1
|
Gospodaryov DV. Alternative NADH dehydrogenase: A complex I backup, a drug target, and a tool for mitochondrial gene therapy. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149529. [PMID: 39615731 DOI: 10.1016/j.bbabio.2024.149529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024]
Abstract
Alternative NADH dehydrogenase, also known as type II NADH dehydrogenase (NDH-2), catalyzes the same redox reaction as mitochondrial respiratory chain complex I. Specifically, it oxidizes reduced nicotinamide adenine dinucleotide (NADH) while simultaneously reducing ubiquinone to ubiquinol. However, unlike complex I, this enzyme is non-proton pumping, comprises of a single subunit, and is resistant to rotenone. Initially identified in bacteria, fungi and plants, NDH-2 was subsequently discovered in protists and certain animal taxa including sea squirts. The gene coding for NDH-2 is also present in the genomes of some annelids, tardigrades, and crustaceans. For over two decades, NDH-2 has been investigated as a potential substitute for defective complex I. In model organisms, NDH-2 has been shown to ameliorate a broad spectrum of conditions associated with complex I malfunction, including symptoms of Parkinson's disease. Recently, lifespan extension has been observed in animals expressing NDH-2 in a heterologous manner. A variety of mechanisms have been put forward by which NDH-2 may extend lifespan. Such mechanisms include the activation of pro-longevity pathways through modulation of the NAD+/NADH ratio, decreasing production of reactive oxygen species (ROS) in mitochondria, or then through moderate increases in ROS production followed by activation of defense pathways (mitohormesis). This review gives an overview of the latest research on NDH-2, including the structural peculiarities of NDH-2, its inhibitors, its role in the pathogenicity of mycobacteria and apicomplexan parasites, and its function in bacteria, fungi, and animals.
Collapse
Affiliation(s)
- Dmytro V Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka, 76018, Ivano-Frankivsk, Ukraine.
| |
Collapse
|
2
|
Fang J, Zhou G, Zhao H, Xie D, Zhang J, Kües U, Xiao Y, Fang Z, Liu J. An apoptosis-inducing factor controls programmed cell death and laccase expression during fungal interactions. Appl Microbiol Biotechnol 2024; 108:135. [PMID: 38229306 DOI: 10.1007/s00253-023-12988-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/15/2023] [Accepted: 12/24/2023] [Indexed: 01/18/2024]
Abstract
Apoptotic-like programmed cell death (PCD) is one of the main strategies for fungi to resist environmental stresses and maintain homeostasis. The apoptosis-inducing factor (AIF) has been shown in different fungi to trigger PCD through upregulating reactive oxygen species (ROS). This study identified a mitochondrial localized AIF homolog, CcAIF1, from Coprinopsis cinerea monokaryon Okayama 7. Heterologous overexpression of CcAIF1 in Saccharomyces cerevisiae caused apoptotic-like PCD of the yeast cells. Ccaif1 was increased in transcription when C. cinerea interacted with Gongronella sp. w5, accompanied by typical apoptotic-like PCD in C. cinerea, including phosphatidylserine externalization and DNA fragmentation. Decreased mycelial ROS levels were observed in Ccaif1 silenced C. cinerea transformants during cocultivation, as well as reduction of the apoptotic levels, mycelial growth, and asexual sporulation. By comparison, Ccaif1 overexpression led to the opposite phenotypes. Moreover, the transcription and expression levels of laccase Lcc9 decreased by Ccaif1 silencing but increased firmly in Ccaif1 overexpression C. cinerea transformants in coculture. Thus, in conjunction with our previous report that intracellular ROS act as signal molecules to stimulate defense responses, we conclude that CcAIF1 is a regulator of ROS to promote apoptotic-like PCD and laccase expression in fungal-fungal interactions. In an axenic culture of C. cinerea, CcAIF1 overexpression and H2O2 stimulation together increased laccase secretion with multiplied production yield. The expression of two other normally silent isozymes, Lcc8 and Lcc13, was unexpectedly triggered along with Lcc9. KEY POINTS: • Mitochondrial CcAIF1 induces PCD during fungal-fungal interactions • CcAIF1 is a regulator of ROS to trigger the expression of Lcc9 for defense • CcAIF1 overexpression and H2O2 stimulation dramatically increase laccase production.
Collapse
Affiliation(s)
- Junnan Fang
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601, Anhui, China
| | - Gang Zhou
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601, Anhui, China
| | - Huifang Zhao
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601, Anhui, China
| | - Dengdeng Xie
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601, Anhui, China
| | - Jingna Zhang
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601, Anhui, China
| | - Ursula Kües
- Molecular Wood Biotechnology and Technical Mycology, Büsgen‑Institute, University of Goettingen, Büsgenweg 2, 37077, Goettingen, Germany
| | - Yazhong Xiao
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601, Anhui, China
| | - Zemin Fang
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China.
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, China.
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601, Anhui, China.
| | - Juanjuan Liu
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China.
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, China.
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601, Anhui, China.
| |
Collapse
|
3
|
Li L, Du C. Fungal Apoptosis-Related Proteins. Microorganisms 2024; 12:2289. [PMID: 39597678 PMCID: PMC11596484 DOI: 10.3390/microorganisms12112289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/04/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
Programmed cell death (PCD) plays a crucial role in the development and homeostasis maintenance of multicellular organisms. Apoptosis is a form of PCD that prevents pathological development by eliminating damaged or useless cells. Despite the complexity of fungal apoptosis mechanisms being similar to those of plants and metazoans, fungal apoptosis lacks the core regulatory elements of animal apoptosis. Apoptosis-like PCD in fungi can be triggered by a variety of internal and external factors, participating in biological processes such as growth, development, and stress response. Although the core regulatory elements are not fully understood, apoptosis-inducing factor and metacaspase have been found to be involved. This article summarizes various proteins closely related to fungal apoptosis, such as apoptosis-inducing factor, metacaspase, and inhibitors of apoptosis proteins, as well as their structures and functions. This research provides new strategies and ideas for the development of natural drugs targeting fungal apoptosis and the control of fungal diseases.
Collapse
Affiliation(s)
| | - Chunmei Du
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China;
| |
Collapse
|
4
|
Zhang X, Ruan L, Wang H, Zhu J, Li T, Sun G, Dong Y, Wang Y, Berreby G, Shay A, Chen R, Ramachandran S, Dawson VL, Dawson TM, Li R. Enhancing mitochondrial proteolysis alleviates alpha-synuclein-mediated cellular toxicity. NPJ Parkinsons Dis 2024; 10:120. [PMID: 38906862 PMCID: PMC11192938 DOI: 10.1038/s41531-024-00733-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 06/07/2024] [Indexed: 06/23/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by mitochondrial dysfunction and accumulation of alpha-synuclein (α-Syn)-containing protein aggregates known as Lewy bodies (LB). Here, we investigated the entry of α-Syn into mitochondria to cause mitochondrial dysfunction and loss of cellular fitness in vivo. We show that α-Syn expressed in yeast and human cells is constitutively imported into mitochondria. In a transgenic mouse model, the level of endogenous α-Syn accumulation in mitochondria of dopaminergic neurons and microglia increases with age. The imported α-Syn is degraded by conserved mitochondrial proteases, most notably NLN and PITRM1 (Prd1 and Cym1 in yeast, respectively). α-Syn in the mitochondrial matrix that is not degraded interacts with respiratory chain complexes, leading to loss of mitochondrial DNA (mtDNA), mitochondrial membrane potential and cellular fitness decline. Importantly, enhancing mitochondrial proteolysis by increasing levels of specific proteases alleviated these defects in yeast, human cells, and a PD model of mouse primary neurons. Together, our results provide a direct link between α-synuclein-mediated cellular toxicity and its import into mitochondria and reveal potential therapeutic targets for the treatment of α-synucleinopathies.
Collapse
Affiliation(s)
- Xi Zhang
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA, 70130-2685, USA
| | - Linhao Ruan
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Hu Wang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jin Zhu
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
| | - Taibo Li
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA
| | - Gordon Sun
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yi Dong
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yuhao Wang
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Gil Berreby
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Ashley Shay
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Rong Chen
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Sreekumar Ramachandran
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Valina L Dawson
- Diana Helis Henry Medical Research Foundation, New Orleans, LA, 70130-2685, USA
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ted M Dawson
- Diana Helis Henry Medical Research Foundation, New Orleans, LA, 70130-2685, USA
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Rong Li
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Diana Helis Henry Medical Research Foundation, New Orleans, LA, 70130-2685, USA.
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore.
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
- Department of Biological Sciences, National University of Singapore, Singapore, 117411, Singapore.
| |
Collapse
|
5
|
Kaushal V, Klim J, Skoneczna A, Kurlandzka A, Enkhbaatar T, Kaczanowski S, Zielenkiewicz U. Apoptotic Factors Are Evolutionarily Conserved Since Mitochondrial Domestication. Genome Biol Evol 2023; 15:evad154. [PMID: 37616576 PMCID: PMC10565124 DOI: 10.1093/gbe/evad154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/18/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
The mechanisms initiating apoptotic programmed cell death in diverse eukaryotes are very similar. Basically, the mitochondrial permeability transition activates apoptotic proteases, DNases, and flavoproteins such as apoptosis-inducing factors (AIFs). According to the hypothesis of the endosymbiotic origin of apoptosis, these mechanisms evolved during mitochondrial domestication. Various phylogenetic analyses, including ours, have suggested that apoptotic factors were eubacterial protomitochondrial toxins used for killing protoeukaryotic hosts. Here, we tested whether the function of yeast Saccharomyces cerevisiae apoptotic proteases (metacaspases Mca1 and Nma111), DNase Nuc1, and flavoprotein Ndi1 can be substituted with orthologs from remotely related eukaryotes such as plants, protists, and eubacteria. We found that orthologs of remotely related eukaryotic and even eubacterial proteins can initiate apoptosis in yeast when triggered by chemical stresses. This observation suggests that apoptotic mechanisms have been maintained since mitochondrial domestication, which occurred approximately 1,800 Mya. Additionally, it supports the hypothesis that some of these apoptotic factors could be modified eubacterial toxins.
Collapse
Affiliation(s)
- Vandana Kaushal
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warszawa, Poland
| | - Joanna Klim
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warszawa, Poland
| | - Adrianna Skoneczna
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warszawa, Poland
| | - Anna Kurlandzka
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warszawa, Poland
| | - Tuguldur Enkhbaatar
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warszawa, Poland
| | - Szymon Kaczanowski
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warszawa, Poland
| | - Urszula Zielenkiewicz
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warszawa, Poland
| |
Collapse
|
6
|
Vega M, Castillo D, de Cubas L, Wang Y, Huang Y, Hidalgo E, Cabrera M. Antagonistic effects of mitochondrial matrix and intermembrane space proteases on yeast aging. BMC Biol 2022; 20:160. [PMID: 35820914 PMCID: PMC9277893 DOI: 10.1186/s12915-022-01352-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/15/2022] [Indexed: 12/27/2022] Open
Abstract
Background In many organisms, aging is characterized by a loss of mitochondrial homeostasis. Multiple factors such as respiratory metabolism, mitochondrial fusion/fission, or mitophagy have been linked to cell longevity, but the exact impact of each one on the aging process is still unclear. Results Using the deletion mutant collection of the fission yeast Schizosaccharomyces pombe, we have developed a genome-wide screening for mutants with altered chronological lifespan. We have identified four mutants associated with proteolysis at the mitochondria that exhibit opposite effects on longevity. The analysis of the respiratory activity of these mutants revealed a positive correlation between increased respiration rate and prolonged lifespan. We also found that the phenotype of the long-lived protease mutants could not be explained by impaired mitochondrial fusion/fission activities, but it was dependent on mitophagy induction. The anti-aging role of mitophagy was supported by the effect of a mutant defective in degradation of mitochondria, which shortened lifespan of the long-lived mutants. Conclusions Our characterization of the mitochondrial protease mutants demonstrates that mitophagy sustains the lifespan extension of long-lived mutants displaying a higher respiration potential. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01352-w.
Collapse
Affiliation(s)
- Montserrat Vega
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003, Barcelona, Spain
| | | | - Laura de Cubas
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Yirong Wang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Margarita Cabrera
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003, Barcelona, Spain. .,Department of Biology, Geology, Physics and Inorganic Chemistry, Rey Juan Carlos University, C/ Tulipán s/n, 28933, Móstoles, Madrid, Spain.
| |
Collapse
|
7
|
Schnitzer B, Österberg L, Skopa I, Cvijovic M. Multi-scale model suggests the trade-off between protein and ATP demand as a driver of metabolic changes during yeast replicative ageing. PLoS Comput Biol 2022; 18:e1010261. [PMID: 35797415 PMCID: PMC9295998 DOI: 10.1371/journal.pcbi.1010261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/19/2022] [Accepted: 05/31/2022] [Indexed: 11/18/2022] Open
Abstract
The accumulation of protein damage is one of the major drivers of replicative ageing, describing a cell's reduced ability to reproduce over time even under optimal conditions. Reactive oxygen and nitrogen species are precursors of protein damage and therefore tightly linked to ageing. At the same time, they are an inevitable by-product of the cell's metabolism. Cells are able to sense high levels of reactive oxygen and nitrogen species and can subsequently adapt their metabolism through gene regulation to slow down damage accumulation. However, the older or damaged a cell is the less flexibility it has to allocate enzymes across the metabolic network, forcing further adaptions in the metabolism. To investigate changes in the metabolism during replicative ageing, we developed an multi-scale mathematical model using budding yeast as a model organism. The model consists of three interconnected modules: a Boolean model of the signalling network, an enzyme-constrained flux balance model of the central carbon metabolism and a dynamic model of growth and protein damage accumulation with discrete cell divisions. The model can explain known features of replicative ageing, like average lifespan and increase in generation time during successive division, in yeast wildtype cells by a decreasing pool of functional enzymes and an increasing energy demand for maintenance. We further used the model to identify three consecutive metabolic phases, that a cell can undergo during its life, and their influence on the replicative potential, and proposed an intervention span for lifespan control.
Collapse
Affiliation(s)
- Barbara Schnitzer
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Linnea Österberg
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Iro Skopa
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Marija Cvijovic
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
8
|
Österberg L, Domenzain I, Münch J, Nielsen J, Hohmann S, Cvijovic M. A novel yeast hybrid modeling framework integrating Boolean and enzyme-constrained networks enables exploration of the interplay between signaling and metabolism. PLoS Comput Biol 2021; 17:e1008891. [PMID: 33836000 PMCID: PMC8059808 DOI: 10.1371/journal.pcbi.1008891] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 04/21/2021] [Accepted: 03/18/2021] [Indexed: 12/11/2022] Open
Abstract
The interplay between nutrient-induced signaling and metabolism plays an important role in maintaining homeostasis and its malfunction has been implicated in many different human diseases such as obesity, type 2 diabetes, cancer, and neurological disorders. Therefore, unraveling the role of nutrients as signaling molecules and metabolites together with their interconnectivity may provide a deeper understanding of how these conditions occur. Both signaling and metabolism have been extensively studied using various systems biology approaches. However, they are mainly studied individually and in addition, current models lack both the complexity of the dynamics and the effects of the crosstalk in the signaling system. To gain a better understanding of the interconnectivity between nutrient signaling and metabolism in yeast cells, we developed a hybrid model, combining a Boolean module, describing the main pathways of glucose and nitrogen signaling, and an enzyme-constrained model accounting for the central carbon metabolism of Saccharomyces cerevisiae, using a regulatory network as a link. The resulting hybrid model was able to capture a diverse utalization of isoenzymes and to our knowledge outperforms constraint-based models in the prediction of individual enzymes for both respiratory and mixed metabolism. The model showed that during fermentation, enzyme utilization has a major contribution in governing protein allocation, while in low glucose conditions robustness and control are prioritized. In addition, the model was capable of reproducing the regulatory effects that are associated with the Crabtree effect and glucose repression, as well as regulatory effects associated with lifespan increase during caloric restriction. Overall, we show that our hybrid model provides a comprehensive framework for the study of the non-trivial effects of the interplay between signaling and metabolism, suggesting connections between the Snf1 signaling pathways and processes that have been related to chronological lifespan of yeast cells.
Collapse
Affiliation(s)
- Linnea Österberg
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Iván Domenzain
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Julia Münch
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
- BioInnovation Institute, Copenhagen, Denmark
| | - Stefan Hohmann
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Marija Cvijovic
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
9
|
Novo N, Ferreira P, Medina M. The apoptosis-inducing factor family: Moonlighting proteins in the crosstalk between mitochondria and nuclei. IUBMB Life 2021; 73:568-581. [PMID: 33035389 DOI: 10.1002/iub.2390] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/01/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022]
Abstract
In Homo sapiens, the apoptosis-inducing factor (AIF) family is represented by three different proteins, known as AIF, AMID and AIFL, that have in common the mitochondrial localisation in healthy cells, the presence of FAD- and NADH-dependent domains involved in an -albeit yet not well understood- oxidoreductase function and their capability to induce programmed cell death. AIF is the best characterised family member, while the information about AMID and AIFL is much scarcer. Nonetheless, available data support different roles as well as mechanisms of action of their particular apoptogenic and redox domains regarding both pro-apoptotic and anti-apoptotic activities. Moreover, diverse cellular functions, to date far from fully clarified, are envisaged for the transcripts corresponding to these three proteins. Here, we review the so far available knowledge on the moonlighting human AIF family from their molecular properties to their relevance in health and disease, through the evaluation of their potential cell death and redox functions in their different subcellular locations. This picture emerging from the current knowledge of the AIF family envisages its contribution to regulate signalling and transcription machineries in the crosstalk among mitochondria, the cytoplasm and the nucleus.
Collapse
Affiliation(s)
- Nerea Novo
- Department of Biochemistry and Molecular and Cellular Biology, Faculty of Sciences, University of Zaragoza, Zaragoza, Spain
- Institute of Biocomputation and Physics of Complex Systems (BIFI-IQFR and CBsC-CSIC Joint Units, University of Zaragoza, Zaragoza, Spain
| | - Patricia Ferreira
- Department of Biochemistry and Molecular and Cellular Biology, Faculty of Sciences, University of Zaragoza, Zaragoza, Spain
- Institute of Biocomputation and Physics of Complex Systems (BIFI-IQFR and CBsC-CSIC Joint Units, University of Zaragoza, Zaragoza, Spain
| | - Milagros Medina
- Department of Biochemistry and Molecular and Cellular Biology, Faculty of Sciences, University of Zaragoza, Zaragoza, Spain
- Institute of Biocomputation and Physics of Complex Systems (BIFI-IQFR and CBsC-CSIC Joint Units, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
10
|
Zheng J, Conrad M. The Metabolic Underpinnings of Ferroptosis. Cell Metab 2020; 32:920-937. [PMID: 33217331 DOI: 10.1016/j.cmet.2020.10.011] [Citation(s) in RCA: 819] [Impact Index Per Article: 163.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/23/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Acute or chronic cellular stress resulting from aberrant metabolic and biochemical processes may trigger a pervasive non-apoptotic form of cell death, generally known as ferroptosis. Ferroptosis is unique among the different cell death modalities, as it has been mostly linked to pathophysiological conditions and because several metabolic pathways, such as (seleno)thiol metabolism, fatty acid metabolism, iron handling, mevalonate pathway, and mitochondrial respiration, directly impinge on the cells' sensitivity toward lipid peroxidation and ferroptosis. Additionally, key cellular redox systems, such as selenium-dependent glutathione peroxidase 4 and the NAD(P)H/ferroptosis suppressor protein-1/ubiquinone axis, are at play that constantly surveil and neutralize oxidative damage to cellular membranes. Since this form of cell death emerges to be the root cause of a number of diseases and since it offers various pharmacologically tractable nodes for therapeutic intervention, there has been overwhelming interest in the last few years aiming for a better molecular understanding of the ferroptotic death process.
Collapse
Affiliation(s)
- Jiashuo Zheng
- Helmholtz Zentrum München, Institute of Metabolism and Cell Death, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Marcus Conrad
- Helmholtz Zentrum München, Institute of Metabolism and Cell Death, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; National Research Medical University, Laboratory of Experimental Oncology, Ostrovityanova 1, Moscow 117997, Russia.
| |
Collapse
|
11
|
Herrmann JM, Riemer J. Apoptosis inducing factor and mitochondrial NADH dehydrogenases: redox-controlled gear boxes to switch between mitochondrial biogenesis and cell death. Biol Chem 2020; 402:289-297. [PMID: 32769219 DOI: 10.1515/hsz-2020-0254] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023]
Abstract
The mitochondrial complex I serves as entry point for NADH into the electron transport chain. In animals, fungi and plants, additional NADH dehydrogenases carry out the same electron transfer reaction, however they do not pump protons. The apoptosis inducing factor (AIF, AIFM1 in humans) is a famous member of this group as it was the first pro-apoptotic protein identified that can induce caspase-independent cell death. Recent studies on AIFM1 and the NADH dehydrogenase Nde1 of baker's yeast revealed two independent and experimentally separable activities of this class of enzymes: On the one hand, these proteins promote the functionality of mitochondrial respiration in different ways: They channel electrons into the respiratory chain and, at least in animals, promote the import of Mia40 (named MIA40 or CHCHD4 in humans) and the assembly of complex I. On the other hand, they can give rise to pro-apoptotic fragments that are released from the mitochondria to trigger cell death. Here we propose that AIFM1 and Nde1 serve as conserved redox switches which measure metabolic conditions on the mitochondrial surface and translate it into a binary life/death decision. This function is conserved among eukaryotic cells and apparently used to purge metabolically compromised cells from populations.
Collapse
Affiliation(s)
- Johannes M Herrmann
- Department of Cell Biology, University of Kaiserslautern, Erwin-Schrödinger-Strasse 13, D-67663Kaiserslautern, Germany
| | - Jan Riemer
- Department of Biochemistry, University of Cologne, Zülpicher Str. 47A, D-50674Cologne, Germany
| |
Collapse
|
12
|
AIF meets the CHCHD4/Mia40-dependent mitochondrial import pathway. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165746. [PMID: 32105825 DOI: 10.1016/j.bbadis.2020.165746] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023]
Abstract
In the mitochondria of healthy cells, Apoptosis-Inducing factor (AIF) is required for the optimal functioning of the respiratory chain machinery, mitochondrial integrity, cell survival, and proliferation. In all analysed species, it was revealed that the downregulation or depletion of AIF provokes mainly the post-transcriptional loss of respiratory chain Complex I protein subunits. Recent progress in the field has revealed that AIF fulfils its mitochondrial pro-survival function by interacting physically and functionally with CHCHD4, the evolutionarily-conserved human homolog of yeast Mia40. The redox-regulated CHCHD4/Mia40-dependent import machinery operates in the intermembrane space of the mitochondrion and controls the import of a set of nuclear-encoded cysteine-motif carrying protein substrates. In addition to their participation in the biogenesis of specific respiratory chain protein subunits, CHCHD4/Mia40 substrates are also implicated in the control of redox regulation, antioxidant response, translation, lipid homeostasis and mitochondrial ultrastructure and dynamics. Here, we discuss recent insights on the AIF/CHCHD4-dependent protein import pathway and review current data concerning the CHCHD4/Mia40 protein substrates in metazoan. Recent findings and the identification of disease-associated mutations in AIF or in specific CHCHD4/Mia40 substrates have highlighted these proteins as potential therapeutic targets in a variety of human disorders.
Collapse
|
13
|
Zimmermann A, Tadic J, Kainz K, Hofer SJ, Bauer MA, Carmona-Gutierrez D, Madeo F. Transcriptional and epigenetic control of regulated cell death in yeast. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 352:55-82. [PMID: 32334817 DOI: 10.1016/bs.ircmb.2019.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Unicellular organisms like yeast can undergo controlled demise in a manner that is partly reminiscent of mammalian cell death. This is true at the levels of both mechanistic and functional conservation. Yeast offers the combination of unparalleled genetic amenability and a comparatively simple biology to understand both the regulation and evolution of cell death. In this minireview, we address the capacity of the nucleus as a regulatory hub during yeast regulated cell death (RCD), which is becoming an increasingly central question in yeast RCD research. In particular, we explore and critically discuss the available data on stressors and signals that specifically impinge on the nucleus. Moreover, we also analyze the current knowledge on nuclear factors as well as on transcriptional control and epigenetic events that orchestrate yeast RCD. Altogether we conclude that the functional significance of the nucleus for yeast RCD in undisputable, but that further exploration beyond correlative work is necessary to disentangle the role of nuclear events in the regulatory network.
Collapse
Affiliation(s)
- Andreas Zimmermann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Jelena Tadic
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria; Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Katharina Kainz
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Sebastian J Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Maria A Bauer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | | | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria.
| |
Collapse
|
14
|
Saladi S, Boos F, Poglitsch M, Meyer H, Sommer F, Mühlhaus T, Schroda M, Schuldiner M, Madeo F, Herrmann JM. The NADH Dehydrogenase Nde1 Executes Cell Death after Integrating Signals from Metabolism and Proteostasis on the Mitochondrial Surface. Mol Cell 2020; 77:189-202.e6. [DOI: 10.1016/j.molcel.2019.09.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/16/2019] [Accepted: 09/23/2019] [Indexed: 12/22/2022]
|
15
|
Lu H, Shu Q, Lou H, Chen Q. Mitochondria-Mediated Programmed Cell Death in Saccharomyces cerevisiae Induced by Betulinic Acid Is Accelerated by the Deletion of PEP4 Gene. Microorganisms 2019; 7:microorganisms7110538. [PMID: 31703462 PMCID: PMC6920885 DOI: 10.3390/microorganisms7110538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 10/27/2019] [Accepted: 11/05/2019] [Indexed: 11/22/2022] Open
Abstract
In this work, using Saccharomyces cerevisiae as a model, we showed that BetA could inhibit cell proliferation and lead to lethal cytotoxicity accompanying programmed cell death (PCD). Interestingly, it was found that vacuolar protease Pep4p played a pivotal role in BetA-induced S. cerevisiae PCD. The presence of Pep4p reduced the damage of BetA-induced cells. This work implied that BetA may induce cell death of S. cerevisiae through mitochondria-mediated PCD, and the deletion of Pep4 gene possibly accelerated the effect of PCD. The present investigation provided the preliminary research for the complicated mechanism of BetA-induced cell PCD regulated by vacular protease Pep4p and lay the foundation for understanding of the Pep4p protein in an animal model.
Collapse
Affiliation(s)
| | | | | | - Qihe Chen
- Correspondence: ; Tel.: +86-0571-8698-4316
| |
Collapse
|
16
|
Alternative NAD(P)H dehydrogenase and alternative oxidase: Proposed physiological roles in animals. Mitochondrion 2019; 45:7-17. [DOI: 10.1016/j.mito.2018.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 11/01/2017] [Accepted: 01/26/2018] [Indexed: 12/12/2022]
|
17
|
Leiter É, Csernoch L, Pócsi I. Programmed cell death in human pathogenic fungi - a possible therapeutic target. Expert Opin Ther Targets 2018; 22:1039-1048. [PMID: 30360667 DOI: 10.1080/14728222.2018.1541087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Diseases caused by pathogenic fungi are increasing because of antibiotic overuse, the rise of immunosuppressive therapies, and climate change. The limited variety of antimycotics and the rapid adaptation of pathogenic fungi to antifungal agents serve to exacerbate this issue. Unfortunately, about 1.6 million people are killed by fungal infections annually. Areas covered: The discovery of the small antimicrobial proteins produced by microorganisms, animals, humans, and plants will hopefully overcome challenges in the treatment of fungal infections. These small proteins are highly stable and any resistance to them rarely evolves; therefore, they are potentially good candidates for the treatment and prevention of infections caused by pathogenic fungi. Some of these proteins target the programmed cell death machinery of pathogenic fungi; this is potentially a novel approach in antimycotic therapies. In this review, we highlight the elements of apoptosis in human pathogenic fungi and related model organisms and discuss the possible therapeutic potential of the apoptosis-inducing, small, antifungal proteins. Expert opinion: Small antimicrobial proteins may establish a new class of antimycotics in the future. The rarity of resistance and their synergistic effects with other frequently used antifungal agents may help pave the way for their use in the clinic.
Collapse
Affiliation(s)
- Éva Leiter
- a Department of Biotechnology and Microbiology , University of Debrecen , Debrecen , Hungary
| | - László Csernoch
- b Department of Physiology , University of Debrecen , Debrecen , Hungary
| | - István Pócsi
- a Department of Biotechnology and Microbiology , University of Debrecen , Debrecen , Hungary
| |
Collapse
|
18
|
Ejmal MA, Holland DJ, MacDiarmid RM, Pearson MN. The Effect of Aspergillus Thermomutatus Chrysovirus 1 on the Biology of Three Aspergillus Species. Viruses 2018; 10:E539. [PMID: 30279352 PMCID: PMC6213286 DOI: 10.3390/v10100539] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/25/2018] [Accepted: 09/29/2018] [Indexed: 12/16/2022] Open
Abstract
This study determined the effects of Aspergillus thermomutatus chrysovirus 1 (AthCV1), isolated from Aspergillus thermomutatus, on A. fumigatus, A. nidulans and A. niger. Protoplasts of virus-free isolates of A. fumigatus, A. nidulans and A. niger were transfected with purified AthCV1 particles and the phenotype, growth and sporulation of the isogenic AthCV1-free and AthCV1-infected lines assessed at 20 °C and 37 °C and gene expression data collected at 37 °C. AthCV1-free and AthCV1-infected A. fumigatus produced only conidia at both temperatures but more than ten-fold reduced compared to the AthCV1-infected line. Conidiation was also significantly reduced in infected lines of A. nidulans and A. niger at 37 °C. AthCV1-infected lines of A. thermomutatus and A. nidulans produced large numbers of ascospores at both temperatures, whereas the AthCV1-free line of the former did not produce ascospores. AthCV1-infected lines of all species developed sectoring phenotypes with sclerotia produced in aconidial sectors of A. niger at 37 °C. AthCV1 was detected in 18% of sclerotia produced by AthCV1-infected A. niger and 31% of ascospores from AthCV1-infected A. nidulans. Transcriptome analysis of the naturally AthCV1-infected A. thermomutatus and the three AthCV1-transfected Aspergillus species showed altered gene expression as a result of AthCV1-infection. The results demonstrate that AthCV1 can infect a range of Aspergillus species resulting in reduced sporulation, a potentially useful attribute for a biological control agent.
Collapse
Affiliation(s)
- Mahjoub A Ejmal
- School of Biological Sciences, the University of Auckland, Auckland 1142 New Zealand.
| | - David J Holland
- Infectious Diseases Unit, Division of Medicine, Middlemore Hospital, Auckland 1640, New Zealand.
| | - Robin M MacDiarmid
- School of Biological Sciences, the University of Auckland, Auckland 1142 New Zealand.
- Plant and Food Research, Auckland 1142, New Zealand.
| | - Michael N Pearson
- School of Biological Sciences, the University of Auckland, Auckland 1142 New Zealand.
| |
Collapse
|
19
|
Baccolo G, Stamerra G, Coppola DP, Orlandi I, Vai M. Mitochondrial Metabolism and Aging in Yeast. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 340:1-33. [PMID: 30072089 DOI: 10.1016/bs.ircmb.2018.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mitochondrial functionality is one of the main factors involved in cell survival, and mitochondrial dysfunctions have been identified as an aging hallmark. In particular, the insurgence of mitochondrial dysfunctions is tightly connected to mitochondrial metabolism. During aging, both mitochondrial oxidative and biosynthetic metabolisms are progressively altered, with the development of malfunctions, in turn affecting mitochondrial functionality. In this context, the relation between mitochondrial pathways and aging is evolutionarily conserved from single-celled organisms, such as yeasts, to complex multicellular organisms, such as humans. Useful information has been provided by the yeast Saccharomyces cerevisiae, which is being increasingly acknowledged as a valuable model system to uncover mechanisms underlying cellular longevity in humans. On this basis, we review the impact of specific aspects of mitochondrial metabolism on aging supported by the contributions brought by numerous studies performed employing yeast. Initially, we will focus on the tricarboxylic acid cycle and oxidative phosphorylation, describing how their modulation has consequences on cellular longevity. Afterward, we will report information regarding the importance of nicotinamide adenine dinucleotide (NAD) metabolism during aging, highlighting its relation with mitochondrial functionality. The comprehension of these key points regarding mitochondrial metabolism and their physiological importance is an essential first step for the development of therapeutic interventions that point to increase life quality during aging, therefore promoting "healthy aging," as well as lifespan itself.
Collapse
Affiliation(s)
- Giacomo Baccolo
- SYSBIO Centre for Systems Biology, Milano, Italy; Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Giulia Stamerra
- SYSBIO Centre for Systems Biology, Milano, Italy; Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | | | - Ivan Orlandi
- SYSBIO Centre for Systems Biology, Milano, Italy; Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Marina Vai
- SYSBIO Centre for Systems Biology, Milano, Italy; Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| |
Collapse
|
20
|
Ancestral State Reconstruction of the Apoptosis Machinery in the Common Ancestor of Eukaryotes. G3-GENES GENOMES GENETICS 2018; 8:2121-2134. [PMID: 29703784 PMCID: PMC5982838 DOI: 10.1534/g3.118.200295] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Apoptotic cell death is a type of eukaryotic cell death. In animals, it regulates development, is involved in cancer suppression, and causes cell death during pathological aging of neuronal cells in neurodegenerative diseases such as Alzheimer's. Mitochondrial apoptotic-like cell death, a form of primordial apoptosis, also occurs in unicellular organisms. Here, we ask the question why the apoptosis machinery has been acquired and maintained in unicellular organisms and attempt to answer it by performing ancestral state reconstruction. We found indications of an ancient evolutionary arms race between protomitochondria and host cells, leading to the establishment of the currently existing apoptotic pathways. According to this reconstruction, the ancestral protomitochondrial apoptosis machinery contained both caspases and metacaspases, four types of apoptosis induction factors (AIFs), both fungal and animal OMI/HTR proteases, and various apoptotic DNases. This leads to the prediction that in extant unicellular eukaryotes, the apoptotic factors are involved in mitochondrial respiration and their activity is needed exclusively in aerobic conditions. We test this prediction experimentally using yeast and find that a loss of the main apoptotic factors is beneficial under anaerobic conditions yet deleterious under aerobic conditions in the absence of lethal stimuli. We also point out potential medical implications of these findings.
Collapse
|
21
|
Transcriptional Profiling of Saccharomyces cerevisiae Reveals the Impact of Variation of a Single Transcription Factor on Differential Gene Expression in 4NQO, Fermentable, and Nonfermentable Carbon Sources. G3-GENES GENOMES GENETICS 2018; 8:607-619. [PMID: 29208650 PMCID: PMC5919752 DOI: 10.1534/g3.117.300138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cellular metabolism can change the potency of a chemical's tumorigenicity. 4-nitroquinoline-1-oxide (4NQO) is a tumorigenic drug widely used on animal models for cancer research. Polymorphisms of the transcription factor Yrr1 confer different levels of resistance to 4NQO in Saccharomyces cerevisiae To study how different Yrr1 alleles regulate gene expression leading to resistance, transcriptomes of three isogenic Scerevisiae strains carrying different Yrr1 alleles were profiled via RNA sequencing (RNA-Seq) and chromatin immunoprecipitation coupled with sequencing (ChIP-Seq) in the presence and absence of 4NQO. In response to 4NQO, all alleles of Yrr1 drove the expression of SNQ2 (a multidrug transporter), which was highest in the presence of 4NQO resistance-conferring alleles, and overexpression of SNQ2 alone was sufficient to overcome 4NQO-sensitive growth. Using shape metrics to refine the ChIP-Seq peaks, Yrr1 strongly associated with three loci including SNQ2 In addition to a known Yrr1 target SNG1, Yrr1 also bound upstream of RPL35B; however, overexpression of these genes did not confer 4NQO resistance. RNA-Seq data also implicated nucleotide synthesis pathways including the de novo purine pathway, and the ribonuclease reductase pathways were downregulated in response to 4NQO. Conversion of a 4NQO-sensitive allele to a 4NQO-resistant allele by a single point mutation mimicked the 4NQO-resistant allele in phenotype, and while the 4NQO resistant allele increased the expression of the ADE genes in the de novo purine biosynthetic pathway, the mutant Yrr1 increased expression of ADE genes even in the absence of 4NQO. These same ADE genes were only increased in the wild-type alleles in the presence of 4NQO, indicating that the point mutation activated Yrr1 to upregulate a pathway normally only activated in response to stress. The various Yrr1 alleles also influenced growth on different carbon sources by altering the function of the mitochondria. Hence, the complement to 4NQO resistance was poor growth on nonfermentable carbon sources, which in turn varied depending on the allele of Yrr1 expressed in the isogenic yeast. The oxidation state of the yeast affected the 4NQO toxicity by altering the reactive oxygen species (ROS) generated by cellular metabolism. The integration of RNA-Seq and ChIP-Seq elucidated how Yrr1 regulates global gene transcription in response to 4NQO and how various Yrr1 alleles confer differential resistance to 4NQO. This study provides guidance for further investigation into how Yrr1 regulates cellular responses to 4NQO, as well as transcriptomic resources for further analysis of transcription factor variation on carbon source utilization.
Collapse
|
22
|
Empirical verification of evolutionary theories of aging. Aging (Albany NY) 2017; 8:2568-2589. [PMID: 27783562 PMCID: PMC5115907 DOI: 10.18632/aging.101090] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/11/2016] [Indexed: 01/09/2023]
Abstract
We recently selected 3 long-lived mutant strains of Saccharomyces cerevisiae by a lasting exposure to exogenous lithocholic acid. Each mutant strain can maintain the extended chronological lifespan after numerous passages in medium without lithocholic acid. In this study, we used these long-lived yeast mutants for empirical verification of evolutionary theories of aging. We provide evidence that the dominant polygenic trait extending longevity of each of these mutants 1) does not affect such key features of early-life fitness as the exponential growth rate, efficacy of post-exponential growth and fecundity; and 2) enhances such features of early-life fitness as susceptibility to chronic exogenous stresses, and the resistance to apoptotic and liponecrotic forms of programmed cell death. These findings validate evolutionary theories of programmed aging. We also demonstrate that under laboratory conditions that imitate the process of natural selection within an ecosystem, each of these long-lived mutant strains is forced out of the ecosystem by the parental wild-type strain exhibiting shorter lifespan. We therefore concluded that yeast cells have evolved some mechanisms for limiting their lifespan upon reaching a certain chronological age. These mechanisms drive the evolution of yeast longevity towards maintaining a finite yeast chronological lifespan within ecosystems.
Collapse
|
23
|
Uversky VN. Paradoxes and wonders of intrinsic disorder: Stability of instability. INTRINSICALLY DISORDERED PROTEINS 2017; 5:e1327757. [PMID: 30250771 DOI: 10.1080/21690707.2017.1327757] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 04/10/2017] [Indexed: 01/03/2023]
Abstract
This article continues a series of short comments on the paradoxes and wonders of the protein intrinsic disorder phenomenon by introducing the "stability of instability" paradox. Intrinsically disordered proteins (IDPs) are characterized by the lack of stable 3D-structure, and, as a result, have an exceptional ability to sustain exposure to extremely harsh environmental conditions (an illustration of the "you cannot break what is already broken" principle). Extended IDPs are known to possess extreme thermal and acid stability and are able either to keep their functionality under these extreme conditions or to rapidly regain their functionality after returning to the normal conditions. Furthermore, sturdiness of intrinsic disorder and its capability to "ignore" harsh conditions provides some interesting and important advantages to its carriers, at the molecular (e.g., the cell wall-anchored accumulation-associated protein playing a crucial role in intercellular adhesion within the biofilm of Staphylococcus epidermidis), supramolecular (e.g., protein complexes, biologic liquid-liquid phase transitions, and proteinaceous membrane-less organelles), and organismal levels (e.g., the recently popularized case of the microscopic animals, tardigrades, or water bears, that use intrinsically disordered proteins to survive desiccation).
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| |
Collapse
|
24
|
Vilaça R, Barros I, Matmati N, Silva E, Martins T, Teixeira V, Hannun YA, Costa V. The ceramide activated protein phosphatase Sit4 impairs sphingolipid dynamics, mitochondrial function and lifespan in a yeast model of Niemann-Pick type C1. Biochim Biophys Acta Mol Basis Dis 2017; 1864:79-88. [PMID: 28988886 DOI: 10.1016/j.bbadis.2017.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 09/29/2017] [Accepted: 10/05/2017] [Indexed: 12/20/2022]
Abstract
The Niemann-Pick type C is a rare neurodegenerative disease that results from loss-of-function point mutations in NPC1 or NPC2, which affect the homeostasis of sphingolipids and sterols in human cells. We have previously shown that yeast lacking Ncr1, the orthologue of human NPC1 protein, display a premature ageing phenotype and higher sensitivity to oxidative stress associated with mitochondrial dysfunctions and accumulation of long chain bases. In this study, a lipidomic analysis revealed specific changes in the levels of ceramide species in ncr1Δ cells, including decreases in dihydroceramides and increases in phytoceramides. Moreover, the activation of Sit4, a ceramide-activated protein phosphatase, increased in ncr1Δ cells. Deletion of SIT4 or CDC55, its regulatory subunit, increased the chronological lifespan and hydrogen peroxide resistance of ncr1Δ cells and suppressed its mitochondrial defects. Notably, Sch9 and Pkh1-mediated phosphorylation of Sch9 decreased significantly in ncr1Δsit4Δ cells. These results suggest that phytoceramide accumulation and Sit4-dependent signaling mediate the mitochondrial dysfunction and shortened lifespan in the yeast model of Niemann-Pick type C1, in part through modulation of the Pkh1-Sch9 pathway.
Collapse
Affiliation(s)
- Rita Vilaça
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Ivo Barros
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Nabil Matmati
- Stony Brook Cancer Center, Stony Brook University, Health Science Center, Stony Brook, NY, USA
| | - Elísio Silva
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Telma Martins
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Vítor Teixeira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Yusuf A Hannun
- Stony Brook Cancer Center, Stony Brook University, Health Science Center, Stony Brook, NY, USA
| | - Vítor Costa
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
25
|
The role of flavin-containing enzymes in mitochondrial membrane hyperpolarization and ROS production in respiring Saccharomyces cerevisiae cells under heat-shock conditions. Sci Rep 2017; 7:2586. [PMID: 28566714 PMCID: PMC5451409 DOI: 10.1038/s41598-017-02736-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/19/2017] [Indexed: 01/01/2023] Open
Abstract
Heat shock is known to accelerate mitochondrial ROS production in Saccharomyces cerevisiae cells. But how yeast mitochondria produce ROS under heat-shock condition is not completely clear. Previously, it was shown that ROS production in heat-stressed fermenting yeast cells was accompanied by mitochondrial membrane potential (MMP) increase. In the current investigation the relationship between ROS production and MMP was studied in respiring yeast cells in stationary phase, using diphenyleneiodonium chloride (DPI), an inhibitor of flavin-containing proteins, as well as the mutants deleted for NDE1, NDE2 and NDI1 genes, encoding flavin-containing external and internal NADH dehydrogenases. It was shown that heat shock induced a transient burst in mitochondrial ROS production, which was paralleled by MMP rise. ROS production and MMP was significantly suppressed by DPI addition and deletion of NDE1. The effect of DPI on ROS production and MMP rise was specific for respiring cells. The results obtained suggest that the functioning of mitochondrial flavin-binding enzymes, Nde1p for instance, is required for the hyperpolarization of inner mitochondrial membrane and ROS production in respiring S. cerevisiae cells under heat-shock conditions.
Collapse
|
26
|
Verhoeven MD, Lee M, Kamoen L, van den Broek M, Janssen DB, Daran JMG, van Maris AJA, Pronk JT. Mutations in PMR1 stimulate xylose isomerase activity and anaerobic growth on xylose of engineered Saccharomyces cerevisiae by influencing manganese homeostasis. Sci Rep 2017; 7:46155. [PMID: 28401919 PMCID: PMC5388867 DOI: 10.1038/srep46155] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/09/2017] [Indexed: 01/04/2023] Open
Abstract
Combined overexpression of xylulokinase, pentose-phosphate-pathway enzymes and a heterologous xylose isomerase (XI) is required but insufficient for anaerobic growth of Saccharomyces cerevisiae on d-xylose. Single-step Cas9-assisted implementation of these modifications yielded a yeast strain expressing Piromyces XI that showed fast aerobic growth on d-xylose. However, anaerobic growth required a 12-day adaptation period. Xylose-adapted cultures carried mutations in PMR1, encoding a Golgi Ca2+/Mn2+ ATPase. Deleting PMR1 in the parental XI-expressing strain enabled instantaneous anaerobic growth on d-xylose. In pmr1 strains, intracellular Mn2+ concentrations were much higher than in the parental strain. XI activity assays in cell extracts and reconstitution experiments with purified XI apoenzyme showed superior enzyme kinetics with Mn2+ relative to other divalent metal ions. This study indicates engineering of metal homeostasis as a relevant approach for optimization of metabolic pathways involving metal-dependent enzymes. Specifically, it identifies metal interactions of heterologous XIs as an underexplored aspect of engineering xylose metabolism in yeast.
Collapse
Affiliation(s)
- Maarten D Verhoeven
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Misun Lee
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Lycka Kamoen
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Marcel van den Broek
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Dick B Janssen
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Jean-Marc G Daran
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Antonius J A van Maris
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
27
|
Santos RM, Nogueira FC, Brasil AA, Carvalho PC, Leprevost FV, Domont GB, Eleutherio EC. Quantitative proteomic analysis of the Saccharomyces cerevisiae industrial strains CAT-1 and PE-2. J Proteomics 2017; 151:114-121. [DOI: 10.1016/j.jprot.2016.08.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 05/25/2016] [Accepted: 08/25/2016] [Indexed: 10/21/2022]
|
28
|
Petitjean M, Teste MA, Léger-Silvestre I, François JM, Parrou JL. RETRACTED:A new function for the yeast trehalose-6P synthase (Tps1) protein, as key pro-survival factor during growth, chronological ageing, and apoptotic stress. Mech Ageing Dev 2016; 161:234-246. [PMID: 27507670 DOI: 10.1016/j.mad.2016.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 07/20/2016] [Accepted: 07/25/2016] [Indexed: 12/20/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal).
This article has been retracted at the request of Marie-Ange Teste, Isabelle Léger-Silvestre, Jean M François and Jean-Luc Parrou. Marjorie Petitjean could not be reached.
The corresponding author identified major issues and brought them to the attention of the Journal.
These issues span from significant errors in the Material and Methods section of the article and major flaws in cytometry data analysis to data fabrication on the part of one of the authors.
Given these errors, the retracting authors state that the only responsible course of action would be to retract the article, to respect scientific integrity and maintain the standards and rigor of literature from the retracting authors' group as well as the Journal.
The retracting authors sincerely apologize to the readers and editors.
Collapse
Affiliation(s)
| | - Marie-Ange Teste
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Isabelle Léger-Silvestre
- Laboratoire de Biologie Moléculaire Eucaryote, CNRS, Université de Toulouse, 118 route de Narbonne, F-31000 Toulouse, France
| | - Jean M François
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Jean-Luc Parrou
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France.
| |
Collapse
|
29
|
Cell-cycle involvement in autophagy and apoptosis in yeast. Mech Ageing Dev 2016; 161:211-224. [PMID: 27450768 DOI: 10.1016/j.mad.2016.07.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/16/2016] [Accepted: 07/17/2016] [Indexed: 12/14/2022]
Abstract
Regulation of the cell cycle and apoptosis are two eukaryotic processes required to ensure maintenance of genomic integrity, especially in response to DNA damage. The ease with which yeast, amongst other eukaryotes, can switch from cellular proliferation to cell death may be the result of a common set of biochemical factors which play dual roles depending on the cell's physiological state. A wide variety of homologues are shared between different yeasts and metazoans and this conservation confirms their importance. This review gives an overview of key molecular players involved in yeast cell-cycle regulation, and those involved in mechanisms which are induced by cell-cycle dysregulation. One such mechanism is autophagy which, depending on the severity and type of DNA damage, may either contribute to the cell's survival or death. Cell-cycle dysregulation due to checkpoint deficiency leads to mitotic catastrophe which in turn leads to programmed cell death. Molecular players implicated in the yeast apoptotic pathway were shown to play important roles in the cell cycle. These include the metacaspase Yca1p, the caspase-like protein Esp1p, the cohesin subunit Mcd1p, as well as the inhibitor of apoptosis protein Bir1p. The roles of these molecular players are discussed.
Collapse
|
30
|
Busti S, Mapelli V, Tripodi F, Sanvito R, Magni F, Coccetti P, Rocchetti M, Nielsen J, Alberghina L, Vanoni M. Respiratory metabolism and calorie restriction relieve persistent endoplasmic reticulum stress induced by calcium shortage in yeast. Sci Rep 2016; 6:27942. [PMID: 27305947 PMCID: PMC4910072 DOI: 10.1038/srep27942] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/27/2016] [Indexed: 11/26/2022] Open
Abstract
Calcium homeostasis is crucial to eukaryotic cell survival. By acting as an enzyme cofactor and a second messenger in several signal transduction pathways, the calcium ion controls many essential biological processes. Inside the endoplasmic reticulum (ER) calcium concentration is carefully regulated to safeguard the correct folding and processing of secretory proteins. By using the model organism Saccharomyces cerevisiae we show that calcium shortage leads to a slowdown of cell growth and metabolism. Accumulation of unfolded proteins within the calcium-depleted lumen of the endoplasmic reticulum (ER stress) triggers the unfolded protein response (UPR) and generates a state of oxidative stress that decreases cell viability. These effects are severe during growth on rapidly fermentable carbon sources and can be mitigated by decreasing the protein synthesis rate or by inducing cellular respiration. Calcium homeostasis, protein biosynthesis and the unfolded protein response are tightly intertwined and the consequences of facing calcium starvation are determined by whether cellular energy production is balanced with demands for anabolic functions. Our findings confirm that the connections linking disturbance of ER calcium equilibrium to ER stress and UPR signaling are evolutionary conserved and highlight the crucial role of metabolism in modulating the effects induced by calcium shortage.
Collapse
Affiliation(s)
- Stefano Busti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
- SYSBIO, Centre of Systems Biology, Milan, Italy
| | - Valeria Mapelli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden
| | - Farida Tripodi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
- SYSBIO, Centre of Systems Biology, Milan, Italy
| | - Rossella Sanvito
- Department of Health Sciences, University of Milano-Bicocca, Milan, Italy
| | - Fulvio Magni
- Department of Health Sciences, University of Milano-Bicocca, Milan, Italy
| | - Paola Coccetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
- SYSBIO, Centre of Systems Biology, Milan, Italy
| | - Marcella Rocchetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Lilia Alberghina
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
- SYSBIO, Centre of Systems Biology, Milan, Italy
| | - Marco Vanoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
- SYSBIO, Centre of Systems Biology, Milan, Italy
| |
Collapse
|
31
|
Falcone C, Mazzoni C. External and internal triggers of cell death in yeast. Cell Mol Life Sci 2016; 73:2237-50. [PMID: 27048816 PMCID: PMC4887522 DOI: 10.1007/s00018-016-2197-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 01/30/2023]
Abstract
In recent years, yeast was confirmed as a useful eukaryotic model system to decipher the complex mechanisms and networks occurring in higher eukaryotes, particularly in mammalian cells, in physiological as well in pathological conditions. This article focuses attention on the contribution of yeast in the study of a very complex scenario, because of the number and interconnection of pathways, represented by cell death. Yeast, although it is a unicellular organism, possesses the basal machinery of different kinds of cell death occurring in higher eukaryotes, i.e., apoptosis, regulated necrosis and autophagy. Here we report the current knowledge concerning the yeast orthologs of main mammalian cell death regulators and executors, the role of organelles and compartments, and the cellular phenotypes observed in the different forms of cell death in response to external and internal triggers. Thanks to the ease of genetic manipulation of this microorganism, yeast strains expressing human genes that promote or counteract cell death, onset of tumors and neurodegenerative diseases have been constructed. The effects on yeast cells of some of these genes are also presented.
Collapse
Affiliation(s)
- Claudio Falcone
- Pasteur Institute-Cenci Bolognetti Foundation; Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Cristina Mazzoni
- Pasteur Institute-Cenci Bolognetti Foundation; Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
32
|
Abstract
Apoptosis or programmed cell death (PCD) was initially described in metazoans as a genetically controlled process leading to intracellular breakdown and engulfment by a neighboring cell . This process was distinguished from other forms of cell death like necrosis by maintenance of plasma membrane integrity prior to engulfment and the well-defined genetic system controlling this process. Apoptosis was originally described as a mechanism to reshape tissues during development. Given this context, the assumption was made that this process would not be found in simpler eukaryotes such as budding yeast. Although basic components of the apoptotic pathway were identified in yeast, initial observations suggested that it was devoid of prosurvival and prodeath regulatory proteins identified in mammalian cells. However, as apoptosis became extensively linked to the elimination of damaged cells, key PCD regulatory proteins were identified in yeast that play similar roles in mammals. This review highlights recent discoveries that have permitted information regarding PCD regulation in yeast to now inform experiments in animals.
Collapse
|
33
|
Kaczanowski S. Apoptosis: its origin, history, maintenance and the medical implications for cancer and aging. Phys Biol 2016; 13:031001. [DOI: 10.1088/1478-3975/13/3/031001] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
34
|
Miriyala S, Thippakorn C, Chaiswing L, Xu Y, Noel T, Tovmasyan A, Batinic-Haberle I, Vander Kooi CW, Chi W, Latif AA, Panchatcharam M, Prachayasittikul V, Butterfield DA, Vore M, Moscow J, St Clair DK. Novel role of 4-hydroxy-2-nonenal in AIFm2-mediated mitochondrial stress signaling. Free Radic Biol Med 2016; 91:68-80. [PMID: 26689472 PMCID: PMC4761499 DOI: 10.1016/j.freeradbiomed.2015.12.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 12/03/2015] [Accepted: 12/04/2015] [Indexed: 01/31/2023]
Abstract
Cardiovascular complications are major side effects of many anticancer drugs. Accumulated evidence indicates that oxidative stress in mitochondria plays an important role in cardiac injury, but how mitochondrial redox mechanisms are involved in cardiac dysfunction remains unclear. Here, we demonstrate that 4-hydroxy-2-nonenal (HNE) activates the translocation of the mitochondrial apoptosis inducing factor (AIFm2) and facilitates apoptosis in heart tissue of mice and humans. Doxorubicin treatments significantly enhance cardiac levels of HNE and AIFm2. HNE adduction of AIFm2 inactivates the NADH oxidoreductase activity of AIFm2 and facilitates its translocation from mitochondria. His 174 on AIFm2 is the critical target of HNE adduction that triggers this functional switch. HNE adduction and translocation of AIFm2 from mitochondria upon Doxorubicin treatment are attenuated by superoxide dismutase mimetics. These results identify a previously unrecognized role of HNE with important consequences for mitochondrial stress signaling, heart failure, and the side effects of cancer therapy.
Collapse
Affiliation(s)
- Sumitra Miriyala
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA; Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | | | - Luksana Chaiswing
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, USA
| | - Yong Xu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Teresa Noel
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Artak Tovmasyan
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | | | - Wang Chi
- Biostatistics Core, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Ahmed Abdel Latif
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY, USA
| | - Manikandan Panchatcharam
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | | | - D Allan Butterfield
- Department of Chemistry and Membrane Sciences, University of Kentucky, Lexington, KY, USA
| | - Mary Vore
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Jeffrey Moscow
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Daret K St Clair
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
35
|
Involvement of mitochondrial proteins in calcium signaling and cell death induced by staurosporine in Neurospora crassa. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1064-74. [DOI: 10.1016/j.bbabio.2015.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 04/23/2015] [Accepted: 05/15/2015] [Indexed: 12/20/2022]
|
36
|
Elguindy MM, Nakamaru-Ogiso E. Apoptosis-inducing Factor (AIF) and Its Family Member Protein, AMID, Are Rotenone-sensitive NADH:Ubiquinone Oxidoreductases (NDH-2). J Biol Chem 2015; 290:20815-20826. [PMID: 26063804 PMCID: PMC4543644 DOI: 10.1074/jbc.m115.641498] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 05/26/2015] [Indexed: 11/06/2022] Open
Abstract
Apoptosis-inducing factor (AIF) and AMID (AIF-homologous mitochondrion-associated inducer of death) are flavoproteins. Although AIF was originally discovered as a caspase-independent cell death effector, bioenergetic roles of AIF, particularly relating to complex I functions, have since emerged. However, the role of AIF in mitochondrial respiration and redox metabolism has remained unknown. Here, we investigated the redox properties of human AIF and AMID by comparing them with yeast Ndi1, a type 2 NADH:ubiquinone oxidoreductase (NDH-2) regarded as alternative complex I. Isolated AIF and AMID containing naturally incorporated FAD displayed no NADH oxidase activities. However, after reconstituting isolated AIF or AMID into bacterial or mitochondrial membranes, N-terminally tagged AIF and AMID displayed substantial NADH:O₂ activities and supported NADH-linked proton pumping activities in the host membranes almost as efficiently as Ndi1. NADH:ubiquinone-1 activities in the reconstituted membranes were highly sensitive to 2-n-heptyl-4-hydroxyquinoline-N-oxide (IC₅₀ = ∼1 μm), a quinone-binding inhibitor. Overexpressing N-terminally tagged AIF and AMID enhanced the growth of a double knock-out Escherichia coli strain lacking complex I and NDH-2. In contrast, C-terminally tagged AIF and NADH-binding site mutants of N-terminally tagged AIF and AMID failed to show both NADH:O₂ activity and the growth-enhancing effect. The disease mutant AIFΔR201 showed decreased NADH:O₂ activity and growth-enhancing effect. Furthermore, we surprisingly found that the redox activities of N-terminally tagged AIF and AMID were sensitive to rotenone, a well known complex I inhibitor. We propose that AIF and AMID are previously unidentified mammalian NDH-2 enzymes, whose bioenergetic function could be supplemental NADH oxidation in cells.
Collapse
Affiliation(s)
- Mahmoud M Elguindy
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Eiko Nakamaru-Ogiso
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| |
Collapse
|
37
|
Voigt J, Woestemeyer J. Protease Inhibitors Cause Necrotic Cell Death in Chlamydomonas reinhardtii
by Inducing the Generation of Reactive Oxygen Species. J Eukaryot Microbiol 2015; 62:711-21. [DOI: 10.1111/jeu.12224] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/02/2015] [Accepted: 02/13/2015] [Indexed: 01/19/2023]
Affiliation(s)
- Juergen Voigt
- Institute for Biochemistry; Charité, Charité-Platz 1/Virchowweg 6; D-10117 Berlin Germany
- Institute of Microbiology; Friedrich-Schiller-University; Neugasse 24; D-07743 Jena Germany
| | - Johannes Woestemeyer
- Institute of Microbiology; Friedrich-Schiller-University; Neugasse 24; D-07743 Jena Germany
| |
Collapse
|
38
|
Pyatrikas DV, Fedoseeva IV, Varakina NN, Rusaleva TM, Stepanov AV, Fedyaeva AV, Borovskii GB, Rikhvanov EG. Relation between cell death progression, reactive oxygen species production and mitochondrial membrane potential in fermenting Saccharomyces cerevisiae cells under heat-shock conditions. FEMS Microbiol Lett 2015; 362:fnv082. [DOI: 10.1093/femsle/fnv082] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2015] [Indexed: 12/21/2022] Open
|
39
|
Gonçalves AP, Videira A. Mitochondrial type II NAD(P)H dehydrogenases in fungal cell death. MICROBIAL CELL 2015; 2:68-73. [PMID: 28357279 PMCID: PMC5349180 DOI: 10.15698/mic2015.03.192] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
During aerobic respiration, cells produce energy through oxidative phosphorylation, which includes a specialized group of multi-subunit complexes in the inner mitochondrial membrane known as the electron transport chain. However, this canonical pathway is branched into single polypeptide alternative routes in some fungi, plants, protists and bacteria. They confer metabolic plasticity, allowing cells to adapt to different environmental conditions and stresses. Type II NAD(P)H dehydrogenases (also called alternative NAD(P)H dehydrogenases) are non-proton pumping enzymes that bypass complex I. Recent evidence points to the involvement of fungal alternative NAD(P)H dehydrogenases in the process of programmed cell death, in addition to their action as overflow systems upon oxidative stress. Consistent with this, alternative NAD(P)H dehydrogenases are phylogenetically related to cell death - promoting proteins of the apoptosis-inducing factor (AIF)-family.
Collapse
Affiliation(s)
- A Pedro Gonçalves
- ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal. ; IBMC-Instituto de Biologia Molecular e Celular - Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal. ; Current address: Plant and Microbial Biology Department, The University of California, Berkeley, CA 94720, USA
| | - Arnaldo Videira
- ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal. ; IBMC-Instituto de Biologia Molecular e Celular - Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal. ; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| |
Collapse
|
40
|
Nishizaki T, Kanno T, Tsuchiya A, Kaku Y, Shimizu T, Tanaka A. 1-[2-(2-Methoxyphenylamino)ethylamino]-3-(naphthalene-1- yloxy)propan-2-ol may be a promising anticancer drug. Molecules 2014; 19:21462-72. [PMID: 25532843 PMCID: PMC6271752 DOI: 10.3390/molecules191221462] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 12/11/2014] [Accepted: 12/16/2014] [Indexed: 01/14/2023] Open
Abstract
We have originally synthesized the naftopidil analogue 1-[2-(2-methoxyphenylamino)ethylamino]-3-(naphthalene-1-yloxy)propan-2-ol (HUHS 1015) as a new anticancer drug. HUHS1015 induces cell death in a wide variety of human cancer cell lines originated from malignant pleural mesothelioma, lung cancer, hepatoma, gastric cancer, colorectal cancer, bladder cancer, prostate cancer, and renal cancer. HUHS1015-induced cell death includes necrosis (necroptosis) and apoptosis, and the underlying mechanism differs depending upon cancer cell types. HUHS1015 effectively suppresses tumor growth in mice inoculated with NCI-H2052, MKN45, or CW2 cells, with a potential similar to or higher than that of currently used anticancer drugs. Here we show how HUHS1015 might offer brilliant hope for cancer therapy.
Collapse
Affiliation(s)
- Tomoyuki Nishizaki
- Division of Bioinformation, Department of Physiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan.
| | - Takeshi Kanno
- Division of Bioinformation, Department of Physiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan.
| | - Ayako Tsuchiya
- Division of Bioinformation, Department of Physiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan.
| | - Yoshiko Kaku
- Division of Bioinformation, Department of Physiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan.
| | - Tadashi Shimizu
- Laboratory of Chemical Biology, Advanced Medicinal Research Center, Hyogo University of Health Sciences, 1-3-6 Minatojima, Chuo-ku, Kobe 650-8530, Japan.
| | - Akito Tanaka
- Laboratory of Chemical Biology, Advanced Medicinal Research Center, Hyogo University of Health Sciences, 1-3-6 Minatojima, Chuo-ku, Kobe 650-8530, Japan.
| |
Collapse
|
41
|
Paulo JA, Gygi SP. A comprehensive proteomic and phosphoproteomic analysis of yeast deletion mutants of 14-3-3 orthologs and associated effects of rapamycin. Proteomics 2014; 15:474-86. [PMID: 25315811 DOI: 10.1002/pmic.201400155] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 08/05/2014] [Accepted: 10/02/2014] [Indexed: 11/07/2022]
Abstract
We applied a multiplexed, MS-based strategy to interrogate the proteome and phosphoproteome of three yeast strains under two growth conditions in triplicate. The yeast proteins brain modulosignalin homologue (Bmh)1 and Bmh2, analogs to the 14-3-3 protein family, have a wide array of cellular functions including the regulation of phosphorylation events. Moreover, rapamycin is a drug that can regulate phosphorylation events. By performing a series of tandem mass tag 10-plex experiments, we investigated the alterations in the proteome and phosphoproteome of wildtype and two deletion strains (bmh1Δ and bmh2Δ) of Saccharomyces cerevisiae treated with rapamycin and DMSO as a control. Our 3 × 3 + 1 strategy allowed for triplicate analysis of each of the three strains, plus an additional sample consisting of an equal mix of all samples. We quantified over 4000 proteins and 20,000 phosphorylation events. Of these, we quantified over 3700 proteins across all 20 samples and over 14,300 phosphorylation events within each drug treatment. In total, data collected from four tandem mass tag 10-plex experiments required approximately 1 week of data collection on the mass spectrometer. This study underscores the complex cellular roles of Bmh1 and Bmh2 coupled with response to rapamycin treatment and emphasizes the utility of multiplexed proteomic techniques to elucidate comprehensive proteomes and phosphoproteomes.
Collapse
Affiliation(s)
- Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
42
|
Gospodaryov DV, Lushchak OV, Rovenko BM, Perkhulyn NV, Gerards M, Tuomela T, Jacobs HT. Ciona intestinalis NADH dehydrogenase NDX confers stress-resistance and extended lifespan on Drosophila. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1861-1869. [DOI: 10.1016/j.bbabio.2014.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 08/04/2014] [Accepted: 08/05/2014] [Indexed: 11/16/2022]
|
43
|
González-Siso MI, Touriño A, Vizoso Á, Pereira-Rodríguez Á, Rodríguez-Belmonte E, Becerra M, Cerdán ME. Improved bioethanol production in an engineered Kluyveromyces lactis strain shifted from respiratory to fermentative metabolism by deletion of NDI1. Microb Biotechnol 2014; 8:319-30. [PMID: 25186243 PMCID: PMC4353345 DOI: 10.1111/1751-7915.12160] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/10/2014] [Accepted: 07/29/2014] [Indexed: 11/30/2022] Open
Abstract
In this paper, we report the metabolic engineering of the respiratory yeast Kluyveromyces lactis by construction and characterization of a null mutant (Δklndi1) in the single gene encoding a mitochondrial alternative internal dehydrogenase. Isolated mitochondria of the Δklndi1 mutant show unaffected rate of oxidation of exogenous NADH, but no oxidation of matrix NADH; this confirms that KlNdi1p is the only internal NADH dehydrogenase in K. lactis mitochondria. Permeabilized cells of the Δklndi1 mutant do not show oxidation of matrix NADH, which suggests that shuttle systems to transfer the NADH from mitochondrial matrix to cytosol, for being oxidized by external dehydrogenases, are not functional. The Δklndi1 mutation decreases the chronological life span in absence of nutrients. The expression of KlNDI1 is increased by glutathione reductase depletion. The Δklndi1 mutation shifts the K. lactis metabolism from respiratory to fermentative: the Δklndi1 strain shows reduced respiration rate and increased ethanol production from glucose, while it does not grow in non-fermentable carbon sources such as lactate. The biotechnological benefit of the Δklndi1 mutant for bioethanol production from waste cheese whey lactose was proved.
Collapse
Affiliation(s)
- María Isabel González-Siso
- Grupo de Investigación EXPRELA, Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruña, 15071-, A Coruña, Spain
| | | | | | | | | | | | | |
Collapse
|
44
|
Carmona-Gutierrez D, Büttner S. The many ways to age for a single yeast cell. Yeast 2014; 31:289-98. [PMID: 24842537 PMCID: PMC4140606 DOI: 10.1002/yea.3020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/07/2014] [Accepted: 05/09/2014] [Indexed: 12/17/2022] Open
Abstract
The identification and characterization of the molecular determinants governing ageing represents the key to counteracting age-related diseases and eventually prolonging our health span. A large number of fundamental insights into the ageing process have been provided by research into the budding yeast Saccharomyces cerevisiae, which couples a wide array of technical advantages with a high degree of genetic, proteomic and mechanistic conservation. Indeed, this unicellular organism harbours regulatory pathways, such as those related to programmed cell death or nutrient signalling, that are crucial for ageing control and are reminiscent of other eukaryotes, including mammals. Here, we summarize and discuss three different paradigms of yeast ageing: replicative, chronological and colony ageing. We address their physiological relevance as well as the specific and common characteristics and regulators involved, providing an overview of the network underlying ageing in one of the most important eukaryotic model organisms.
Collapse
|
45
|
Batinic-Haberle I, Tovmasyan A, Roberts ERH, Vujaskovic Z, Leong KW, Spasojevic I. SOD therapeutics: latest insights into their structure-activity relationships and impact on the cellular redox-based signaling pathways. Antioxid Redox Signal 2014; 20:2372-415. [PMID: 23875805 PMCID: PMC4005498 DOI: 10.1089/ars.2012.5147] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 06/30/2013] [Accepted: 07/22/2013] [Indexed: 01/23/2023]
Abstract
SIGNIFICANCE Superoxide dismutase (SOD) enzymes are indispensable and ubiquitous antioxidant defenses maintaining the steady-state levels of O2·(-); no wonder, thus, that their mimics are remarkably efficacious in essentially any animal model of oxidative stress injuries thus far explored. RECENT ADVANCES Structure-activity relationship (half-wave reduction potential [E1/2] versus log kcat), originally reported for Mn porphyrins (MnPs), is valid for any other class of SOD mimics, as it is dominated by the superoxide reduction and oxidation potential. The biocompatible E1/2 of ∼+300 mV versus normal hydrogen electrode (NHE) allows powerful SOD mimics as mild oxidants and antioxidants (alike O2·(-)) to readily traffic electrons among reactive species and signaling proteins, serving as fine mediators of redox-based signaling pathways. Based on similar thermodynamics, both SOD enzymes and their mimics undergo similar reactions, however, due to vastly different sterics, with different rate constants. CRITICAL ISSUES Although log kcat(O2·(-)) is a good measure of therapeutic potential of SOD mimics, discussions of their in vivo mechanisms of actions remain mostly of speculative character. Most recently, the therapeutic and mechanistic relevance of oxidation of ascorbate and glutathionylation and oxidation of protein thiols by MnP-based SOD mimics and subsequent inactivation of nuclear factor κB has been substantiated in rescuing normal and killing cancer cells. Interaction of MnPs with thiols seems to be, at least in part, involved in up-regulation of endogenous antioxidative defenses, leading to the healing of diseased cells. FUTURE DIRECTIONS Mechanistic explorations of single and combined therapeutic strategies, along with studies of bioavailability and translational aspects, will comprise future work in optimizing redox-active drugs.
Collapse
Affiliation(s)
- Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University Medical School, Durham, North Carolina
| | - Artak Tovmasyan
- Department of Radiation Oncology, Duke University Medical School, Durham, North Carolina
| | - Emily R. H. Roberts
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Zeljko Vujaskovic
- Department of Radiation Oncology, Duke University Medical School, Durham, North Carolina
| | - Kam W. Leong
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
- King Abdulaziz University, Jeddah, Saudi Arabia Kingdom
| | - Ivan Spasojevic
- Department of Medicine, Duke University Medical School, Durham, North Carolina
| |
Collapse
|
46
|
Sukhanova EI, Rogov AG, Severin FF, Zvyagilskaya RA. Phenoptosis in yeasts. BIOCHEMISTRY (MOSCOW) 2014; 77:761-75. [PMID: 22817540 DOI: 10.1134/s0006297912070097] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The current view on phenoptosis and apoptosis as genetic programs aimed at eliminating potentially dangerous organisms and cells, respectively, is given. Special emphasis is placed on apoptosis (phenoptosis) in yeasts: intracellular defects and a plethora of external stimuli inducing apoptosis in yeasts; distinctive morphological and biochemical hallmarks accompanying apoptosis in yeasts; pro- and antiapoptotic factors involved in yeast apoptosis signaling; consecutive stages of apoptosis from external stimulus to the cell death; a prominent role of mitochondria and other organelles in yeast apoptosis; possible pathways for release of apoptotic factors from the intermembrane mitochondrial space into the cytosol are described. Using some concrete examples, the obvious physiological importance and expediency of altruistic death of yeast cells is shown. Poorly known aspects of yeast apoptosis and prospects for yeast apoptosis study are defined.
Collapse
Affiliation(s)
- E I Sukhanova
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, 119071, Russia
| | | | | | | |
Collapse
|
47
|
High-resolution profiling of stationary-phase survival reveals yeast longevity factors and their genetic interactions. PLoS Genet 2014; 10:e1004168. [PMID: 24586198 PMCID: PMC3937222 DOI: 10.1371/journal.pgen.1004168] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 12/23/2013] [Indexed: 01/09/2023] Open
Abstract
Lifespan is influenced by a large number of conserved proteins and gene-regulatory pathways. Here, we introduce a strategy for systematically finding such longevity factors in Saccharomyces cerevisiae and scoring the genetic interactions (epistasis) among these factors. Specifically, we developed an automated competition-based assay for chronological lifespan, defined as stationary-phase survival of yeast populations, and used it to phenotype over 5,600 single- or double-gene knockouts at unprecedented quantitative resolution. We found that 14% of the viable yeast mutant strains were affected in their stationary-phase survival; the extent of true-positive chronological lifespan factors was estimated by accounting for the effects of culture aeration and adaptive regrowth. We show that lifespan extension by dietary restriction depends on the Swr1 histone-exchange complex and that a functional link between autophagy and the lipid-homeostasis factor Arv1 has an impact on cellular lifespan. Importantly, we describe the first genetic interaction network based on aging phenotypes, which successfully recapitulated the core-autophagy machinery and confirmed a role of the human tumor suppressor PTEN homologue in yeast lifespan and phosphatidylinositol phosphate metabolism. Our quantitative analysis of longevity factors and their genetic interactions provides insights into the gene-network interactions of aging cells.
Collapse
|
48
|
Yu X, Wang H, Liu L. Two non-exclusive strategies employed to protect Torulopsis glabrata against hyperosmotic stress. Appl Microbiol Biotechnol 2014; 98:3099-110. [PMID: 24562390 DOI: 10.1007/s00253-014-5589-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/25/2014] [Accepted: 02/01/2014] [Indexed: 11/29/2022]
Abstract
Several recent reports described an apoptosis-like programmed cell death (PCD) process in yeast in response to different environmental challenges. In this study, hyperosmotic stress caused by high NaCl concentration in culture medium induced cell death in the haploid yeast Torulopsis glabrata. Propidium iodide (PI) and PI/rhodamine-123 (Rh123) dual staining with flow cytometry showed that high salinity decreased intact cells by 16.5 %, increased necrotic cells by nearly twofold, and altered fermentative parameters appreciably. Morphological and biochemical indicators of apoptosis were apparent, specifically a decrease in mitochondrial membrane potential (∆Ψm), translocation of phosphatidylserine (PS) from the inner to the outer side of the plasma membrane, generation of reactive oxygen species (ROS), and involvement of caspase all while plasma membrane integrity was maintained. Additionally, it was found that overexpression of YCA1 drastically stimulated cell death, indicating that activation of metacaspase might lead to cell death. However, T. glabrata growth under hyperosmotic stress was enhanced when FIS1, HOG1, and GPD2 were overexpressed, or when exogenous proline or glutathione (GSH) were added into the cultures, both of which could repress caspase-3 activity. Thus, in these concrete cases of overexpression of anti-apoptotic or anti-necrotic factors and pharmacological manipulations, it decreased T. glabrata cell death that might help to achieve higher fermentative efficiency.
Collapse
Affiliation(s)
- Xiaoxia Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | | | | |
Collapse
|
49
|
Almshawit H, Pouniotis D, Macreadie I. Cell density impacts onCandida glabratasurvival in hypo-osmotic stress. FEMS Yeast Res 2013; 14:508-16. [DOI: 10.1111/1567-1364.12122] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 10/08/2013] [Accepted: 11/04/2013] [Indexed: 11/28/2022] Open
Affiliation(s)
- Hala Almshawit
- Applied Sciences; RMIT University; Bundoora Vic. Australia
| | - Dodie Pouniotis
- School of Medical Sciences; RMIT University; Bundoora Vic. Australia
| | - Ian Macreadie
- Applied Sciences; RMIT University; Bundoora Vic. Australia
| |
Collapse
|
50
|
Sousa M, Duarte AM, Fernandes TR, Chaves SR, Pacheco A, Leão C, Côrte-Real M, Sousa MJ. Genome-wide identification of genes involved in the positive and negative regulation of acetic acid-induced programmed cell death in Saccharomyces cerevisiae. BMC Genomics 2013; 14:838. [PMID: 24286259 PMCID: PMC4046756 DOI: 10.1186/1471-2164-14-838] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 11/14/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acetic acid is mostly known as a toxic by-product of alcoholic fermentation carried out by Saccharomyces cerevisiae, which it frequently impairs. The more recent finding that acetic acid triggers apoptotic programmed cell death (PCD) in yeast sparked an interest to develop strategies to modulate this process, to improve several biotechnological applications, but also for biomedical research. Indeed, acetate can trigger apoptosis in cancer cells, suggesting its exploitation as an anticancer compound. Therefore, we aimed to identify genes involved in the positive and negative regulation of acetic acid-induced PCD by optimizing a functional analysis of a yeast Euroscarf knock-out mutant collection. RESULTS The screen consisted of exposing the mutant strains to acetic acid in YPD medium, pH 3.0, in 96-well plates, and subsequently evaluating the presence of culturable cells at different time points. Several functional categories emerged as greatly relevant for modulation of acetic acid-induced PCD (e.g.: mitochondrial function, transcription of glucose-repressed genes, protein synthesis and modifications, and vesicular traffic for protection, or amino acid transport and biosynthesis, oxidative stress response, cell growth and differentiation, protein phosphorylation and histone deacetylation for its execution). Known pro-apoptotic and anti-apoptotic genes were found, validating the approach developed. Metabolism stood out as a main regulator of this process, since impairment of major carbohydrate metabolic pathways conferred resistance to acetic acid-induced PCD. Among these, lipid catabolism arose as one of the most significant new functions identified. The results also showed that many of the cellular and metabolic features that constitute hallmarks of tumour cells (such as higher glycolytic energetic dependence, lower mitochondrial functionality, increased cell division and metabolite synthesis) confer sensitivity to acetic acid-induced PCD, potentially explaining why tumour cells are more susceptible to acetate than untransformed cells and reinforcing the interest in exploiting this acid in cancer therapy. Furthermore, our results clearly establish a connection between cell proliferation and cell death regulation, evidencing a conserved developmental role of programmed cell death in unicellular eukaryotes. CONCLUSIONS This work advanced the characterization of acetic acid-induced PCD, providing a wealth of new information on putative molecular targets for its control with impact both in biotechnology and biomedicine.
Collapse
Affiliation(s)
- Marlene Sousa
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|