAMP has three phases, each depending on specific guanine-nucleotide-exchange factors (GEFs). Initially a transient activation of Ras occurs at the entire cell boundary, which is proportional to the local cAMP concentrations and therefore slightly stronger at the front than in the rear of the cell. This transient Ras activation is present in gα2 (gpbB)-null cells but not in gβ (gpbA)-null cells, suggesting that Gβγ mediates the initial activation of Ras. The second phase is symmetry breaking: Ras is activated only at the side of the cell closest to the pipette. Symmetry breaking absolutely requires Gα2 and Gβγ, but not the cytoskeleton or four cAMP-induced signaling pathways, those dependent on phosphatidylinositol (3,4,5)-triphosphate [PtdIns(3,4,5)P3], cGMP, TorC2 and PLA2. As cells move in the gradient, the crescent of activated Ras in the front half of the cell becomes confined to a small area at the utmost front of the cell. Confinement of Ras activation leads to cell polarization, and depends on cGMP formation, myosin and F-actin. The experiments show that activation, symmetry breaking and confinement of Ras during Dictyostelium chemotaxis uses different G-protein subunits and a multitude of Ras GEFs and GTPase-activating proteins (GAPs).
Collapse
Affiliation(s)
- Arjan Kortholt
- Department of Cell Biochemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | | | | | | |
Collapse
|
26
|
Masud Rana AYK, Tsujioka M, Miyagishima S, Ueda M, Yumura S. Dynamin contributes to cytokinesis by stabilizing actin filaments in the contractile ring. Genes Cells 2013; 18:621-35. [PMID: 23679940 DOI: 10.1111/gtc.12060] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 04/01/2013] [Indexed: 02/03/2023]
Abstract
Dynamin has been proposed to play an important role in cytokinesis, although the nature of its contribution has remained unclear. Dictyostelium discoideum has five dynamin-like proteins: DymA, DymB, DlpA, DlpB and DlpC. Cells mutant for dymA, dlpA or dlpB presented defects in cytokinesis that resulted in multinucleation when the cells were cultured in suspension. However, the cells could divide normally when attached to the substratum; this latter process depends on traction-mediated cytokinesis B. A dynamin GTPase inhibitor also blocked cytokinesis in suspension, suggesting an important role for dynamin in cytokinesis A, which requires a contractile ring powered by myosin II. Myosin II did not properly localize to the cleavage furrow in dynamin mutant cells, and the furrow shape was distorted. DymA and DlpA were associated with actin filaments at the furrow. Fluorescence recovery after photobleaching and a DNase I binding assay showed that actin filaments in the contractile ring were significantly fragmented in mutant cells. Dynamin is therefore involved in the stabilization of actin filaments in the furrow, which, in turn, maintain proper myosin II organization. We conclude that the lack of these dynamins disrupts proper actomyosin organization and thereby disables cytokinesis A.
Collapse
Affiliation(s)
- A Y K Masud Rana
- Department of Functional Molecular Biology, Graduate School of Medicine, Yamaguchi University, Japan
| | | | | | | | | |
Collapse
|
27
|
Müller-Taubenberger A, Ishikawa-Ankerhold HC. Fluorescent reporters and methods to analyze fluorescent signals. Methods Mol Biol 2013; 983:93-112. [PMID: 23494303 DOI: 10.1007/978-1-62703-302-2_5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The use of fluorescent reporters and the development of new imaging technologies have revolutionized studies in cell biology. During recent years the number of fluorescent proteins offering the ability to visualize the distribution of proteins, organelles, and cells has increased tremendously. In parallel, the imaging tools available were refined rapidly enabling now the use of a huge spectrum of specialized methods to explore the cellular and subcellular localization and dynamics of fluorescently tagged markers. This chapter presents an overview of fluorescent reporters and methods available, and describes a selection of those that are routinely applicable in imaging studies using Dictyostelium discoideum.
Collapse
|
28
|
Yumura S, Itoh G, Kikuta Y, Kikuchi T, Kitanishi-Yumura T, Tsujioka M. Cell-scale dynamic recycling and cortical flow of the actin-myosin cytoskeleton for rapid cell migration. Biol Open 2012; 2:200-9. [PMID: 23430058 PMCID: PMC3575654 DOI: 10.1242/bio.20122899] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 10/23/2012] [Indexed: 01/14/2023] Open
Abstract
Actin and myosin II play major roles in cell migration. Whereas pseudopod extension by actin polymerization has been intensively researched, less attention has been paid to how the rest of the actin cytoskeleton such as the actin cortex contributes to cell migration. In this study, cortical actin and myosin II filaments were simultaneously observed in migrating Dictyostelium cells under total internal reflection fluorescence microscopy. The cortical actin and myosin II filaments remained stationary with respect to the substratum as the cells advanced. However, fluorescence recovery after photobleaching experiments and direct observation of filaments showed that they rapidly turned over. When the cells were detached from the substratum, the actin and myosin filaments displayed a vigorous retrograde flow. Thus, when the cells migrate on the substratum, the cortical cytoskeleton firmly holds the substratum to generate the motive force instead. The present studies also demonstrate how myosin II localizes to the rear region of the migrating cells. The observed dynamic turnover of actin and myosin II filaments contributes to the recycling of their subunits across the whole cell and enables rapid reorganization of the cytoskeleton.
Collapse
Affiliation(s)
- Shigehiko Yumura
- Department of Functional Molecular Biology, Graduate School of Medicine, Yamaguchi University , Yamaguchi 753-8512 , Japan
| | | | | | | | | | | |
Collapse
|
29
|
Cell Migration: Regulation of cytoskeleton by Rap1 in Dictyostelium discoideum. J Microbiol 2012; 50:555-61. [PMID: 22923101 DOI: 10.1007/s12275-012-2246-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 06/29/2012] [Indexed: 10/28/2022]
|
30
|
Wessels D, Lusche DF, Steimle PA, Scherer A, Kuhl S, Wood K, Hanson B, Egelhoff TT, Soll DR. Myosin heavy chain kinases play essential roles in Ca2+, but not cAMP, chemotaxis and the natural aggregation of Dictyostelium discoideum. J Cell Sci 2012; 125:4934-44. [PMID: 22899719 DOI: 10.1242/jcs.112474] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Behavioral analyses of the deletion mutants of the four known myosin II heavy chain (Mhc) kinases of Dictyostelium discoideum revealed that all play a minor role in the efficiency of basic cell motility, but none play a role in chemotaxis in a spatial gradient of cAMP generated in vitro. However, the two kinases MhckA and MhckC were essential for chemotaxis in a spatial gradient of Ca(2+), shear-induced directed movement, and reorientation in the front of waves of cAMP during natural aggregation. The phenotypes of the mutants mhckA(-) and mhckC(-) were highly similar to that of the Ca(2+) channel/receptor mutant iplA(-) and the myosin II phosphorylation mutant 3XALA, which produces constitutively unphosphorylated myosin II. These results demonstrate that IplA, MhckA and MhckC play a selective role in chemotaxis in a spatial gradient of Ca(2+), but not cAMP, and suggest that Ca(2+) chemotaxis plays a role in the orientation of cells in the front of cAMP waves during natural aggregation.
Collapse
Affiliation(s)
- Deborah Wessels
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, 52242, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
West-Foyle H, Robinson DN. Cytokinesis mechanics and mechanosensing. Cytoskeleton (Hoboken) 2012; 69:700-9. [PMID: 22761196 DOI: 10.1002/cm.21045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 06/11/2012] [Indexed: 01/13/2023]
Abstract
Cytokinesis shape change occurs through the interfacing of three modules, cell mechanics, myosin II-mediated contractile stress generation and sensing, and a control system of regulatory proteins, which together ensure flexibility and robustness. This integrated system then defines the stereotypical shape changes of successful cytokinesis, which occurs under a diversity of mechanical contexts and environmental conditions.
Collapse
Affiliation(s)
- Hoku West-Foyle
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
32
|
Understanding the cooperative interaction between myosin II and actin cross-linkers mediated by actin filaments during mechanosensation. Biophys J 2012; 102:238-47. [PMID: 22339860 DOI: 10.1016/j.bpj.2011.12.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 12/12/2011] [Accepted: 12/13/2011] [Indexed: 11/21/2022] Open
Abstract
Myosin II is a central mechanoenzyme in a wide range of cellular morphogenic processes. Its cellular localization is dependent not only on signal transduction pathways, but also on mechanical stress. We suggest that this stress-dependent distribution is the result of both the force-dependent binding to actin filaments and cooperative interactions between bound myosin heads. By assuming that the binding of myosin heads induces and/or stabilizes local conformational changes in the actin filaments that enhances myosin II binding locally, we successfully simulate the cooperative binding of myosin to actin observed experimentally. In addition, we can interpret the cooperative interactions between myosin and actin cross-linking proteins observed in cellular mechanosensation, provided that a similar mechanism operates among different proteins. Finally, we present a model that couples cooperative interactions to the assembly dynamics of myosin bipolar thick filaments and that accounts for the transient behaviors of the myosin II accumulation during mechanosensation. This mechanism is likely to be general for a range of myosin II-dependent cellular mechanosensory processes.
Collapse
|
33
|
Kee YS, Ren Y, Dorfman D, Iijima M, Firtel R, Iglesias PA, Robinson DN. A mechanosensory system governs myosin II accumulation in dividing cells. Mol Biol Cell 2012; 23:1510-23. [PMID: 22379107 PMCID: PMC3327329 DOI: 10.1091/mbc.e11-07-0601] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 02/15/2012] [Accepted: 02/24/2012] [Indexed: 01/14/2023] Open
Abstract
The mitotic spindle is generally considered the initiator of furrow ingression. However, recent studies suggest that furrows can form without spindles, particularly during asymmetric cell division. In Dictyostelium, the mechanoenzyme myosin II and the actin cross-linker cortexillin I form a mechanosensor that responds to mechanical stress, which could account for spindle-independent contractile protein recruitment. Here we show that the regulatory and contractility network composed of myosin II, cortexillin I, IQGAP2, kinesin-6 (kif12), and inner centromeric protein (INCENP) is a mechanical stress-responsive system. Myosin II and cortexillin I form the core mechanosensor, and mechanotransduction is mediated by IQGAP2 to kif12 and INCENP. In addition, IQGAP2 is antagonized by IQGAP1 to modulate the mechanoresponsiveness of the system, suggesting a possible mechanism for discriminating between mechanical and biochemical inputs. Furthermore, IQGAP2 is important for maintaining spindle morphology and kif12 and myosin II cleavage furrow recruitment. Cortexillin II is not directly involved in myosin II mechanosensitive accumulation, but without cortexillin I, cortexillin II's role in membrane-cortex attachment is revealed. Finally, the mitotic spindle is dispensable for the system. Overall, this mechanosensory system is structured like a control system characterized by mechanochemical feedback loops that regulate myosin II localization at sites of mechanical stress and the cleavage furrow.
Collapse
Affiliation(s)
- Yee-Seir Kee
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218
| | - Yixin Ren
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Danielle Dorfman
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Richard Firtel
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093
| | - Pablo A. Iglesias
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Douglas N. Robinson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
34
|
Separation anxiety: stress, tension and cytokinesis. Exp Cell Res 2012; 318:1428-34. [PMID: 22487096 DOI: 10.1016/j.yexcr.2012.03.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/23/2012] [Accepted: 03/24/2012] [Indexed: 01/07/2023]
Abstract
Cytokinesis, the physical separation of a mother cell into two daughter cells, progresses through a series of well-defined changes in morphology. These changes involve distinct biochemical and mechanical processes. Here, we review the mechanical features of cells during cytokinesis, discussing both the material properties as well as sources of stresses, both active and passive, which lead to the observed changes in morphology. We also describe a mechanosensory feedback control system that regulates protein localization and shape progression during cytokinesis.
Collapse
|
35
|
Beach JR, Licate LS, Crish JF, Egelhoff TT. Analysis of the role of Ser1/Ser2/Thr9 phosphorylation on myosin II assembly and function in live cells. BMC Cell Biol 2011; 12:52. [PMID: 22136066 PMCID: PMC3257205 DOI: 10.1186/1471-2121-12-52] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 12/02/2011] [Indexed: 01/21/2023] Open
Abstract
Background Phosphorylation of non-muscle myosin II regulatory light chain (RLC) at Thr18/Ser19 is well established as a key regulatory event that controls myosin II assembly and activation, both in vitro and in living cells. RLC can also be phosphorylated at Ser1/Ser2/Thr9 by protein kinase C (PKC). Biophysical studies show that phosphorylation at these sites leads to an increase in the Km of myosin light chain kinase (MLCK) for RLC, thereby indirectly inhibiting myosin II activity. Despite unequivocal evidence that PKC phosphorylation at Ser1/Ser2/Thr9 can regulate myosin II function in vitro, there is little evidence that this mechanism regulates myosin II function in live cells. Results The purpose of these studies was to investigate the role of Ser1/Ser2/Thr9 phosphorylation in live cells. To do this we utilized phospho-specific antibodies and created GFP-tagged RLC reporters with phosphomimetic aspartic acid substitutions or unphosphorylatable alanine substitutions at the putative inhibitory sites or the previously characterized activation sites. Cell lines stably expressing the RLC-GFP constructs were assayed for myosin recruitment during cell division, the ability to complete cell division, and myosin assembly levels under resting or spreading conditions. Our data shows that manipulation of the activation sites (Thr18/Ser19) significantly alters myosin II function in a number of these assays while manipulation of the putative inhibitory sites (Ser1/Ser2/Thr9) does not. Conclusions These studies suggest that inhibitory phosphorylation of RLC is not a substantial regulatory mechanism, although we cannot rule out its role in other cellular processes or perhaps other types of cells or tissues in vivo.
Collapse
Affiliation(s)
- Jordan R Beach
- Department of Cell Biology, Lerner Research Institute NC-10, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|
36
|
Biomechanical regulation of contractility: spatial control and dynamics. Trends Cell Biol 2011; 22:61-81. [PMID: 22119497 DOI: 10.1016/j.tcb.2011.10.001] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 09/28/2011] [Accepted: 10/13/2011] [Indexed: 11/21/2022]
Abstract
Cells are active materials; they can change shape using internal energy to build contractile networks of actin filaments and myosin motors. Contractility of the actomyosin cortex is tightly regulated in space and time to orchestrate cell shape changes. Conserved biochemical pathways regulate actomyosin networks in subcellular domains which drive cell shape changes. Actomyosin networks display complex dynamics, such as flows and pulses, which participate in myosin distribution and provide a more realistic description of the spatial distribution and evolution of forces during morphogenesis. Such dynamics are influenced by the mechanical properties of actomyosin networks. Moreover, actomyosin can self-organize and respond to mechanical stimuli through multiple types of biomechanical feedback. In this review we propose a framework encapsulating spatiotemporal regulation of contractility from established pathways with the dynamics and mechanics of actomyosin networks. Through the comparison of cytokinesis, cell migration and epithelial morphogenesis, we delineate emergent properties of contractile activity, including self-organization, adaptability and robustness.
Collapse
|
37
|
Uyeda TQP, Iwadate Y, Umeki N, Nagasaki A, Yumura S. Stretching actin filaments within cells enhances their affinity for the myosin II motor domain. PLoS One 2011; 6:e26200. [PMID: 22022566 PMCID: PMC3192770 DOI: 10.1371/journal.pone.0026200] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 09/22/2011] [Indexed: 11/18/2022] Open
Abstract
To test the hypothesis that the myosin II motor domain (S1) preferentially binds to specific subsets of actin filaments in vivo, we expressed GFP-fused S1 with mutations that enhanced its affinity for actin in Dictyostelium cells. Consistent with the hypothesis, the GFP-S1 mutants were localized along specific portions of the cell cortex. Comparison with rhodamine-phalloidin staining in fixed cells demonstrated that the GFP-S1 probes preferentially bound to actin filaments in the rear cortex and cleavage furrows, where actin filaments are stretched by interaction with endogenous myosin II filaments. The GFP-S1 probes were similarly enriched in the cortex stretched passively by traction forces in the absence of myosin II or by external forces using a microcapillary. The preferential binding of GFP-S1 mutants to stretched actin filaments did not depend on cortexillin I or PTEN, two proteins previously implicated in the recruitment of myosin II filaments to stretched cortex. These results suggested that it is the stretching of the actin filaments itself that increases their affinity for the myosin II motor domain. In contrast, the GFP-fused myosin I motor domain did not localize to stretched actin filaments, which suggests different preferences of the motor domains for different structures of actin filaments play a role in distinct intracellular localizations of myosin I and II. We propose a scheme in which the stretching of actin filaments, the preferential binding of myosin II filaments to stretched actin filaments, and myosin II-dependent contraction form a positive feedback loop that contributes to the stabilization of cell polarity and to the responsiveness of the cells to external mechanical stimuli.
Collapse
Affiliation(s)
- Taro Q P Uyeda
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan.
| | | | | | | | | |
Collapse
|
38
|
Arora PD, Wang Y, Janmey PA, Bresnick A, Yin HL, McCulloch CA. Gelsolin and non-muscle myosin IIA interact to mediate calcium-regulated collagen phagocytosis. J Biol Chem 2011; 286:34184-98. [PMID: 21828045 DOI: 10.1074/jbc.m111.247783] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The formation of adhesion complexes is the rate-limiting step for collagen phagocytosis by fibroblasts, but the role of Ca(2+) and the potential interactions of actin-binding proteins in regulating collagen phagocytosis are not well defined. We found that the binding of collagen beads to fibroblasts was temporally and spatially associated with actin assembly at nascent phagosomes, which was absent in gelsolin null cells. Analysis of tryptic digests isolated from gelsolin immunoprecipitates indicated that non-muscle (NM) myosin IIA may bind to gelsolin. Immunostaining and immunoprecipitation showed that gelsolin and NM myosin IIA associated at collagen adhesion sites. Gelsolin and NM myosin IIA were both required for collagen binding and internalization. Collagen binding to cells initiated a prolonged increase of [Ca(2+)](i), which was absent in cells null for gelsolin or NM myosin IIA. Collagen bead-induced increases of [Ca(2+)](i) were associated with phosphorylation of the myosin light chain, which was dependent on gelsolin. NM myosin IIA filament assembly, which was dependent on myosin light chain phosphorylation and increased [Ca(2+)](i), also required gelsolin. Ionomycin-induced increases of [Ca(2+)](i) overcame the block of myosin filament assembly in gelsolin null cells. We conclude that gelsolin and NM myosin IIA interact at collagen adhesion sites to enable NM myosin IIA filament assembly and localized, Ca(2+)-dependent remodeling of actin at the nascent phagosome and that these steps are required for collagen phagocytosis.
Collapse
Affiliation(s)
- Pamma D Arora
- Matrix Dynamics Group, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | | | | | | | | | | |
Collapse
|
39
|
Lecuit T, Lenne PF, Munro E. Force generation, transmission, and integration during cell and tissue morphogenesis. Annu Rev Cell Dev Biol 2011; 27:157-84. [PMID: 21740231 DOI: 10.1146/annurev-cellbio-100109-104027] [Citation(s) in RCA: 404] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cell shape changes underlie a large set of biological processes ranging from cell division to cell motility. Stereotyped patterns of cell shape changes also determine tissue remodeling events such as extension or invagination. In vitro and cell culture systems have been essential to understanding the fundamental physical principles of subcellular mechanics. These are now complemented by studies in developing organisms that emphasize how cell and tissue morphogenesis emerge from the interplay between force-generating machines, such as actomyosin networks, and adhesive clusters that transmit tensile forces at the cell cortex and stabilize cell-cell and cell-substrate interfaces. Both force production and transmission are self-organizing phenomena whose adaptive features are essential during tissue morphogenesis. A new era is opening that emphasizes the similarities of and allows comparisons between distant dynamic biological phenomena because they rely on core machineries that control universal features of cytomechanics.
Collapse
Affiliation(s)
- Thomas Lecuit
- Developmental Biology Institute of Marseilles-Luminy, Centre National de la Recherche Scientifique, Université de la Méditerranée, 13288 Marseille Cedex 9, France.
| | | | | |
Collapse
|
40
|
Wang Y, Steimle PA, Ren Y, Ross CA, Robinson DN, Egelhoff TT, Sesaki H, Iijima M. Dictyostelium huntingtin controls chemotaxis and cytokinesis through the regulation of myosin II phosphorylation. Mol Biol Cell 2011; 22:2270-81. [PMID: 21562226 PMCID: PMC3128529 DOI: 10.1091/mbc.e10-11-0926] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 04/27/2011] [Accepted: 05/05/2011] [Indexed: 11/29/2022] Open
Abstract
Abnormalities in the huntingtin protein (Htt) are associated with Huntington's disease. Despite its importance, the function of Htt is largely unknown. We show that Htt is required for normal chemotaxis and cytokinesis in Dictyostelium discoideum. Cells lacking Htt showed slower migration toward the chemoattractant cAMP and contained lower levels of cortical myosin II, which is likely due to defects in dephosphorylation of myosin II mediated by protein phosphatase 2A (PP2A). htt(-) cells also failed to maintain myosin II in the cortex of the cleavage furrow, generating unseparated daughter cells connected through a thin cytoplasmic bridge. Furthermore, similar to Dictyostelium htt(-) cells, siRNA-mediated knockdown of human HTT also decreased the PP2A activity in HeLa cells. Our data indicate that Htt regulates the phosphorylation status of myosin II during chemotaxis and cytokinesis through PP2A.
Collapse
Affiliation(s)
- Yu Wang
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Paul A. Steimle
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402
| | - Yixin Ren
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Christopher A. Ross
- Division of Neurobiology, Departments of Psychiatry, Pharmacology, and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Douglas N. Robinson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Thomas T. Egelhoff
- Department of Cell Biology, The Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
41
|
Role of B regulatory subunits of protein phosphatase type 2A in myosin II assembly control in Dictyostelium discoideum. EUKARYOTIC CELL 2011; 10:604-10. [PMID: 21357476 DOI: 10.1128/ec.00296-10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Dictyostelium discoideum, myosin II resides predominantly in a soluble pool as the result of phosphorylation of the myosin heavy chain (MHC), and dephosphorylation of the MHC is required for myosin II filament assembly, recruitment to the cytoskeleton, and force production. Protein phosphatase type 2A (PP2A) was identified in earlier studies in Dictyostelium as a key biochemical activity that can drive MHC dephosphorylation. We report here gene targeting and cell biological studies addressing the roles of candidate PP2A B regulatory subunits (phr2aBα and phr2aBβ) in myosin II assembly control in vivo. Dictyostelium phr2aBα- and phr2aBβ-null cells show delayed development, reduction in the assembly of myosin II in cytoskeletal ghost assays, and defects in cytokinesis when grown in suspension compared to parental cell lines. These results demonstrate that the PP2A B subunits phr2aBα and phr2aBβ contribute to myosin II assembly control in vivo, with phr2aBα having the predominant role facilitating MHC dephosphorylation to facilitate filament assembly.
Collapse
|
42
|
Crawley SW, Gharaei MS, Ye Q, Yang Y, Raveh B, London N, Schueler-Furman O, Jia Z, Côté GP. Autophosphorylation activates Dictyostelium myosin II heavy chain kinase A by providing a ligand for an allosteric binding site in the alpha-kinase domain. J Biol Chem 2011; 286:2607-16. [PMID: 21071445 PMCID: PMC3024756 DOI: 10.1074/jbc.m110.177014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 10/24/2010] [Indexed: 11/06/2022] Open
Abstract
Dictyostelium discoideum myosin II heavy chain kinase A (MHCK A), a member of the atypical α-kinase family, phosphorylates sites in the myosin II tail that block filament assembly. Here we show that the catalytic activity of A-CAT, the α-kinase domain of MHCK A (residues 552-841), is severely inhibited by the removal of a disordered C-terminal tail sequence (C-tail; residues 806-841). The key residue in the C-tail was identified as Thr(825), which was found to be constitutively autophosphorylated. Dephosphorylation of Thr(825) using shrimp alkaline phosphatase decreased A-CAT activity. The activity of a truncated A-CAT lacking Thr(825) could be rescued by P(i), phosphothreonine, and a phosphorylated peptide, but not by threonine, glutamic acid, aspartic acid, or an unphosphorylated peptide. These results focused attention on a P(i)-binding pocket located in the C-terminal lobe of A-CAT. Mutational analysis demonstrated that the P(i)-pocket was essential for A-CAT activity. Based on these results, it is proposed that autophosphorylation of Thr(825) activates ACAT by providing a covalently tethered ligand for the P(i)-pocket. Ab initio modeling studies using the Rosetta FloppyTail and FlexPepDock protocols showed that it is feasible for the phosphorylated Thr(825) to dock intramolecularly into the P(i)-pocket. Allosteric activation is predicted to involve a conformational change in Arg(734), which bridges the bound P(i) to Asp(762) in a key active site loop. Sequence alignments indicate that a comparable regulatory mechanism is likely to be conserved in Dictyostelium MHCK B-D and metazoan eukaryotic elongation factor-2 kinases.
Collapse
Affiliation(s)
- Scott W. Crawley
- From the Department of Biochemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada and
| | - Mojdeh Samimi Gharaei
- From the Department of Biochemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada and
| | - Qilu Ye
- From the Department of Biochemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada and
| | - Yidai Yang
- From the Department of Biochemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada and
| | - Barak Raveh
- the Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Hadassah Medical School, The Hebrew University, Jerusalem, 91120 Israel
| | - Nir London
- the Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Hadassah Medical School, The Hebrew University, Jerusalem, 91120 Israel
| | - Ora Schueler-Furman
- the Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Hadassah Medical School, The Hebrew University, Jerusalem, 91120 Israel
| | - Zongchao Jia
- From the Department of Biochemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada and
| | - Graham P. Côté
- From the Department of Biochemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada and
| |
Collapse
|
43
|
PAR-4/LKB1 mobilizes nonmuscle myosin through anillin to regulate C. elegans embryonic polarization and cytokinesis. Curr Biol 2011; 21:259-69. [PMID: 21276723 DOI: 10.1016/j.cub.2011.01.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 12/08/2010] [Accepted: 01/05/2011] [Indexed: 01/08/2023]
Abstract
BACKGROUND The serine/threonine kinase LKB1 regulates cell growth and polarity in metazoans, and loss of LKB1 function is implicated in the development of some epithelial cancers. Despite its fundamental role, the mechanism by which LKB1 regulates polarity establishment and/or maintenance is unclear. In the present study, we use the nematode C. elegans to investigate the role of the LKB1 ortholog PAR-4 in actomyosin contractility, a cellular process essential for polarity establishment and cell division in the early embryo. RESULTS Using high-resolution time-lapse imaging of GFP-tagged nonmuscle myosin II (NMY-2), we found that par-4 mutations reduce actomyosin contractility during polarity establishment, leading to the mispositioning of anterior PAR proteins and to defects in contractile ring ingression during cytokinesis. Fluorescence recovery after photobleaching analysis revealed that the mobility of a cortical population of NMY-2 was reduced in par-4 mutants. Interestingly, the contractility defects of par-4 mutants depend on the reciprocal activity of ANI-1 and ANI-2, two C. elegans homologs of the actin cytoskeletal scaffold protein anillin. CONCLUSION Because loss of PAR-4 promoted inappropriate accumulation of ANI-2 at the cell cortex, we propose that PAR-4 controls C. elegans embryonic polarity by regulating the activity of anillin family scaffold proteins, thus enabling turnover of cortical myosin and efficient actomyosin contractility. This work provides the first description of a cellular mechanism by which PAR-4/LKB1 mediates cell polarization.
Collapse
|
44
|
Surcel A, Kee YS, Luo T, Robinson DN. Cytokinesis through biochemical-mechanical feedback loops. Semin Cell Dev Biol 2010; 21:866-73. [PMID: 20709619 PMCID: PMC2991468 DOI: 10.1016/j.semcdb.2010.08.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 06/22/2010] [Accepted: 08/03/2010] [Indexed: 10/19/2022]
Abstract
Cytokinesis is emerging as a control system defined by interacting biochemical and mechanical modules, which form a system of feedback loops. This integrated system accounts for the regulation and kinetics of cytokinesis furrowing and demonstrates that cytokinesis is a whole-cell process in which the global and equatorial cortices and cytoplasm are active players in the system. Though originally defined in Dictyostelium, features of the control system are recognizable in other organisms, suggesting a universal mechanism for cytokinesis regulation and contractility.
Collapse
Affiliation(s)
- Alexandra Surcel
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Yee-Seir Kee
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Tianzhi Luo
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Douglas N. Robinson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218 USA
| |
Collapse
|
45
|
Zhou Q, Kee YS, Poirier CC, Jelinek C, Osborne J, Divi S, Surcel A, Will ME, Eggert US, Müller-Taubenberger A, Iglesias PA, Cotter RJ, Robinson DN. 14-3-3 coordinates microtubules, Rac, and myosin II to control cell mechanics and cytokinesis. Curr Biol 2010; 20:1881-9. [PMID: 20951045 PMCID: PMC2975807 DOI: 10.1016/j.cub.2010.09.048] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 08/12/2010] [Accepted: 09/15/2010] [Indexed: 12/20/2022]
Abstract
BACKGROUND During cytokinesis, regulatory signals are presumed to emanate from the mitotic spindle. However, what these signals are and how they lead to the spatiotemporal changes in the cortex structure, mechanics, and regional contractility are not well understood in any system. RESULTS To investigate pathways that link the microtubule network to the cortical changes that promote cytokinesis, we used chemical genetics in Dictyostelium to identify genetic suppressors of nocodazole, a microtubule depolymerizer. We identified 14-3-3 and found that it is enriched in the cortex, helps maintain steady-state microtubule length, contributes to normal cortical tension, modulates actin wave formation, and controls the symmetry and kinetics of cleavage furrow contractility during cytokinesis. Furthermore, 14-3-3 acts downstream of a Rac small GTPase (RacE), associates with myosin II heavy chain, and is needed to promote myosin II bipolar thick filament remodeling. CONCLUSIONS 14-3-3 connects microtubules, Rac, and myosin II to control several aspects of cortical dynamics, mechanics, and cytokinesis cell shape change. Furthermore, 14-3-3 interacts directly with myosin II heavy chain to promote bipolar thick filament remodeling and distribution. Overall, 14-3-3 appears to integrate several critical cytoskeletal elements that drive two important processes-cytokinesis cell shape change and cell mechanics.
Collapse
Affiliation(s)
- Qiongqiong Zhou
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Yee-Seir Kee
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Christopher C. Poirier
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Christine Jelinek
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Jonathan Osborne
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Srikanth Divi
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Alexandra Surcel
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Marie E. Will
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Ulrike S. Eggert
- Dana Farber Cancer Institute and Department of Biological Chemistry and Pharmacology, Harvard University School of Medicine, Boston, MA 02115 USA
| | | | - Pablo A. Iglesias
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Robert J. Cotter
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Douglas N. Robinson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218 USA
| |
Collapse
|
46
|
Pang TL, Chen FC, Weng YL, Liao HC, Yi YH, Ho CL, Lin CH, Chen MY. Costars, a Dictyostelium protein similar to the C-terminal domain of STARS, regulates the actin cytoskeleton and motility. J Cell Sci 2010; 123:3745-55. [PMID: 20940261 DOI: 10.1242/jcs.064709] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Through analysis of a chemotaxis mutant obtained from a genetic screen in Dictyostelium discoideum, we have identified a new gene involved in regulating cell migration and have named it costars (cosA). The 82 amino acid Costars protein sequence appears highly conserved among diverse species, and significantly resembles the C-terminal region of the striated muscle activator of Rho signaling (STARS), a mammalian protein that regulates the serum response factor transcriptional activity through actin binding and Rho GTPase activation. The cosA-null (cosA(-)) cells formed smooth plaques on bacterial lawns, produced abnormally small fruiting bodies when developed on the non-nutrient agar and displayed reduced migration towards the cAMP source in chemotactic assays. Analysis of cell motion in cAMP gradients revealed decreased speed but wild-type-like directional persistence of cosA(-) cells, suggesting a defect in the cellular machinery for motility rather than for chemotactic orientation. Consistent with this notion, cosA(-) cells exhibited changes in the actin cytoskeleton, showing aberrant distribution of F-actin in fluorescence cell staining and an increased amount of cytoskeleton-associated actin. Excessive pseudopod formation was also noted in cosA(-) cells facing chemoattractant gradients. Expressing cosA or its human counterpart mCostars eliminated abnormalities of cosA(-) cells. Together, our results highlight a role for Costars in modulating actin dynamics and cell motility.
Collapse
Affiliation(s)
- Te-Ling Pang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming University, Taipei 11221, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Lee S, Shen Z, Robinson DN, Briggs S, Firtel RA. Involvement of the cytoskeleton in controlling leading-edge function during chemotaxis. Mol Biol Cell 2010; 21:1810-24. [PMID: 20375144 PMCID: PMC2877640 DOI: 10.1091/mbc.e10-01-0009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cells activate signaling pathways at the site closest to the chemoattractant source that lead to pseudopod formation and directional movement up the gradient. We demonstrate that cytoskeletal components required for cortical tension, including MyoII and IQGAP/cortexillins help regulate the level and timing of leading-edge pathways. In response to directional stimulation by a chemoattractant, cells rapidly activate a series of signaling pathways at the site closest to the chemoattractant source that leads to F-actin polymerization, pseudopod formation, and directional movement up the gradient. Ras proteins are major regulators of chemotaxis in Dictyostelium; they are activated at the leading edge, are required for chemoattractant-mediated activation of PI3K and TORC2, and are one of the most rapid responders, with activity peaking at ∼3 s after stimulation. We demonstrate that in myosin II (MyoII) null cells, Ras activation is highly extended and is not restricted to the site closest to the chemoattractant source. This causes elevated, extended, and spatially misregulated activation of PI3K and TORC2 and their effectors Akt/PKB and PKBR1, as well as elevated F-actin polymerization. We further demonstrate that disruption of specific IQGAP/cortexillin complexes, which also regulate cortical mechanics, causes extended activation of PI3K and Akt/PKB but not Ras activation. Our findings suggest that MyoII and IQGAP/cortexillin play key roles in spatially and temporally regulating leading-edge activity and, through this, the ability of cells to restrict the site of pseudopod formation.
Collapse
Affiliation(s)
- Susan Lee
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0380, USA
| | | | | | | | | |
Collapse
|
48
|
Underwood J, Greene J, Steimle PA. Identification of a new mechanism for targeting myosin II heavy chain phosphorylation by Dictyostelium myosin heavy chain kinase B. BMC Res Notes 2010; 3:56. [PMID: 20199682 PMCID: PMC2838905 DOI: 10.1186/1756-0500-3-56] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 03/03/2010] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Heavy chain phosphorylation plays a central role in regulating myosin II bipolar filament assembly in Dictyostelium, as well as in higher eukaryotic nonmuscle cells. Our previous work has demonstrated that the WD-repeat domain of Dictyostelium myosin II heavy chain kinase B (MHCK-B), unlike its counterpart in MHCK-A, is not absolutely required for targeting of the kinase to phosphorylate MHC. Thus, we tested the hypothesis that an asparagine-rich and structurally disordered region that is unique to MHCK-B can by itself function in substrate targeting. FINDINGS Biochemical assays comparing the activities of full-length MHCK-B, a truncation lacking only the WD-repeat domain (B-Delta-WD), and a truncation lacking both the N-rich region and the WD-repeat domain (B-Delta-N-WD) revealed that the N-rich region targets MHCK-B to phosphorylate MHC in a manner that leads to bipolar filament disassembly. This targeting is physiologically relevant since cellular over-expression of the B-Delta-WD truncation, but not the B-Delta-N-WD truncation, leads to dramatically reduced levels of myosin II filament assembly and associated defects in cytokinesis and multicellular development. CONCLUSIONS The results presented here demonstrate that an intrinsically unstructured, and asparagine-rich, region of a MHCK-B can mediate specific targeting of the kinase to phosphorylate myosin II heavy chain. This targeting involves a direct binding interaction with myosin II filaments. In terms of regulating myosin bipolar filament assembly, our results suggest that factors affecting the activity of this unique region of MHCK-B could allow for regulation of MHCK-B in a manner that is distinct from the other MHCKs in Dictyostelium.
Collapse
Affiliation(s)
- Julie Underwood
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Jonathan Greene
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Paul A Steimle
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| |
Collapse
|
49
|
Ye Q, Crawley SW, Yang Y, Côté GP, Jia Z. Crystal structure of the alpha-kinase domain of Dictyostelium myosin heavy chain kinase A. Sci Signal 2010; 3:ra17. [PMID: 20197546 PMCID: PMC2894936 DOI: 10.1126/scisignal.2000525] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Dictyostelium discoideum myosin II heavy chain kinase A (MHCK A) disrupts the assembly and cellular activity of bipolar filaments of myosin II by phosphorylating sites within its alpha-helical, coiled-coil tail. MHCK A is a member of the atypical alpha-kinase family of serine and threonine protein kinases and displays no sequence homology to typical eukaryotic protein kinases. We report the crystal structure of the alpha-kinase domain (A-CAT) of MHCK A. When crystallized in the presence of adenosine triphosphate (ATP), A-CAT contained adenosine monophosphate (AMP) at the active site. However, when crystallized in the presence of ATP and a peptide substrate, which does not appear in the structure, adenosine diphosphate (ADP) was found at the active site and an invariant aspartic acid residue (Asp(766)) at the active site was phosphorylated. The aspartylphosphate group was exposed to the solvent within an active-site pocket that might function as a docking site for substrates. Access to the aspartylphosphate was regulated by a conformational switch in a loop that bound to a magnesium ion (Mg(2+)), providing a mechanism that allows alpha-kinases to sense and respond to local changes in Mg(2+).
Collapse
Affiliation(s)
| | | | - Yidai Yang
- Department of Biochemistry, Queen’s University, Kingston, Ontario, Canada K7L 3N6
| | - Graham P. Côté
- Department of Biochemistry, Queen’s University, Kingston, Ontario, Canada K7L 3N6
| | - Zongchao Jia
- Department of Biochemistry, Queen’s University, Kingston, Ontario, Canada K7L 3N6
| |
Collapse
|
50
|
Middelbeek J, Clark K, Venselaar H, Huynen MA, van Leeuwen FN. The alpha-kinase family: an exceptional branch on the protein kinase tree. Cell Mol Life Sci 2010; 67:875-90. [PMID: 20012461 PMCID: PMC2827801 DOI: 10.1007/s00018-009-0215-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 10/27/2009] [Accepted: 11/10/2009] [Indexed: 01/19/2023]
Abstract
The alpha-kinase family represents a class of atypical protein kinases that display little sequence similarity to conventional protein kinases. Early studies on myosin heavy chain kinases in Dictyostelium discoideum revealed their unusual propensity to phosphorylate serine and threonine residues in the context of an alpha-helix. Although recent studies show that some members of this family can also phosphorylate residues in non-helical regions, the name alpha-kinase has remained. During evolution, the alpha-kinase domains combined with many different functional subdomains such as von Willebrand factor-like motifs (vWKa) and even cation channels (TRPM6 and TRPM7). As a result, these kinases are implicated in a large variety of cellular processes such as protein translation, Mg(2+) homeostasis, intracellular transport, cell migration, adhesion, and proliferation. Here, we review the current state of knowledge on different members of this kinase family and discuss the potential use of alpha-kinases as drug targets in diseases such as cancer.
Collapse
Affiliation(s)
- Jeroen Middelbeek
- Laboratory of Pediatric Oncology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Kristopher Clark
- MRC Protein Phosphorylation Unit, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee, DD1 5EH Scotland UK
| | - Hanka Venselaar
- Centre for Molecular and Biomolecular Informatics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Martijn A. Huynen
- Centre for Molecular and Biomolecular Informatics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Frank N. van Leeuwen
- Laboratory of Pediatric Oncology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|