1
|
Fakhimi N, Grossman AR. Photosynthetic Electron Flows and Networks of Metabolite Trafficking to Sustain Metabolism in Photosynthetic Systems. PLANTS (BASEL, SWITZERLAND) 2024; 13:3015. [PMID: 39519934 PMCID: PMC11548211 DOI: 10.3390/plants13213015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/03/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024]
Abstract
Photosynthetic eukaryotes have metabolic pathways that occur in distinct subcellular compartments. However, because metabolites synthesized in one compartment, including fixed carbon compounds and reductant generated by photosynthetic electron flows, may be integral to processes in other compartments, the cells must efficiently move metabolites among the different compartments. This review examines the various photosynthetic electron flows used to generate ATP and fixed carbon and the trafficking of metabolites in the green alga Chlamydomomas reinhardtii; information on other algae and plants is provided to add depth and nuance to the discussion. We emphasized the trafficking of metabolites across the envelope membranes of the two energy powerhouse organelles of the cell, the chloroplast and mitochondrion, the nature and roles of the major mobile metabolites that move among these compartments, and the specific or presumed transporters involved in that trafficking. These transporters include sugar-phosphate (sugar-P)/inorganic phosphate (Pi) transporters and dicarboxylate transporters, although, in many cases, we know little about the substrate specificities of these transporters, how their activities are regulated/coordinated, compensatory responses among transporters when specific transporters are compromised, associations between transporters and other cellular proteins, and the possibilities for forming specific 'megacomplexes' involving interactions between enzymes of central metabolism with specific transport proteins. Finally, we discuss metabolite trafficking associated with specific biological processes that occur under various environmental conditions to help to maintain the cell's fitness. These processes include C4 metabolism in plants and the carbon concentrating mechanism, photorespiration, and fermentation metabolism in algae.
Collapse
Affiliation(s)
- Neda Fakhimi
- Department of Biosphere Sciences and Engineering, The Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA;
| | - Arthur R. Grossman
- Department of Biosphere Sciences and Engineering, The Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA;
- Courtesy Appointment, Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Gray S, Fort C, Wheeler RJ. Intraflagellar transport speed is sensitive to genetic and mechanical perturbations to flagellar beating. J Cell Biol 2024; 223:e202401154. [PMID: 38829962 PMCID: PMC11148470 DOI: 10.1083/jcb.202401154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/01/2024] [Accepted: 05/13/2024] [Indexed: 06/05/2024] Open
Abstract
Two sets of motor proteins underpin motile cilia/flagella function. The axoneme-associated inner and outer dynein arms drive sliding of adjacent axoneme microtubule doublets to periodically bend the flagellum for beating, while intraflagellar transport (IFT) kinesins and dyneins carry IFT trains bidirectionally along the axoneme. Despite assembling motile cilia and flagella, IFT train speeds have only previously been quantified in immobilized flagella-mechanical immobilization or genetic paralysis. This has limited investigation of the interaction between IFT and flagellar beating. Here, in uniflagellate Leishmania parasites, we use high-frequency, dual-color fluorescence microscopy to visualize IFT train movement in beating flagella. We discovered that adhesion of flagella to a microscope slide is detrimental, reducing IFT train speed and increasing train stalling. In flagella free to move, IFT train speed is not strongly dependent on flagella beat type; however, permanent disruption of flagella beating by deletion of genes necessary for formation or regulation of beating showed an inverse correlation of beat frequency and IFT train speed.
Collapse
Affiliation(s)
- Sophie Gray
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Cecile Fort
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Richard John Wheeler
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Nakanishi A, Yomogita M, Horimoto T. Evaluation of Cellular Responses by Chlamydomonas reinhardtii in Media Containing Dairy-Processing Residues Derived from Cheese as Nutrients by Analyzing Cell Growth Activity and Comprehensive Gene Transcription Levels. Microorganisms 2024; 12:715. [PMID: 38674659 PMCID: PMC11052199 DOI: 10.3390/microorganisms12040715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Utilities of whey powder (WP) and whey protein concentrate 34% powder (WPC34) prepared as dairy-processing residues were evaluated using a green alga Chlamydomonas reinhardtii. Analysis of C. reinhardtii growth showed that the strain used WP and WPC34 as nitrogen sources. Its specific growth rate and maximum cell density in WP-containing medium were higher than those in WPC34-containing medium; growth with WPC34 was improved by adding KCl or K2HPO4, which content was decreased as a result of WPC34's preparation from WP. Although the lipid contents in media containing dairy-processing residues were 2.72 ± 0.31 wt% and 2.62 ± 0.20 wt% with no significant difference, the composition ratio of fatty acid C14 with WPC34 was higher than that with WP and the composition ratio of the sum of fatty acid-C16 and -C18 with WPC34 tended to be lower than that with WP. Additionally, analyses of gene transcription showed that the transcription level of acetyl-CoA carboxylase biotin carboxyl carrier protein in WPC34-containing medium was lower than that in WP-containing medium, possibly affecting the ratios of the chain lengths of fatty acids. The transcription of genes involved in glycolysis and the TCA cycle was outstandingly lower in algae grown in WPC34-containing medium when compared to those cultivated in the presence of WP, resulting in differences in energy production for cell proliferation.
Collapse
Affiliation(s)
- Akihito Nakanishi
- School of Bioscience and Biotechnology, Tokyo University of Technology, Tokyo 192-0982, Japan
- Graduate School of Bionics, Tokyo University of Technology, Tokyo 192-0982, Japan;
| | - Misaki Yomogita
- Graduate School of Bionics, Tokyo University of Technology, Tokyo 192-0982, Japan;
| | | |
Collapse
|
4
|
Behnam B, Fazilaty H, Ghadyani M, Fadavi P, Taghizadeh-Hesary F. Ciliated, Mitochondria-Rich Postmitotic Cells are Immune-privileged, and Mimic Immunosuppressive Microenvironment of Tumor-Initiating Stem Cells: From Molecular Anatomy to Molecular Pathway. FRONT BIOSCI-LANDMRK 2023; 28:261. [PMID: 37919090 DOI: 10.31083/j.fbl2810261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/15/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023]
Abstract
Cancer whose major problems are metastasis, treatment resistance, and recurrence is the leading cause of death worldwide. Tumor-initiating stem cells (TiSCs) are a subset of the tumor population responsible for tumor resistance and relapse. Understanding the characteristics and shared features between tumor-initiating stem cells (TiSCs) and long-lived postmitotic cells may hold a key to better understanding the biology of cancer. Postmitotic cells have exited the cell cycle and are transitioned into a non-dividing and terminally differentiated state with a specialized function within a tissue. Conversely, a cancer cell with TiSC feature can divide and produce a variety of progenies, and is responsible for disease progression, tumor resistance to therapy and immune system and disease relapse. Surprisingly, our comprehensive evaluation of TiSCs suggests common features with long-lived post-mitotic cells. They are similar in structure (primary cilia, high mitochondrial content, and being protected by a barrier), metabolism (autophagy and senescence), and function (immunoescape and/or immune-privileged by a blood barrier). In-depth exploration showed how mitochondrial metabolism contributes to these shared features, including high energy demands arising from ciliary and microtubular functionality, increased metabolic activity, and movement. These findings can assist in decoding the remaining properties which offer insights into the biology of TiSCs, with potential implications for enhancing cancer treatment strategies and patient prognosis.
Collapse
Affiliation(s)
- Babak Behnam
- Department of Regulatory Affairs, Amarex Clinical Research, NSF International, Germantown, MD 20874, USA
| | - Hassan Fazilaty
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Mobina Ghadyani
- School of Science, Monash University, Melbourne, VIC 3800, Australia
| | - Pedram Fadavi
- Department of Radiation Oncology, Iran University of Medical Sciences, 1445613131 Tehran, Iran
| | - Farzad Taghizadeh-Hesary
- Department of Radiation Oncology, Iran University of Medical Sciences, 1445613131 Tehran, Iran
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, 1445613131 Tehran, Iran
| |
Collapse
|
5
|
Tang X, Ma J, Wang X, Long S, Wan L, Yu H, Yang J, Huang G, Lin T. A novel variant in CFAP69 causes asthenoteratozoospermia with treatable ART outcomes and a literature review. J Assist Reprod Genet 2023; 40:2175-2184. [PMID: 37392306 PMCID: PMC10440328 DOI: 10.1007/s10815-023-02873-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/20/2023] [Indexed: 07/03/2023] Open
Abstract
PURPOSE Multiple morphological abnormalities of the sperm flagella (MMAF) are a severe form of sperm defect causing male infertility. Previous studies identified the variants in the CFAP69 gene as a MMAF-associated factor, but few cases have been reported. This study was performed to identify additional variants in CFAP69 and describe the semen characteristics and outcomes of assisted reproductive technology (ART) in CFAP69-affected couples. METHODS Genetic testing with next-generation sequencing (NGS) panel of 22 MMAF-associated genes and Sanger sequencing was performed in a cohort of 35 infertile males with MMAF to identify pathogenic variants. Morphological, ultrastructural, and immunostaining analyses were performed to investigate the characteristics of probands' spermatozoa. ART with intracytoplasmic sperm injection (ICSI) was carried out for the affected couples to get their own progenies. RESULTS We identified a novel frameshift variant in CFAP69 (c.2061dup, p. Pro688Thrfs*5) from a MMAF-affected infertile male with low sperm motility and malformed morphology of sperm. Furthermore, transmission electron microscopy and immunofluorescence staining revealed that the variant induced the aberrant ultrastructure and reduction of CFAP69 expression in the proband's spermatozoa. Moreover, the partner of the proband birthed a healthy girl through ICSI. CONCLUSIONS This study expanded the variant spectrum of CFAP69 and described the good outcome of ART treatment with ICSI, which is beneficial to the molecular diagnosis, genetic counseling, and treatment of infertile males with MMAF in the future.
Collapse
Affiliation(s)
- Xiangrong Tang
- Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400013, China
- Chongqing Health Center for Women and Children, Chongqing, 400013, China
| | - Jing Ma
- Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400013, China
- Chongqing Health Center for Women and Children, Chongqing, 400013, China
| | - Xinglin Wang
- Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400013, China
- Chongqing Health Center for Women and Children, Chongqing, 400013, China
| | - Shunhua Long
- Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400013, China
- Chongqing Health Center for Women and Children, Chongqing, 400013, China
| | - Ling Wan
- Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing, 400020, China
| | - Haibing Yu
- Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400013, China
- Chongqing Health Center for Women and Children, Chongqing, 400013, China
| | - Jigao Yang
- Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing, 400020, China
| | - Guoning Huang
- Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400013, China.
- Chongqing Health Center for Women and Children, Chongqing, 400013, China.
| | - Tingting Lin
- Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400013, China.
- Chongqing Health Center for Women and Children, Chongqing, 400013, China.
| |
Collapse
|
6
|
Zehr EA, Roll-Mecak A. A look under the hood of the machine that makes cilia beat. Nat Struct Mol Biol 2022; 29:416-418. [PMID: 35578025 DOI: 10.1038/s41594-022-00778-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Elena A Zehr
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
| | - Antonina Roll-Mecak
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA. .,Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD, USA.
| |
Collapse
|
7
|
Ciliary central apparatus structure reveals mechanisms of microtubule patterning. Nat Struct Mol Biol 2022; 29:483-492. [PMID: 35578023 PMCID: PMC9930914 DOI: 10.1038/s41594-022-00770-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 03/30/2022] [Indexed: 02/05/2023]
Abstract
A pair of extensively modified microtubules form the central apparatus (CA) of the axoneme of most motile cilia, where they regulate ciliary motility. The external surfaces of both CA microtubules are patterned asymmetrically with large protein complexes that repeat every 16 or 32 nm. The composition of these projections and the mechanisms that establish asymmetry and longitudinal periodicity are unknown. Here, by determining cryo-EM structures of the CA microtubules, we identify 48 different CA-associated proteins, which in turn reveal mechanisms for asymmetric and periodic protein binding to microtubules. We identify arc-MIPs, a novel class of microtubule inner protein, that bind laterally across protofilaments and remodel tubulin structure and lattice contacts. The binding mechanisms utilized by CA proteins may be generalizable to other microtubule-associated proteins. These structures establish a foundation to elucidate the contributions of individual CA proteins to ciliary motility and ciliopathies.
Collapse
|
8
|
Han L, Rao Q, Yang R, Wang Y, Chai P, Xiong Y, Zhang K. Cryo-EM structure of an active central apparatus. Nat Struct Mol Biol 2022; 29:472-482. [PMID: 35578022 PMCID: PMC9113940 DOI: 10.1038/s41594-022-00769-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/30/2022] [Indexed: 12/13/2022]
Abstract
Accurately regulated ciliary beating in time and space is critical for diverse cellular activities, which impact the survival and development of nearly all eukaryotic species. An essential beating regulator is the conserved central apparatus (CA) of motile cilia, composed of a pair of microtubules (C1 and C2) associated with hundreds of protein subunits per repeating unit. It is largely unclear how the CA plays its regulatory roles in ciliary motility. Here, we present high-resolution structures of Chlamydomonas reinhardtii CA by cryo-electron microscopy (cryo-EM) and its dynamic conformational behavior at multiple scales. The structures show how functionally related projection proteins of CA are clustered onto a spring-shaped scaffold of armadillo-repeat proteins, facilitated by elongated rachis-like proteins. The two halves of the CA are brought together by elastic chain-like bridge proteins to achieve coordinated activities. We captured an array of kinesin-like protein (KLP1) in two different stepping states, which are actively correlated with beating wave propagation of cilia. These findings establish a structural framework for understanding the role of the CA in cilia.
Collapse
Affiliation(s)
- Long Han
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Qinhui Rao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Renbin Yang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Center for Molecular Microscopy, Frederick National Laboratory for Cancer Research, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Yue Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Pengxin Chai
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Kai Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
9
|
Oxidative Phosphorylation Is Required for Powering Motility and Development of the Sleeping Sickness Parasite Trypanosoma brucei in the Tsetse Fly Vector. mBio 2022; 13:e0235721. [PMID: 35012336 PMCID: PMC8749461 DOI: 10.1128/mbio.02357-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The single-celled parasite Trypanosoma brucei is transmitted by hematophagous tsetse flies. Life cycle progression from mammalian bloodstream form to tsetse midgut form and, subsequently, infective salivary gland form depends on complex developmental steps and migration within different fly tissues. As the parasite colonizes the glucose-poor insect midgut, ATP production is thought to depend on activation of mitochondrial amino acid catabolism via oxidative phosphorylation (OXPHOS). This process involves respiratory chain complexes and F1Fo-ATP synthase and requires protein subunits of these complexes that are encoded in the parasite's mitochondrial DNA (kDNA). Here, we show that progressive loss of kDNA-encoded functions correlates with a decreasing ability to initiate and complete development in the tsetse. First, parasites with a mutated F1Fo-ATP synthase with reduced capacity for OXPHOS can initiate differentiation from bloodstream to insect form, but they are unable to proliferate in vitro. Unexpectedly, these cells can still colonize the tsetse midgut. However, these parasites exhibit a motility defect and are severely impaired in colonizing or migrating to subsequent tsetse tissues. Second, parasites with a fully disrupted F1Fo-ATP synthase complex that is completely unable to produce ATP by OXPHOS can still differentiate to the first insect stage in vitro but die within a few days and cannot establish a midgut infection in vivo. Third, parasites lacking kDNA entirely can initiate differentiation but die soon after. Together, these scenarios suggest that efficient ATP production via OXPHOS is not essential for initial colonization of the tsetse vector but is required to power trypanosome migration within the fly. IMPORTANCE African trypanosomes cause disease in humans and their livestock and are transmitted by tsetse flies. The insect ingests these parasites with its blood meal, but to be transmitted to another mammal, the trypanosome must undergo complex development within the tsetse fly and migrate from the insect's gut to its salivary glands. Crucially, the parasite must switch from a sugar-based diet while in the mammal to a diet based primarily on amino acids when it develops in the insect. Here, we show that efficient energy production by an organelle called the mitochondrion is critical for the trypanosome's ability to swim and to migrate through the tsetse fly. Surprisingly, trypanosomes with impaired mitochondrial energy production are only mildly compromised in their ability to colonize the tsetse fly midgut. Our study adds a new perspective to the emerging view that infection of tsetse flies by trypanosomes is more complex than previously thought.
Collapse
|
10
|
Hammond M, Zoltner M, Garrigan J, Butterfield E, Varga V, Lukeš J, Field MC. The distinctive flagellar proteome of Euglena gracilis illuminates the complexities of protistan flagella adaptation. THE NEW PHYTOLOGIST 2021; 232:1323-1336. [PMID: 34292600 DOI: 10.1111/nph.17638] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
The eukaryotic flagellum/cilium is a prominent organelle with conserved structure and diverse functions. Euglena gracilis, a photosynthetic and highly adaptable protist, employs its flagella for both locomotion and environmental sensing. Using proteomics of isolated E. gracilis flagella we identify nearly 1700 protein groups, which challenges previous estimates of the protein complexity of motile eukaryotic flagella. We not only identified several unexpected similarities shared with mammalian flagella, including an entire glycolytic pathway and proteasome, but also document a vast array of flagella-based signal transduction components that coordinate gravitaxis and phototactic motility. By contrast, the pellicle was found to consist of > 900 protein groups, containing additional structural and signalling components. Our data identify significant adaptations within the E. gracilis flagellum, many of which are clearly linked to the highly flexible lifestyle.
Collapse
Affiliation(s)
- Michael Hammond
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), 370 05, Czech Republic
| | - Martin Zoltner
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
- Department of Parasitology, Faculty of Science, BIOCEV, Charles University, Vestec, 252 50, Czech Republic
| | - Jack Garrigan
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Erin Butterfield
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Vladimir Varga
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, 142 20, Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), 370 05, Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), 370 05, Czech Republic
| | - Mark C Field
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), 370 05, Czech Republic
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| |
Collapse
|
11
|
Cai K, Zhao Y, Zhao L, Phan N, Hou Y, Cheng X, Witman GB, Nicastro D. Structural organization of the C1b projection within the ciliary central apparatus. J Cell Sci 2021; 134:272503. [PMID: 34651179 DOI: 10.1242/jcs.254227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 09/29/2021] [Indexed: 12/23/2022] Open
Abstract
Motile cilia have a '9+2' structure containing nine doublet microtubules and a central apparatus (CA) composed of two singlet microtubules with associated projections. The CA plays crucial roles in regulating ciliary motility. Defects in CA assembly or function usually result in motility-impaired or paralyzed cilia, which in humans causes disease. Despite their importance, the protein composition and functions of most CA projections remain largely unknown. Here, we combined genetic, proteomic and cryo-electron tomographic approaches to compare the CA of wild-type Chlamydomonas reinhardtii with those of three CA mutants. Our results show that two proteins, FAP42 and FAP246, are localized to the L-shaped C1b projection of the CA, where they interact with the candidate CA protein FAP413. FAP42 is a large protein that forms the peripheral 'beam' of the C1b projection, and the FAP246-FAP413 subcomplex serves as the 'bracket' between the beam (FAP42) and the C1b 'pillar' that attaches the projection to the C1 microtubule. The FAP246-FAP413-FAP42 complex is essential for stable assembly of the C1b, C1f and C2b projections, and loss of these proteins leads to ciliary motility defects.
Collapse
Affiliation(s)
- Kai Cai
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75231, USA
| | - Yanhe Zhao
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75231, USA
| | - Lei Zhao
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Nhan Phan
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75231, USA
| | - Yuqing Hou
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Xi Cheng
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - George B Witman
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Daniela Nicastro
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75231, USA
| |
Collapse
|
12
|
Hou Y, Zhao L, Kubo T, Cheng X, McNeill N, Oda T, Witman GB. Chlamydomonas FAP70 is a component of the previously uncharacterized ciliary central apparatus projection C2a. J Cell Sci 2021; 134:jcs258540. [PMID: 33988244 PMCID: PMC8272932 DOI: 10.1242/jcs.258540] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Cilia are essential organelles required for cell signaling and motility. Nearly all motile cilia have a '9+2' axoneme composed of nine outer doublet microtubules plus two central microtubules; the central microtubules together with their projections are termed the central apparatus (CA). In Chlamydomonas reinhardtii, a model organism for studying cilia, 30 proteins are known CA components, and ∼36 more are predicted to be CA proteins. Among the candidate CA proteins is the highly conserved FAP70 (CFAP70 in humans), which also has been reported to be associated with the doublet microtubules. Here, we determined by super-resolution structured illumination microscopy that FAP70 is located exclusively in the CA, and show by cryo-electron microscopy that its N-terminus is located at the base of the C2a projection of the CA. We also found that fap70-1 mutant axonemes lack most of the C2a projection. Mass spectrometry revealed that fap70-1 axonemes lack not only FAP70 but two other conserved candidate CA proteins, FAP65 (CFAP65 in humans) and FAP147 (MYCBPAP in humans). Finally, FAP65 and FAP147 co-immunoprecipitated with HA-tagged FAP70. Taken together, these data identify FAP70, FAP65 and FAP147 as the first defining components of the C2a projection.
Collapse
Affiliation(s)
- Yuqing Hou
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| | - Lei Zhao
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| | - Tomohiro Kubo
- Department of Anatomy and Structural Biology, Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Xi Cheng
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| | - Nathan McNeill
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| | - Toshiyuki Oda
- Department of Anatomy and Structural Biology, Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - George B. Witman
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| |
Collapse
|
13
|
Composition and function of the C1b/C1f region in the ciliary central apparatus. Sci Rep 2021; 11:11760. [PMID: 34083607 PMCID: PMC8175508 DOI: 10.1038/s41598-021-90996-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/19/2021] [Indexed: 02/04/2023] Open
Abstract
Motile cilia are ultrastructurally complex cell organelles with the ability to actively move. The highly conserved central apparatus of motile 9 × 2 + 2 cilia is composed of two microtubules and several large microtubule-bound projections, including the C1b/C1f supercomplex. The composition and function of C1b/C1f subunits has only recently started to emerge. We show that in the model ciliate Tetrahymena thermophila, C1b/C1f contains several evolutionarily conserved proteins: Spef2A, Cfap69, Cfap246/LRGUK, Adgb/androglobin, and a ciliate-specific protein Tt170/TTHERM_00205170. Deletion of genes encoding either Spef2A or Cfap69 led to a loss of the entire C1b projection and resulted in an abnormal vortex motion of cilia. Loss of either Cfap246 or Adgb caused only minor alterations in ciliary motility. Comparative analyses of wild-type and C1b-deficient mutant ciliomes revealed that the levels of subunits forming the adjacent C2b projection but not C1d projection are greatly reduced, indicating that C1b stabilizes C2b. Moreover, the levels of several IFT and BBS proteins, HSP70, and enzymes that catalyze the final steps of the glycolytic pathway: enolase ENO1 and pyruvate kinase PYK1, are also reduced in the C1b-less mutants.
Collapse
|
14
|
Central Apparatus, the Molecular Kickstarter of Ciliary and Flagellar Nanomachines. Int J Mol Sci 2021; 22:ijms22063013. [PMID: 33809498 PMCID: PMC7999657 DOI: 10.3390/ijms22063013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
Motile cilia and homologous organelles, the flagella, are an early evolutionarily invention, enabling primitive eukaryotic cells to survive and reproduce. In animals, cilia have undergone functional and structural speciation giving raise to typical motile cilia, motile nodal cilia, and sensory immotile cilia. In contrast to other cilia types, typical motile cilia are able to beat in complex, two-phase movements. Moreover, they contain many additional structures, including central apparatus, composed of two single microtubules connected by a bridge-like structure and assembling numerous complexes called projections. A growing body of evidence supports the important role of the central apparatus in the generation and regulation of the motile cilia movement. Here we review data concerning the central apparatus structure, protein composition, and the significance of its components in ciliary beating regulation.
Collapse
|
15
|
Takano W, Hisabori T, Wakabayashi KI. Rapid estimation of cytosolic ATP concentration from the ciliary beating frequency in the green alga Chlamydomonas reinhardtii. J Biol Chem 2020; 296:100156. [PMID: 33273011 PMCID: PMC7857514 DOI: 10.1074/jbc.ra120.015263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 11/06/2022] Open
Abstract
Determination of cellular ATP levels, a key indicator of metabolic status, is essential for the quantitative analysis of metabolism. The biciliate green alga Chlamydomonas reinhardtii is an excellent experimental organism to study ATP production pathways, including photosynthesis and respiration, particularly because it can be cultured either photoautotrophically or heterotrophically. Additionally, its cellular ATP concentration, [ATP], is reflected in the beating of its cilia. However, the methods currently used for quantifying the cellular ATP levels are time consuming or invasive. In this study, we established a rapid method for estimating cytosolic [ATP] from the ciliary beating frequency in C. reinhardtii. Using an improved method of motility reactivation in demembranated cell models, we obtained calibration curves for [ATP]–ciliary beating frequency over a physiological range of ATP concentrations. These curves allowed rapid estimation of the cytosolic [ATP] in live wild-type cells to be ∼2.0 mM in the light and ∼1.5 mM in the dark: values comparable to those obtained by other methods. Furthermore, we used this method to assess the effects of genetic mutations or inhibitors of photosynthesis or respiration quantitatively and noninvasively. This sensor-free method is a convenient tool for quickly estimating cytosolic [ATP] and studying the mechanism of ATP production in C. reinhardtii or other ciliated organisms.
Collapse
Affiliation(s)
- Wakako Takano
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan; School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Toru Hisabori
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan; School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Ken-Ichi Wakabayashi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan; School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
16
|
Cindrić S, Dougherty GW, Olbrich H, Hjeij R, Loges NT, Amirav I, Philipsen MC, Marthin JK, Nielsen KG, Sutharsan S, Raidt J, Werner C, Pennekamp P, Dworniczak B, Omran H. SPEF2- and HYDIN-Mutant Cilia Lack the Central Pair-associated Protein SPEF2, Aiding Primary Ciliary Dyskinesia Diagnostics. Am J Respir Cell Mol Biol 2020; 62:382-396. [PMID: 31545650 DOI: 10.1165/rcmb.2019-0086oc] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Primary ciliary dyskinesia (PCD) is a genetically heterogeneous chronic destructive airway disease. PCD is traditionally diagnosed by nasal nitric oxide measurement, analysis of ciliary beating, transmission electron microscopy (TEM), and/or genetic testing. In most genetic PCD variants, laterality defects can occur. However, it is difficult to establish a diagnosis in individuals with PCD and central pair (CP) defects, and alternative strategies are required because of very subtle ciliary beating abnormalities, a normal ciliary ultrastructure, and normal situs composition. Mutations in HYDIN are known to cause CP defects, but the genetic analysis of HYDIN variants is confounded by the pseudogene HYDIN2, which is almost identical in terms of intron/exon structure. We have previously shown that several types of PCD can be diagnosed via immunofluorescence (IF) microscopy analyses. Here, using IF microscopy, we demonstrated that in individuals with PCD and CP defects, the CP-associated protein SPEF2 is absent in HYDIN-mutant cells, revealing its dependence on functional HYDIN. Next, we performed IF analyses of SPEF2 in respiratory cells from 189 individuals with suspected PCD and situs solitus. Forty-one of the 189 individuals had undetectable SPEF2 and were subjected to a genetic analysis, which revealed one novel loss-of-function mutation in SPEF2 and three reported and 13 novel HYDIN mutations in 15 individuals. The remaining 25 individuals are good candidates for new, as-yet uncharacterized PCD variants that affect the CP apparatus. SPEF2 mutations have been associated with male infertility but have not previously been identified to cause PCD. We identified a mutation of SPEF2 that is causative for PCD with a CP defect. We conclude that SPEF2 IF analyses can facilitate the detection of CP defects and evaluation of the pathogenicity of HYDIN variants, thus aiding the molecular diagnosis of CP defects.
Collapse
Affiliation(s)
- Sandra Cindrić
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany
| | - Gerard W Dougherty
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany
| | - Heike Olbrich
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany
| | - Rim Hjeij
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany
| | - Niki Tomas Loges
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany
| | - Israel Amirav
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Maria C Philipsen
- Danish PCD Centre, ERN Accredited, Pediatric Pulmonary Service, Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital, Copenhagen, Denmark
| | - June K Marthin
- Danish PCD Centre, ERN Accredited, Pediatric Pulmonary Service, Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kim G Nielsen
- Danish PCD Centre, ERN Accredited, Pediatric Pulmonary Service, Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sivagurunathan Sutharsan
- Department of Pulmonary Medicine, Ruhrlandklinik, Universitätsmedizin Essen, Essen, Germany; and
| | - Johanna Raidt
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany
| | - Claudius Werner
- Department of Pediatrics, HELIOS Hospital Schwerin, Schwerin, Germany
| | - Petra Pennekamp
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany
| | - Bernd Dworniczak
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany
| | - Heymut Omran
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany
| |
Collapse
|
17
|
Miyata H, Morohoshi A, Ikawa M. Analysis of the sperm flagellar axoneme using gene-modified mice. Exp Anim 2020; 69:374-381. [PMID: 32554934 PMCID: PMC7677079 DOI: 10.1538/expanim.20-0064] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Infertility is a global health issue that affects 1 in 6 couples, with male factors contributing to 50% of cases. The flagellar axoneme is a motility apparatus of spermatozoa, and disruption of its structure or function could lead to male infertility. The axoneme consists of a "9+2" structure that contains a central pair of two singlet microtubules surrounded by nine doublet microtubules, in addition to several macromolecular complexes such as dynein arms, radial spokes, and nexin-dynein regulatory complexes. Molecular components of the flagellar axoneme are evolutionally conserved from unicellular flagellates to mammals, including mice. Although knockout (KO) mice have been generated to understand their function in the formation and motility regulation of sperm flagella, the majority of KO mice die before sexual maturation due to impaired ciliary motility, which makes it challenging to analyze mature spermatozoa. In this review, we introduce methods that have been used to overcome premature lethality, focusing on KO mouse lines of central pair components.
Collapse
Affiliation(s)
- Haruhiko Miyata
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akane Morohoshi
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
18
|
Dai D, Ichikawa M, Peri K, Rebinsky R, Huy Bui K. Identification and mapping of central pair proteins by proteomic analysis. Biophys Physicobiol 2020; 17:71-85. [PMID: 33178545 PMCID: PMC7596323 DOI: 10.2142/biophysico.bsj-2019048] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 06/10/2020] [Indexed: 01/07/2023] Open
Abstract
Cilia or flagella of eukaryotes are small micro-hair like structures that are indispensable to single-cell motility and play an important role in mammalian biological processes. Cilia or flagella are composed of nine doublet microtubules surrounding a pair of singlet microtubules called the central pair (CP). Together, this arrangement forms a canonical and highly conserved 9+2 axonemal structure. The CP, which is a unique structure exclusive to motile cilia, is a pair of structurally dimorphic singlet microtubules decorated with numerous associated proteins. Mutations of CP-associated proteins cause several different physical symptoms termed as ciliopathies. Thus, it is crucial to understand the architecture of the CP. However, the protein composition of the CP was poorly understood. This was because the traditional method of identification of CP proteins was mostly limited by available Chlamydomonas mutants of CP proteins. Recently, more CP protein candidates were presented based on mass spectrometry results, but most of these proteins were not validated. In this study, we re-evaluated the CP proteins by conducting a similar comprehensive CP proteome analysis comparing the mass spectrometry results of the axoneme sample prepared from Chlamydomonas strains with and without CP complex. We identified a similar set of CP protein candidates and additional new 11 CP protein candidates. Furthermore, by using Chlamydomonas strains lacking specific CP sub-structures, we present a more complete model of localization for these CP proteins. This work has established a new foundation for understanding the function of the CP complex in future studies.
Collapse
Affiliation(s)
- Daniel Dai
- Department of Anatomy and Cell Biology, McGill University, Montréal, Québec H3A 0C7, Canada
| | - Muneyoshi Ichikawa
- Department of Systems Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Katya Peri
- Department of Anatomy and Cell Biology, McGill University, Montréal, Québec H3A 0C7, Canada
| | - Reid Rebinsky
- Department of Anatomy and Cell Biology, McGill University, Montréal, Québec H3A 0C7, Canada
| | - Khanh Huy Bui
- Department of Anatomy and Cell Biology, McGill University, Montréal, Québec H3A 0C7, Canada
| |
Collapse
|
19
|
Narita K, Nagatomo H, Kozuka-Hata H, Oyama M, Takeda S. Discovery of a Vertebrate-Specific Factor that Processes Flagellar Glycolytic Enolase during Motile Ciliogenesis. iScience 2020; 23:100992. [PMID: 32248064 PMCID: PMC7132099 DOI: 10.1016/j.isci.2020.100992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 01/13/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022] Open
Abstract
Motile cilia and flagella require ATP for their formation and function. Although glycolytic enzymes are components of flagellar proteomes, how they translocate to flagella is unknown. Here we show that the expression pattern of the functionally nonannotated gene 4833427G06Rik (C11orf88), which is found only in vertebrates and is designated here as Hoatzin (Hoatz), suggests a functional association of its product with motile cilia and flagella. Hoatz knockout (KO) mice developed hydrocephalus and male infertility in an autosomal recessive manner, and the ependymal cilia frequently showed disorganized axonemes, reducing motility associated with collapsed spermatid flagella during cytodifferentiation. HOATZ was associated with certain proteins, including the flagellar glycolytic enzyme ENO4. In the testes of the Hoatz KO mice, the immature form of ENO4 accumulated in abnormal cytoplasmic puncta of developing spermatids. These data indicate that HOATZ is required for motile ciliogenesis and flagellar genesis in vertebrates by mediating the maturation of ENO4. Knockout of Hoatz causes hydrocephalus and oligo-astheno-terato-zoospermia Motile cilia are variably affected by the Hoatz mutation depending on tissue type Candidate HOATZ-interacting proteins including ENO4 are identified Knockout of Hoatz alters the western blot profile of ENO4
Collapse
Affiliation(s)
- Keishi Narita
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan.
| | - Hiroaki Nagatomo
- Center for Life Science Research, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Hiroko Kozuka-Hata
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Masaaki Oyama
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Sen Takeda
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan.
| |
Collapse
|
20
|
Beeby M, Ferreira JL, Tripp P, Albers SV, Mitchell DR. Propulsive nanomachines: the convergent evolution of archaella, flagella and cilia. FEMS Microbiol Rev 2020; 44:253-304. [DOI: 10.1093/femsre/fuaa006] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
ABSTRACT
Echoing the repeated convergent evolution of flight and vision in large eukaryotes, propulsive swimming motility has evolved independently in microbes in each of the three domains of life. Filamentous appendages – archaella in Archaea, flagella in Bacteria and cilia in Eukaryotes – wave, whip or rotate to propel microbes, overcoming diffusion and enabling colonization of new environments. The implementations of the three propulsive nanomachines are distinct, however: archaella and flagella rotate, while cilia beat or wave; flagella and cilia assemble at their tips, while archaella assemble at their base; archaella and cilia use ATP for motility, while flagella use ion-motive force. These underlying differences reflect the tinkering required to evolve a molecular machine, in which pre-existing machines in the appropriate contexts were iteratively co-opted for new functions and whose origins are reflected in their resultant mechanisms. Contemporary homologies suggest that archaella evolved from a non-rotary pilus, flagella from a non-rotary appendage or secretion system, and cilia from a passive sensory structure. Here, we review the structure, assembly, mechanism and homologies of the three distinct solutions as a foundation to better understand how propulsive nanomachines evolved three times independently and to highlight principles of molecular evolution.
Collapse
Affiliation(s)
- Morgan Beeby
- Department of Life Sciences, Frankland Road, Imperial College of London, London, SW7 2AZ, UK
| | - Josie L Ferreira
- Department of Life Sciences, Frankland Road, Imperial College of London, London, SW7 2AZ, UK
| | - Patrick Tripp
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Schaenzlestrasse 1, 79211 Freiburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Schaenzlestrasse 1, 79211 Freiburg, Germany
| | - David R Mitchell
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA
| |
Collapse
|
21
|
Mijalkovic J, Girard J, van Krugten J, van Loo J, Zhang Z, Loseva E, Oswald F, Peterman EJG. Cutting off ciliary protein import: intraflagellar transport after dendritic femtosecond-laser ablation. Mol Biol Cell 2020; 31:324-334. [PMID: 31940255 PMCID: PMC7183794 DOI: 10.1091/mbc.e18-06-0399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Primary cilia, organelles protruding from the surface of eukaryotic cells, act as cellular antennae to detect and transmit signals from the extracellular environment. They are built and maintained by continuous cycles of intraflagellar transport (IFT), where ciliary proteins are transported between the ciliary base and tip. These proteins originate from the cell body because cilia lack protein synthesis machinery. How input from the cell body affects IFT and ciliary function is not well understood. Here, we use femtosecond-laser ablation to perturb the dendritic input of proteins to chemosensory cilia in living Caenorhabditis elegans. Using fluorescence microscopy, we visualize and quantify the real-time response of ciliary proteins to dendritic ablation. We find that the response occurs in three distinct stages. First, IFT dynein is activated within seconds, redistributing IFT components toward the ciliary base; second, the ciliary axoneme shortens and motors slow down; and third, motors leave the cilium. Depletion of ATP by adding azide also results in IFT slowdown and IFT components leaving the cilium, but not in activation of retrograde IFT. These results indicate that laser ablation triggers a specific mechanism important for IFT regulation that allows the cilium to rapidly adapt to changes in the outside environment.
Collapse
Affiliation(s)
- Jona Mijalkovic
- LaserLaB and Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Jules Girard
- LaserLaB and Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Jaap van Krugten
- LaserLaB and Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Jasmijn van Loo
- LaserLaB and Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Zhiqing Zhang
- LaserLaB and Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Elizaveta Loseva
- LaserLaB and Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Felix Oswald
- LaserLaB and Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Erwin J G Peterman
- LaserLaB and Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
22
|
Osinka A, Poprzeczko M, Zielinska MM, Fabczak H, Joachimiak E, Wloga D. Ciliary Proteins: Filling the Gaps. Recent Advances in Deciphering the Protein Composition of Motile Ciliary Complexes. Cells 2019; 8:cells8070730. [PMID: 31319499 PMCID: PMC6678824 DOI: 10.3390/cells8070730] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 12/15/2022] Open
Abstract
Cilia are highly evolutionarily conserved, microtubule-based cell protrusions present in eukaryotic organisms from protists to humans, with the exception of fungi and higher plants. Cilia can be broadly divided into non-motile sensory cilia, called primary cilia, and motile cilia, which are locomotory organelles. The skeleton (axoneme) of primary cilia is formed by nine outer doublet microtubules distributed on the cilium circumference. In contrast, the skeleton of motile cilia is more complex: in addition to outer doublets, it is composed of two central microtubules and several diverse multi-protein complexes that are distributed periodically along both types of microtubules. For many years, researchers have endeavored to fully characterize the protein composition of ciliary macro-complexes and the molecular basis of signal transduction between these complexes. Genetic and biochemical analyses have suggested that several hundreds of proteins could be involved in the assembly and function of motile cilia. Within the last several years, the combined efforts of researchers using cryo-electron tomography, genetic and biochemical approaches, and diverse model organisms have significantly advanced our knowledge of the ciliary structure and protein composition. Here, we summarize the recent progress in the identification of the subunits of ciliary complexes, their precise intraciliary localization determined by cryo-electron tomography data, and the role of newly identified proteins in cilia.
Collapse
Affiliation(s)
- Anna Osinka
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Martyna Poprzeczko
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Magdalena M Zielinska
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Hanna Fabczak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| |
Collapse
|
23
|
Zhao L, Hou Y, Picariello T, Craige B, Witman GB. Proteome of the central apparatus of a ciliary axoneme. J Cell Biol 2019; 218:2051-2070. [PMID: 31092556 PMCID: PMC6548120 DOI: 10.1083/jcb.201902017] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/13/2019] [Accepted: 04/17/2019] [Indexed: 12/15/2022] Open
Abstract
The central apparatus is an essential component of “9+2” cilia. Zhao et al. identify more than 40 new potential components of the central apparatus of Chlamydomonas. Many are conserved and will facilitate genetic screening of patients with a form of primary ciliary dyskinesia that is difficult to diagnose. Nearly all motile cilia have a “9+2” axoneme containing a central apparatus (CA), consisting of two central microtubules with projections, that is essential for motility. To date, only 22 proteins are known to be CA components. To identify new candidate CA proteins, we used mass spectrometry to compare axonemes of wild-type Chlamydomonas and a CA-less mutant. We identified 44 novel candidate CA proteins, of which 13 are conserved in humans. Five of the latter were studied more closely, and all five localized to the CA; therefore, most of the other candidates are likely to also be CA components. Our results reveal that the CA is far more compositionally complex than previously recognized and provide a greatly expanded knowledge base for studies to understand the architecture of the CA and how it functions. The discovery of the new conserved CA proteins will facilitate genetic screening to identify patients with a form of primary ciliary dyskinesia that has been difficult to diagnose.
Collapse
Affiliation(s)
- Lei Zhao
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| | - Yuqing Hou
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| | - Tyler Picariello
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| | - Branch Craige
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| | - George B Witman
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
24
|
Ji Y, Chae S, Lee HK, Park I, Kim C, Ismail T, Kim Y, Park JW, Kwon OS, Kang BS, Lee DS, Bae JS, Kim SH, Moon PG, Baek MC, Park MJ, Kil IS, Rhee SG, Kim J, Huh YH, Shin JY, Min KJ, Kwon TK, Jang DG, Woo HA, Kwon T, Park TJ, Lee HS. Peroxiredoxin5 Controls Vertebrate Ciliogenesis by Modulating Mitochondrial Reactive Oxygen Species. Antioxid Redox Signal 2019; 30:1731-1745. [PMID: 30191719 DOI: 10.1089/ars.2018.7507] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
AIMS Peroxiredoxin5 (Prdx5), a thioredoxin peroxidase, is an antioxidant enzyme that is widely studied for its antioxidant properties and protective roles in neurological and cardiovascular disorders. This study is aimed at investigating the functional significance of Prdx5 in mitochondria and at analyzing its roles in ciliogenesis during the process of vertebrate development. RESULTS We found that several Prdx genes were strongly expressed in multiciliated cells in developing Xenopus embryos, and their peroxidatic functions were crucial for normal cilia development. Depletion of Prdx5 increased levels of cellular reactive oxygen species (ROS), consequently leading to mitochondrial dysfunction and abnormal cilia formation. Proteomic and transcriptomic approaches revealed that excessive ROS accumulation on Prdx5 depletion subsequently reduced the expression level of pyruvate kinase (PK), a key metabolic enzyme in energy production. We further confirmed that the promotor activity of PK was significantly reduced on Prdx5 depletion and that the reduction in PK expression and its promoter activity led to ciliary defects observed in Prdx5-depleted cells. INNOVATION Our data revealed the novel relationship between ROS and Prdx5 and the consequent effects of this interaction on vertebrate ciliogenesis. The normal process of ciliogenesis is interrupted by the Prdx5 depletion, resulting in excessive ROS levels and suggesting cilia as vulnerable targets of ROS. CONCLUSION Prdx5 plays protective roles in mitochondria and is critical for normal cilia development by regulating the levels of ROS. The loss of Prdx5 is associated with excessive production of ROS, resulting in mitochondrial dysfunction and aberrant ciliogenesis.
Collapse
Affiliation(s)
- Yurim Ji
- 1 KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University , Daegu, South Korea
| | - Soomin Chae
- 1 KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University , Daegu, South Korea
| | - Hyun-Kyung Lee
- 1 KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University , Daegu, South Korea
| | - Inji Park
- 1 KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University , Daegu, South Korea
| | - Chowon Kim
- 1 KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University , Daegu, South Korea
| | - Tayaba Ismail
- 1 KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University , Daegu, South Korea
| | - Youni Kim
- 1 KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University , Daegu, South Korea
| | - Jeen-Woo Park
- 1 KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University , Daegu, South Korea
| | - Oh-Shin Kwon
- 1 KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University , Daegu, South Korea
| | - Beom-Sik Kang
- 1 KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University , Daegu, South Korea
| | - Dong-Seok Lee
- 1 KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University , Daegu, South Korea
| | - Jong-Sup Bae
- 2 College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University , Daegu, South Korea
| | - Sang-Hyun Kim
- 3 Department of Pharmacology, College of Medicine, Kyungpook National University , Daegu, South Korea
| | - Pyung-Gon Moon
- 4 Department of Molecular Medicine, College of Medicine, Kyungpook National University , Daegu, South Korea
| | - Moon-Chang Baek
- 4 Department of Molecular Medicine, College of Medicine, Kyungpook National University , Daegu, South Korea
| | - Mae-Ja Park
- 5 Department of Anatomy, College of Medicine, Kyungpook National University , Daegu, South Korea
| | - In Sup Kil
- 6 Yonsei Biomedical Research Institute, Yonsei University College of Medicine , Seoul, South Korea
| | - Sue Goo Rhee
- 6 Yonsei Biomedical Research Institute, Yonsei University College of Medicine , Seoul, South Korea
| | - Joon Kim
- 7 Graduate School of Medical Science and Engineering , Taejon, South Korea
| | - Yang Hoon Huh
- 8 Electron Microscopy Center, Korea Basic Science Institute, Cheongju-si , Chungcheongbuk-do, South Korea
| | - Jong-Yeon Shin
- 9 Genomic Medicine Institute, Medical Research Center, Seoul National University , Macrogen, Inc., Seoul, South Korea
| | - Kyoung-Jin Min
- 10 Department of Immunology, School of Medicine, Keimyung University , Daegu, South Korea
| | - Taeg Kyu Kwon
- 10 Department of Immunology, School of Medicine, Keimyung University , Daegu, South Korea
| | - Dong Gil Jang
- 11 School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST) , Ulsan, South Korea
| | - Hyun Ae Woo
- 12 College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University , Seoul, South Korea
| | - Taejoon Kwon
- 11 School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST) , Ulsan, South Korea
| | - Tae Joo Park
- 11 School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST) , Ulsan, South Korea
| | - Hyun-Shik Lee
- 1 KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University , Daegu, South Korea
| |
Collapse
|
25
|
Picariello T, Brown JM, Hou Y, Swank G, Cochran DA, King OD, Lechtreck K, Pazour GJ, Witman GB. A global analysis of IFT-A function reveals specialization for transport of membrane-associated proteins into cilia. J Cell Sci 2019; 132:jcs220749. [PMID: 30659111 PMCID: PMC6382014 DOI: 10.1242/jcs.220749] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 01/02/2019] [Indexed: 12/28/2022] Open
Abstract
Intraflagellar transport (IFT), which is essential for the formation and function of cilia in most organisms, is the trafficking of IFT trains (i.e. assemblies of IFT particles) that carry cargo within the cilium. Defects in IFT cause several human diseases. IFT trains contain the complexes IFT-A and IFT-B. To dissect the functions of these complexes, we studied a Chlamydomonas mutant that is null for the IFT-A protein IFT140. The mutation had no effect on IFT-B but destabilized IFT-A, preventing flagella assembly. Therefore, IFT-A assembly requires IFT140. Truncated IFT140, which lacks the N-terminal WD repeats of the protein, partially rescued IFT and supported formation of half-length flagella that contained normal levels of IFT-B but greatly reduced amounts of IFT-A. The axonemes of these flagella had normal ultrastructure and, as investigated by SDS-PAGE, normal composition. However, composition of the flagellar 'membrane+matrix' was abnormal. Analysis of the latter fraction by mass spectrometry revealed decreases in small GTPases, lipid-anchored proteins and cell signaling proteins. Thus, IFT-A is specialized for the import of membrane-associated proteins. Abnormal levels of the latter are likely to account for the multiple phenotypes of patients with defects in IFT140.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Tyler Picariello
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jason M Brown
- Department of Biology, Salem State University, Salem, MA 01970, USA
| | - Yuqing Hou
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Gregory Swank
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Deborah A Cochran
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Oliver D King
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Karl Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - George B Witman
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| |
Collapse
|
26
|
Zhu X, Poghosyan E, Rezabkova L, Mehall B, Sakakibara H, Hirono M, Kamiya R, Ishikawa T, Yang P. The roles of a flagellar HSP40 ensuring rhythmic beating. Mol Biol Cell 2018; 30:228-241. [PMID: 30427757 PMCID: PMC6589562 DOI: 10.1091/mbc.e18-01-0047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
HSP40s are regarded as cochaperones, perpetually shuttling client polypeptides to HSP70s for refolding. However, many HSP40s that are central for disparate processes diverge from this paradigm. To elucidate the noncanonical mechanisms, we investigated HSP40 in the radial spoke (RS) complex in flagella. Disruption of the gene by the MRC1 transposon in Chlamydomonas resulted in jerky flagella. Traditional electron microscopy, cryo-electron tomography, and sub-tomogram analysis revealed RSs of various altered morphologies that, unexpectedly, differed between the two RS species. This indicates that HSP40 locks the RS into a functionally rigid conformation, facilitating its interactions with the adjacent central pair apparatus for transducing locally varied mechanical feedback, which permits rhythmic beating. Missing HSP40, like missing RSs, could be restored in a tip-to-base direction when HSP40 mutants fused with a HSP40 donor cell. However, without concomitant de novo RS assembly, the repair was exceedingly slow, suggesting HSP40/RS-coupled intraflagellar trafficking and assembly. Biochemical analysis and modeling uncovered spoke HSP40’s cochaperone traits. On the basis of our data, we propose that HSP40 accompanies its client RS precursor when traveling to the flagellar tip. Upon arrival, both refold in concert to assemble into the mature configuration. HSP40’s roles in chaperoning and structural maintenance shed new light on its versatility and flagellar biology.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Emiliya Poghosyan
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Lenka Rezabkova
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Bridget Mehall
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Hitoshi Sakakibara
- National Institute of Information and Communications Technology (NICT), Advanced ICT Research Institute, Hyogo 651-2492, Japan
| | - Masafumi Hirono
- Department of Frontier Bioscience, Hosei University, Tokyo 184-8584, Japan
| | - Ritsu Kamiya
- Department of Life Science, Faculty of Science, Gakushuin University, Tokyo 171-8588, Japan
| | - Takashi Ishikawa
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Pinfen Yang
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| |
Collapse
|
27
|
He X, Li W, Wu H, Lv M, Liu W, Liu C, Zhu F, Li C, Fang Y, Yang C, Cheng H, Zhang J, Tan J, Chen T, Tang D, Song B, Wang X, Zha X, Wang H, Wei Z, Yang S, Saiyin H, Zhou P, Jin L, Wang J, Zhang Z, Zhang F, Cao Y. Novel homozygous CFAP69 mutations in humans and mice cause severe asthenoteratospermia with multiple morphological abnormalities of the sperm flagella. J Med Genet 2018; 56:96-103. [PMID: 30415212 DOI: 10.1136/jmedgenet-2018-105486] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/27/2018] [Accepted: 09/29/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND Male infertility is a major issue of human reproduction health. Asthenoteratospermia can impair sperm motility and cause male infertility. Asthenoteratospermia with multiple morphological abnormalities of the flagella (MMAF) presents abnormal spermatozoa with absent, bent, coiled, short and/or irregular-calibre flagella. Previous studies on MMAF reported that genetic defects in cilia-related genes (eg, AKAP4, DNAH1, CFAP43, CFAP44 and CFAP69) are the major cause of MMAF. However, the known MMAF-associated genes are only responsible for approximately 30% to 50% of human cases. We further investigated the cases with MMAF in search of additional genes mutated in this condition. METHODS AND RESULTS We conducted whole exome sequencing in a male individual with MMAF from a consanguineous Han Chinese family. Sanger sequencing was also conducted in additional individuals with MMAF. Intriguingly, a homozygous frameshift mutation (p.Leu357Hisfs*11) was identified in the gene encoding CFAP69 (cilia and flagella-associated protein 69), which is highly expressed in testis. The subsequent Sanger sequencing of the CFAP69 coding regions among 34 additional individuals with MMAF revealed a case with homozygous nonsense mutation (p.Trp216*) of CFAP69. Both of these CFAP69 loss-of-function mutations were not present in the human population genome data archived in the 1000 Genomes Project and ExAC databases, nor in 875 individuals of two Han Chinese control populations. Furthermore, we generated the knockout model in mouse orthologue Cfap69 using the CRISPR-Cas9 technology. Remarkably, male Cfap69-knockout mice manifested with MMAF phenotypes. CONCLUSION Our experimental findings elucidate that homozygous loss-of-function mutations in CFAP69 can lead to asthenoteratospermia with MMAF in humans and mice.
Collapse
Affiliation(s)
- Xiaojin He
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, China
| | - Weiyu Li
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.,State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,NHC Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, China
| | - Huan Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, China
| | - Mingrong Lv
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, China
| | - Wangjie Liu
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.,NHC Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, China
| | - Chunyu Liu
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.,NHC Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, China
| | - Fuxi Zhu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, China
| | - Caihua Li
- Genesky Biotechnologies Inc, Shanghai, China
| | - Youyan Fang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China
| | - Chenyu Yang
- Center of Cryo-Electron Microscopy, Zhejiang University, Hangzhou, China
| | - Huiru Cheng
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China
| | - Junqiang Zhang
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China
| | - Jing Tan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, China
| | - Tingting Chen
- Department of Pathology, Anhui Medical University, Hefei, China
| | - Dongdong Tang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, China
| | - Bing Song
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, China
| | - Xue Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, China
| | - Xiaomin Zha
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, China
| | - Hongyan Wang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.,NHC Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, China
| | - Shenmin Yang
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Hexige Saiyin
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, China
| | - Li Jin
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhiguo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, China
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.,State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,NHC Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, China
| |
Collapse
|
28
|
Lin H, Guo S, Dutcher SK. RPGRIP1L helps to establish the ciliary gate for entry of proteins. J Cell Sci 2018; 131:jcs220905. [PMID: 30237221 PMCID: PMC6215392 DOI: 10.1242/jcs.220905] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022] Open
Abstract
Mutations in transition zone genes change the composition of the ciliary proteome. We isolated new mutations in RPGRIP1L (denotated as RPG1 in algae) that affect the localization of the transition zone protein NPHP4 in the model organism Chlamydomonas reinhardtii NPHP4 localization is not affected in multiple new intraflagellar transport (IFT) mutants. We compared the proteome of cilia from wild-type and mutants that affect the transition zone (RPGRIP1L) or IFT (IFT172 and DHC1b) by mass spectrometry. The rpg1-1 mutant cilia show the most dramatic increase in cytoplasmic proteins. These nonciliary proteins function in translation, membrane remodeling, ATP production and as chaperonins. These proteins are excluded in isolated cilia from fla11-1 (IFT172) and fla24-1 (DHC1b). Our data support the idea that RPGRIP1L, but not IFT proteins, acts as part of the gate for cytoplasmic proteins. The rpg1-1 cilia lack only a few proteins, which suggests that RPGRIP1L only has a minor role of in the retention of ciliary proteins. The fla11-1 mutant shows the greatest loss/reduction of proteins, and one-third of these proteins have a transmembrane domain. Hence, IFT172 may play a role in the retention of proteins.
Collapse
Affiliation(s)
- Huawen Lin
- Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Suyang Guo
- Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Susan K Dutcher
- Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
29
|
Kagda MS, Vu AL, Ah-Fong AMV, Judelson HS. Phosphagen kinase function in flagellated spores of the oomycete Phytophthora infestans integrates transcriptional regulation, metabolic dynamics and protein retargeting. Mol Microbiol 2018; 110:296-308. [PMID: 30137656 DOI: 10.1111/mmi.14108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2018] [Indexed: 11/30/2022]
Abstract
Flagellated spores play important roles in the infection of plants and animals by many eukaryotic microbes. The oomycete Phytophthora infestans, which causes potato blight, expresses two phosphagen kinases (PKs). These enzymes store energy in taurocyamine, and are hypothesized to resolve spatial and temporal imbalances between rates of ATP creation and use in zoospores. A dimeric PK is found at low levels in vegetative mycelia, but high levels in ungerminated sporangia and zoospores. In contrast, a monomeric PK protein is at similar levels in all tissues, although is transcribed primarily in mycelia. Subcellular localization studies indicate that the monomeric PK is mitochondrial. In contrast, the dimeric PK is cytoplasmic in mycelia and sporangia but is retargeted to flagellar axonemes during zoosporogenesis. This supports a model in which PKs shuttle energy from mitochondria to and through flagella. Metabolite analysis indicates that deployment of the flagellar PK is coordinated with a large increase in taurocyamine, synthesized by sporulation-induced enzymes that were lost during the evolution of zoospore-lacking oomycetes. Thus, PK function is enabled by coordination of the transcriptional, metabolic and protein targeting machinery during the life cycle. Since plants lack PKs, the enzymes may be useful targets for inhibitors of oomycete plant pathogens.
Collapse
Affiliation(s)
- Meenakshi S Kagda
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Andrea L Vu
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Audrey M V Ah-Fong
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Howard S Judelson
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
30
|
C11orf70 Mutations Disrupting the Intraflagellar Transport-Dependent Assembly of Multiple Axonemal Dyneins Cause Primary Ciliary Dyskinesia. Am J Hum Genet 2018; 102:956-972. [PMID: 29727692 DOI: 10.1016/j.ajhg.2018.03.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 03/23/2018] [Indexed: 01/05/2023] Open
Abstract
Primary ciliary dyskinesia (PCD) is a genetically and phenotypically heterogeneous disorder characterized by destructive respiratory disease and laterality abnormalities due to randomized left-right body asymmetry. PCD is mostly caused by mutations affecting the core axoneme structure of motile cilia that is essential for movement. Genes that cause PCD when mutated include a group that encode proteins essential for the assembly of the ciliary dynein motors and the active transport process that delivers them from their cytoplasmic assembly site into the axoneme. We screened a cohort of affected individuals for disease-causing mutations using a targeted next generation sequencing panel and identified two unrelated families (three affected children) with mutations in the uncharacterized C11orf70 gene (official gene name CFAP300). The affected children share a consistent PCD phenotype from early life with laterality defects and immotile respiratory cilia displaying combined loss of inner and outer dynein arms (IDA+ODA). Phylogenetic analysis shows C11orf70 is highly conserved, distributed across species similarly to proteins involved in the intraflagellar transport (IFT)-dependant assembly of axonemal dyneins. Paramecium C11orf70 RNAi knockdown led to combined loss of ciliary IDA+ODA with reduced cilia beating and swim velocity. Tagged C11orf70 in Paramecium and Chlamydomonas localizes mainly in the cytoplasm with a small amount in the ciliary component. IFT139/TTC21B (IFT-A protein) and FLA10 (IFT kinesin) depletion experiments show that its transport within cilia is IFT dependent. During ciliogenesis, C11orf70 accumulates at the ciliary tips in a similar distribution to the IFT-B protein IFT46. In summary, C11orf70 is essential for assembly of dynein arms and C11orf70 mutations cause defective cilia motility and PCD.
Collapse
|
31
|
Zhu X, Poghosyan E, Gopal R, Liu Y, Ciruelas KS, Maizy Y, Diener DR, King SM, Ishikawa T, Yang P. General and specific promotion of flagellar assembly by a flagellar nucleoside diphosphate kinase. Mol Biol Cell 2017; 28:3029-3042. [PMID: 28877983 PMCID: PMC5662260 DOI: 10.1091/mbc.e17-03-0156] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 08/25/2017] [Accepted: 08/30/2017] [Indexed: 12/20/2022] Open
Abstract
NDK5 promotes assembly of motile cilia and flagella with its structure and protein phosphorylation–related reactions instead of the canonical NDK activity. The novel mechanisms and dominant-negative effect of mutated functional NDK5 reveal the remarkable versatility of a molecular platform that is used in diverse cellular processes. Nucleoside diphosphate kinases (NDKs) play a central role in diverse cellular processes using the canonical NDK activity or alternative mechanisms that remain poorly defined. Our study of dimeric NDK5 in a flagellar motility control complex, the radial spoke (RS), has revealed new modalities. The flagella in Chlamydomonas ndk5 mutant were paralyzed, albeit only deficient in three RS subunits. RS morphology appeared severely changed in averaged cryo-electron tomograms, suggesting that NDK5 is crucial for the intact spokehead formation as well as RS structural stability. Intriguingly, ndk5’s flagella were also short, resembling those of an allelic spoke-less mutant. All ndk5’s phenotypes were rescued by expressions of NDK5 or a mutated NDK5 lacking the canonical kinase activity. Importantly, the mutated NDK5 that appeared fully functional in ndk5 cells elicited a dominant-negative effect in wild-type cells, causing paralyzed short flagella with hypophosphorylated, less abundant, but intact RSs, and accumulated hypophosphorylated NDK5 in the cell body. We propose that NDK5 dimer is an RS structural subunit with an additional mechanism that uses cross-talk between the two NDK monomers to accelerate phosphorylation-related assembly of RSs and entire flagella.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Emiliya Poghosyan
- Biomolecular Research Laboratory, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Radhika Gopal
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Yi Liu
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Kristine S Ciruelas
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Yousif Maizy
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Dennis R Diener
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - Stephen M King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030-3305
| | - Takashi Ishikawa
- Biomolecular Research Laboratory, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Pinfen Yang
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| |
Collapse
|
32
|
Walz G. Role of primary cilia in non-dividing and post-mitotic cells. Cell Tissue Res 2017; 369:11-25. [PMID: 28361305 PMCID: PMC5487853 DOI: 10.1007/s00441-017-2599-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/20/2017] [Accepted: 02/27/2017] [Indexed: 12/12/2022]
Abstract
The essential role of primary (non-motile) cilia during the development of multi-cellular tissues and organs is well established and is underlined by severe disease manifestations caused by mutations in cilia-associated molecules that are collectively termed ciliopathies. However, the role of primary cilia in non-dividing and terminally differentiated, post-mitotic cells is less well understood. Although the prevention of cells from re-entering the cell cycle may represent a major chore, primary cilia have recently been linked to DNA damage responses, autophagy and mitochondria. Given this connectivity, primary cilia in non-dividing cells are well positioned to form a signaling hub outside of the nucleus. Such a center could integrate information to initiate responses and to maintain cellular homeostasis if cell survival is jeopardized. These more discrete functions may remain undetected until differentiated cells are confronted with emergencies.
Collapse
Affiliation(s)
- Gerd Walz
- Renal Division, Department of Medicine, University Freiburg Medical Center, Hugstetter Strasse 55, 79106, Freiburg, Germany.
| |
Collapse
|
33
|
Energy Requirements of Odor Transduction in the Chemosensory Cilia of Olfactory Sensory Neurons Rely on Oxidative Phosphorylation and Glycolytic Processing of Extracellular Glucose. J Neurosci 2017; 37:5736-5743. [PMID: 28500222 DOI: 10.1523/jneurosci.2640-16.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 05/05/2017] [Accepted: 05/06/2017] [Indexed: 11/21/2022] Open
Abstract
The mechanisms that power the physiological events occurring in cilia, flagella, and microvilli are of fundamental importance for the functions of these important and ubicuous organelles. The olfactory epithelium is mostly populated by ciliated olfactory sensory neurons (OSNs) and surrounding sustentacular cells (SCs) with apical microvilli. The only OSN dendrite extends to the surface forming a knob projecting several chemosensory cilia of ∼50 × 0.2 μm, devoid of inner membranes embedded in a mucus layer. Upon odorant binding, odor receptors couple to G-protein activating adenylyl cyclase, producing cAMP. cAMP opens cyclic nucleotide-gated channels allowing a Ca2+ influx that opens Ca2+-activated Cl- channels, generating the receptor potential. Many enzymes are activated in chemotransduction to hydrolyze ATP. The knob contains approximately two mitochondria; assuming that the cilia ATP is 1 mm and diffuses along it at ∼10 μm in 500 ms, ATP from the knob mitochondria may not fulfill the demands of transduction over the full length of the cilium, which suggests an additional ATP source. We measured millimolar glucose in rat mucus; we detected glucose transporter GLUT3 in rat and toad (Caudiverbera caudiverbera) OSN cilia, SC microvilli, and glycolytic enzymes in rat cilia. We also found that the cilia and knob can incorporate and accumulate 2-deoxyglucose (glucose analog), but not when blocking GLUT. Glucose removal and the inhibition of glycolysis or oxidative phospholylation impaired the odor response. This evidence strongly suggests that glycolysis in the cilia and knob oxidative phosphorylation together fuel chemotransduction.SIGNIFICANCE STATEMENT How processes occurring in cilia and flagella are powered is a matter of general interest. Substantial progress has been made in unraveling the sensory transduction mechanisms, commonly occurring in such structures; however, the energy sources powering them have been scarcely explored. Accessibility to the specialized sensory organelles and their small dimensions have been limiting factors. Olfactory sensory neurons chemosensory cilia are elongated, mucus embedded, fully exposed structures particularly amenable for a multidisciplinary study of this problem, as done here. We demonstrate the occurrence and functionality of glucose uptake and glycolysis in the cilia. We support that odor transduction relies on ATP generated by oxidative phosphorylation in the dendrite and glycolytically in the cilia using glucose internalized from the mucus.
Collapse
|
34
|
Loreng TD, Smith EF. The Central Apparatus of Cilia and Eukaryotic Flagella. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a028118. [PMID: 27770014 DOI: 10.1101/cshperspect.a028118] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The motile cilium is a complex organelle that is typically comprised of a 9+2 microtubule skeleton; nine doublet microtubules surrounding a pair of central singlet microtubules. Like the doublet microtubules, the central microtubules form a scaffold for the assembly of protein complexes forming an intricate network of interconnected projections. The central microtubules and associated structures are collectively referred to as the central apparatus (CA). Studies using a variety of experimental approaches and model organisms have led to the discovery of a number of highly conserved protein complexes, unprecedented high-resolution views of projection structure, and new insights into regulation of dynein-driven microtubule sliding. Here, we review recent progress in defining mechanisms for the assembly and function of the CA and include possible implications for the importance of the CA in human health.
Collapse
Affiliation(s)
- Thomas D Loreng
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Elizabeth F Smith
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| |
Collapse
|
35
|
Abstract
Anton van Leeuwenhoek's startling microscopic observations in the 1600s first stimulated fascination with the way that cells use cilia to generate currents and to swim in a fluid environment. Research in recent decades has yielded deep knowledge about the mechanical and biochemical nature of these organelles but only opened a greater fascination about how such beautifully intricate and multifunctional structures arose during evolution. Answers to this evolutionary puzzle are not only sought to satisfy basic curiosity, but also, as stated so eloquently by Dobzhansky (Am Zool 4: 443 [1964]), because "nothing in biology makes sense except in the light of evolution." Here I attempt to summarize current knowledge of what ciliary organelles of the last eukaryotic common ancestor (LECA) were like, explore the ways in which cilia have evolved since that time, and speculate on the selective processes that might have generated these organelles during early eukaryotic evolution.
Collapse
Affiliation(s)
- David R Mitchell
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York 13210
| |
Collapse
|
36
|
Rao VG, Sarafdar RB, Chowdhury TS, Sivadas P, Yang P, Dongre PM, D'Souza JS. Myc-binding protein orthologue interacts with AKAP240 in the central pair apparatus of the Chlamydomonas flagella. BMC Cell Biol 2016; 17:24. [PMID: 27287193 PMCID: PMC4901443 DOI: 10.1186/s12860-016-0103-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 06/02/2016] [Indexed: 12/20/2022] Open
Abstract
Background Flagella and cilia are fine thread-like organelles protruding from cells that harbour them. The typical ‘9 + 2’ cilia confer motility on these cells. Although the mechanistic details of motility remain elusive, the dynein-driven motility is regulated by various kinases and phosphatases. A-kinase anchoring proteins (AKAPs) are scaffolds that bind to a variety of such proteins. Usually, they are known to possess a dedicated domain that in vitro interacts with the regulatory subunits (RI and RII) present in the cAMP-dependent protein kinase (PKA) holoenzyme. These subunits conventionally harbour contiguous stretches of a.a. residues that reveal the presence of the Dimerization Docking (D/D) domain, Catalytic interface domain and cAMP-Binding domain. The Chlamydomonas reinhardtii flagella harbour two AKAPs; viz., the radial spoke AKAP97 or RSP3 and the central pair AKAP240. Both these were identified on the basis of their RII-binding property. Interestingly, AKAP97 binds in vivo to two RII-like proteins (RSP7 and RSP11) that contain only the D/D domain. Results We found a Chlamydomonas Flagellar Associated Protein (FAP174) orthologous to MYCBP-1, a protein that binds to organellar AKAPs and Myc onco-protein. An in silico analysis shows that the N-terminus of FAP174 is similar to those RII domain-containing proteins that have binding affinities to AKAPs. Binding of FAP174 was tested with the AKAP97/RSP3 using in vitro pull down assays; however, this binding was rather poor with AKAP97/RSP3. Antibodies were generated against FAP174 and the cellular localization was studied using Western blotting and immunoflourescence in wild type and various flagella mutants. We show that FAP174 localises to the central pair of the axoneme. Using overlay assays we show that FAP174 binds AKAP240 previously identified in the C2 portion of the central pair apparatus. Conclusion It appears that the flagella of Chlamydomonas reinhardtii contain proteins that bind to AKAPs and except for the D/D domain, lack the conventional a.a. stretches of PKA regulatory subunits (RSP7 and RSP11). We add FAP174 to this growing list. Electronic supplementary material The online version of this article (doi:10.1186/s12860-016-0103-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Venkatramanan G Rao
- UM-DAE Centre for Excellence in Basic Sciences, Kalina campus, Santacruz (E), Mumbai, 400098, India
| | - Ruhi B Sarafdar
- UM-DAE Centre for Excellence in Basic Sciences, Kalina campus, Santacruz (E), Mumbai, 400098, India
| | - Twinkle S Chowdhury
- UM-DAE Centre for Excellence in Basic Sciences, Kalina campus, Santacruz (E), Mumbai, 400098, India
| | - Priyanka Sivadas
- Wehr Life Sciences, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201-1881, USA
| | - Pinfen Yang
- Wehr Life Sciences, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201-1881, USA
| | - Prabhakar M Dongre
- Department of Biophysics, University of Mumbai, Kalina campus, Santacruz (E), Mumbai, 400098, India
| | - Jacinta S D'Souza
- UM-DAE Centre for Excellence in Basic Sciences, Kalina campus, Santacruz (E), Mumbai, 400098, India.
| |
Collapse
|
37
|
Kumar S, Parameswaran S, Sharma RK. Novel myristoylation of the sperm-specific hexokinase 1 isoform regulates its atypical localization. Biol Open 2015; 4:1679-87. [PMID: 26581589 PMCID: PMC4736023 DOI: 10.1242/bio.012831] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hexokinase 1 variant in mammalian spermatozoa (HK1S) has a unique N-terminus and this isoform atypically localizes to the plasma membrane. However, the mechanism of this process currently remains ambiguous. In this report, we show that fatty acylation underlies the specific sorting of HK1S. Employing chimeric reporter constructs, we first established that compartmentalization of HK1S does not function exclusively in sperm cells and that this feature is swappable to somatic HEK293 cells. Although the N-terminus lacks the classical consensus signature for myristoylation and the sequence-based predictions fail to predict myristoylation of HK1S, complementary experimental approaches confirmed that HK1S is myristoylated. Using live-cell confocal microscopy, we show that the mutation of a single amino acid, the myristoyl recipient Gly(2), impedes the prominent feature of plasma membrane association and relocates the enzyme to the cytosol but not the nucleus. Additionally, substitutions of the putatively palmitoylated Cys(5) is also reflected in a similar loss of compartmentalization of the protein. Taken together, our findings conclusively demonstrate that the N-terminal 'MGQICQ' motif in the unique GCS domain of HK1S acquires hydrophobicity by dual lipidic modifications, N-myristoylation and palmitoylation, to serve the requirements for membranous associations and thus its compartmentalization.
Collapse
Affiliation(s)
- Sujeet Kumar
- Department of Pathology and Laboratory Medicine, Cancer Cluster, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Sreejit Parameswaran
- Department of Pathology and Laboratory Medicine, Cancer Cluster, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Rajendra K Sharma
- Department of Pathology and Laboratory Medicine, Cancer Cluster, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| |
Collapse
|
38
|
Kristoffersen AS, Hamre B, Frette Ø, Erga SR. Chlorophyll a fluorescence lifetime reveals reversible UV-induced photosynthetic activity in the green algae Tetraselmis. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 45:259-68. [PMID: 26538330 PMCID: PMC4796335 DOI: 10.1007/s00249-015-1092-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/07/2015] [Accepted: 10/13/2015] [Indexed: 11/30/2022]
Abstract
The fluorescence lifetime is a very useful parameter for investigating biological materials on the molecular level as it is mostly independent of the fluorophore concentration. The green alga Tetraselmis blooms in summer, and therefore its response to UV irradiation is of particular interest. In vivo fluorescence lifetimes of chlorophyll a were measured under both normal and UV-stressed conditions of Tetraselmis. Fluorescence was induced by two-photon excitation using a femtosecond laser and laser scanning microscope. The lifetimes were measured in the time domain by time-correlated single-photon counting. Under normal conditions, the fluorescence lifetime was 262 ps, while after 2 h of exposure to UV radiation the lifetime increased to 389 ps, indicating decreased photochemical quenching, likely caused by a damaged and down-regulated photosynthetic apparatus. This was supported by a similar increase in the lifetime to 425 ps when inhibiting photosynthesis chemically using DCMU. Furthermore, the UV-stressed sample was dark-adapted overnight, resulting in a return of the lifetime to 280 ps, revealing that the damage caused by UV radiation is repairable on a relatively short time scale. This reversal of photosynthetic activity was also confirmed by [Formula: see text] measurements.
Collapse
Affiliation(s)
- Arne S Kristoffersen
- Department of Physics and Technology, University of Bergen, P.O. Box 7803, 5020, Bergen, Norway.
| | - Børge Hamre
- Department of Physics and Technology, University of Bergen, P.O. Box 7803, 5020, Bergen, Norway
| | - Øyvind Frette
- Department of Physics and Technology, University of Bergen, P.O. Box 7803, 5020, Bergen, Norway
| | - Svein R Erga
- Department of Biology, University of Bergen, P.O. Box 7803, 5020, Bergen, Norway
| |
Collapse
|
39
|
Haanstra JR, González-Marcano EB, Gualdrón-López M, Michels PAM. Biogenesis, maintenance and dynamics of glycosomes in trypanosomatid parasites. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1038-48. [PMID: 26384872 DOI: 10.1016/j.bbamcr.2015.09.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 12/31/2022]
Abstract
Peroxisomes of organisms belonging to the protist group Kinetoplastea, which include trypanosomatid parasites of the genera Trypanosoma and Leishmania, are unique in playing a crucial role in glycolysis and other parts of intermediary metabolism. They sequester the majority of the glycolytic enzymes and hence are called glycosomes. Their glycosomal enzyme content can vary strongly, particularly quantitatively, between different trypanosomatid species, and within each species during its life cycle. Turnover of glycosomes by autophagy of redundant ones and biogenesis of a new population of organelles play a pivotal role in the efficient adaptation of the glycosomal metabolic repertoire to the sudden, major nutritional changes encountered during the transitions in their life cycle. The overall mechanism of glycosome biogenesis is similar to that of peroxisomes in other organisms, but the homologous peroxins involved display low sequence conservation as well as variations in motifs mediating crucial protein-protein interactions in the process. The correct compartmentalisation of enzymes is essential for the regulation of the trypanosomatids' metabolism and consequently for their viability. For Trypanosoma brucei it was shown that glycosomes also play a crucial role in its life-cycle regulation: a crucial developmental control switch involves the translocation of a protein phosphatase from the cytosol into the organelles. Many glycosomal proteins are differentially phosphorylated in different life-cycle stages, possibly indicative of regulation of enzyme activities as an additional means to adapt the metabolic network to the different environmental conditions encountered.
Collapse
Affiliation(s)
- Jurgen R Haanstra
- Systems Bioinformatics, Vrije Universiteit Amsterdam, The Netherlands
| | - Eglys B González-Marcano
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Melisa Gualdrón-López
- Federal University of Minas Gerais, Laboratory of Immunoregulation of Infectious Diseases, Department of Biochemistry and Immunology, Institute for Biological Sciences, Belo Horizonte, Brazil
| | - Paul A M Michels
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela; Centre for Translational and Chemical Biology, Institute of Structural and Molecular Biology, School of Biological Sciences, University of Edinburgh, United Kingdom.
| |
Collapse
|
40
|
Sinigaglia C, Busengdal H, Lerner A, Oliveri P, Rentzsch F. Molecular characterization of the apical organ of the anthozoan Nematostella vectensis. Dev Biol 2015; 398:120-33. [PMID: 25478911 PMCID: PMC4300403 DOI: 10.1016/j.ydbio.2014.11.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 10/16/2014] [Accepted: 11/13/2014] [Indexed: 02/07/2023]
Abstract
Apical organs are sensory structures present in many marine invertebrate larvae where they are considered to be involved in their settlement, metamorphosis and locomotion. In bilaterians they are characterised by a tuft of long cilia and receptor cells and they are associated with groups of neurons, but their relatively low morphological complexity and dispersed phylogenetic distribution have left their evolutionary relationship unresolved. Moreover, since apical organs are not present in the standard model organisms, their development and function are not well understood. To provide a foundation for a better understanding of this structure we have characterised the molecular composition of the apical organ of the sea anemone Nematostella vectensis. In a microarray-based comparison of the gene expression profiles of planulae with either a wildtype or an experimentally expanded apical organ, we identified 78 evolutionarily conserved genes, which are predominantly or specifically expressed in the apical organ of Nematostella. This gene set comprises signalling molecules, transcription factors, structural and metabolic genes. The majority of these genes, including several conserved, but previously uncharacterized ones, are potentially involved in different aspects of the development or function of the long cilia of the apical organ. To demonstrate the utility of this gene set for comparative analyses, we further analysed the expression of a subset of previously uncharacterized putative orthologs in sea urchin larvae and detected expression for twelve out of eighteen of them in the apical domain. Our study provides a molecular characterization of the apical organ of Nematostella and represents an informative tool for future studies addressing the development, function and evolutionary history of apical organ cells.
Collapse
Affiliation(s)
- Chiara Sinigaglia
- Sars Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt 55, 5008 Bergen, Norway
| | - Henriette Busengdal
- Sars Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt 55, 5008 Bergen, Norway
| | - Avi Lerner
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Paola Oliveri
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Fabian Rentzsch
- Sars Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt 55, 5008 Bergen, Norway.
| |
Collapse
|
41
|
The structural and functional coordination of glycolytic enzymes in muscle: evidence of a metabolon? BIOLOGY 2014; 3:623-44. [PMID: 25247275 PMCID: PMC4192631 DOI: 10.3390/biology3030623] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/05/2014] [Accepted: 09/08/2014] [Indexed: 12/22/2022]
Abstract
Metabolism sustains life through enzyme-catalyzed chemical reactions within the cells of all organisms. The coupling of catalytic function to the structural organization of enzymes contributes to the kinetic optimization important to tissue-specific and whole-body function. This coupling is of paramount importance in the role that muscle plays in the success of Animalia. The structure and function of glycolytic enzyme complexes in anaerobic metabolism have long been regarded as a major regulatory element necessary for muscle activity and whole-body homeostasis. While the details of this complex remain to be elucidated through in vivo studies, this review will touch on recent studies that suggest the existence of such a complex and its structure. A potential model for glycolytic complexes and related subcomplexes is introduced.
Collapse
|
42
|
Fu G, Nagasato C, Oka S, Cock JM, Motomura T. Proteomics analysis of heterogeneous flagella in brown algae (stramenopiles). Protist 2014; 165:662-75. [PMID: 25150613 DOI: 10.1016/j.protis.2014.07.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/22/2014] [Accepted: 07/22/2014] [Indexed: 10/25/2022]
Abstract
Flagella are conserved organelles among eukaryotes and they are composed of many proteins, which are necessary for flagellar assembly, maintenance and function. Stramenopiles, which include brown algae, diatoms and oomycetes, possess two laterally inserted flagella. The anterior flagellum (AF) extends forward and bears tripartite mastigonemes, whilst the smooth posterior flagellum (PF) often has a paraflagellar body structure. These heterogeneous flagella have served as crucial structures in algal studies especially from a viewpoint of phylogeny. However, the protein compositions of the flagella are still largely unknown. Here we report a LC-MS/MS based proteomics analysis of brown algal flagella. In total, 495 flagellar proteins were identified. Functional annotation of the proteome data revealed that brown algal flagellar proteins were associated with cell motility, signal transduction and various metabolic activities. We separately isolated AF and PF and analyzed their protein compositions. This analysis led to the identification of several AF- and PF-specific proteins. Among the PF-specific proteins, we found a candidate novel blue light receptor protein involved in phototaxis, and named it HELMCHROME because of the steering function of PF. Immunological analysis revealed that this protein was localized along the whole length of the PF and concentrated in the paraflagellar body.
Collapse
Affiliation(s)
- Gang Fu
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran 051-0013, Hokkaido, Japan
| | - Chikako Nagasato
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran 051-0013, Hokkaido, Japan
| | - Seiko Oka
- Instrumental Analysis Division, Equipment Management Center, Creative Research Institution, Hokkaido University, Sapporo 001-0021, Hokkaido, Japan
| | - J Mark Cock
- University Pierre et Marie Curie and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7139, Laboratoire International Associé Dispersal and Adaptation in Marine Species, Station Biologique de Roscoff, 29682 Roscoff Cedex, France
| | - Taizo Motomura
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran 051-0013, Hokkaido, Japan.
| |
Collapse
|
43
|
Talman AM, Prieto JH, Marques S, Ubaida-Mohien C, Lawniczak M, Wass MN, Xu T, Frank R, Ecker A, Stanway RS, Krishna S, Sternberg MJE, Christophides GK, Graham DR, Dinglasan RR, Yates JR, Sinden RE. Proteomic analysis of the Plasmodium male gamete reveals the key role for glycolysis in flagellar motility. Malar J 2014; 13:315. [PMID: 25124718 PMCID: PMC4150949 DOI: 10.1186/1475-2875-13-315] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 07/28/2014] [Indexed: 12/22/2022] Open
Abstract
Background Gametogenesis and fertilization play crucial roles in malaria transmission. While male gametes are thought to be amongst the simplest eukaryotic cells and are proven targets of transmission blocking immunity, little is known about their molecular organization. For example, the pathway of energy metabolism that power motility, a feature that facilitates gamete encounter and fertilization, is unknown. Methods Plasmodium berghei microgametes were purified and analysed by whole-cell proteomic analysis for the first time. Data are available via ProteomeXchange with identifier PXD001163. Results 615 proteins were recovered, they included all male gamete proteins described thus far. Amongst them were the 11 enzymes of the glycolytic pathway. The hexose transporter was localized to the gamete plasma membrane and it was shown that microgamete motility can be suppressed effectively by inhibitors of this transporter and of the glycolytic pathway. Conclusions This study describes the first whole-cell proteomic analysis of the malaria male gamete. It identifies glycolysis as the likely exclusive source of energy for flagellar beat, and provides new insights in original features of Plasmodium flagellar organization. Electronic supplementary material The online version of this article (doi:10.1186/1475-2875-13-315) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Arthur M Talman
- Division of Cell and Molecular Biology, Imperial College, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Polle JEW, Neofotis P, Huang A, Chang W, Sury K, Wiech EM. Carbon partitioning in green algae (chlorophyta) and the enolase enzyme. Metabolites 2014; 4:612-28. [PMID: 25093929 PMCID: PMC4192683 DOI: 10.3390/metabo4030612] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/25/2014] [Accepted: 07/28/2014] [Indexed: 02/08/2023] Open
Abstract
The exact mechanisms underlying the distribution of fixed carbon within photoautotrophic cells, also referred to as carbon partitioning, and the subcellular localization of many enzymes involved in carbon metabolism are still unknown. In contrast to the majority of investigated green algae, higher plants have multiple isoforms of the glycolytic enolase enzyme, which are differentially regulated in higher plants. Here we report on the number of gene copies coding for the enolase in several genomes of species spanning the major classes of green algae. Our genomic analysis of several green algae revealed the presence of only one gene coding for a glycolytic enolase [EC 4.2.1.11]. Our predicted cytosolic localization would require export of organic carbon from the plastid to provide substrate for the enolase and subsequent re-import of organic carbon back into the plastids. Further, our comparative sequence study of the enolase and its 3D-structure prediction may suggest that the N-terminal extension found in green algal enolases could be involved in regulation of the enolase activity. In summary, we propose that the enolase represents one of the crucial regulatory bottlenecks in carbon partitioning in green algae.
Collapse
Affiliation(s)
- Jürgen E W Polle
- Department of Biology, Brooklyn College of the City University of New York, 2900 Bedford Avenue 200NE, Brooklyn, NY 11210, USA.
| | - Peter Neofotis
- Department of Biology, Brooklyn College of the City University of New York, 2900 Bedford Avenue 200NE, Brooklyn, NY 11210, USA.
| | - Andy Huang
- Department of Biology, Brooklyn College of the City University of New York, 2900 Bedford Avenue 200NE, Brooklyn, NY 11210, USA.
| | - William Chang
- Department of Biology, Brooklyn College of the City University of New York, 2900 Bedford Avenue 200NE, Brooklyn, NY 11210, USA.
| | - Kiran Sury
- Department of Biology, Brooklyn College of the City University of New York, 2900 Bedford Avenue 200NE, Brooklyn, NY 11210, USA.
| | - Eliza M Wiech
- Department of Biology, Brooklyn College of the City University of New York, 2900 Bedford Avenue 200NE, Brooklyn, NY 11210, USA.
| |
Collapse
|
45
|
Brown RWB, Collingridge PW, Gull K, Rigden DJ, Ginger ML. Evidence for loss of a partial flagellar glycolytic pathway during trypanosomatid evolution. PLoS One 2014; 9:e103026. [PMID: 25050549 PMCID: PMC4106842 DOI: 10.1371/journal.pone.0103026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 06/27/2014] [Indexed: 11/18/2022] Open
Abstract
Classically viewed as a cytosolic pathway, glycolysis is increasingly recognized as a metabolic pathway exhibiting surprisingly wide-ranging variations in compartmentalization within eukaryotic cells. Trypanosomatid parasites provide an extreme view of glycolytic enzyme compartmentalization as several glycolytic enzymes are found exclusively in peroxisomes. Here, we characterize Trypanosoma brucei flagellar proteins resembling glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoglycerate kinase (PGK): we show the latter associates with the axoneme and the former is a novel paraflagellar rod component. The paraflagellar rod is an essential extra-axonemal structure in trypanosomes and related protists, providing a platform into which metabolic activities can be built. Yet, bioinformatics interrogation and structural modelling indicate neither the trypanosome PGK-like nor the GAPDH-like protein is catalytically active. Orthologs are present in a free-living ancestor of the trypanosomatids, Bodo saltans: the PGK-like protein from B. saltans also lacks key catalytic residues, but its GAPDH-like protein is predicted to be catalytically competent. We discuss the likelihood that the trypanosome GAPDH-like and PGK-like proteins constitute molecular evidence for evolutionary loss of a flagellar glycolytic pathway, either as a consequence of niche adaptation or the re-localization of glycolytic enzymes to peroxisomes and the extensive changes to glycolytic flux regulation that accompanied this re-localization. Evidence indicating loss of localized ATP provision via glycolytic enzymes therefore provides a novel contribution to an emerging theme of hidden diversity with respect to compartmentalization of the ubiquitous glycolytic pathway in eukaryotes. A possibility that trypanosome GAPDH-like protein additionally represents a degenerate example of a moonlighting protein is also discussed.
Collapse
Affiliation(s)
- Robert W. B. Brown
- Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| | | | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Daniel J. Rigden
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Michael L. Ginger
- Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
- * E-mail:
| |
Collapse
|
46
|
Wang H, Gau B, Slade WO, Juergens M, Li P, Hicks LM. The global phosphoproteome of Chlamydomonas reinhardtii reveals complex organellar phosphorylation in the flagella and thylakoid membrane. Mol Cell Proteomics 2014; 13:2337-53. [PMID: 24917610 DOI: 10.1074/mcp.m114.038281] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chlamydomonas reinhardtii is the most intensively-studied and well-developed model for investigation of a wide-range of microalgal processes ranging from basic development through understanding triacylglycerol production. Although proteomic technologies permit interrogation of these processes at the protein level and efforts to date indicate phosphorylation-based regulation of proteins in C. reinhardtii is essential for its underlying biology, characterization of the C. reinhardtii phosphoproteome has been limited. Herein, we report the richest exploration of the C. reinhardtii proteome to date. Complementary enrichment strategies were used to detect 4588 phosphoproteins distributed among every cellular component in C. reinhardtii. Additionally, we report 18,160 unique phosphopeptides at <1% false discovery rate, which comprise 15,862 unique phosphosites - 98% of which are novel. Given that an estimated 30% of proteins in a eukaryotic cell are subject to phosphorylation, we report the majority of the phosphoproteome (23%) of C. reinhardtii. Proteins in key biological pathways were phosphorylated, including photosynthesis, pigment production, carbon assimilation, glycolysis, and protein and carbohydrate metabolism, and it is noteworthy that hyperphosphorylation was observed in flagellar proteins. This rich data set is available via ProteomeXchange (ID: PXD000783) and will significantly enhance understanding of a range of regulatory mechanisms controlling a variety of cellular process and will serve as a critical resource for the microalgal community.
Collapse
Affiliation(s)
- Hongxia Wang
- From the ‡Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, Missouri 63132; §National Center of Biomedical Analysis, 27 Taiping Road, Beijing, 100850, China
| | - Brian Gau
- From the ‡Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, Missouri 63132; ¶Sigma-Aldrich, 2909 Laclede Ave., St. Louis, Missouri 63103
| | - William O Slade
- ‖Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Road, Chapel Hill, North Carolina 27599
| | - Matthew Juergens
- **Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, Missouri 48824
| | - Ping Li
- §National Center of Biomedical Analysis, 27 Taiping Road, Beijing, 100850, China
| | - Leslie M Hicks
- From the ‡Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, Missouri 63132; ‖Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Road, Chapel Hill, North Carolina 27599;
| |
Collapse
|
47
|
Singh K, Veluru NK, Trivedi V, Gupta CM, Sahasrabuddhe AA. An actin-like protein is involved in regulation of mitochondrial and flagellar functions as well as in intramacrophage survival of Leishmania donovani. Mol Microbiol 2014; 91:562-78. [PMID: 24354789 DOI: 10.1111/mmi.12477] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2013] [Indexed: 11/30/2022]
Abstract
Actin-related proteins are ubiquitous actin-like proteins that show high similarity with actin in terms of their amino acid sequence and three-dimensional structure. However, in lower eukaryotes, such as trypanosomatids, their functions have not yet been explored. Here, we show that a novel actin-related protein (ORF LmjF.13.0950) is localized mainly in the Leishmania mitochondrion. We further reveal that depletion of the intracellular levels of this protein leads to an appreciable decrease in the mitochondrial membrane potential as well as in the ATP production, which appears to be accompanied with impairment in the flagellum assembly and motility. Additionally, we report that the mutants so generated fail to survive inside the mouse peritoneal macrophages. These abnormalities are, however, reversed by the episomal gene complementation. Our results, for the first time indicate that apart from their classical roles in the cytoplasm and nucleus, actin-related proteins may also regulate the mitochondrial function, and in case of Leishmania donovani they may also serve as the essential factor for their survival in the host cells.
Collapse
Affiliation(s)
- Kuldeep Singh
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, PIN-226031, Uttar Pradesh, India
| | | | | | | | | |
Collapse
|
48
|
Ishikawa H, Ide T, Yagi T, Jiang X, Hirono M, Sasaki H, Yanagisawa H, Wemmer KA, Stainier DY, Qin H, Kamiya R, Marshall WF. TTC26/DYF13 is an intraflagellar transport protein required for transport of motility-related proteins into flagella. eLife 2014; 3:e01566. [PMID: 24596149 PMCID: PMC3936282 DOI: 10.7554/elife.01566] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cilia/flagella are assembled and maintained by the process of intraflagellar transport (IFT), a highly conserved mechanism involving more than 20 IFT proteins. However, the functions of individual IFT proteins are mostly unclear. To help address this issue, we focused on a putative IFT protein TTC26/DYF13. Using live imaging and biochemical approaches we show that TTC26/DYF13 is an IFT complex B protein in mammalian cells and Chlamydomonas reinhardtii. Knockdown of TTC26/DYF13 in zebrafish embryos or mutation of TTC26/DYF13 in C. reinhardtii, produced short cilia with abnormal motility. Surprisingly, IFT particle assembly and speed were normal in dyf13 mutant flagella, unlike in other IFT complex B mutants. Proteomic and biochemical analyses indicated a particular set of proteins involved in motility was specifically depleted in the dyf13 mutant. These results support the concept that different IFT proteins are responsible for different cargo subsets, providing a possible explanation for the complexity of the IFT machinery. DOI: http://dx.doi.org/10.7554/eLife.01566.001.
Collapse
Affiliation(s)
- Hiroaki Ishikawa
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Eelen G, Cruys B, Welti J, De Bock K, Carmeliet P. Control of vessel sprouting by genetic and metabolic determinants. Trends Endocrinol Metab 2013; 24:589-96. [PMID: 24075830 DOI: 10.1016/j.tem.2013.08.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/26/2013] [Accepted: 08/28/2013] [Indexed: 01/28/2023]
Abstract
Vessel sprouting by endothelial cells (ECs) during angiogenesis relies on a navigating tip cell and on proliferating stalk cells that elongate the shaft. To date, only genetic signals have been shown to regulate vessel sprouting. However, emerging evidence indicates that the angiogenic switch also requires a metabolic switch. Indeed, angiogenic signals not only induce a change in EC metabolism but this metabolic adaptation also co-determines vessel sprouting. The glycolytic activator PFKFB3 regulates stalk cell proliferation and renders ECs more competitive to reach the tip. We discuss the emerging link between angiogenesis and EC metabolism during the various stages of vessel sprouting, focusing only on genetic signals for which an effect on EC metabolism has been documented.
Collapse
Affiliation(s)
- Guy Eelen
- Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, Vlaams Instituut voor Biotechnologie (VIB), Department of Oncology, Katholieke Universiteit Leuven (KU Leuven), Herestraat 49, 3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
50
|
Abstract
Endothelial cells (ECs) are quiescent for years but can plastically switch to angiogenesis. Vascular sprouting relies on the coordinated activity of migrating tip cells at the forefront and proliferating stalk cells that elongate the sprout. Past studies have identified genetic signals that control vascular branching. Prominent are VEGF, activating tip cells, and Notch, which stimulates stalk cells. After the branch is formed and perfused, ECs become quiescent phalanx cells. Now, emerging evidence has accumulated indicating that ECs not only adapt their metabolism when switching from quiescence to sprouting but also that metabolism regulates vascular sprouting in parallel to the control by genetic signals.
Collapse
Affiliation(s)
- Katrien De Bock
- Department of Oncology, University of Leuven, Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, Leuven 3000, Belgium; VIB, Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, Leuven 3000, Belgium
| | | | | |
Collapse
|