1
|
Chu LY, Stedman D, Gannon J, Cox S, Pobegalov G, Molodtsov MI. Force-transducing molecular ensembles at growing microtubule tips control mitotic spindle size. Nat Commun 2024; 15:9865. [PMID: 39543105 PMCID: PMC11564643 DOI: 10.1038/s41467-024-54123-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
Correct mitotic spindle size is required for accurate chromosome segregation during cell division. It is controlled by mechanical forces generated by molecular motors and non-motor proteins acting on spindle microtubules. However, how forces generated by individual proteins enable bipolar spindle organization is not well understood. Here, we develop tools to measure contributions of individual molecules to this force balance. We show that microtubule plus-end binding proteins act at microtubule tips synergistically with minus-end directed motors to produce a system that can generate both pushing and pulling forces. To generate pushing force, the system harnesses forces generated by the growing tips of microtubules providing unique contribution to the force balance distinct from all other motors that act in the mitotic spindle. Our results reveal that microtubules are essential force generators for establishing spindle size and pave the way for understanding how mechanical forces can be fine-tuned to control the fidelity of chromosome segregation.
Collapse
Affiliation(s)
- Lee-Ya Chu
- The Francis Crick Institute, London, United Kingdom
| | - Daniel Stedman
- The Francis Crick Institute, London, United Kingdom
- King's College London, London, UK
| | | | | | - Georgii Pobegalov
- The Francis Crick Institute, London, United Kingdom
- Department of Physics and Astronomy, University College London, London, United Kingdom
| | - Maxim I Molodtsov
- The Francis Crick Institute, London, United Kingdom.
- Department of Physics and Astronomy, University College London, London, United Kingdom.
| |
Collapse
|
2
|
Mao H, Wang L, Wang Y, Feng P, Song J, Jia B, Yang S, Zhang W, Wu M, Pei W, Ma J, Zhang B, Yu J. EB1C forms dimer and interacts with protein phosphatase 2A (PP2A) to regulate fiber elongation in upland cotton (Gossypium hirsutum). Int J Biol Macromol 2024; 256:128036. [PMID: 37972829 DOI: 10.1016/j.ijbiomac.2023.128036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Cotton is the most economically important natural fiber crop grown in more than sixty-five countries of the world. Fiber length is the main factor affecting fiber quality, but the existing main varieties are short in length and cannot suit the higher demands of the textile industry. It is necessary to discover functional genes that enable fiber length improvement in cotton through molecular breeding. In this study, overexpression of GhEB1C in Arabidopsis thaliana significantly promotes trichomes, tap roots, and root hairs elongation. The molecular regulation of GhEB1C involves its interactions with itself and GhB'ETA, and the function of GhEB1C regulation mainly depends on the two cysteine residues located at the C-terminal. In particular, the function activity of GhEB1C protein triggered with the regulation of protein phosphatase 2A, while silencing of GhEB1C in cotton significantly influenced the fiber protrusions and elongation mechanisms., Further, influenced the expression of MYB-bHLH-WD40 complex, brassinosteroids, and jasmonic acid-related genes, which showed that transcriptional regulation of GhEB1C is indispensable for cotton fiber formation and elongation processes. Our study analyzed the brief molecular mechanism of GhEB1C regulation. Further elucidated that GhEB1C can be a potential target gene to improve cotton fiber length through transgenic breeding.
Collapse
Affiliation(s)
- Haoming Mao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Li Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Yanwen Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Pan Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Jikun Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Bing Jia
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Shuxian Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Wenqing Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Man Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Wenfeng Pei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Jianjiang Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Bingbing Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Jiwen Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
3
|
Sandeep P, Sharma P, Luhach K, Dhiman N, Kharkwal H, Sharma B. Neuron navigators: A novel frontier with physiological and pathological implications. Mol Cell Neurosci 2023; 127:103905. [PMID: 37972804 DOI: 10.1016/j.mcn.2023.103905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023] Open
Abstract
Neuron navigators are microtubule plus-end tracking proteins containing basic and serine rich regions which are encoded by neuron navigator genes (NAVs). Neuron navigator proteins are essential for neurite outgrowth, neuronal migration, and overall neurodevelopment along with some other functions as well. The navigator proteins are substantially expressed in the developing brain and have been reported to be differentially expressed in various tissues at different ages. Over the years, the research has found neuron navigators to be implicated in a spectrum of pathological conditions such as developmental anomalies, neurodegenerative disorders, neuropathic pain, anxiety, cancers, and certain inflammatory conditions. The existing knowledge about neuron navigators remains sparse owing to their differential functions, undiscovered modulators, and unknown molecular mechanisms. Investigating the possible role of neuron navigators in various physiological processes and pathological conditions pose as a novel field that requires extensive research and might provide novel mechanistic insights and understanding of these aspects.
Collapse
Affiliation(s)
- Parth Sandeep
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India
| | - Poonam Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India
| | - Kanishk Luhach
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India
| | - Neerupma Dhiman
- Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India
| | - Harsha Kharkwal
- Amity Natural and Herbal Product Research, Amity Institute of Phytochemistry and Phytomedicine, Amity University, Uttar Pradesh, India
| | - Bhupesh Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India.
| |
Collapse
|
4
|
Bleiler M, Cyr A, Wright DL, Giardina C. Incorporation of 53BP1 into phase-separated bodies in cancer cells during aberrant mitosis. J Cell Sci 2023; 136:jcs260027. [PMID: 36606487 PMCID: PMC10112977 DOI: 10.1242/jcs.260027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 11/25/2022] [Indexed: 01/07/2023] Open
Abstract
53BP1 (also known as TP53BP1) is a key mediator of the non-homologous end joining (NHEJ) DNA repair pathway, which is the primary repair pathway in interphase cells. However, the mitotic functions of 53BP1 are less well understood. Here, we describe 53BP1 mitotic stress bodies (MSBs) formed in cancer cell lines in response to delayed mitosis. These bodies displayed liquid-liquid phase separation characteristics, were close to centromeres, and included lamin A/C and the DNA repair protein RIF1. After release from mitotic arrest, 53BP1 MSBs decreased in number and moved away from the chromatin. Using GFP fusion constructs, we found that the 53BP1 oligomerization domain region was required for MSB formation, and that inclusion of the 53BP1 N terminus increased MSB size. Exogenous expression of 53BP1 did not increase MSB size or number but did increase levels of MSB-free 53BP1. This was associated with slower mitotic progression, elevated levels of DNA damage and increased apoptosis, which is consistent with MSBs suppressing a mitotic surveillance by 53BP1 through sequestration. The 53BP1 MSBs, which were also found spontaneously in a subset of normally dividing cancer cells but not in non-transformed cells (ARPE-19), might facilitate the survival of cancer cells following aberrant mitoses. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Marina Bleiler
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Aiyana Cyr
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Dennis L. Wright
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Charles Giardina
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
5
|
Li D, Li X, He H, Zhang Y, He H, Sun C, Zhang X, Wang X, Kan Z, Su Y, Han S, Xia L, Tan B, Ma M, Zhu Q, Yin H, Cui C. miR-10a-5p inhibits chicken granulosa cells proliferation and Progesterone(P4) synthesis by targeting MAPRE1 to suppress CDK2. Theriogenology 2022; 192:97-108. [PMID: 36084389 DOI: 10.1016/j.theriogenology.2022.08.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/25/2022] [Accepted: 08/11/2022] [Indexed: 10/14/2022]
Abstract
The proliferation and steroid hormone synthesis of granulosa cells (GCs) are essential for ovarian follicle growth and ovulation, which are necessary to support the normal function of the follicle. Numerous studies suggest that miRNAs play key roles in this process. In this study, we report a novel role for miR-10a-5p that inhibits ovarian GCs proliferation and progesterone (P4) synthesis in chicken. Specifically, we found that miR-10a-5p significantly decreased the P4 secretion by quantitative real-time PCR (qRT-PCR), enzyme-linked immunosorbent assay (ELISA), and western blot. Moreover, we observed that miR-10a-5p can inhibit the proliferation of chicken GCs through the investigation of cell proliferation gene expression, cell counting kit 8 (CCK-8), cell cycle progression, and 5-ethynyl-2'-deoxyuridine (EdU) assay. Then we screened a target gene MAPRE1 of miR-10a-5p, which can promote P4 synthesis and proliferation of GCs. To explore how miR-10a-5p affects cell cycle by MAPRE1, we investigated the interaction between MAPRE1 and cyclin-dependent kinase 2 (CDK2) by Co-Immunoprecipitation (Co-IP), and then we found that MAPRE1 can form a complex with CDK2. In addition, miR-10a-5p was found to inhibit CDK2 expression by repressing the expression of MAPRE1. Overall, our results indicate that miR-10a-5p regulates the proliferation and P4 synthesis of chicken GCs by targeting MAPRE1 to suppress CDK2.
Collapse
Affiliation(s)
- Dongmei Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xinyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Haorong He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Congjiao Sun
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xinyi Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xunzi Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Zhaoyi Kan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yang Su
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Shunshun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Lu Xia
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Bo Tan
- College of Forestry, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Mengen Ma
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Huadong Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Can Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| |
Collapse
|
6
|
Batman U, Deretic J, Firat-Karalar EN. The ciliopathy protein CCDC66 controls mitotic progression and cytokinesis by promoting microtubule nucleation and organization. PLoS Biol 2022; 20:e3001708. [PMID: 35849559 PMCID: PMC9333452 DOI: 10.1371/journal.pbio.3001708] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 07/28/2022] [Accepted: 06/14/2022] [Indexed: 11/23/2022] Open
Abstract
Precise spatiotemporal control of microtubule nucleation and organization is critical for faithful segregation of cytoplasmic and genetic material during cell division and signaling via the primary cilium in quiescent cells. Microtubule-associated proteins (MAPs) govern assembly, maintenance, and remodeling of diverse microtubule arrays. While a set of conserved MAPs are only active during cell division, an emerging group of MAPs acts as dual regulators in dividing and nondividing cells. Here, we elucidated the nonciliary functions and molecular mechanism of action of the ciliopathy-linked protein CCDC66, which we previously characterized as a regulator of ciliogenesis in quiescent cells. We showed that CCDC66 dynamically localizes to the centrosomes, the bipolar spindle, the spindle midzone, the central spindle, and the midbody in dividing cells and interacts with the core machinery of centrosome maturation and MAPs involved in cell division. Loss-of-function experiments revealed its functions during mitotic progression and cytokinesis. Specifically, CCDC66 depletion resulted in defective spindle assembly and orientation, kinetochore fiber stability, chromosome alignment in metaphase as well as central spindle and midbody assembly and organization in anaphase and cytokinesis. Notably, CCDC66 regulates mitotic microtubule nucleation via noncentrosomal and centrosomal pathways via recruitment of gamma-tubulin to the centrosomes and the spindle. Additionally, CCDC66 bundles microtubules in vitro and in cells by its C-terminal microtubule-binding domain. Phenotypic rescue experiments showed that the microtubule and centrosome-associated pools of CCDC66 individually or cooperatively mediate its mitotic and cytokinetic functions. Collectively, our findings identify CCDC66 as a multifaceted regulator of the nucleation and organization of the diverse mitotic and cytokinetic microtubule arrays and provide new insight into nonciliary defects that underlie ciliopathies. The ciliopathy-linked protein CCDC66 is only known for its ciliary functions. This study reveals that CCDC66 also has extensive non-ciliary functions, localizing to the spindle poles, spindle midzone, central spindle and midbody throughout cell division, where it regulates mitosis and cytokinesis by promoting microtubule nucleation and organization.
Collapse
Affiliation(s)
- Umut Batman
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Jovana Deretic
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Elif Nur Firat-Karalar
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
- Koç University School of Medicine, Istanbul, Turkey
- * E-mail:
| |
Collapse
|
7
|
Abou Azar F, Lim GE. Metabolic Contributions of Wnt Signaling: More Than Controlling Flight. Front Cell Dev Biol 2021; 9:709823. [PMID: 34568323 PMCID: PMC8458764 DOI: 10.3389/fcell.2021.709823] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
The canonical Wnt signaling pathway is ubiquitous throughout the body and influences a diverse array of physiological processes. Following the initial discovery of the Wnt signaling pathway during wing development in Drosophila melanogaster, it is now widely appreciated that active Wnt signaling in mammals is necessary for the development and growth of various tissues involved in whole-body metabolism, such as brain, liver, pancreas, muscle, and adipose. Moreover, elegant gain- and loss-of-function studies have dissected the tissue-specific roles of various downstream effector molecules in the regulation of energy homeostasis. This review attempts to highlight and summarize the contributions of the Wnt signaling pathway and its downstream effectors on whole-body metabolism and their influence on the development of metabolic diseases, such as diabetes and obesity. A better understanding of the Wnt signaling pathway in these tissues may aid in guiding the development of future therapeutics to treat metabolic diseases.
Collapse
Affiliation(s)
- Frederic Abou Azar
- Department of Medicine, Université de Montréal, Montreal, QC, Canada.,Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Gareth E Lim
- Department of Medicine, Université de Montréal, Montreal, QC, Canada.,Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| |
Collapse
|
8
|
Su X, Li H, Chen S, Qin C. Study on the Prognostic Values of Dynactin Genes in Low-Grade Glioma. Technol Cancer Res Treat 2021; 20:15330338211010143. [PMID: 33896271 PMCID: PMC8085377 DOI: 10.1177/15330338211010143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE This present study aims to investigate the potential prognostic values of dynactin genes (DCTN) for predicting the overall survival (OS) in low-grade glioma (LGG) patients. METHODS The DCTN mRNA expression data were downloaded from The Cancer Genome Atlas database containing 518 patients with LGG. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses for DCTN genes were performed by using Database for Annotation, Visualization, and Integrated Discovery platform, and their enrichment results were verified by using the Biological Networks Gene Ontology tool. Next, the correlations between DCTN genes and LGG were identified by Pearson correlation coefficient analysis. The OS was estimated by Kaplan-Meier survival analysis. The cBio Cancer Genomics Portal was used to analyze the mutations of DCTN genes and their effects on the prognosis of LGG. The correlation between the abundance of immune infiltration and tumor purity of DCTN genes were predicted by The Tumor Immune Estimation Resource. RESULTS Our research showed that the mRNA expression of DCTN4 in tumor tissues was much higher (P < 0.01) than that in normal tissues. Meanwhile, there was a certain correlation between the DCTN genes. Survival analysis showed that the high expression of DCTN1, DCTN3, DCTN4, DCTN6, and their co-expression were significantly correlated with favorable OS in LGG patients (P < 0.05). In DCTN2, a high mutation rate was observed. Further research showed that the genetic alteration in DCTN genes was related to a poor OS and progression-free survival of LGG patients. The expression of DCTN genes had a certain correlation with immune infiltrating cells. CONCLUSION Our study showed that the high expressions of DCTN1, DCTN3, DCTN4, and DCTN6 were associated with a favorable OS of LGG patients, indicating that these DCTN genes are potential biomarkers for evaluating the prognosis of LGG patients.
Collapse
Affiliation(s)
- Xiaotao Su
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, China
| | - Haoyu Li
- Department of Ophthalmology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, China
| | - Shaohua Chen
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, China
| | - Chao Qin
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
9
|
Zhou D, Nie ZW, Cui XS. EB1 Is Essential for Spindle Formation and Chromosome Alignment During Oocyte Meiotic Maturation in Mice. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:385-391. [PMID: 33413706 DOI: 10.1017/s1431927620024897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The cytoskeleton plays an orchestrating role in polarized cell growth. Microtubules (MTs) not only play critical roles in chromosome alignment and segregation but also control cell shape, division, and motility. A member of the plus-end tracking proteins, end-binding protein 1 (EB1), regulates MT dynamics and plays vital roles in maintaining spindle symmetry and chromosome alignment during mitosis. However, the role of EB1 in mouse oocyte meiosis remains unknown. Here, we examined the localization patterns and expression levels of EB1 at different stages. EB1 protein level was found to be stable during meiosis. EB1 mainly localized along the spindle and had a similar localization pattern as that of α-tubulin. The EB1 protein was degraded with a Trim-Away method, and the results were further confirmed with western blotting and immunofluorescence. At 12 h of culture after EB1 knockdown (KD), a reduced number of mature MII oocytes were observed. EB1 KD led to spindle disorganization, chromosome misalignment, and missegregation; β-catenin protein binds to actin via the adherens junctional complex, which was significantly reduced in the EB1 KD oocytes. Collectively, we propose that the impairment of EB1 function manipulates spindle formation, thereby promoting chromosomal loss, which is expected to fuel aneuploidy and possibly fertilization failure.
Collapse
Affiliation(s)
- Dongjie Zhou
- Department of Animal Science, Chungbuk National University, 356 Room, S21-5 Dong, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk28644, South Korea
| | - Zheng-Wen Nie
- Department of Animal Science, Chungbuk National University, 356 Room, S21-5 Dong, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk28644, South Korea
| | - Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, 356 Room, S21-5 Dong, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk28644, South Korea
| |
Collapse
|
10
|
Juanes MA. Cytoskeletal Control and Wnt Signaling-APC's Dual Contributions in Stem Cell Division and Colorectal Cancer. Cancers (Basel) 2020; 12:E3811. [PMID: 33348689 PMCID: PMC7766042 DOI: 10.3390/cancers12123811] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Intestinal epithelium architecture is sustained by stem cell division. In principle, stem cells can divide symmetrically to generate two identical copies of themselves or asymmetrically to sustain tissue renewal in a balanced manner. The choice between the two helps preserve stem cell and progeny pools and is crucial for tissue homeostasis. Control of spindle orientation is a prime contributor to the specification of symmetric versus asymmetric cell division. Competition for space within the niche may be another factor limiting the stem cell pool. An integrative view of the multiple links between intracellular and extracellular signals and molecular determinants at play remains a challenge. One outstanding question is the precise molecular roles of the tumour suppressor Adenomatous polyposis coli (APC) for sustaining gut homeostasis through its respective functions as a cytoskeletal hub and a down regulator in Wnt signalling. Here, we review our current understanding of APC inherent activities and partners in order to explore novel avenues by which APC may act as a gatekeeper in colorectal cancer and as a therapeutic target.
Collapse
Affiliation(s)
- M. Angeles Juanes
- School of Health and Life Science, Teesside University, Middlesbrough TS1 3BX, UK;
- National Horizons Centre, Teesside University, 38 John Dixon Lane, Darlington DL1 1HG, UK
| |
Collapse
|
11
|
Singh D, Schmidt N, Müller F, Bange T, Bird AW. Destabilization of Long Astral Microtubules via Cdk1-Dependent Removal of GTSE1 from Their Plus Ends Facilitates Prometaphase Spindle Orientation. Curr Biol 2020; 31:766-781.e8. [PMID: 33333009 DOI: 10.1016/j.cub.2020.11.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/25/2020] [Accepted: 11/16/2020] [Indexed: 12/19/2022]
Abstract
The precise regulation of microtubule dynamics over time and space in dividing cells is critical for several mitotic mechanisms that ultimately enable cell proliferation, tissue organization, and development. Astral microtubules, which extend from the centrosome toward the cell cortex, must be present for the mitotic spindle to properly orient, as well as for the faithful execution of anaphase and cytokinesis. However, little is understood about how the dynamic properties of astral microtubules are regulated spatiotemporally, or the contribution of astral microtubule dynamics to spindle positioning. The mitotic regulator Cdk1-CyclinB promotes destabilization of centrosomal microtubules and increased microtubule dynamics as cells enter mitosis, but how Cdk1 activity modulates astral microtubule stability, and whether it impacts spindle positioning, is unknown. Here, we uncover a mechanism revealing that Cdk1 destabilizes astral microtubules in prometaphase and thereby influences spindle reorientation. Phosphorylation of the EB1-dependent microtubule plus-end tracking protein GTSE1 by Cdk1 in early mitosis abolishes its interaction with EB1 and recruitment to microtubule plus ends. Loss of Cdk1 activity, or mutation of phosphorylation sites in GTSE1, induces recruitment of GTSE1 to growing microtubule plus ends in mitosis. This decreases the catastrophe frequency of astral microtubules and causes an increase in the number of long astral microtubules reaching the cell cortex, which restrains the ability of cells to reorient spindles along the long cellular axis in early mitosis. Astral microtubules thus must not only be present but also dynamic to allow the spindle to reorient, a state assisted by selective destabilization of long astral microtubules via Cdk1.
Collapse
Affiliation(s)
- Divya Singh
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Nadine Schmidt
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Franziska Müller
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Tanja Bange
- Department for Systems Chronobiology, Institute of Medical Psychology, LMU Munich, Goethestrasse 31/ I, 80336 Munich, Germany
| | - Alexander W Bird
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.
| |
Collapse
|
12
|
Juanes MA, Fees C, Hoeprich GJ, Jaiswal R, Goode BL. EB1 Directly Regulates APC-Mediated Actin Nucleation. Curr Biol 2020; 30:4763-4772.e8. [PMID: 33007249 PMCID: PMC7726095 DOI: 10.1016/j.cub.2020.08.094] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/07/2020] [Accepted: 08/26/2020] [Indexed: 02/01/2023]
Abstract
EB1 was discovered 25 years ago as a binding partner of the tumor suppressor adenomatous polyposis coli (APC) [1]; however, the significance of EB1-APC interactions has remained poorly understood. EB1 functions at the center of a network of microtubule end-tracking proteins (+TIPs) [2-5], and APC binding to EB1 promotes EB1 association with microtubule ends and microtubule stabilization [6, 7]. Whether EB1 interactions govern functions of APC beyond microtubule regulation has not been explored. The C-terminal basic domain of APC (APC-B) directly nucleates actin assembly, and this activity is required in vivo for directed cell migration and for maintaining normal levels of F-actin [8-10]. Here, we show that EB1 binds APC-B and inhibits its actin nucleation function by blocking actin monomer recruitment. Consistent with these biochemical observations, knocking down EB1 increases F-actin levels in cells, and this can be rescued by disrupting APC-mediated actin nucleation. Conversely, overexpressing EB1 decreases F-actin levels and impairs directed cell migration without altering microtubule organization and independent of its direct binding interactions with microtubules. Overall, our results define a new function for EB1 in negatively regulating APC-mediated actin assembly. Combining these findings with other recent studies showing that APC interactions regulate EB1-dependent effects on microtubule dynamics [7], we propose that EB1-APC interactions govern bidirectional cytoskeletal crosstalk by coordinating microtubule and actin dynamics.
Collapse
Affiliation(s)
- Maria Angeles Juanes
- Biology Department, Brandeis University, 415 South street, Waltham MA 02454, USA,School of Health and Life Science, Teesside University, Middlesbrough, TS1 3BX, United Kingdom,For correspondence: (Lead Contact),
| | - Colby Fees
- Biology Department, Brandeis University, 415 South street, Waltham MA 02454, USA
| | - Gregory J. Hoeprich
- Biology Department, Brandeis University, 415 South street, Waltham MA 02454, USA
| | - Richa Jaiswal
- Biology Department, Brandeis University, 415 South street, Waltham MA 02454, USA
| | - Bruce L. Goode
- Biology Department, Brandeis University, 415 South street, Waltham MA 02454, USA,For correspondence: (Lead Contact),
| |
Collapse
|
13
|
Mo J, Chen J, Zhang B. Critical roles of FAM134B in ER-phagy and diseases. Cell Death Dis 2020; 11:983. [PMID: 33199694 PMCID: PMC7670425 DOI: 10.1038/s41419-020-03195-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/14/2022]
Abstract
FAM134B (also called JK-1, RETREG1), a member of the family with sequence similarity 134, was originally discovered as an oncogene in esophageal squamous cell carcinoma. However, its most famous function is that of an ER-phagy-regulating receptor. Over the decades, the powerful biological functions of FAM134B were gradually revealed. Overwhelming evidence indicates that its dysfunction is related to pathophysiological processes such as neuropathy, viral replication, inflammation, and cancer. This review describes the biological functions of FAM134B, focusing on its role in ER-phagy. In addition, we summarize the diseases in which it is involved and review the underlying mechanisms.
Collapse
Affiliation(s)
- Jie Mo
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, P.R. China
| | - Jin Chen
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, P.R. China
| | - Bixiang Zhang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, P.R. China.
| |
Collapse
|
14
|
Stefanski CD, Prosperi JR. Wnt-Independent and Wnt-Dependent Effects of APC Loss on the Chemotherapeutic Response. Int J Mol Sci 2020; 21:E7844. [PMID: 33105836 PMCID: PMC7660076 DOI: 10.3390/ijms21217844] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Resistance to chemotherapy occurs through mechanisms within the epithelial tumor cells or through interactions with components of the tumor microenvironment (TME). Chemoresistance and the development of recurrent tumors are two of the leading factors of cancer-related deaths. The Adenomatous Polyposis Coli (APC) tumor suppressor is lost in many different cancers, including colorectal, breast, and prostate cancer, and its loss correlates with a decreased overall survival in cancer patients. While APC is commonly known for its role as a negative regulator of the WNT pathway, APC has numerous binding partners and functional roles. Through APC's interactions with DNA repair proteins, DNA replication proteins, tubulin, and other components, recent evidence has shown that APC regulates the chemotherapy response in cancer cells. In this review article, we provide an overview of some of the cellular processes in which APC participates and how they impact chemoresistance through both epithelial- and TME-derived mechanisms.
Collapse
Affiliation(s)
- Casey D. Stefanski
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46617, USA;
- Mike and Josie Harper Cancer Research Institute, South Bend, IN 46617, USA
| | - Jenifer R. Prosperi
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46617, USA;
- Mike and Josie Harper Cancer Research Institute, South Bend, IN 46617, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine-South Bend, South Bend, IN 46617, USA
| |
Collapse
|
15
|
Gao L, Xue B, Xiang B, Liu KJ. Arsenic trioxide disturbs the LIS1/NDEL1/dynein microtubule dynamic complex by disrupting the CLIP170 zinc finger in head and neck cancer. Toxicol Appl Pharmacol 2020; 403:115158. [PMID: 32717241 PMCID: PMC8080511 DOI: 10.1016/j.taap.2020.115158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/12/2020] [Accepted: 07/21/2020] [Indexed: 12/17/2022]
Abstract
Cancer mortality is mainly caused by metastasis, which requires dynamic remodeling of cytoskeletal components such as microtubules. Targeting microtubules presents a promising antimetastatic strategy that could prevent cancer spreading and recurrence. It is known that arsenic trioxide (ATO) is able to inhibit the migration and invasion of solid malignant tumors, but its exact molecular mechanism remains unclear. Here, we report a novel molecular target and antimetastatic mechanism of ATO in head and neck squamous cell carcinoma (HNSCC). We found that cytoplasmic linker protein 170 (CLIP170) was overexpressed in HNSCC tissues and cells compared to normal controls. ATO at non-cytotoxic level (1 μM) inhibited the migration and invasion of HNSCC cells by displacing zinc in the zinc finger motif of CLIP170, which is a key protein that controls microtubule dynamics. The antimetastatic effects of ATO were equivalent to those of siRNA-mediated CLIP170 knockdown. Furthermore, ATO dysregulated microtubule polymerization via the CLIP170/LIS1/NDEL1/dynein signaling pathway in Cal27 cells as a functional consequence of CLIP170 zinc finger disruption. The effect was partially reversed by zinc supplementation. Taken together, these findings reveal that CLIP170 is a novel molecular target of ATO and demonstrate the capability and underlying mechanisms of ATO as a potential antimetastatic agent for HNSCC treatment.
Collapse
Affiliation(s)
- Lu Gao
- Laboratory of Oral and Maxillofacial Disease, Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, China; Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA; Department of Oral Anatomy, School of Stomatology, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Bingye Xue
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Bin Xiang
- Laboratory of Oral and Maxillofacial Disease, Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, China.
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
16
|
Disciglio V, Fasano C, Cariola F, Forte G, Grossi V, Sanese P, Lepore Signorile M, Resta N, Lotesoriere C, Stella A, Lolli I, Simone C. Gastric polyposis and desmoid tumours as a new familial adenomatous polyposis clinical variant associated with APC mutation at the extreme 3'-end. J Med Genet 2020; 57:356-360. [PMID: 31591141 PMCID: PMC7231465 DOI: 10.1136/jmedgenet-2019-106299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/04/2019] [Accepted: 09/07/2019] [Indexed: 01/23/2023]
Abstract
Germline mutations of the APC gene, which encodes a multidomain protein of 2843 amino acid residues, cause familial adenomatous polyposis (FAP). Three FAP clinical variants are correlated with the location of APC mutations: (1) classic FAP with profuse polyposis (>1000 adenomas), associated with mutations from codon 1250 to 1424; (2) attenuated FAP (<100 adenomas), associated with mutations at APC extremities (before codon 157 and after codon 1595); (3) classic FAP with intermediate colonic polyposis (100-1000 adenomas), associated with mutations located in the remaining part of APC In an effort to decipher the clinical phenotype associated with APC C-terminal germline truncating mutations in patients with FAP, after screening APC mutations in one family whose members (n=4) developed gastric polyposis, colon oligo-polyposis and desmoid tumours, we performed a literature meta-analysis of clinically characterised patients (n=97) harbouring truncating mutations in APC C-terminus. The APC distal mutations identified in this study cluster with a phenotype characterised by colon oligo-polyposis, diffuse gastric polyposis and desmoid tumours. In conclusion, we describe a novel FAP clinical variant, which we propose to refer to as Gastric Polyposis and Desmoid FAP, that may require tailored management.
Collapse
Affiliation(s)
- Vittoria Disciglio
- Medical Genetics, National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy
| | - Candida Fasano
- Medical Genetics, National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy
| | - Filomena Cariola
- Medical Genetics, National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy
| | - Giovanna Forte
- Medical Genetics, National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy
| | - Paola Sanese
- Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari "Aldo Moro", Bari, Italy
| | - Martina Lepore Signorile
- Medical Genetics, National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Nicoletta Resta
- Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari "Aldo Moro", Bari, Italy
| | - Claudio Lotesoriere
- Department of Oncology, National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy
| | - Alessandro Stella
- Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari "Aldo Moro", Bari, Italy
| | - Ivan Lolli
- Department of Oncology, National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy
| | - Cristiano Simone
- Medical Genetics, National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy
- Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
17
|
Rodrigues-Ferreira S, Molina A, Nahmias C. Microtubule-associated tumor suppressors as prognostic biomarkers in breast cancer. Breast Cancer Res Treat 2019; 179:267-273. [PMID: 31606824 DOI: 10.1007/s10549-019-05463-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE Breast cancer is the most common malignancy in women worldwide. Although important therapeutic progress was achieved over the past decade, this disease remains a public health problem. In light of precision medicine, the identification of new prognostic biomarkers in breast cancer is urgently needed to stratify populations of patients with poor clinical outcome who may benefit from new personalized therapies. The microtubule cytoskeleton plays a pivotal role in essential cellular functions and is an interesting target for cancer therapy. Microtubule assembly and dynamics are regulated by a wide range of microtubule-associated proteins (MAPs), some of which have oncogenic or tumor suppressor effects in breast cancer. RESULTS This review covers current knowledge on microtubule-associated tumor suppressors (MATS) in breast cancer and their potential value as prognostic biomarkers. We present recent studies showing that combinatorial expression of ATIP3 and EB1, two microtubule-associated biomarkers with tumor suppressor and oncogenic effects, respectively, improves breast cancer prognosis compared to each biomarker alone. CONCLUSIONS These findings are discussed regarding the increasing complexity of protein networks composed of MAPs that coordinate microtubule dynamics and functions. Further studies are warranted to evaluate the prognostic value of combined expression of different MATS and their interacting partners in breast cancer.
Collapse
Affiliation(s)
- Sylvie Rodrigues-Ferreira
- INSERM U981, LabEx LERMIT, Gustave Roussy Cancer Center, Department of Molecular Medicine, Université Paris Sud, 94800, Villejuif, France.,Inovarion, 75014, Paris, France
| | - Angie Molina
- INSERM U981, LabEx LERMIT, Gustave Roussy Cancer Center, Department of Molecular Medicine, Université Paris Sud, 94800, Villejuif, France.,Centre de Biologie du Développement, Centre de Biologie Intégrative, UMR 5547 CNRS/Université Paul Sabatier, 31400, Toulouse, France
| | - Clara Nahmias
- INSERM U981, LabEx LERMIT, Gustave Roussy Cancer Center, Department of Molecular Medicine, Université Paris Sud, 94800, Villejuif, France. .,Inserm U981, Gustave Roussy Cancer Center, 114 rue Edouard Vaillant, 94800, Villejuif, France.
| |
Collapse
|
18
|
Serre L, Stoppin-Mellet V, Arnal I. Adenomatous Polyposis Coli as a Scaffold for Microtubule End-Binding Proteins. J Mol Biol 2019; 431:1993-2005. [PMID: 30959051 DOI: 10.1016/j.jmb.2019.03.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 11/17/2022]
Abstract
End-binding proteins (EBs), referred to as the core components of the microtubule plus-end tracking protein network, interact with the C-terminus of the adenomatous polyposis coli (APC) tumor suppressor. This interaction is disrupted in colon cancers expressing truncated APC. APC and EBs act in synergy to regulate microtubule dynamics during spindle formation, chromosome segregation and cell migration. Since EBs autonomously end-track microtubules and partially co-localize with APC at microtubule tips in cells, EBs have been proposed to direct APC to microtubule ends. However, the interdependency of EB and APC localization on microtubules remains elusive. Here, using in vitro reconstitution and single-molecule imaging, we have investigated the interplay between EBs and the C-terminal domain of APC (APC-C) on dynamic microtubules. Our results show that APC-C binds along the microtubule wall but does not accumulate at microtubule tips, even when EB proteins are present. APC-C was also found to enhance EB binding at the extremity of growing microtubules and on the microtubule lattice: APC-C promotes EB end-tracking properties by increasing the time EBs spend at microtubule growing ends, whereas a pool of EBs with a fast turnover accumulates along the microtubule surface. Overall, our results suggest that APC is a promoter of EB interaction with microtubules, providing molecular determinants to reassess the relationship between APC and EBs.
Collapse
Affiliation(s)
- Laurence Serre
- Grenoble Institut des Neurosciences, INSERM U1216, Univ. Grenoble Alpes, Grenoble, 38000 France.
| | - Virginie Stoppin-Mellet
- Grenoble Institut des Neurosciences, INSERM U1216, Univ. Grenoble Alpes, Grenoble, 38000 France
| | - Isabelle Arnal
- Grenoble Institut des Neurosciences, INSERM U1216, Univ. Grenoble Alpes, Grenoble, 38000 France.
| |
Collapse
|
19
|
Functions of the APC tumor suppressor protein dependent and independent of canonical WNT signaling: implications for therapeutic targeting. Cancer Metastasis Rev 2019; 37:159-172. [PMID: 29318445 DOI: 10.1007/s10555-017-9725-6] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The acquisition of biallelic mutations in the APC gene is a rate-limiting step in the development of most colorectal cancers and occurs in the earliest lesions. APC encodes a 312-kDa protein that localizes to multiple subcellular compartments and performs diverse functions. APC participates in a cytoplasmic complex that promotes the destruction of the transcriptional licensing factor β-catenin; APC mutations that abolish this function trigger constitutive activation of the canonical WNT signaling pathway, a characteristic found in almost all colorectal cancers. By negatively regulating canonical WNT signaling, APC counteracts proliferation, promotes differentiation, facilitates apoptosis, and suppresses invasion and tumor progression. APC further antagonizes canonical WNT signaling by interacting with and counteracting β-catenin in the nucleus. APC also suppresses tumor initiation and progression in the colorectal epithelium through functions that are independent of canonical WNT signaling. APC regulates the mitotic spindle to facilitate proper chromosome segregation, localizes to the cell periphery and cell protrusions to establish cell polarity and appropriate directional migration, and inhibits DNA replication by interacting directly with DNA. Mutations in APC are often frameshifts, insertions, or deletions that introduce premature stop codons and lead to the production of truncated APC proteins that lack its normal functions and possess tumorigenic properties. Therapeutic approaches in development for the treatment of APC-deficient tumors are focused on the inhibition of canonical WNT signaling, especially through targets downstream of APC in the pathway, or on the restoration of wild-type APC expression.
Collapse
|
20
|
Abstract
The adenomatous polyposis coli (APC) gene plays, among other things, a crucial role in the regulation of cell proliferation and survival through its ability to regulate canonical Wnt signaling. In this issue of the JCI, Wang et al. provide an intriguing new mechanism for APC function involving the regulation of a novel long noncoding RNA (lncRNA), leading to changes in exosome production. APC signaling via this novel pathway can regulate cell proliferation and invasion as well as angiogenesis. In addition to enhancing our understanding of APC function, this new mechanism is of particular clinical significance, as it may provide additional targets for the treatment of APC-mutated cancers.
Collapse
|
21
|
Islam F, Chaousis S, Wahab R, Gopalan V, Lam AK. Protein interactions of FAM134B with EB1 and APC/beta‐catenin in vitro in colon carcinoma. Mol Carcinog 2018; 57:1480-1491. [DOI: 10.1002/mc.22871] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 12/13/2022]
Abstract
FAM134B is an autophagy regulator of endoplasmic reticulum and acts as a cancer suppressor in colon cancer. However, the molecular signaling pathways by which FAM134B interacts within colon carcinogenesis is still unknown. Herein, this study aims to determine the interacting partners of FAM134B for the first time in colon cancer and to explore the precise location of FAM134B in cancer signalling pathways. Liquid chromatography coupled with tandem mass spectrometry (LC‐MS/MS) followed by anti‐FAM134B co‐immune precipitation of FAM134B interacting complex was used to identify the potential interactors of FAM134B in colon cancer cells. Western blot and confocal microscopic analysis were used to validate the physical interactions of FAM134B with the interactors. Lentiviral shRNA mediated silencing of FAM134B was used to examine the modulation of FAM134B interactors in cells. We have identified 29 novel binding partners, including CAP1, RPS28, FTH1, KDELR2, MAP4, EB1, PSMD6, PPIB/CYPB etc. Subsequent immunoassays confirmed the direct physical interactions of FAM134B with CAP1, EB1, CYPB, and KDELR2 in colon cancer cells. Exogenous suppression of FAM134B has led to significant upregulation of EB1 as well as reduction of KDELR2 expression. It was noted that overexpression of EB1 promotes WNT/β‐catenin signaling pathways via inactivating tumor suppressor APC followed by activating β‐catenin in colorectal carcinogenesis. This study has first time reported the gene signaling networks with which FAM134B interacts and noted that FAM134B is involved in the regulation of WNT/β‐catenin pathway by EB1‐mediated modulating of APC in colon cancer cells.
Collapse
Affiliation(s)
- Farhadul Islam
- Cancer Molecular Pathology School of Medicine Menzies Health Institute Queensland Griffith University Gold Coast Queensland Australia
- Department of Biochemistry and Molecular Biology University of Rajshahi Rajshahi Bangladesh
| | - Stephanie Chaousis
- Australian Rivers Institute and School of Environment Griffith University Gold Coast Queensland Australia
| | - Riajul Wahab
- Cancer Molecular Pathology School of Medicine Menzies Health Institute Queensland Griffith University Gold Coast Queensland Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology School of Medicine Menzies Health Institute Queensland Griffith University Gold Coast Queensland Australia
- School of Medical Science Menzies Health Institute Queensland Griffith University Gold Coast Queensland Australia
| | - Alfred K.‐Y. Lam
- Cancer Molecular Pathology School of Medicine Menzies Health Institute Queensland Griffith University Gold Coast Queensland Australia
| |
Collapse
|
22
|
Heppert JK, Pani AM, Roberts AM, Dickinson DJ, Goldstein B. A CRISPR Tagging-Based Screen Reveals Localized Players in Wnt-Directed Asymmetric Cell Division. Genetics 2018; 208:1147-1164. [PMID: 29348144 PMCID: PMC5844328 DOI: 10.1534/genetics.117.300487] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/08/2018] [Indexed: 11/18/2022] Open
Abstract
Oriented cell divisions are critical to establish and maintain cell fates and tissue organization. Diverse extracellular and intracellular cues have been shown to provide spatial information for mitotic spindle positioning; however, the molecular mechanisms by which extracellular signals communicate with cells to direct mitotic spindle positioning are largely unknown. In animal cells, oriented cell divisions are often achieved by the localization of force-generating motor protein complexes to discrete cortical domains. Disrupting either these force-generating complexes or proteins that globally affect microtubule stability results in defects in mitotic positioning, irrespective of whether these proteins function as spatial cues for spindle orientation. This poses a challenge to traditional genetic dissection of this process. Therefore, as an alternative strategy to identify key proteins that act downstream of intercellular signaling, we screened the localization of many candidate proteins by inserting fluorescent tags directly into endogenous gene loci, without overexpressing the proteins. We tagged 23 candidate proteins in Caenorhabditis elegans and examined each protein's localization in a well-characterized, oriented cell division in the four-cell-stage embryo. We used cell manipulations and genetic experiments to determine which cells harbor key localized proteins and which signals direct these localizations in vivo We found that Dishevelled and adenomatous polyposis coli homologs are polarized during this oriented cell division in response to a Wnt signal, but two proteins typically associated with mitotic spindle positioning, homologs of NuMA and Dynein, were not detectably polarized. These results suggest an unexpected mechanism for mitotic spindle positioning in this system, they pinpoint key proteins of interest, and they highlight the utility of a screening approach based on analyzing the localization of endogenously tagged proteins.
Collapse
Affiliation(s)
- Jennifer K Heppert
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599
| | - Ariel M Pani
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina 27599
| | - Allyson M Roberts
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, North Carolina 27599
| | - Daniel J Dickinson
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina 27599
| | - Bob Goldstein
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina 27599
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, North Carolina 27599
| |
Collapse
|
23
|
Sugioka K, Fielmich LE, Mizumoto K, Bowerman B, van den Heuvel S, Kimura A, Sawa H. Tumor suppressor APC is an attenuator of spindle-pulling forces during C. elegans asymmetric cell division. Proc Natl Acad Sci U S A 2018; 115:E954-E963. [PMID: 29348204 PMCID: PMC5798331 DOI: 10.1073/pnas.1712052115] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The adenomatous polyposis coli (APC) tumor suppressor has dual functions in Wnt/β-catenin signaling and accurate chromosome segregation and is frequently mutated in colorectal cancers. Although APC contributes to proper cell division, the underlying mechanisms remain poorly understood. Here we show that Caenorhabditis elegans APR-1/APC is an attenuator of the pulling forces acting on the mitotic spindle. During asymmetric cell division of the C. elegans zygote, a LIN-5/NuMA protein complex localizes dynein to the cell cortex to generate pulling forces on astral microtubules that position the mitotic spindle. We found that APR-1 localizes to the anterior cell cortex in a Par-aPKC polarity-dependent manner and suppresses anterior centrosome movements. Our combined cell biological and mathematical analyses support the conclusion that cortical APR-1 reduces force generation by stabilizing microtubule plus-ends at the cell cortex. Furthermore, APR-1 functions in coordination with LIN-5 phosphorylation to attenuate spindle-pulling forces. Our results document a physical basis for the attenuation of spindle-pulling force, which may be generally used in asymmetric cell division and, when disrupted, potentially contributes to division defects in cancer.
Collapse
Affiliation(s)
- Kenji Sugioka
- Multicellular Organization Laboratory, National Institute of Genetics, 411-8540 Mishima, Japan
- RIKEN Center for Developmental Biology, Chuo-ku, 650-0047 Kobe, Japan
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| | - Lars-Eric Fielmich
- Developmental Biology, Biology Department, Science 4 Life, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Kota Mizumoto
- RIKEN Center for Developmental Biology, Chuo-ku, 650-0047 Kobe, Japan
| | - Bruce Bowerman
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| | - Sander van den Heuvel
- Developmental Biology, Biology Department, Science 4 Life, Utrecht University, 3584 CH Utrecht, The Netherlands;
| | - Akatsuki Kimura
- Cell Architecture Laboratory, National Institute of Genetics, 411-8540 Mishima, Japan;
- Department of Genetics, School of Life Science, Sokendai, 411-8540 Mishima, Japan
| | - Hitoshi Sawa
- Multicellular Organization Laboratory, National Institute of Genetics, 411-8540 Mishima, Japan;
- RIKEN Center for Developmental Biology, Chuo-ku, 650-0047 Kobe, Japan
- Department of Genetics, School of Life Science, Sokendai, 411-8540 Mishima, Japan
| |
Collapse
|
24
|
Lakshmi RB, Nair VM, Manna TK. Regulators of spindle microtubules and their mechanisms: Living together matters. IUBMB Life 2018; 70:101-111. [DOI: 10.1002/iub.1708] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/16/2017] [Indexed: 12/23/2022]
Affiliation(s)
- R. Bhagya Lakshmi
- School of Biology; Indian Institute of Science Education and Research, CET Campus; Thiruvananthapuram Kerala India
| | - Vishnu M. Nair
- School of Biology; Indian Institute of Science Education and Research, CET Campus; Thiruvananthapuram Kerala India
| | - Tapas K. Manna
- School of Biology; Indian Institute of Science Education and Research, CET Campus; Thiruvananthapuram Kerala India
| |
Collapse
|
25
|
Hankey W, McIlhatton MA, Ebede K, Kennedy B, Hancioglu B, Zhang J, Brock GN, Huang K, Groden J. Mutational Mechanisms That Activate Wnt Signaling and Predict Outcomes in Colorectal Cancer Patients. Cancer Res 2017; 78:617-630. [PMID: 29212857 DOI: 10.1158/0008-5472.can-17-1357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/14/2017] [Accepted: 11/28/2017] [Indexed: 11/16/2022]
Abstract
APC biallelic loss-of-function mutations are the most prevalent genetic changes in colorectal tumors, but it is unknown whether these mutations phenocopy gain-of-function mutations in the CTNNB1 gene encoding β-catenin that also activate canonical WNT signaling. Here we demonstrate that these two mutational mechanisms are not equivalent. Furthermore, we show how differences in gene expression produced by these different mechanisms can stratify outcomes in more advanced human colorectal cancers. Gene expression profiling in Apc-mutant and Ctnnb1-mutant mouse colon adenomas identified candidate genes for subsequent evaluation of human TCGA (The Cancer Genome Atlas) data for colorectal cancer outcomes. Transcriptional patterns exhibited evidence of activated canonical Wnt signaling in both types of adenomas, with Apc-mutant adenomas also exhibiting unique changes in pathways related to proliferation, cytoskeletal organization, and apoptosis. Apc-mutant adenomas were characterized by increased expression of the glial nexin Serpine2, the human ortholog, which was increased in advanced human colorectal tumors. Our results support the hypothesis that APC-mutant colorectal tumors are transcriptionally distinct from APC-wild-type colorectal tumors with canonical WNT signaling activated by other mechanisms, with possible implications for stratification and prognosis.Significance: These findings suggest that colon adenomas driven by APC mutations are distinct from those driven by WNT gain-of-function mutations, with implications for identifying at-risk patients with advanced disease based on gene expression patterns. Cancer Res; 78(3); 617-30. ©2017 AACR.
Collapse
Affiliation(s)
- William Hankey
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Michael A McIlhatton
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Kenechi Ebede
- Department of Anesthesiology, University of Florida, Gainesville, Florida
| | - Brian Kennedy
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Baris Hancioglu
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Jie Zhang
- Department of Medical and Molecular Genetics, Indiana University, School of Medicine, Indianapolis, Indiana
| | - Guy N Brock
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Kun Huang
- Department of Medical and Molecular Genetics, Indiana University, School of Medicine, Indianapolis, Indiana
| | - Joanna Groden
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
26
|
Huebner H, Strick R, Wachter DL, Kehl S, Strissel PL, Schneider-Stock R, Hartner A, Rascher W, Horn LC, Beckmann MW, Ruebner M, Fahlbusch FB. Hypermethylation and loss of retinoic acid receptor responder 1 expression in human choriocarcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:165. [PMID: 29169400 PMCID: PMC5701501 DOI: 10.1186/s13046-017-0634-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/13/2017] [Indexed: 01/06/2023]
Abstract
Background Human placental development resembles tumorigenesis, due to the invasive and fusogenic potential of trophoblasts. However, these features are tightly controlled in trophoblasts. Disturbance of this spatial and temporal regulation is thought to contribute to the rare formation of choriocarcinomas. Promoter hypermethylation and loss of the tumor suppressor Retinoic acid receptor responder 1 (RARRES1) were shown to contribute to cancer progression. Our study investigated the epigenetic and transcriptional regulation of RARRES1 in healthy human placenta in comparison to choriocarcinoma cell lines and cases. Methods Three choriocarcinoma cell lines (Jeg-3, JAR and BeWo) were treated with three different retinoic acid derivates (Am580, Tazarotene and all-trans retinoic acid) and 5-aza-2′-deoxycytidine. We analyzed RARRES1 promoter methylation by pyrosequencing and performed realtime-PCR quantification to determine RARRES1 expression in placental tissue and trophoblastic cell lines. Additionally, RARRES1 was stained in healthy placentas and in biopsies of choriocarcinoma cases (n = 10) as well as the first trimester trophoblast cell line Swan71 by immunofluorescence and immunohistochemistry. Results In the choriocarcinoma cell lines, RARRES1 expression could not be induced by sole retinoic acid treatment. Stimulation with 5-aza-2′-deoxycytidine significantly induced RARRES1 expression, which then could be further increased with Am580, Tazarotene and all-trans retinoic acid. In comparison to healthy placenta, choriocarcinoma cell lines showed a hypermethylation of the RARRES1 promoter, which correlated with a reduced RARRES1 expression. In concordance, RARRES1 protein expression was lost in choriocarcinoma tissue. Additionally, in the trophoblastic cell line Swan71, we found a significant induction of RARRES1 expression with increased cell density, during mitosis and in syncytial knots. Conclusions Our findings showed that RARRES1 expression is absent in choriocarcinoma due to promoter methylation. Based on our analysis, we hypothesize that RARRES1 might exert tumor suppressive functions in multiple cellular processes (e.g. cell cycle regulation, adhesion, invasion and apoptosis). Electronic supplementary material The online version of this article (10.1186/s13046-017-0634-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- H Huebner
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - R Strick
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - D L Wachter
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - S Kehl
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - P L Strissel
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - R Schneider-Stock
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - A Hartner
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Loschgestraße 15, 91054 Erlangen, Erlangen, Germany
| | - W Rascher
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Loschgestraße 15, 91054 Erlangen, Erlangen, Germany
| | - L C Horn
- Division Molecular Pathology, Institute of Pathology, University of Leipzig, Leipzig, Germany
| | - M W Beckmann
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - M Ruebner
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - F B Fahlbusch
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Loschgestraße 15, 91054 Erlangen, Erlangen, Germany.
| |
Collapse
|
27
|
Harrison LE, Bleiler M, Giardina C. A look into centrosome abnormalities in colon cancer cells, how they arise and how they might be targeted therapeutically. Biochem Pharmacol 2017; 147:1-8. [PMID: 29128368 DOI: 10.1016/j.bcp.2017.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/07/2017] [Indexed: 02/06/2023]
Abstract
Cancer cells have long been noted for alterations in centrosome structure, number, and function. Colorectal cancers are interesting in this regard since two frequently mutated genes, APC and CTNNB1 (β-catenin), encode proteins that directly interact with the centrosome and affect its ability to direct microtubule growth and establish cell polarity. Colorectal cancers also frequently display centrosome over-duplication and clustering. Efforts have been directed toward understanding how supernumerary centrosomes cluster and whether disrupting this clustering may be a way to induce aberrant/lethal mitoses of cancer cells. Given the important role of the centrosome in establishing spindle polarity and regulating some apoptotic signaling pathways, other approaches to centrosome targeting may be fruitful as well. Basic information on the nature and extent of centrosome defects in colorectal cancer, including why they over-duplicate and whether this over-duplication compensates for their functional defects, could provide a framework for the development of novel approaches for the therapeutic targeting of colorectal cancer.
Collapse
Affiliation(s)
- Lauren E Harrison
- Department of Molecular and Cell Biology, 91 North Eagleville Road, U3125, University of Connecticut, Storrs, CT 06269, United States
| | - Marina Bleiler
- Department of Molecular and Cell Biology, 91 North Eagleville Road, U3125, University of Connecticut, Storrs, CT 06269, United States
| | - Charles Giardina
- Department of Molecular and Cell Biology, 91 North Eagleville Road, U3125, University of Connecticut, Storrs, CT 06269, United States.
| |
Collapse
|
28
|
Kinetochore-microtubule interactions in chromosome segregation: lessons from yeast and mammalian cells. Biochem J 2017; 474:3559-3577. [PMID: 29046344 DOI: 10.1042/bcj20170518] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/24/2017] [Accepted: 09/11/2017] [Indexed: 02/06/2023]
Abstract
Chromosome congression and segregation require robust yet dynamic attachment of the kinetochore with the spindle microtubules. Force generated at the kinetochore-microtubule interface plays a vital role to drive the attachment, as it is required to move chromosomes and to provide signal to sense correct attachments. To understand the mechanisms underlying these processes, it is critical to describe how the force is generated and how the molecules at the kinetochore-microtubule interface are organized and assembled to withstand the force and respond to it. Research in the past few years or so has revealed interesting insights into the structural organization and architecture of kinetochore proteins that couple kinetochore attachment to the spindle microtubules. Interestingly, despite diversities in the molecular players and their modes of action, there appears to be architectural similarity of the kinetochore-coupling machines in lower to higher eukaryotes. The present review focuses on the most recent advances in understanding of the molecular and structural aspects of kinetochore-microtubule interaction based on the studies in yeast and vertebrate cells.
Collapse
|
29
|
Gao S, Luo Y, Wu X, Li Y, Zhou Y, Lyu R, Liu M, Li D, Zhou J. EB1 phosphorylation mediates the functions of ASK1 in pancreatic cancer development. Oncotarget 2017; 8:98233-98241. [PMID: 29228685 PMCID: PMC5716725 DOI: 10.18632/oncotarget.21004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/27/2017] [Indexed: 01/05/2023] Open
Abstract
Pancreatic cancer has a poor prognosis due to its rapid rate of metastasis and frequent late-stage diagnosis. An improved understanding of the molecular mechanisms underlying this disease is urgently needed to promote the development of improved diagnostic tools and more effective therapies. Apoptosis signal-regulating kinase 1 (ASK1) has been shown to be overexpressed in pancreatic cancer and to promote the proliferation of pancreatic cancer cells in a kinase activity-dependent manner. However, the molecular mechanisms by which ASK1 promotes cell proliferation remain to be elucidated. In this study, we report that the phosphorylation of end-binding protein 1 (EB1) at threonine 206 (pT206-EB1), which is catalyzed by ASK1, is increased in pancreatic cancer tissues. We further find that the level of pT206-EB1 correlates with that of ASK1 in cancer tissues. Additionally, ASK1 localizes to spindle poles, and knockdown of ASK1 results in the formation of multipolar spindles. Moreover, we show that depletion of ASK1 or disruption of EB1 phosphorylation inhibits spindle microtubule dynamics in pancreatic cancer cells. Collectively, these findings suggest that EB1 phosphorylation mediates the functions of ASK1 in pancreatic cancer development.
Collapse
Affiliation(s)
- Siqi Gao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Youguang Luo
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaofan Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yuanyuan Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yunqiang Zhou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Rui Lyu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Min Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.,Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| |
Collapse
|
30
|
Schmidt R, Fielmich LE, Grigoriev I, Katrukha EA, Akhmanova A, van den Heuvel S. Two populations of cytoplasmic dynein contribute to spindle positioning in C. elegans embryos. J Cell Biol 2017; 216:2777-2793. [PMID: 28739679 PMCID: PMC5584144 DOI: 10.1083/jcb.201607038] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 05/08/2017] [Accepted: 06/28/2017] [Indexed: 12/14/2022] Open
Abstract
The position of the mitotic spindle is tightly controlled in animal cells as it determines the plane and orientation of cell division. Contacts between cytoplasmic dynein and astral microtubules (MTs) at the cell cortex generate pulling forces that position the spindle. An evolutionarily conserved Gα-GPR-1/2Pins/LGN-LIN-5Mud/NuMA cortical complex interacts with dynein and is required for pulling force generation, but the dynamics of this process remain unclear. In this study, by fluorescently labeling endogenous proteins in Caenorhabditis elegans embryos, we show that dynein exists in two distinct cortical populations. One population directly depends on LIN-5, whereas the other is concentrated at MT plus ends and depends on end-binding (EB) proteins. Knockout mutants lacking all EBs are viable and fertile and display normal pulling forces and spindle positioning. However, EB protein-dependent dynein plus end tracking was found to contribute to force generation in embryos with a partially perturbed dynein function, indicating the existence of two mechanisms that together create a highly robust force-generating system.
Collapse
Affiliation(s)
- Ruben Schmidt
- Developmental Biology, Department of Biology, Faculty of Sciences, Utrecht University, Utrecht, Netherlands
- Cell Biology, Department of Biology, Faculty of Sciences, Utrecht University, Utrecht, Netherlands
| | - Lars-Eric Fielmich
- Developmental Biology, Department of Biology, Faculty of Sciences, Utrecht University, Utrecht, Netherlands
| | - Ilya Grigoriev
- Cell Biology, Department of Biology, Faculty of Sciences, Utrecht University, Utrecht, Netherlands
| | - Eugene A Katrukha
- Cell Biology, Department of Biology, Faculty of Sciences, Utrecht University, Utrecht, Netherlands
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Sciences, Utrecht University, Utrecht, Netherlands
| | - Sander van den Heuvel
- Developmental Biology, Department of Biology, Faculty of Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
31
|
Yang C, Wu J, de Heus C, Grigoriev I, Liv N, Yao Y, Smal I, Meijering E, Klumperman J, Qi RZ, Akhmanova A. EB1 and EB3 regulate microtubule minus end organization and Golgi morphology. J Cell Biol 2017; 216:3179-3198. [PMID: 28814570 PMCID: PMC5626540 DOI: 10.1083/jcb.201701024] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 06/08/2017] [Accepted: 07/18/2017] [Indexed: 12/19/2022] Open
Abstract
End-binding proteins regulate the dynamics and function of microtubule plus ends by recruiting a plethora of diverse factors. Yang et al. show that EB1 and EB3 also affect microtubule minus ends by participating in their attachment to Golgi membranes. This function is important for cell polarity and migration. End-binding proteins (EBs) are the core components of microtubule plus end tracking protein complexes, but it is currently unknown whether they are essential for mammalian microtubule organization. Here, by using CRISPR/Cas9-mediated knockout technology, we generated stable cell lines lacking EB2 and EB3 and the C-terminal partner-binding half of EB1. These cell lines show only mild defects in cell division and microtubule polymerization. However, the length of CAMSAP2-decorated stretches at noncentrosomal microtubule minus ends in these cells is reduced, microtubules are detached from Golgi membranes, and the Golgi complex is more compact. Coorganization of microtubules and Golgi membranes depends on the EB1/EB3–myomegalin complex, which acts as membrane–microtubule tether and counteracts tight clustering of individual Golgi stacks. Disruption of EB1 and EB3 also perturbs cell migration, polarity, and the distribution of focal adhesions. EB1 and EB3 thus affect multiple interphase processes and have a major impact on microtubule minus end organization.
Collapse
Affiliation(s)
- Chao Yang
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Jingchao Wu
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Cecilia de Heus
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ilya Grigoriev
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Nalan Liv
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Yao Yao
- Department of Medical Informatics, Biomedical Imaging Group Rotterdam, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Radiology, Biomedical Imaging Group Rotterdam, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Ihor Smal
- Department of Medical Informatics, Biomedical Imaging Group Rotterdam, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Radiology, Biomedical Imaging Group Rotterdam, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Erik Meijering
- Department of Medical Informatics, Biomedical Imaging Group Rotterdam, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Radiology, Biomedical Imaging Group Rotterdam, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Judith Klumperman
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Robert Z Qi
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
32
|
Mustyatsa VV, Boyakhchyan AV, Ataullakhanov FI, Gudimchuk NB. EB-family proteins: Functions and microtubule interaction mechanisms. BIOCHEMISTRY (MOSCOW) 2017; 82:791-802. [DOI: 10.1134/s0006297917070045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Gemoll T, Kollbeck SL, Karstens KF, Hò GG, Hartwig S, Strohkamp S, Schillo K, Thorns C, Oberländer M, Kalies K, Lehr S, Habermann JK. EB1 protein alteration characterizes sporadic but not ulcerative colitis associated colorectal cancer. Oncotarget 2017; 8:54939-54950. [PMID: 28903393 PMCID: PMC5589632 DOI: 10.18632/oncotarget.18978] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/17/2017] [Indexed: 12/29/2022] Open
Abstract
Background While carcinogenesis in Sporadic Colorectal Cancer (SCC) has been thoroughly studied, less is known about Ulcerative Colitis associated Colorectal Cancer (UCC). This study aimed to identify and validate differentially expressed proteins between clinical samples of SCC and UCC to elucidate new insights of UCC/SCC carcinogenesis and progression. Results Multiplex-fluorescence two-dimensional gel electrophoresis (2-D DIGE) and mass spectrometry identified 67 proteoforms representing 43 distinct proteins. After analysis by Ingenuity Pathway Analysis® (IPA), subsequent Western blot validation proofed the differential expression of Heat shock 27 kDA protein 1 (HSPB1) and Microtubule-associated protein R/EB family, member 1 (EB1) while the latter one showed also expression differences by immunohistochemistry. Materials and Methods Fresh frozen tissue of UCC (n = 10) matched with SCC (n = 10) was investigated. Proteins of cancerous intestinal mucosal cells were obtained by Laser Capture Microdissection (LCM) and compared by 2-D DIGE. Significant spots were identified by mass spectrometry. After IPA, three proteins [EB1, HSPB1, and Annexin 5 (ANXA5)] were chosen for further validation by Western blotting and tissue microarray-based immunohistochemistry. Conclusions This study identified significant differences in protein expression of colorectal carcinoma cells from UCC patients compared to patients with SCC. Particularly, EB1 was validated in an independent clinical cohort.
Collapse
Affiliation(s)
- Timo Gemoll
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany
| | - Sophie L Kollbeck
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany
| | - Karl F Karstens
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany
| | - Gia G Hò
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany
| | - Sonja Hartwig
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Düsseldorf, Leibniz Center for Diabetes Research, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD), D-85764 München-Neuherberg, Germany
| | - Sarah Strohkamp
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany
| | - Katharina Schillo
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany
| | - Christoph Thorns
- Department of Pathology, University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany
| | - Martina Oberländer
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany
| | - Kathrin Kalies
- Institute of Anatomy, University of Lübeck, D-23538 Lübeck, Germany
| | - Stefan Lehr
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Düsseldorf, Leibniz Center for Diabetes Research, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD), D-85764 München-Neuherberg, Germany
| | - Jens K Habermann
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany
| |
Collapse
|
34
|
Shirnekhi HK, Kelley EP, DeLuca JG, Herman JA. Spindle assembly checkpoint signaling and sister chromatid cohesion are disrupted by HPV E6-mediated transformation. Mol Biol Cell 2017; 28:2035-2041. [PMID: 28539402 PMCID: PMC5509418 DOI: 10.1091/mbc.e16-12-0853] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 05/18/2017] [Accepted: 05/18/2017] [Indexed: 12/20/2022] Open
Abstract
Aneuploidy, a condition that results from unequal partitioning of chromosomes during mitosis, is a hallmark of many cancers, including those caused by human papillomaviruses (HPVs). E6 and E7 are the primary transforming proteins in HPV that drive tumor progression. In this study, we stably expressed E6 and E7 in noncancerous RPE1 cells and analyzed the specific mitotic defects that contribute to aneuploidy in each cell line. We find that E6 expression results in multiple chromosomes associated with one or both spindle poles, causing a significant mitotic delay. In most cells, the misaligned chromosomes eventually migrated to the spindle equator, leading to mitotic exit. In some cells, however, mitotic exit occurred in the presence of pole-associated chromosomes. We determined that this premature mitotic exit is due to defects in spindle assembly checkpoint (SAC) signaling, such that cells are unable to maintain a prolonged mitotic arrest in the presence of unaligned chromosomes. This SAC defect is caused in part by a loss of kinetochore-associated Mad2 in E6-expressing cells. Our results demonstrate that E6-expressing cells exhibit previously unappreciated mitotic defects that likely contribute to HPV-mediated cancer progression.
Collapse
Affiliation(s)
- Hazheen K Shirnekhi
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Erin P Kelley
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Jennifer G DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523 )
| | - Jacob A Herman
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523 )
| |
Collapse
|
35
|
Zhang L, Shay JW. Multiple Roles of APC and its Therapeutic Implications in Colorectal Cancer. J Natl Cancer Inst 2017; 109:3113843. [PMID: 28423402 DOI: 10.1093/jnci/djw332] [Citation(s) in RCA: 278] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/21/2016] [Indexed: 02/06/2023] Open
Abstract
Adenomatous polyposis coli (APC) is widely accepted as a tumor suppressor gene highly mutated in colorectal cancers (CRC). Mutation and inactivation of this gene is a key and early event almost uniquely observed in colorectal tumorigenesis. Alterations in the APC gene generate truncated gene products, leading to activation of the Wnt signaling pathway and deregulation of multiple other cellular processes. It has been a mystery why most patients with CRC retain a truncated APC protein, but accumulating evidence suggest that these C terminally truncated APC proteins may have gain of function properties beyond the well-established loss of tumor suppressive function. Here, we will review the evidence for both the loss of function and the gain of function of APC truncations and how together they contribute to CRC initiation and progression.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, USA
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, USA
| |
Collapse
|
36
|
Fong KW, Au FKC, Jia Y, Yang S, Zhou L, Qi RZ. Microtubule plus-end tracking of end-binding protein 1 (EB1) is regulated by CDK5 regulatory subunit-associated protein 2. J Biol Chem 2017; 292:7675-7687. [PMID: 28320860 DOI: 10.1074/jbc.m116.759746] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 03/15/2017] [Indexed: 01/08/2023] Open
Abstract
Microtubules are polar cytoskeleton filaments that extend via growth at their plus ends. Microtubule plus-end-tracking proteins (+TIPs) accumulate at these growing plus ends to control microtubule dynamics and attachment. The +TIP end-binding protein 1 (EB1) and its homologs possess an autonomous plus-end-tracking mechanism and interact with other known +TIPs, which then recruit those +TIPs to the growing plus ends. A major +TIP class contains the SXIP (Ser-X-Ile-Pro, with X denoting any amino acid residue) motif, known to interact with EB1 and its homologs for plus-end tracking, but the role of SXIP in regulating EB1 activities is unclear. We show here that an interaction of EB1 with the SXIP-containing +TIP CDK5 regulatory subunit-associated protein 2 (CDK5RAP2) regulates several EB1 activities, including microtubule plus-end tracking, dynamics at microtubule plus ends, microtubule and α/β-tubulin binding, and microtubule polymerization. The SXIP motif fused with a dimerization domain from CDK5RAP2 significantly enhanced EB1 plus-end-tracking and microtubule-polymerizing and bundling activities, but the SXIP motif alone failed to do so. An SXIP-binding-deficient EB1 mutant displayed significantly lower microtubule plus-end tracking than the wild-type protein in transfected cells. These results suggest that EB1 cooperates with CDK5RAP2 and perhaps other SXIP-containing +TIPs in tracking growing microtubule tips. We also generated plus-end-tracking chimeras of CDK5RAP2 and the adenomatous polyposis coli protein (APC) and found that overexpression of the dimerization domains interfered with microtubule plus-end tracking of their respective SXIP-containing chimeras. Our results suggest that disruption of SXIP dimerization enables detailed investigations of microtubule plus-end-associated functions of individual SXIP-containing +TIPs.
Collapse
Affiliation(s)
- Ka-Wing Fong
- From the Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Franco K C Au
- From the Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yue Jia
- From the Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Shaozhong Yang
- From the Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Liying Zhou
- From the Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Robert Z Qi
- From the Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
37
|
Tanaka N, Mashima T, Mizutani A, Sato A, Aoyama A, Gong B, Yoshida H, Muramatsu Y, Nakata K, Matsuura M, Katayama R, Nagayama S, Fujita N, Sugimoto Y, Seimiya H. APC Mutations as a Potential Biomarker for Sensitivity to Tankyrase Inhibitors in Colorectal Cancer. Mol Cancer Ther 2017; 16:752-762. [PMID: 28179481 DOI: 10.1158/1535-7163.mct-16-0578] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 01/12/2017] [Accepted: 01/19/2017] [Indexed: 11/16/2022]
Abstract
In most colorectal cancers, Wnt/β-catenin signaling is activated by loss-of-function mutations in the adenomatous polyposis coli (APC) gene and plays a critical role in tumorigenesis. Tankyrases poly(ADP-ribosyl)ate and destabilize Axins, a negative regulator of β-catenin, and upregulate β-catenin signaling. Tankyrase inhibitors downregulate β-catenin and are expected to be promising therapeutics for colorectal cancer. However, colorectal cancer cells are not always sensitive to tankyrase inhibitors, and predictive biomarkers for the drug sensitivity remain elusive. Here we demonstrate that the short-form APC mutations predict the sensitivity of colorectal cancer cells to tankyrase inhibitors. By using well-established colorectal cancer cell lines, we found that tankyrase inhibitors downregulated β-catenin in the drug-sensitive, but not resistant, colorectal cancer cells. The drug-sensitive cells showed higher Tcf/LEF transcriptional activity than the resistant cells and possessed "short" truncated APCs lacking all seven β-catenin-binding 20-amino acid repeats (20-AARs). In contrast, the drug-resistant cells possessed "long" APC retaining two or more 20-AARs. Knockdown of the long APCs with two 20-AARs increased β-catenin, Tcf/LEF transcriptional activity and its target gene AXIN2 expression. Under these conditions, tankyrase inhibitors were able to downregulate β-catenin in the resistant cells. These results indicate that the long APCs are hypomorphic mutants, whereas they exert a dominant-negative effect on Axin-dependent β-catenin degradation caused by tankyrase inhibitors. Finally, we established 16 patient-derived colorectal cancer cells and confirmed that the tankyrase inhibitor-responsive cells harbor the short-form APC mutations. These observations exemplify the predictive importance of APC mutations, the most common genetic alteration in colorectal cancers, for molecular targeted therapeutics. Mol Cancer Ther; 16(4); 752-62. ©2017 AACR.
Collapse
Affiliation(s)
- Noritaka Tanaka
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan.,Division of Chemotherapy, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Tetsuo Mashima
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Anna Mizutani
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ayana Sato
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan.,Laboratory of Molecular Target Therapy of Cancer, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Aki Aoyama
- Laboratory of Molecular Target Therapy of Cancer, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.,Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Bo Gong
- Laboratory of Molecular Target Therapy of Cancer, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.,Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Haruka Yoshida
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yukiko Muramatsu
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kento Nakata
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan.,Graduate School of Pharmaceutical Sciences, Meiji Pharmaceutical University, Tokyo, Japan
| | - Masaaki Matsuura
- Graduate School of Public Health, Teikyo University, Tokyo, Japan
| | - Ryohei Katayama
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Satoshi Nagayama
- Department of Gastroenterological and Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Naoya Fujita
- Laboratory of Molecular Target Therapy of Cancer, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.,Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan.,Graduate School of Pharmaceutical Sciences, Meiji Pharmaceutical University, Tokyo, Japan
| | - Yoshikazu Sugimoto
- Division of Chemotherapy, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Hiroyuki Seimiya
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan. .,Laboratory of Molecular Target Therapy of Cancer, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.,Graduate School of Pharmaceutical Sciences, Meiji Pharmaceutical University, Tokyo, Japan
| |
Collapse
|
38
|
A Comparative Perspective on Wnt/β-Catenin Signalling in Cell Fate Determination. Results Probl Cell Differ 2017; 61:323-350. [PMID: 28409312 DOI: 10.1007/978-3-319-53150-2_15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Wnt/β-catenin pathway is an ancient and highly conserved signalling pathway that plays fundamental roles in the regulation of embryonic development and adult homeostasis. This pathway has been implicated in numerous cellular processes, including cell proliferation, differentiation, migration, morphological changes and apoptosis. In this chapter, we aim to illustrate with specific examples the involvement of Wnt/β-catenin signalling in cell fate determination. We discuss the roles of the Wnt/β-catenin pathway in specifying cell fate throughout evolution, how its function in patterning during development is often reactivated during regeneration and how perturbation of this pathway has negative consequences for the control of cell fate.The origin of all life was a single cell that had the capacity to respond to cues from the environment. With evolution, multicellular organisms emerged, and as a result, subsets of cells arose to form tissues able to respond to specific instructive signals and perform specialised functions. This complexity and specialisation required two types of messages to direct cell fate: intra- and intercellular. A fundamental question in developmental biology is to understand the underlying mechanisms of cell fate choice. Amongst the numerous external cues involved in the generation of cellular diversity, a prominent pathway is the Wnt signalling pathway in all its forms.
Collapse
|
39
|
Kim J, Lee HY, Lee KH, Park SJ. Phosphorylation of Serine 148 in Giardia lamblia
End-binding 1 Protein is Important for Cell Division. J Eukaryot Microbiol 2016; 64:464-480. [DOI: 10.1111/jeu.12384] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/07/2016] [Indexed: 01/10/2023]
Affiliation(s)
- Juri Kim
- Department of Environmental Medical Biology and Institute of Tropical Medicine, Brain Korea 21 PLUS Project for Medical Science; Yonsei University College of Medicine; Seoul 03722 South Korea
| | - Hye-Yeon Lee
- Department of Environmental Medical Biology and Institute of Tropical Medicine, Brain Korea 21 PLUS Project for Medical Science; Yonsei University College of Medicine; Seoul 03722 South Korea
| | - Kyu-Ho Lee
- Department of Life Science; Sogang University; Seoul 04107 South Korea
| | - Soon-Jung Park
- Department of Environmental Medical Biology and Institute of Tropical Medicine, Brain Korea 21 PLUS Project for Medical Science; Yonsei University College of Medicine; Seoul 03722 South Korea
| |
Collapse
|
40
|
Damiani D, Goffinet AM, Alberts A, Tissir F. Lack of Diaph3 relaxes the spindle checkpoint causing the loss of neural progenitors. Nat Commun 2016; 7:13509. [PMID: 27848932 PMCID: PMC5476800 DOI: 10.1038/ncomms13509] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 10/11/2016] [Indexed: 01/28/2023] Open
Abstract
The diaphanous homologue Diaph3 (aka mDia2) is a major regulator of actin cytoskeleton. Loss of Diaph3 has been constantly associated with cytokinesis failure ascribed to impaired accumulation of actin in the cleavage furrow. Here we report that Diaph3 is required before cell fission, to ensure the accurate segregation of chromosomes. Inactivation of the Diaph3 gene causes a massive loss of cortical progenitor cells, with subsequent depletion of intermediate progenitors and neurons, and results in microcephaly. In embryonic brain extracts, Diaph3 co-immunoprecipitates with BubR1, a key regulator of the spindle assembly checkpoint (SAC). Diaph3-deficient cortical progenitors have decreased levels of BubR1 and fail to properly activate the SAC. Hence, they bypass mitotic arrest and embark on anaphase in spite of incorrect chromosome segregation, generating aneuploidy. Our data identify Diaph3 as a major guard of cortical progenitors, unravel novel functions of Diaphanous formins and add insights into the pathobiology of microcephaly. Molecular mechanisms that control the division of neural progenitor cells are only partially understood. Here the authors show that Diaph3 is critical for spindle checkpoint activity in cortical progenitor cells as the loss of Diaph3 leads to apoptosis of progenitor cells and eventually results in microcephaly in mice.
Collapse
Affiliation(s)
- Devid Damiani
- Developmental Neurobiology Unit, Université catholique de Louvain, Institute of Neuroscience, Avenue Mounier 73, Box B1.73.16, Brussels 1200, Belgium.,Developmental Neurobiology Unit, WELBIO, Institute of Neuroscience, Avenue Mounier B1.73.16, Brussels 1200, Belgium
| | - André M Goffinet
- Developmental Neurobiology Unit, Université catholique de Louvain, Institute of Neuroscience, Avenue Mounier 73, Box B1.73.16, Brussels 1200, Belgium.,Developmental Neurobiology Unit, WELBIO, Institute of Neuroscience, Avenue Mounier B1.73.16, Brussels 1200, Belgium
| | - Arthur Alberts
- Laboratory of Cell Structure and Signal Integration, Van Andel Research Institute, 333 Bostwick Avenue N.E., Grand Rapids, Michigan 49503, USA
| | - Fadel Tissir
- Developmental Neurobiology Unit, Université catholique de Louvain, Institute of Neuroscience, Avenue Mounier 73, Box B1.73.16, Brussels 1200, Belgium
| |
Collapse
|
41
|
Velot L, Molina A, Rodrigues-Ferreira S, Nehlig A, Bouchet BP, Morel M, Leconte L, Serre L, Arnal I, Braguer D, Savina A, Honore S, Nahmias C. Negative regulation of EB1 turnover at microtubule plus ends by interaction with microtubule-associated protein ATIP3. Oncotarget 2016; 6:43557-70. [PMID: 26498358 PMCID: PMC4791250 DOI: 10.18632/oncotarget.6196] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 10/14/2015] [Indexed: 01/15/2023] Open
Abstract
The regulation of microtubule dynamics is critical to ensure essential cell functions. End binding protein 1 (EB1) is a master regulator of microtubule dynamics that autonomously binds an extended GTP/GDP-Pi structure at growing microtubule ends and recruits regulatory proteins at this location. However, negative regulation of EB1 association with growing microtubule ends remains poorly understood. We show here that microtubule-associated tumor suppressor ATIP3 interacts with EB1 through direct binding of a non-canonical proline-rich motif. Results indicate that ATIP3 does not localize at growing microtubule ends and that in situ ATIP3-EB1 molecular complexes are mostly detected in the cytosol. We present evidence that a minimal EB1-interacting sequence of ATIP3 is both necessary and sufficient to prevent EB1 accumulation at growing microtubule ends in living cells and that EB1-interaction is involved in reducing cell polarity. By fluorescence recovery of EB1-GFP after photobleaching, we show that ATIP3 silencing accelerates EB1 turnover at microtubule ends with no modification of EB1 diffusion in the cytosol. We propose a novel mechanism by which ATIP3-EB1 interaction indirectly reduces the kinetics of EB1 exchange on its recognition site, thereby accounting for negative regulation of microtubule dynamic instability. Our findings provide a unique example of decreased EB1 turnover at growing microtubule ends by cytosolic interaction with a tumor suppressor.
Collapse
Affiliation(s)
- Lauriane Velot
- Inserm U981, Institut Gustave Roussy Department of Molecular Medicine, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,CNRS UMR8104, Institut Cochin, Paris, France
| | - Angie Molina
- Inserm U981, Institut Gustave Roussy Department of Molecular Medicine, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,CNRS UMR8104, Institut Cochin, Paris, France
| | - Sylvie Rodrigues-Ferreira
- Inserm U981, Institut Gustave Roussy Department of Molecular Medicine, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,CNRS UMR8104, Institut Cochin, Paris, France
| | - Anne Nehlig
- Inserm U981, Institut Gustave Roussy Department of Molecular Medicine, Villejuif, France.,Université Paris-Saclay, Villejuif, France
| | - Benjamin Pierre Bouchet
- Cell Biology, Faculty of Science, Utrecht University, Padualaan, CH Utrecht, The Netherlands
| | | | - Ludovic Leconte
- Cell and Tissue Imaging Core Facilty, PICT-IBiSA, CNRS UMR144 Institut Curie, Centre de Recherche, Paris, France
| | - Laurence Serre
- Inserm U836, Grenoble Institut des Neurosciences, Grenoble, France
| | - Isabelle Arnal
- Inserm U836, Grenoble Institut des Neurosciences, Grenoble, France
| | - Diane Braguer
- Aix Marseille Université, Inserm, CRO2 UMR_S 911, Marseille, France.,APHM, Hôpital Timone, Marseille, France
| | - Ariel Savina
- Scientific Partnerships Roche SAS, Boulogne Billancourt, France
| | - Stéphane Honore
- Aix Marseille Université, Inserm, CRO2 UMR_S 911, Marseille, France.,APHM, Hôpital Timone, Marseille, France
| | - Clara Nahmias
- Inserm U981, Institut Gustave Roussy Department of Molecular Medicine, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,CNRS UMR8104, Institut Cochin, Paris, France
| |
Collapse
|
42
|
Clauw P, Coppens F, Korte A, Herman D, Slabbinck B, Dhondt S, Van Daele T, De Milde L, Vermeersch M, Maleux K, Maere S, Gonzalez N, Inzé D. Leaf Growth Response to Mild Drought: Natural Variation in Arabidopsis Sheds Light on Trait Architecture. THE PLANT CELL 2016; 28:2417-2434. [PMID: 27729396 PMCID: PMC5134983 DOI: 10.1105/tpc.16.00483] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/02/2016] [Accepted: 10/10/2016] [Indexed: 05/04/2023]
Abstract
Plant growth and crop yield are negatively affected by a reduction in water availability. However, a clear understanding of how growth is regulated under nonlethal drought conditions is lacking. Recent advances in genomics, phenomics, and transcriptomics allow in-depth analysis of natural variation. In this study, we conducted a detailed screening of leaf growth responses to mild drought in a worldwide collection of Arabidopsis thaliana accessions. The genetic architecture of the growth responses upon mild drought was investigated by subjecting the different leaf growth phenotypes to genome-wide association mapping and by characterizing the transcriptome of young developing leaves. Although no major effect locus was found to be associated with growth in mild drought, the transcriptome analysis delivered further insight into the natural variation of transcriptional responses to mild drought in a specific tissue. Coexpression analysis indicated the presence of gene clusters that co-vary over different genetic backgrounds, among others a cluster of genes with important regulatory functions in the growth response to osmotic stress. It was found that the occurrence of a mild drought stress response in leaves can be inferred with high accuracy across accessions based on the expression profile of 283 genes. A genome-wide association study on the expression data revealed that trans regulation seems to be more important than cis regulation in the transcriptional response to environmental perturbations.
Collapse
Affiliation(s)
- Pieter Clauw
- Department of Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Frederik Coppens
- Department of Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Arthur Korte
- Gregor Mendel Institute of Molecular Plant Biology, 1030 Vienna, Austria
| | - Dorota Herman
- Department of Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Bram Slabbinck
- Department of Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Stijn Dhondt
- Department of Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Twiggy Van Daele
- Department of Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Liesbeth De Milde
- Department of Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Mattias Vermeersch
- Department of Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Katrien Maleux
- Department of Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Steven Maere
- Department of Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Nathalie Gonzalez
- Department of Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Address correspondence to
| |
Collapse
|
43
|
Zhang F, Ren C, Lau KK, Zheng Z, Lu G, Yi Z, Zhao Y, Su F, Zhang S, Zhang B, Sobie EA, Zhang W, Walsh MJ. A network medicine approach to build a comprehensive atlas for the prognosis of human cancer. Brief Bioinform 2016; 17:1044-1059. [PMID: 27559151 DOI: 10.1093/bib/bbw076] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 04/26/2016] [Indexed: 02/07/2023] Open
Abstract
The Cancer Genome Atlas project has generated multi-dimensional and highly integrated genomic data from a large number of patient samples with detailed clinical records across many cancer types, but it remains unclear how to best integrate the massive amount of genomic data into clinical practice. We report here our methodology to build a multi-dimensional subnetwork atlas for cancer prognosis to better investigate the potential impact of multiple genetic and epigenetic (gene expression, copy number variation, microRNA expression and DNA methylation) changes on the molecular states of networks that in turn affects complex cancer survivorship. We uncover an average of 38 novel subnetworks in the protein-protein interaction network that correlate with prognosis across four prominent cancer types. The clinical utility of these subnetwork biomarkers was further evaluated by prognostic impact evaluation, functional enrichment analysis, drug target annotation, tumor stratification and independent validation. Some pathways including the dynactin, cohesion and pyruvate dehydrogenase-related subnetworks are identified as promising new targets for therapy in specific cancer types. In conclusion, this integrative analysis of existing protein interactome and cancer genomics data allows us to systematically dissect the molecular mechanisms that underlie unexpected outcomes for cancer, which could be used to better understand and predict clinical outcomes, optimize treatment and to provide new opportunities for developing therapeutics related to the subnetworks identified.
Collapse
|
44
|
Davies AE, Kortright K, Kaplan KB. Adenomatous polyposis coli mutants dominantly activate Hsf1-dependent cell stress pathways through inhibition of microtubule dynamics. Oncotarget 2016; 6:25202-16. [PMID: 26320184 PMCID: PMC4694825 DOI: 10.18632/oncotarget.4513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 07/10/2015] [Indexed: 01/13/2023] Open
Abstract
Cancer cells up-regulate cell stress pathways, including the protein chaperone Hsp90. Increases in Hsp90 are believed “buffer” mutant protein activities necessary for cancer phenotypes. Activation of the cell stress pathway also alters the transcriptional landscape of cells in ways that are critical for cancer progression. However, it is unclear when and how the cell stress pathway is de-regulated during cancer progression. Here we report that mutations in adenomatous polyposis coli (APC) found in colorectal cancer activate cell stress pathways in mouse intestinal crypt cells, prior to loss of heterozygosity at APC or to the appearance of canonical intestinal cancer markers. Hsp90 levels are elevated in normal APC heterozygote crypt cells and further elevated in non-cancer cells adjacent to dysplasias, suggesting that the Hsp90 stress pathway marks the “cancer-field” effect. Expression of mutant APC in normal human epithelial cells is sufficient to activate a cell stress pathway via perturbations in microtubule dynamics. Inhibition of microtubule dynamics is sufficient to activate an Hsf1-dependent increase in gene transcription and protein levels. We suggest that the early activation of this Hsf1 dependent cell stress pathway by mono-allelic mutations in APC can affect cell programming in a way that contributes to cancer onset.
Collapse
Affiliation(s)
- Alexander E Davies
- Department of Cell and Molecular Biology, University of California, Davis, CA, USA
| | - Kaitlyn Kortright
- Department of Cell and Molecular Biology, University of California, Davis, CA, USA
| | - Kenneth B Kaplan
- Department of Cell and Molecular Biology, University of California, Davis, CA, USA
| |
Collapse
|
45
|
He XQ, Song YQ, Liu R, Liu Y, Zhang F, Zhang Z, Shen YT, Xu L, Chen MH, Wang YL, Xu BH, Yang XJ, Wang HL. Axin-1 Regulates Meiotic Spindle Organization in Mouse Oocytes. PLoS One 2016; 11:e0157197. [PMID: 27284927 PMCID: PMC4902301 DOI: 10.1371/journal.pone.0157197] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/25/2016] [Indexed: 11/23/2022] Open
Abstract
Axin-1, a negative regulator of Wnt signaling, is a versatile scaffold protein involved in centrosome separation and spindle assembly in mitosis, but its function in mammalian oogenesis remains unknown. Here we examined the localization and function of Axin-1 during meiotic maturation in mouse oocytes. Immunofluorescence analysis showed that Axin-1 was localized around the spindle. Knockdown of the Axin1 gene by microinjection of specific short interfering (si)RNA into the oocyte cytoplasm resulted in severely defective spindles, misaligned chromosomes, failure of first polar body (PB1) extrusion, and impaired pronuclear formation. However, supplementing the culture medium with the Wnt pathway activator LiCl improved spindle morphology and pronuclear formation. Downregulation of Axin1 gene expression also impaired the spindle pole localization of γ-tubulin/Nek9 and resulted in retention of the spindle assembly checkpoint protein BubR1 at kinetochores after 8.5 h of culture. Our results suggest that Axin-1 is critical for spindle organization and cell cycle progression during meiotic maturation in mouse oocytes.
Collapse
Affiliation(s)
- Xiao-Qin He
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen City, Fujian Province, P. R. China
- Department of Gynaecology and Obstetrics, Zhongshan Hospital, Xiamen University, Xiamen City, Fujian Province, P. R. China
- The Fifth Hospital of Wuhan, Wuhan City, Hubei Province, P. R. China
| | - Yue-Qiang Song
- New England Fertility Institute, Stamford, CT, United States of America
| | - Rui Liu
- Department of Gynaecology and Obstetrics, Zhongshan Hospital, Xiamen University, Xiamen City, Fujian Province, P. R. China
| | - Yu Liu
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen City, Fujian Province, P. R. China
| | - Fei Zhang
- Department of Gynaecology and Obstetrics, Zhongshan Hospital, Xiamen University, Xiamen City, Fujian Province, P. R. China
| | - Zhen Zhang
- Xiamen Institute for Food and Drug Quality Control, Xiamen City, Fujian Province, P. R. China
| | - Yu-Ting Shen
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai City, P. R. China
| | - Lin Xu
- New England Fertility Institute, Stamford, CT, United States of America
| | - Ming-Huang Chen
- Department of Gynaecology and Obstetrics, Zhongshan Hospital, Xiamen University, Xiamen City, Fujian Province, P. R. China
| | - Ya-Long Wang
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen City, Fujian Province, P. R. China
| | - Bai-Hui Xu
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen City, Fujian Province, P. R. China
| | - Xiang-Jun Yang
- Department of Gynaecology and Obstetrics, Zhongshan Hospital, Xiamen University, Xiamen City, Fujian Province, P. R. China
- * E-mail: (HLW); (XJY)
| | - Hai-Long Wang
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen City, Fujian Province, P. R. China
- * E-mail: (HLW); (XJY)
| |
Collapse
|
46
|
Thomas GE, Bandopadhyay K, Sutradhar S, Renjith MR, Singh P, Gireesh KK, Simon S, Badarudeen B, Gupta H, Banerjee M, Paul R, Mitra J, Manna TK. EB1 regulates attachment of Ska1 with microtubules by forming extended structures on the microtubule lattice. Nat Commun 2016; 7:11665. [PMID: 27225956 PMCID: PMC4894954 DOI: 10.1038/ncomms11665] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/18/2016] [Indexed: 12/22/2022] Open
Abstract
Kinetochore couples chromosome movement to dynamic microtubules, a process that is fundamental to mitosis in all eukaryotes but poorly understood. In vertebrates, spindle-kinetochore-associated (Ska1–3) protein complex plays an important role in this process. However, the proteins that stabilize Ska-mediated kinetochore-microtubule attachment remain unknown. Here we show that microtubule plus-end tracking protein EB1 facilitates Ska localization on microtubules in vertebrate cells. EB1 depletion results in a significant reduction of Ska1 recruitment onto microtubules and defects in mitotic chromosome alignment, which is also reflected in computational modelling. Biochemical experiments reveal that EB1 interacts with Ska1, facilitates Ska1-microtubule attachment and together stabilizes microtubules. Structural studies reveal that EB1 either with Ska1 or Ska complex forms extended structures on microtubule lattice. Results indicate that EB1 promotes Ska association with K-fibres and facilitates kinetochore-microtubule attachment. They also implicate that in vertebrates, chromosome coupling to dynamic microtubules could be mediated through EB1-Ska extended structures. Ska1 is a kinetochore-localised protein that couples kinetochore movement to microtubule (MT) depolymerisation. Here Thomas et al. show that the MT +TIP binding protein EB1 recruits Ska1 to the MT-kinetochore interface and stabilises the interaction between Ska1 and MTs.
Collapse
Affiliation(s)
- Geethu E Thomas
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, CET Campus, Thiruvananthapuram 695016, India
| | - K Bandopadhyay
- School of Physics, Indian Institute of Science Education and Research Thiruvananthapuram, CET Campus, Thiruvananthapuram 695016, India
| | - Sabyasachi Sutradhar
- Department of Solid State Physics, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - M R Renjith
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, CET Campus, Thiruvananthapuram 695016, India
| | - Puja Singh
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, CET Campus, Thiruvananthapuram 695016, India
| | - K K Gireesh
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, CET Campus, Thiruvananthapuram 695016, India
| | - Steny Simon
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, CET Campus, Thiruvananthapuram 695016, India
| | - Binshad Badarudeen
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, CET Campus, Thiruvananthapuram 695016, India
| | - Hindol Gupta
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, CET Campus, Thiruvananthapuram 695016, India
| | - Manidipa Banerjee
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Raja Paul
- Department of Solid State Physics, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - J Mitra
- School of Physics, Indian Institute of Science Education and Research Thiruvananthapuram, CET Campus, Thiruvananthapuram 695016, India
| | - Tapas K Manna
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, CET Campus, Thiruvananthapuram 695016, India
| |
Collapse
|
47
|
Kumar M, Mehra S, Thakar A, Shukla NK, Roychoudhary A, Sharma MC, Ralhan R, Chauhan SS. End Binding 1 (EB1) overexpression in oral lesions and cancer: A biomarker of tumor progression and poor prognosis. Clin Chim Acta 2016; 459:45-52. [PMID: 27208742 DOI: 10.1016/j.cca.2016.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Oral squamous cell carcinoma (OSCC) patients are at high risk of loco-regional recurrence and despite the improvement in treatment strategy, 5-year survival rates are about 50%. Identification of patients at high risk of recurrence may enable rigorous personalized post-treatment management. In an earlier proteomics study we observed overexpression of End Binding Protein (EB1) in OSCC. In the present study we investigated the diagnostic and prognostic significance of alterations in expression of EB1 in oral cancer. METHODS In this retrospective study, the expression of EB1 protein was evaluated in 259 OSCCs, 41 dysplasia, 166 hyperplasia and 126 normal tissues using immunohistochemistry and correlated with clinical-pathological parameters and prognosis of OSCC patients over a follow-up period of up to 91months. RESULTS Significantly higher expression of cytoplasmic EB1 was observed in hyperplasia [p<0.001, OR=7.2, 95% CI=4.1-12.8], dysplasia (p<0.001, OR=21.8, CI=8.8-50.2) and OSCCs (p<0.001, OR=10.1, CI=5.8-17.4) in comparison with normal mucosa. Univariate analysis revealed cytoplasmic EB1 association with tumor grade, tumor size and recurrence of the disease. Kaplan Meier survival analysis of EB1 expression showed significantly reduced disease free survival (DFS) (p=0.003). Notably, OSCC patients showing cytoplasmic EB1 overexpression demonstrated significantly reduced DFS (p=0.004, HR=2.1). CONCLUSION EB1 overexpression is an early event in oral tumorigenesis and cytoplasmic EB1 accumulation is associated with poor prognosis and tumor recurrence in OSCC patients.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Siddharth Mehra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Alok Thakar
- Department of Otorhinolaryngology, All India Institute of Medical Sciences, New Delhi, India
| | - Nootan Kumar Shukla
- Department of Surgery, Dr. B. R. A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Ajoy Roychoudhary
- Department of Dental Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Mehar Chand Sharma
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Ranju Ralhan
- Alex and Simona Shnaider Research Laboratory in Molecular Oncology, Mount Sinai Hospital, Toronto, Ontario, Canada; Joseph and Mildred Sonshine Family Centre for Head and Neck Diseases, Department of Otolaryngology - Head and Neck Surgery, Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Otolaryngology - Head and Neck Surgery, University of Toronto, Ontario, Canada.
| | - Shyam Singh Chauhan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
48
|
Kern DM, Nicholls PK, Page DC, Cheeseman IM. A mitotic SKAP isoform regulates spindle positioning at astral microtubule plus ends. J Cell Biol 2016; 213:315-28. [PMID: 27138257 PMCID: PMC4862331 DOI: 10.1083/jcb.201510117] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/30/2016] [Indexed: 12/14/2022] Open
Abstract
The Astrin/SKAP complex regulates mitotic chromosome alignment and centrosome integrity, but previous work found conflicting results for SKAP function. Here, Kern et al. demonstrate that a previously unappreciated short SKAP isoform mediates mitotic spindle positioning at astral microtubule plus ends. The Astrin/SKAP complex plays important roles in mitotic chromosome alignment and centrosome integrity, but previous work found conflicting results for SKAP function. Here, we demonstrate that SKAP is expressed as two distinct isoforms in mammals: a longer, testis-specific isoform that was used for the previous studies in mitotic cells and a novel, shorter mitotic isoform. Unlike the long isoform, short SKAP rescues SKAP depletion in mitosis and displays robust microtubule plus-end tracking, including localization to astral microtubules. Eliminating SKAP microtubule binding results in severe chromosome segregation defects. In contrast, SKAP mutants specifically defective for plus-end tracking facilitate proper chromosome segregation but display spindle positioning defects. Cells lacking SKAP plus-end tracking have reduced Clasp1 localization at microtubule plus ends and display increased lateral microtubule contacts with the cell cortex, which we propose results in unbalanced dynein-dependent cortical pulling forces. Our work reveals an unappreciated role for the Astrin/SKAP complex as an astral microtubule mediator of mitotic spindle positioning.
Collapse
Affiliation(s)
- David M Kern
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142 Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Peter K Nicholls
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | - David C Page
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142 Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142 Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
49
|
Efficient Activation of Apoptotic Signaling during Mitotic Arrest with AK301. PLoS One 2016; 11:e0153818. [PMID: 27097159 PMCID: PMC4838221 DOI: 10.1371/journal.pone.0153818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/04/2016] [Indexed: 12/20/2022] Open
Abstract
Mitotic inhibitors are widely utilized chemotherapeutic agents that take advantage of mitotic defects in cancer cells. We have identified a novel class of piperazine-based mitotic inhibitors, of which AK301 is the most potent derivative identified to date (EC50 < 200 nM). Colon cancer cells arrested in mitosis with AK301 readily underwent a p53-dependent apoptosis following compound withdrawal and arrest release. This apoptotic response was significantly higher for AK301 than for other mitotic inhibitors tested (colchicine, vincristine, and BI 2536). AK301-treated cells exhibited a robust mitosis-associated DNA damage response, including ATM activation, γH2AX phosphorylation and p53 stabilization. The association between mitotic signaling and the DNA damage response was supported by the finding that Aurora B inhibition reduced the level of γH2AX staining. Confocal imaging of AK301-treated cells revealed multiple γ-tubulin microtubule organizing centers attached to microtubules, but with limited centrosome migration, raising the possibility that aberrant microtubule pulling may underlie DNA breakage. AK301 selectively targeted APC-mutant colonocytes and promoted TNF-induced apoptosis in p53-mutant colon cancer cells. Our findings indicate that AK301 induces a mitotic arrest state with a highly active DNA damage response. Together with a reversible arrest state, AK301 is a potent promoter of a mitosis-to-apoptosis transition that can target cancer cells with mitotic defects.
Collapse
|
50
|
Phosphorylation of EB2 by Aurora B and CDK1 ensures mitotic progression and genome stability. Nat Commun 2016; 7:11117. [PMID: 27030108 PMCID: PMC4821873 DOI: 10.1038/ncomms11117] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/22/2016] [Indexed: 02/07/2023] Open
Abstract
Temporal regulation of microtubule dynamics is essential for proper progression of mitosis and control of microtubule plus-end tracking proteins by phosphorylation is an essential component of this regulation. Here we show that Aurora B and CDK1 phosphorylate microtubule end-binding protein 2 (EB2) at multiple sites within the amino terminus and a cluster of serine/threonine residues in the linker connecting the calponin homology and end-binding homology domains. EB2 phosphorylation, which is strictly associated with mitotic entry and progression, reduces the binding affinity of EB2 for microtubules. Expression of non-phosphorylatable EB2 induces stable kinetochore microtubule dynamics and delays formation of bipolar metaphase plates in a microtubule binding-dependent manner, and leads to aneuploidy even in unperturbed mitosis. We propose that Aurora B and CDK1 temporally regulate the binding affinity of EB2 for microtubules, thereby ensuring kinetochore microtubule dynamics, proper mitotic progression and genome stability. Temporal regulation of microtubule dynamics in mitosis can be achieved by phosphorylation of microtubule plus-end proteins. Here, the authors show that Aurora B and CDK1 phosphorylate EB2, which changes microtubule binding affinity and controls kinetochore microtubule dynamics and genome stability.
Collapse
|