1
|
Wang B, Gannon M, Pattanayak R, Scholz K, Pair FS, Stone WJ, Ekkatine R, Liu Z, Yacoubian TA. 14-3-3θ phosphorylation exacerbates alpha-synuclein aggregation and toxicity. Neurobiol Dis 2025; 206:106801. [PMID: 39805369 PMCID: PMC11932739 DOI: 10.1016/j.nbd.2025.106801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/23/2024] [Accepted: 01/09/2025] [Indexed: 01/16/2025] Open
Abstract
Aggregation of alpha-synuclein (αsyn) plays an integral role in Parkinson's disease (PD) and Dementia with Lewy bodies (DLB). 14-3-3θ is a highly expressed brain protein with chaperone-like activity that regulates αsyn folding. 14-3-3θ overexpression reduces αsyn aggregation, transmission between cells, and neuronal loss, while 14-3-3 inhibition promotes αsyn pathology. We previously observed increased 14-3-3θ phosphorylation at serine 232 in human PD and DLB brains. Here we examine 14-3-3θ phosphorylation's effects on αsyn aggregation and toxicity. Using a paracrine αsyn model, we found that the non-phosphorylatable S232A 14-3-3θ protected while the phosphomimetic S232D 14-3-3θ failed to protect against αsyn paracrine toxicity. The S232A mutant reduced oligomerization of released αsyn while the S232D mutant did not. The S232D mutant showed significant reduction in αsyn binding compared to wildtype or S232A 14-3-3θ. Using knock-in mouse models expressing the S232A or S232D mutation in the cortex and hippocampus, we examined the impact of S232 phosphorylation on αsyn aggregation in the αsyn preformed fibril (PFF) model. Primary neurons from S232D mice showed increased αsyn inclusion formation compared to neurons from Cre control mice upon PFF treatment. In contrast, neurons from S232A mice showed reduced αsyn inclusions. αSyn PFF injection into the dorsolateral striatum induced higher αsyn inclusion numbers in the sensorimotor cortex of S232D mice compared to Cre control mice. In conclusion, 14-3-3θ phosphorylation at S232 interrupts the ability of 14-3-3θ to bind and regulate αsyn aggregation. Increased 14-3-3θ phosphorylation observed in human PD and DLB likely accelerates neurodegeneration in these disorders.
Collapse
Affiliation(s)
- Bing Wang
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America
| | - Mary Gannon
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America
| | - Rudradip Pattanayak
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America
| | - Kasandra Scholz
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America
| | - Frank Sanders Pair
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America
| | - William J Stone
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America
| | - Roschongporn Ekkatine
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America
| | - Zhongyu Liu
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America
| | - Talene A Yacoubian
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America.
| |
Collapse
|
2
|
Sedlov IA, Sluchanko NN. The Big, Mysterious World of Plant 14-3-3 Proteins. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:S1-S35. [PMID: 40164151 DOI: 10.1134/s0006297924603319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 04/02/2025]
Abstract
14-3-3 is a family of small regulatory proteins found exclusively in eukaryotic organisms. They selectively bind to phosphorylated molecules of partner proteins and regulate their functions. 14-3-3 proteins were first characterized in the mammalian brain approximately 60 years ago and then found in plants, 30 years later. The multifunctionality of 14-3-3 proteins is exemplified by their involvement in coordination of protein kinase cascades in animal brain and regulation of flowering, growth, metabolism, and immunity in plants. Despite extensive studies of this diverse and complex world of plant 14-3-3 proteins, our understanding of functions of these enigmatic molecules is fragmentary and unsystematic. The results of studies are often contradictory and many questions remain unanswered, including biochemical properties of 14-3-3 isoforms, structure of protein-protein complexes, and direct mechanisms by which 14-3-3 proteins influence the functions of their partners in plants. Although many plant genes coding for 14-3-3 proteins have been identified, the isoforms for in vivo and in vitro studies are often selected at random. This rather limited approach is partly due to an exceptionally large number and variety of 14-3-3 homologs in plants and erroneous a priori assumptions on the equivalence of certain isoforms. The accumulated results provide an extensive but rather fragmentary picture, which poses serious challenges for making global generalizations. This review is aimed to demonstrate the diversity and scope of studies of the functions of plant 14-3-3 proteins, as well as to identify areas that require further systematic investigation and close scientific attention.
Collapse
Affiliation(s)
- Ilya A Sedlov
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Nikolai N Sluchanko
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
3
|
Cao Y, Popp O, Milani N, Qadri F, Kühn R, Mertins P, Bader M, Alenina N. Hyperphenylalaninemia and serotonin deficiency in Dnajc12-deficient mice. Commun Biol 2024; 7:1641. [PMID: 39695187 DOI: 10.1038/s42003-024-07360-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
Serotonin exerts numerous neurological and physiological actions in the brain and in the periphery. It is generated by two different tryptophan hydroxylase enzymes, TPH1 and TPH2, in the periphery and in the brain, respectively, which are members of the aromatic amino acid hydroxylase (AAAH) family together with phenylalanine hydroxylase (PAH), degrading phenylalanine, and tyrosine hydroxylase (TH), generating dopamine. In this study, we show that the co-chaperone DNAJC12 is downregulated in serotonergic neurons in the brain of mice lacking TPH2 and thereby central serotonin. DNAJC12 has been described to regulate the stability of PAH and mutations in its gene cause hyperphenylalaninemia and neurological symptoms in patients. We show that DNAJC12 also binds and stabilizes TPH1 and TPH2 in transfected cells. In order to clarify the importance of DNAJC12 in the regulation of neurotransmitter synthesis and phenylalanine degradation in vivo, we generated DNAJC12-deficient mice. These mice show reduced levels and activity of PAH, TPH2, and TPH1 in liver, brain, and pineal gland, respectively, and experience hyperphenylalaninemia and central and peripheral serotonin deficiency. These data support a pivotal role of DNAJC12 in the regulation of AAAH and thereby in neurotransmitter synthesis and phenylalanine homeostasis.
Collapse
Affiliation(s)
- Yunqing Cao
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité - University Medicine, Berlin, Germany
| | - Oliver Popp
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Niccolo Milani
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité - University Medicine, Berlin, Germany
| | - Fatimunnisa Qadri
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Ralf Kühn
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Philipp Mertins
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité - University Medicine, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
| | - Natalia Alenina
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
| |
Collapse
|
4
|
Abdi G, Jain M, Patil N, Upadhyay B, Vyas N, Dwivedi M, Kaushal RS. 14-3-3 proteins-a moonlight protein complex with therapeutic potential in neurological disorder: in-depth review with Alzheimer's disease. Front Mol Biosci 2024; 11:1286536. [PMID: 38375509 PMCID: PMC10876095 DOI: 10.3389/fmolb.2024.1286536] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/05/2024] [Indexed: 02/21/2024] Open
Abstract
Alzheimer's disease (AD) affects millions of people worldwide and is a gradually worsening neurodegenerative condition. The accumulation of abnormal proteins, such as tau and beta-amyloid, in the brain is a hallmark of AD pathology. 14-3-3 proteins have been implicated in AD pathology in several ways. One proposed mechanism is that 14-3-3 proteins interact with tau protein and modulate its phosphorylation, aggregation, and toxicity. Tau is a protein associated with microtubules, playing a role in maintaining the structural integrity of neuronal cytoskeleton. However, in the context of Alzheimer's disease (AD), an abnormal increase in its phosphorylation occurs. This leads to the aggregation of tau into neurofibrillary tangles, which is a distinctive feature of this condition. Studies have shown that 14-3-3 proteins can bind to phosphorylated tau and regulate its function and stability. In addition, 14-3-3 proteins have been shown to interact with beta-amyloid (Aβ), the primary component of amyloid plaques in AD. 14-3-3 proteins can regulate the clearance of Aβ through the lysosomal degradation pathway by interacting with the lysosomal membrane protein LAMP2A. Dysfunction of lysosomal degradation pathway is thought to contribute to the accumulation of Aβ in the brain and the progression of AD. Furthermore, 14-3-3 proteins have been found to be downregulated in the brains of AD patients, suggesting that their dysregulation may contribute to AD pathology. For example, decreased levels of 14-3-3 proteins in cerebrospinal fluid have been suggested as a biomarker for AD. Overall, these findings suggest that 14-3-3 proteins may play an important role in AD pathology and may represent a potential therapeutic target for the disease. However, further research is needed to fully understand the mechanisms underlying the involvement of 14-3-3 proteins in AD and to explore their potential as a therapeutic target.
Collapse
Affiliation(s)
- Gholamareza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, Iran
| | - Mukul Jain
- Cell and Developmental Biology Laboratory, Research and Development Cell, Parul University, Vadodara, Gujarat, India
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
| | - Nil Patil
- Cell and Developmental Biology Laboratory, Research and Development Cell, Parul University, Vadodara, Gujarat, India
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
| | - Bindiya Upadhyay
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
| | - Nigam Vyas
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
- Biophysics and Structural Biology Laboratory, Research and Development Cell, Parul University, Vadodara, Gujarat, India
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University, Lucknow, Uttar Pradesh, India
| | - Radhey Shyam Kaushal
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
- Biophysics and Structural Biology Laboratory, Research and Development Cell, Parul University, Vadodara, Gujarat, India
| |
Collapse
|
5
|
Subramani M, Urrea CA, Tamatamu SR, Sripathi VR, Williams K, Chintapenta LK, Todd A, Ozbay G. Comprehensive Proteomic Analysis of Common Bean ( Phaseolus vulgaris L.) Seeds Reveal Shared and Unique Proteins Involved in Terminal Drought Stress Response in Tolerant and Sensitive Genotypes. Biomolecules 2024; 14:109. [PMID: 38254709 PMCID: PMC10813106 DOI: 10.3390/biom14010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
This study identified proteomic changes in the seeds of two tolerant (SB-DT3 and SB-DT2) and two sensitive (Merlot and Stampede) common bean genotypes in response to terminal drought stress. Differentially expressed proteins (DEPs) were abundant in the susceptible genotype compared to the tolerant line. DEPs associated with starch biosynthesis, protein-chromophore linkage, and photosynthesis were identified in both genotypes, while a few DEPs and enriched biological pathways exhibited genotype-specific differences. The tolerant genotypes uniquely showed DEPs related to sugar metabolism and plant signaling, while the sensitive genotypes displayed more DEPs involved in plant-pathogen interaction, proteasome function, and carbohydrate metabolism. DEPs linked with chaperone and signal transduction were significantly altered between both genotypes. In summary, our proteomic analysis revealed both conserved and genotype-specific DEPs that could be used as targets in selective breeding and developing drought-tolerant common bean genotypes.
Collapse
Affiliation(s)
- Mayavan Subramani
- Molecular Genetics and Epigenomics Laboratory, College of Agriculture, Science and Technology (CAST), Delaware State University, Dover, DE 19901, USA; (K.W.); (A.T.)
| | - Carlos A. Urrea
- Panhandle Research Extension and Education Center, University of Nebraska, 4502 Avenue I, Scottsbluff, NE 69361, USA;
| | - Sowjanya R. Tamatamu
- Center for Molecular Biology, Alabama A&M University, Normal, AL 35762, USA; (S.R.T.); (V.R.S.)
| | | | - Krystal Williams
- Molecular Genetics and Epigenomics Laboratory, College of Agriculture, Science and Technology (CAST), Delaware State University, Dover, DE 19901, USA; (K.W.); (A.T.)
| | - Lathadevi K. Chintapenta
- Biology Department, College of Arts and Sciences (CAS), University of Wisconsin-River Falls, River Falls, WI 54022, USA;
| | - Antonette Todd
- Molecular Genetics and Epigenomics Laboratory, College of Agriculture, Science and Technology (CAST), Delaware State University, Dover, DE 19901, USA; (K.W.); (A.T.)
| | - Gulnihal Ozbay
- Department of Agriculture and Natural Resources, Delaware State University, 1200 North DuPont Highway, Dover, DE 19901, USA
| |
Collapse
|
6
|
Fan X, Huang T, Wang S, Yang Z, Song W, Zeng Y, Tong Y, Cai Y, Yang D, Zeng B, Zhang M, Ni Q, Li Y, Li D, Yang M. The adaptor protein 14-3-3zeta modulates intestinal immunity and aging in Drosophila. J Biol Chem 2023; 299:105414. [PMID: 37918806 PMCID: PMC10724694 DOI: 10.1016/j.jbc.2023.105414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
The proteins that coordinate the complex transcriptional networks of aging have not been completely documented. Protein 14-3-3zeta is an adaptor protein that coordinates signaling and transcription factor networks, but its function in aging is not fully understood. Here, we showed that the protein expression of 14-3-3zeta gradually increased during aging. High levels of 14-3-3zeta led to shortened lifespan and imbalance of intestinal immune homeostasis in Drosophila, but the decrease in 14-3-3zeta protein levels by RNAi was able to significantly promote the longevity and intestinal immune homeostasis of fruit flies. Importantly, we demonstrate that adult-onset administration of TIC10, a compound that reduces the aging-related AKT and extracellular signal-regulated kinase (ERK) signaling pathways, rescues the shortened lifespan of 14-3-3zeta-overexpressing flies. This finding suggests that 14-3-3zeta plays a critical role in regulating the aging process. Our study elucidates the role of 14-3-3zeta in natural aging and provides the rationale for subsequent 14-3-3zeta-based antiaging research.
Collapse
Affiliation(s)
- Xiaolan Fan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China.
| | - Tiantian Huang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Shuai Wang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Ziyue Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Wenhao Song
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Yao Zeng
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Technology Institute of Silk and Mulberry, Chong Qing Academy of Animal Sciences, Chongqing, P. R. China
| | - Yingdong Tong
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Yujuan Cai
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Deying Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Zeng
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingwang Zhang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qingyong Ni
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Li
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Diyan Li
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingyao Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Segal D, Maier S, Mastromarco GJ, Qian WW, Nabeel-Shah S, Lee H, Moore G, Lacoste J, Larsen B, Lin ZY, Selvabaskaran A, Liu K, Smibert C, Zhang Z, Greenblatt J, Peng J, Lee HO, Gingras AC, Taipale M. A central chaperone-like role for 14-3-3 proteins in human cells. Mol Cell 2023; 83:974-993.e15. [PMID: 36931259 DOI: 10.1016/j.molcel.2023.02.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 11/30/2022] [Accepted: 02/15/2023] [Indexed: 03/18/2023]
Abstract
14-3-3 proteins are highly conserved regulatory proteins that interact with hundreds of structurally diverse clients and act as central hubs of signaling networks. However, how 14-3-3 paralogs differ in specificity and how they regulate client protein function are not known for most clients. Here, we map the interactomes of all human 14-3-3 paralogs and systematically characterize the effect of disrupting these interactions on client localization. The loss of 14-3-3 binding leads to the coalescence of a large fraction of clients into discrete foci in a client-specific manner, suggesting a central chaperone-like function for 14-3-3 proteins. Congruently, the engraftment of 14-3-3 binding motifs to nonclients can suppress their aggregation or phase separation. Finally, we show that 14-3-3s negatively regulate the localization of the RNA-binding protein SAMD4A to cytoplasmic granules and inhibit its activity as a translational repressor. Our work suggests that 14-3-3s have a more prominent role as chaperone-like molecules than previously thought.
Collapse
Affiliation(s)
- Dmitri Segal
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Stefan Maier
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | | | - Wesley Wei Qian
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Syed Nabeel-Shah
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Hyunmin Lee
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Gaelen Moore
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jessica Lacoste
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Brett Larsen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Abeeshan Selvabaskaran
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Karen Liu
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Craig Smibert
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Zhaolei Zhang
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Jack Greenblatt
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Jian Peng
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hyun O Lee
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada.
| | - Mikko Taipale
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada.
| |
Collapse
|
8
|
Griffin TA, Schnier PD, Cleveland EM, Newberry RW, Becker J, Carlson GA. Fibril treatment changes protein interactions of tau and α-synuclein in human neurons. J Biol Chem 2023; 299:102888. [PMID: 36634849 PMCID: PMC9978635 DOI: 10.1016/j.jbc.2023.102888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/07/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
In several neurodegenerative disorders, the neuronal proteins tau and α-synuclein adopt aggregation-prone conformations capable of replicating within and between cells. To better understand how these conformational changes drive neuropathology, we compared the interactomes of tau and α-synuclein in the presence or the absence of recombinant fibril seeds. Human embryonic stem cells with an inducible neurogenin-2 transgene were differentiated into glutamatergic neurons expressing (1) WT 0N4R tau, (2) mutant (P301L) 0N4R tau, (3) WT α-synuclein, or (4) mutant (A53T) α-synuclein, each genetically fused to a promiscuous biotin ligase (BioID2). Neurons expressing unfused BioID2 served as controls. After treatment with fibrils or PBS, interacting proteins were labeled with biotin in situ and quantified using mass spectrometry via tandem mass tag labeling. By comparing interactions in mutant versus WT neurons and in fibril- versus PBS-treated neurons, we observed changes in protein interactions that are likely relevant to disease progression. We identified 45 shared interactors, suggesting that tau and α-synuclein function within some of the same pathways. Potential loci of shared interactions include microtubules, Wnt signaling complexes, and RNA granules. Following fibril treatment, physiological interactions decreased, whereas other interactions, including those between tau and 14-3-3 η, increased. We confirmed that 14-3-3 proteins, which are known to colocalize with protein aggregates during neurodegeneration, can promote or inhibit tau aggregation in vitro depending on the specific combination of 14-3-3 isoform and tau sequence.
Collapse
Affiliation(s)
- Tagan A Griffin
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Paul D Schnier
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, California, USA; Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Elisa M Cleveland
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Robert W Newberry
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, California, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, California, USA
| | - Julia Becker
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - George A Carlson
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, California, USA; Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, USA.
| |
Collapse
|
9
|
Wang Y, Johnson GI, Postles A, Coyne KJ. Nitrate reductase enzymes in alga Chattonella subsalsa are regulated by environmental cues at the translational and post-translational levels. Front Microbiol 2023; 14:1059074. [PMID: 36937302 PMCID: PMC10018130 DOI: 10.3389/fmicb.2023.1059074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Nitrate reductase (NR) catalyzes the rate-limiting step in nitrate assimilation. Plant and algal NRs have a highly conserved domain architecture but differ in regulation. In plants, NR activity is regulated by reversible phosphorylation and subsequent binding of 14-3-3 proteins at a conserved serine residue. Algal NRs typically lack 14-3-3 binding motifs, which have only recently been identified in a few algal species. Previous research indicates that the alga, Chattonella subsalsa, possesses a novel NR, NR2-2/2HbN (NR2), which incorporates a 2/2 hemoglobin domain. A second NR (NR3) in C. subsalsa lacks the cytochrome b5 (heme-Fe) domain but includes a putative binding motif for 14-3-3 proteins. The expression of NR2 and NR3 genes indicates that NR2 transcript abundance was regulated by light, nitrogen source, and temperature, while NR3 transcript levels were only regulated by light. Here, we measured total NR activity in C. subsalsa and the potential for regulation of NR activity by putative 14-3-3 binding proteins. Results indicate that NR activity in C. subsalsa was regulated by light, nitrogen source, and temperature at the translational level. NR activity was also regulated by endogenous rhythm and temperature at the post-translational level, supporting the hypothesis that NR3 is regulated by 14-3-3 binding proteins. Together with a previous report describing the regulation of NR gene expression in C. subsalsa, results suggest that C. subsalsa responds to environmental conditions by differential regulation of NRs at transcriptional, translational, and post-translational levels. This flexibility may provide a competitive advantage for this species in the environment. To date, this is the first report which provides evidence for the potential post-translational regulation of NR by 14-3-3 proteins in algal species and suggests that regulatory mechanisms for NR activity may be shared between plants and some algal species.
Collapse
|
10
|
Wang B, Pang M, Song Y, Wang H, Qi P, Bai S, Lei X, Wei S, Zong Z, Lin S, Zhang X, Cen X, Wang X, Yang Y, Li Y, Wang Y, Xu H, Huang L, Tortorella M, Cheng B, Lee Y, Qin D, Li G. Human fetal mesenchymal stem cells secretome promotes scarless diabetic wound healing through heat-shock protein family. Bioeng Transl Med 2023; 8:e10354. [PMID: 36684113 PMCID: PMC9842061 DOI: 10.1002/btm2.10354] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 01/25/2023] Open
Abstract
The high mortality rate of patients with diabetic foot ulcers is urging the appearance of an effective biomedical drug. Senescence is one of the major reasons of aging-induced decline in the diabetic wound. Our previous studies have demonstrated the anti-senescence effect of secretomes derived from human fetal mesenchymal stem cells (hfMSC). The present study tends to explore the potential role of hfMSC secretome (HFS) in wound healing through anti-aging. Meanwhile, we try to overcome several obstacles in the clinical application of stem cell secretome. A verticle bioreactor and microcarriers are employed to expand hfMSC and produce the HFS on a large scale. The HFS was then subjected to lyophilization (L-HFS). The PLGA (poly lactic-co-glycolic acid) particles were used to encapsulate and protect L-HFS from degradation in the streptozotocin (STZ)-induced diabetic rat model. Results showed that HFS-PLGA significantly enhanced wound healing by promoting vascularization and inhibiting inflammation in the skin wound bed. We further analyzed the contents of HFS. Isobaric tag for relative and absolute quantitation (ITRAQ) and label-free methods were used to identify peptides in the secretome. Bioinformatics analysis indicated that exosome production-related singling pathways and heat-shock protein family could be used as bio-functional markers and quality control for stem cell secretome production.
Collapse
Affiliation(s)
- Bin Wang
- Innovation Centre for Advanced Interdisciplinary Medicine, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education InstitutesThe Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- The Chinese University of Hong Kong (CUHK)‐Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GDL) Advanced Institute for Regenerative MedicineBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
| | - Mengru Pang
- Department of Burn and Plastic SurgeryThe Affiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Yancheng Song
- Department of orthopedicsThe Affiliated Hospital of Guangdong Pharmaceutical UniversityGuangzhouChina
| | - Haixing Wang
- Department of Orthopaedics and Traumatology, Stem Cells, and Regenerative Medicine LaboratoryLi Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales HospitalShatinHong Kong
| | - Pan Qi
- Department of Orthopaedics and Traumatology, Stem Cells, and Regenerative Medicine LaboratoryLi Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales HospitalShatinHong Kong
| | - Shanshan Bai
- Department of Orthopaedics and Traumatology, Stem Cells, and Regenerative Medicine LaboratoryLi Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales HospitalShatinHong Kong
| | - Xiaoxuan Lei
- Department of Oral and Maxillofacial Surgery/PathologyAmsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement ScienceAmsterdamThe Netherlands
| | - Shikun Wei
- Department of Plastic SurgeryGeneral Hospital of Southern Theater Command, PLAGuangzhouChina
| | - Zhixian Zong
- Department of Orthopaedics and Traumatology, Stem Cells, and Regenerative Medicine LaboratoryLi Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales HospitalShatinHong Kong
| | - Sien Lin
- Department of Orthopaedics and Traumatology, Stem Cells, and Regenerative Medicine LaboratoryLi Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales HospitalShatinHong Kong
| | - Xiaoting Zhang
- Department of Orthopaedics and Traumatology, Stem Cells, and Regenerative Medicine LaboratoryLi Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales HospitalShatinHong Kong
| | - Xiaotong Cen
- Innovation Centre for Advanced Interdisciplinary Medicine, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education InstitutesThe Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- The Chinese University of Hong Kong (CUHK)‐Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GDL) Advanced Institute for Regenerative MedicineBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
| | - Xia Wang
- Innovation Centre for Advanced Interdisciplinary Medicine, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education InstitutesThe Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- The Chinese University of Hong Kong (CUHK)‐Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GDL) Advanced Institute for Regenerative MedicineBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
| | - Yongkang Yang
- Department of Orthopaedics and Traumatology, Stem Cells, and Regenerative Medicine LaboratoryLi Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales HospitalShatinHong Kong
| | - Yuan Li
- Department of Orthopaedics and Traumatology, Stem Cells, and Regenerative Medicine LaboratoryLi Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales HospitalShatinHong Kong
| | - Yan Wang
- Department of Burn and Plastic SurgeryThe Affiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Hongjie Xu
- Innovation Centre for Advanced Interdisciplinary Medicine, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education InstitutesThe Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- The Chinese University of Hong Kong (CUHK)‐Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GDL) Advanced Institute for Regenerative MedicineBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
| | - Lin Huang
- Division of Plastic, Reconstructive and Aesthetic Surgery, Department of SurgeryThe Chinese University of Hong Kong, Prince of Wales HospitalShatinHong Kong
| | - Micky Tortorella
- Centre for Regenerative Medicine and HealthHong Kong Institute of Science and Innovation, Chinese Academy of SciencesHong KongChina
| | - Biao Cheng
- Department of Plastic SurgeryGeneral Hospital of Southern Theater Command, PLAGuangzhouChina
| | - Yukwai Lee
- Department of Orthopaedics and Traumatology, Stem Cells, and Regenerative Medicine LaboratoryLi Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales HospitalShatinHong Kong
| | - Dajiang Qin
- Innovation Centre for Advanced Interdisciplinary Medicine, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education InstitutesThe Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- The Chinese University of Hong Kong (CUHK)‐Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GDL) Advanced Institute for Regenerative MedicineBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
| | - Gang Li
- Department of Orthopaedics and Traumatology, Stem Cells, and Regenerative Medicine LaboratoryLi Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales HospitalShatinHong Kong
| |
Collapse
|
11
|
Han Y, Ye H, Li P, Zeng Y, Yang J, Gao M, Su Z, Huang Y. In vitro characterization and molecular dynamics simulation reveal mechanism of 14-3-3ζ regulated phase separation of the tau protein. Int J Biol Macromol 2022; 208:1072-1081. [PMID: 35381286 DOI: 10.1016/j.ijbiomac.2022.03.215] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/10/2022] [Accepted: 03/31/2022] [Indexed: 11/29/2022]
Abstract
As a major microtubule-associated protein, tau is involved in the assembly of microtubules in the central nervous system. However, under pathological conditions tau assembles into amyloid filaments. Liquid droplets formed by liquid-liquid phase separation (LLPS) are a recently identified assembly state of tau and may have a major effect on the physiological function of tau and the formation of tau aggregates. 14-3-3 proteins are ubiquitously expressed in various tissues and regulate a wide variety of biological processes. In this work, we demonstrate that 14-3-3ζ is recruited into tau droplets and regulates tau LLPS by in vitro assays. While the mobility of tau molecules inside the droplets is not affected in the presence of 14-3-3ζ, the amount and size of droplets can vary significantly. Mechanistic studies reveal that 14-3-3ζ regulates tau LLPS by electrostatic interactions and hydrophobic interactions with the proline-rich domain and the microtubule-binding domain of tau. Surprisingly, the disordered C-terminal tail rather than the amphipathic binding groove of 14-3-3ζ plays a key role. Our findings not only provide a novel dimension to understand the interactions between 14-3-3 proteins and tau, but also suggest that 14-3-3 proteins may play an important role in regulating the LLPS of their binding partners.
Collapse
Affiliation(s)
- Yue Han
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Department of Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Haiqiong Ye
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Department of Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Ping Li
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Department of Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Yifan Zeng
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Department of Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Jing Yang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Department of Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Meng Gao
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Department of Biological Engineering, Hubei University of Technology, Wuhan 430068, China.
| | - Zhengding Su
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Department of Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Yongqi Huang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Department of Biological Engineering, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
12
|
Autophagic dysfunction in the liver enhances the expression of insoluble nuclear proteins 14-3-3ζ and importin α4. Life Sci 2022; 298:120491. [PMID: 35339509 DOI: 10.1016/j.lfs.2022.120491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 11/23/2022]
Abstract
AIMS Autophagic dysfunction is associated with the progression of various liver diseases, including nonalcoholic fatty liver disease (NAFLD). However, serum markers for evaluating autophagic function have not been reported. Highly insoluble nuclear proteins participate in many cellular functions and are potential diagnostic markers for cancer. We performed a proteomic analysis of the hepatic nuclear insoluble fraction to identify novel autophagy-related diagnostic biomarkers. MAIN METHODS The insoluble nuclear protein fraction was extracted from the livers of Atg7F/F, Atg7F/F:alb-Cre (hepatocyte-specific autophagy-deficient mice), C57BL/6 J, and KKAy (NAFLD model) mice. Proteins were separated by two-dimensional electrophoresis and visualized by silver staining. Protein spots were identified using mass spectrometry. The localization of proteins in hepatocytes was verified by immunofluorescence using a confocal microscope. KEY FINDINGS The levels of insoluble nuclear proteins 14-3-3ζ and importin α4 were upregulated following hepatic autophagy dysfunction and were detectable in serum. Under normal conditions, these proteins are mainly distributed in the cytoplasm, whereas autophagic dysfunction induces their translocation to the nucleus. Incubation with an autophagy inhibitor up-regulated these proteins expression in the insoluble nuclear fraction of primary hepatocytes. Treatment with EGF or insulin enhanced 14-3-3ζ expression in the nuclear insoluble fraction; in contrast, the addition of rapamycin downregulated 14-3-3ζ expression. Importin α4 expression was increased in the nuclear insoluble fraction after incubation with tunicamycin or hydrogen peroxide. SIGNIFICANCE Accumulation of 14-3-3ζ and importin α4 as nuclear-insoluble proteins may be associated with autophagic dysfunction. Our findings indicate that these proteins might be useful diagnostic biomarkers for liver diseases with autophagic disorders.
Collapse
|
13
|
The Amyloid Fibril-Forming β-Sheet Regions of Amyloid β and α-Synuclein Preferentially Interact with the Molecular Chaperone 14-3-3ζ. Molecules 2021; 26:molecules26206120. [PMID: 34684701 PMCID: PMC8538830 DOI: 10.3390/molecules26206120] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/30/2021] [Accepted: 10/03/2021] [Indexed: 11/17/2022] Open
Abstract
14-3-3 proteins are abundant, intramolecular proteins that play a pivotal role in cellular signal transduction by interacting with phosphorylated ligands. In addition, they are molecular chaperones that prevent protein unfolding and aggregation under cellular stress conditions in a similar manner to the unrelated small heat-shock proteins. In vivo, amyloid β (Aβ) and α-synuclein (α-syn) form amyloid fibrils in Alzheimer’s and Parkinson’s diseases, respectively, a process that is intimately linked to the diseases’ progression. The 14-3-3ζ isoform potently inhibited in vitro fibril formation of the 40-amino acid form of Aβ (Aβ40) but had little effect on α-syn aggregation. Solution-phase NMR spectroscopy of 15N-labeled Aβ40 and A53T α-syn determined that unlabeled 14-3-3ζ interacted preferentially with hydrophobic regions of Aβ40 (L11-H21 and G29-V40) and α-syn (V3-K10 and V40-K60). In both proteins, these regions adopt β-strands within the core of the amyloid fibrils prepared in vitro as well as those isolated from the inclusions of diseased individuals. The interaction with 14-3-3ζ is transient and occurs at the early stages of the fibrillar aggregation pathway to maintain the native, monomeric, and unfolded structure of Aβ40 and α-syn. The N-terminal regions of α-syn interacting with 14-3-3ζ correspond with those that interact with other molecular chaperones as monitored by in-cell NMR spectroscopy.
Collapse
|
14
|
Pathways to Parkinson's disease: a spotlight on 14-3-3 proteins. NPJ Parkinsons Dis 2021; 7:85. [PMID: 34548498 PMCID: PMC8455551 DOI: 10.1038/s41531-021-00230-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/23/2021] [Indexed: 02/08/2023] Open
Abstract
14-3-3s represent a family of highly conserved 30 kDa acidic proteins. 14-3-3s recognize and bind specific phospho-sequences on client partners and operate as molecular hubs to regulate their activity, localization, folding, degradation, and protein-protein interactions. 14-3-3s are also associated with the pathogenesis of several diseases, among which Parkinson's disease (PD). 14-3-3s are found within Lewy bodies (LBs) in PD patients, and their neuroprotective effects have been demonstrated in several animal models of PD. Notably, 14-3-3s interact with some of the major proteins known to be involved in the pathogenesis of PD. Here we first provide a detailed overview of the molecular composition and structural features of 14-3-3s, laying significant emphasis on their peculiar target-binding mechanisms. We then briefly describe the implication of 14-3-3s in the central nervous system and focus on their interaction with LRRK2, α-Synuclein, and Parkin, three of the major players in PD onset and progression. We finally discuss how different types of small molecules may interfere with 14-3-3s interactome, thus representing a valid strategy in the future of drug discovery.
Collapse
|
15
|
Evans SR, West C, Klein-Seetharaman J. Similarity of the non-amyloid-β component and C-terminal tail of monomeric and tetrameric alpha-synuclein with 14-3-3 sigma. Comput Struct Biotechnol J 2021; 19:5348-5359. [PMID: 34667532 PMCID: PMC8495038 DOI: 10.1016/j.csbj.2021.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/28/2021] [Accepted: 09/09/2021] [Indexed: 11/20/2022] Open
Abstract
Alpha-synuclein (αSyn) is often described as a predominantly disordered protein that has a propensity to self-assemble into toxic oligomers that are found in patients with Parkinson's and Alzheimer's diseases. αSyn's chaperone behavior and tetrameric structure are proposed to be protective against toxic oligomerization. In this paper, we extended the previously proposed similarity between αSyn and 14-3-3 proteins to the α-helical tetrameric species of αSyn in detail. 14-3-3 proteins are a family of well-folded proteins with seven human isoforms, and function in signal transduction and as molecular chaperones. We investigated protein homology, using sequence alignment, amyloid, and disorder prediction, as well as three-dimensional visualization and protein-interaction networks. Our results show sequence homology and structural similarity between the aggregation-prone non-amyloid-β component (NAC) residues Val-52 to Gly-111 in αSyn and 14-3-3 sigma residues Leu-12 to Gly-78. We identified an additional region of sequence homology in the C-terminal region of αSyn (residues Ser-129 to Asp-135) and a C-terminal loop of 14-3-3 between helix αH and αI (residues Ser-209 to Asp-215). This data indicates αSyn shares conserved domain architecture with small heat shock proteins. We show predicted regions of high amyloidogenic propensity and intrinsic structural disorder in αSyn coincide with amyloidogenic and disordered predictions for 14-3-3 proteins. The homology in the NAC region aligns with residues involved in dimer- and tetramerization of the non-amyloidogenic 14-3-3 proteins. Because 14-3-3 proteins are generally not prone to misfolding, our results lend further support to the hypothesis that the NAC region is critical to the assembly of αSyn into the non-toxic tetrameric state.
Collapse
Key Words
- 14-3-3 proteins
- Alpha-synuclein
- BAD, BCL2 associated agonist of cell death gene name
- Homology
- IDP, Intrinsically disorder protein(s)
- MAPT, microtubule-associated protein tau gene name
- PPI, Protein-Protein interactions
- Prediction
- Protein structure
- SIP, shared interaction partner
- SNCA, alpha-synuclein gene name
- TH, tyrosine hydroxylase gene name
- Tetramer
- YWHAB, 14-3-3 protein beta isoform gene name
- YWHAE, 14-3-3 protein epsilon isoform gene name
- YWHAH, 14-3-3 protein eta isoform gene name
- pHSPB6, phosphorylated Heat Shock Protein beta-6
- sHSP, small heat shock protein
- αSyn, alpha-synuclein
Collapse
Affiliation(s)
- Sarah R. Evans
- Colorado School of Mines, Quantitative Biosciences and Engineering, 1012 14 St, Chemistry, Golden, CO 80401, USA
| | - Colista West
- Colorado School of Mines, Department of Chemistry, 1012 14 St, Chemistry, Golden, CO 80401, USA
| | - Judith Klein-Seetharaman
- Colorado School of Mines, Quantitative Biosciences and Engineering, 1012 14 St, Chemistry, Golden, CO 80401, USA
- Colorado School of Mines, Department of Chemistry, 1012 14 St, Chemistry, Golden, CO 80401, USA
| |
Collapse
|
16
|
Robbins M, Clayton E, Kaminski Schierle GS. Synaptic tau: A pathological or physiological phenomenon? Acta Neuropathol Commun 2021; 9:149. [PMID: 34503576 PMCID: PMC8428049 DOI: 10.1186/s40478-021-01246-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022] Open
Abstract
In this review, we discuss the synaptic aspects of Tau pathology occurring during Alzheimer's disease (AD) and how this may relate to memory impairment, a major hallmark of AD. Whilst the clinical diagnosis of AD patients is a loss of working memory and long-term declarative memory, the histological diagnosis is the presence of neurofibrillary tangles of hyperphosphorylated Tau and Amyloid-beta plaques. Tau pathology spreads through synaptically connected neurons to impair synaptic function preceding the formation of neurofibrillary tangles, synaptic loss, axonal retraction and cell death. Alongside synaptic pathology, recent data suggest that Tau has physiological roles in the pre- or post- synaptic compartments. Thus, we have seen a shift in the research focus from Tau as a microtubule-stabilising protein in axons, to Tau as a synaptic protein with roles in accelerating spine formation, dendritic elongation, and in synaptic plasticity coordinating memory pathways. We collate here the myriad of emerging interactions and physiological roles of synaptic Tau, and discuss the current evidence that synaptic Tau contributes to pathology in AD.
Collapse
|
17
|
Suzuki T, Terada N, Higashiyama S, Kametani K, Shirai Y, Honda M, Kai T, Li W, Tabuchi K. Non-microtubule tubulin-based backbone and subordinate components of postsynaptic density lattices. Life Sci Alliance 2021; 4:4/7/e202000945. [PMID: 34006534 PMCID: PMC8326785 DOI: 10.26508/lsa.202000945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 12/28/2022] Open
Abstract
This study proposes a postsynaptic density (PSD) lattice model comprising a non-microtubule tubulin-based backbone structure and its associated proteins, including various PSD scaffold/adaptor proteins and other PSD proteins. A purification protocol was developed to identify and analyze the component proteins of a postsynaptic density (PSD) lattice, a core structure of the PSD of excitatory synapses in the central nervous system. “Enriched”- and “lean”-type PSD lattices were purified by synaptic plasma membrane treatment to identify the protein components by comprehensive shotgun mass spectrometry and group them into minimum essential cytoskeleton (MEC) and non-MEC components. Tubulin was found to be a major component of the MEC, with non-microtubule tubulin widely distributed on the purified PSD lattice. The presence of tubulin in and around PSDs was verified by post-embedding immunogold labeling EM of cerebral cortex. Non-MEC proteins included various typical scaffold/adaptor PSD proteins and other class PSD proteins. Thus, this study provides a new PSD lattice model consisting of non-microtubule tubulin-based backbone and various non-MEC proteins. Our findings suggest that tubulin is a key component constructing the backbone and that the associated components are essential for the versatile functions of the PSD.
Collapse
Affiliation(s)
- Tatsuo Suzuki
- Department of Molecular and Cellular Physiology, Shinshu University Academic Assembly, Institute of Medicine, Shinshu University Academic Assembly, Matsumoto, Japan
| | - Nobuo Terada
- Health Science Division, Department of Medical Sciences, Graduate School of Medicine, Science and Technology, Shinshu University, Matsumoto, Nagano, Japan
| | - Shigeki Higashiyama
- Department of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, To-on, Ehime, Japan
| | - Kiyokazu Kametani
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Yoshinori Shirai
- Department of Molecular and Cellular Physiology, Shinshu University Academic Assembly, Institute of Medicine, Shinshu University Academic Assembly, Matsumoto, Japan
| | - Mamoru Honda
- Bioscience Group, Center for Precision Medicine Supports, Pharmaceuticals and Life Sciences Division, Shimadzu Techno-Research, INC, Kyoto, Japan
| | - Tsutomu Kai
- Bioscience Group, Center for Precision Medicine Supports, Pharmaceuticals and Life Sciences Division, Shimadzu Techno-Research, INC, Kyoto, Japan
| | - Weidong Li
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.,Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research Shinshu University, Matsumoto, Japan
| | - Katsuhiko Tabuchi
- Department of Molecular and Cellular Physiology, Shinshu University Academic Assembly, Institute of Medicine, Shinshu University Academic Assembly, Matsumoto, Japan.,Department of Biological Sciences for Intractable Neurological Diseases, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research Shinshu University, Matsumoto, Japan
| |
Collapse
|
18
|
Yun HH, Jung SY, Park BW, Ko JS, Yoo K, Yeo J, Kim HL, Park HJ, Youn HJ, Lee JH. An Adult Mouse Model of Dilated Cardiomyopathy Caused by Inducible Cardiac-Specific Bis Deletion. Int J Mol Sci 2021; 22:ijms22031343. [PMID: 33572816 PMCID: PMC7866246 DOI: 10.3390/ijms22031343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 01/06/2023] Open
Abstract
BCL-2 interacting cell death suppressor (BIS) is a multifunctional protein that has been implicated in cancer and myopathy. Various mutations of the BIS gene have been identified as causative of cardiac dysfunction in some dilated cardiomyopathy (DCM) patients. This was recently verified in cardiac-specific knock-out (KO) mice. In this study, we developed tamoxifen-inducible cardiomyocyte-specific BIS-KO (Bis-iCKO) mice to assess the role of BIS in the adult heart using the Cre-loxP strategy. The disruption of the Bis gene led to impaired ventricular function and subsequent heart failure due to DCM, characterized by reduced left ventricular contractility and dilatation that were observed using serial echocardiography and histology. The development of DCM was confirmed by alterations in Z-disk integrity and increased expression of several mRNAs associated with heart failure and remodeling. Furthermore, aggregation of desmin was correlated with loss of small heat shock protein in the Bis-iCKO mice, indicating that BIS plays an essential role in the quality control of cardiac proteins, as has been suggested in constitutive cardiac-specific KO mice. Our cardiac-specific BIS-KO mice may be a useful model for developing therapeutic interventions for DCM, especially late-onset DCM, based on the distinct phenotypes and rapid progressions.
Collapse
Affiliation(s)
- Hye Hyeon Yun
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 16591, Korea; (H.H.Y.); (S.Y.J.); (K.Y.); (J.Y.)
- Institute of Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 16591, Korea
| | - Soon Young Jung
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 16591, Korea; (H.H.Y.); (S.Y.J.); (K.Y.); (J.Y.)
- Institute of Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 16591, Korea
| | - Bong Woo Park
- Department of Internal Medicine, Division of Cardiology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 16591, Korea; (B.W.P.); (H.J.P.); (H.J.Y.)
| | - Ji Seung Ko
- Laboratory Animal Research Center, Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea, Seoul 16591, Korea;
| | - Kyunghyun Yoo
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 16591, Korea; (H.H.Y.); (S.Y.J.); (K.Y.); (J.Y.)
- Institute of Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 16591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, College of Medicine, The Catholic University of Korea, Seoul 16591, Korea
| | - Jiyoung Yeo
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 16591, Korea; (H.H.Y.); (S.Y.J.); (K.Y.); (J.Y.)
- Institute of Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 16591, Korea
| | - Hong Lim Kim
- Integrative Research Support Center, Laboratory of Electron Microscope, College of Medicine, The Catholic University of Korea, Seoul 16591, Korea;
| | - Hun Jun Park
- Department of Internal Medicine, Division of Cardiology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 16591, Korea; (B.W.P.); (H.J.P.); (H.J.Y.)
| | - Ho Joong Youn
- Department of Internal Medicine, Division of Cardiology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 16591, Korea; (B.W.P.); (H.J.P.); (H.J.Y.)
| | - Jeong Hwa Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 16591, Korea; (H.H.Y.); (S.Y.J.); (K.Y.); (J.Y.)
- Institute of Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 16591, Korea
- Correspondence: ; Tel.: +82-2-2258-7293
| |
Collapse
|
19
|
Underwood R, Gannon M, Pathak A, Kapa N, Chandra S, Klop A, Yacoubian TA. 14-3-3 mitigates alpha-synuclein aggregation and toxicity in the in vivo preformed fibril model. Acta Neuropathol Commun 2021; 9:13. [PMID: 33413679 PMCID: PMC7792107 DOI: 10.1186/s40478-020-01110-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/19/2020] [Indexed: 12/26/2022] Open
Abstract
Alpha-synuclein (αsyn) is the key component of proteinaceous aggregates termed Lewy Bodies that pathologically define a group of disorders known as synucleinopathies, including Parkinson's Disease (PD) and Dementia with Lewy Bodies. αSyn is hypothesized to misfold and spread throughout the brain in a prion-like fashion. Transmission of αsyn necessitates the release of misfolded αsyn from one cell and the uptake of that αsyn by another, in which it can template the misfolding of endogenous αsyn upon cell internalization. 14-3-3 proteins are a family of highly expressed brain proteins that are neuroprotective in multiple PD models. We have previously shown that 14-3-3θ acts as a chaperone to reduce αsyn aggregation, cell-to-cell transmission, and neurotoxicity in the in vitro pre-formed fibril (PFF) model. In this study, we expanded our studies to test the impact of 14-3-3s on αsyn toxicity in the in vivo αsyn PFF model. We used both transgenic expression models and adenovirus associated virus (AAV)-mediated expression to examine whether 14-3-3 manipulation impacts behavioral deficits, αsyn aggregation, and neuronal counts in the PFF model. 14-3-3θ transgene overexpression in cortical and amygdala regions rescued social dominance deficits induced by PFFs at 6 months post injection, whereas 14-3-3 inhibition by transgene expression of the competitive 14-3-3 peptide inhibitor difopein in the cortex and amygdala accelerated social dominance deficits. The behavioral rescue by 14-3-3θ overexpression was associated with delayed αsyn aggregation induced by PFFs in these brain regions. Conversely, 14-3-3 inhibition by difopein in the cortex and amygdala accelerated αsyn aggregation and reduction in NECAB1-positive neuron counts induced by PFFs. 14-3-3θ overexpression by AAV in the substantia nigra (SN) also delayed αsyn aggregation in the SN and partially rescued PFF-induced reduction in tyrosine hydroxylase (TH)-positive dopaminergic cells in the SN. 14-3-3 inhibition in the SN accelerated nigral αsyn aggregation and enhanced PFF-induced reduction in TH-positive dopaminergic cells. These data indicate a neuroprotective role for 14-3-3θ against αsyn toxicity in vivo.
Collapse
Affiliation(s)
- Rachel Underwood
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294 USA
- Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA 19104-2676 USA
| | - Mary Gannon
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Aneesh Pathak
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Navya Kapa
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Sidhanth Chandra
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294 USA
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Alyssa Klop
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Talene A. Yacoubian
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294 USA
- Civitan International Research Center, Room 510A, 1719 Sixth Avenue South, Birmingham, AL 35294 USA
| |
Collapse
|
20
|
Neves JF, Petrvalská O, Bosica F, Cantrelle FX, Merzougui H, O'Mahony G, Hanoulle X, Obšil T, Landrieu I. Phosphorylated full-length Tau interacts with 14-3-3 proteins via two short phosphorylated sequences, each occupying a binding groove of 14-3-3 dimer. FEBS J 2020; 288:1918-1934. [PMID: 32979285 DOI: 10.1111/febs.15574] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 08/07/2020] [Accepted: 09/07/2020] [Indexed: 01/22/2023]
Abstract
Protein-protein interactions (PPIs) remain poorly explored targets for the treatment of Alzheimer's disease. The interaction of 14-3-3 proteins with Tau was shown to be linked to Tau pathology. This PPI is therefore seen as a potential target for Alzheimer's disease. When Tau is phosphorylated by PKA (Tau-PKA), several phosphorylation sites are generated, including two known 14-3-3 binding sites, surrounding the phosphorylated serines 214 and 324 of Tau. The crystal structures of 14-3-3 in complex with peptides surrounding these Tau phosphosites show that both these motifs are anchored in the amphipathic binding groove of 14-3-3. However, in the absence of structural data with the full-length Tau protein, the stoichiometry of the complex or the interface and affinity of the partners is still unclear. In this work, we addressed these points, using a broad range of biophysical techniques. The interaction of the long and disordered Tau-PKA protein with 14-3-3σ is restricted to two short sequences, containing phosphorylated serines, which bind in the amphipathic binding groove of 14-3-3σ. Phosphorylation of Tau is fundamental for the formation of this stable complex, and the affinity of the Tau-PKA/14-3-3σ interaction is in the 1-10 micromolar range. Each monomer of the 14-3-3σ dimer binds one of two different phosphorylated peptides of Tau-PKA, suggesting a 14-3-3/Tau-PKA stoichiometry of 2 : 1, confirmed by analytical ultracentrifugation. These results contribute to a better understanding of this PPI and provide useful insights for drug discovery projects aiming at the modulation of this interaction.
Collapse
Affiliation(s)
- João Filipe Neves
- CNRS ERL9002 Integrative Structural Biology, Lille, France.,Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, France
| | - Olivia Petrvalská
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, Vestec, Czech Republic.,Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Francesco Bosica
- Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - François-Xavier Cantrelle
- CNRS ERL9002 Integrative Structural Biology, Lille, France.,Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, France
| | - Hamida Merzougui
- CNRS ERL9002 Integrative Structural Biology, Lille, France.,Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, France
| | - Gavin O'Mahony
- Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Xavier Hanoulle
- CNRS ERL9002 Integrative Structural Biology, Lille, France.,Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, France
| | - Tomáš Obšil
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, Vestec, Czech Republic.,Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Isabelle Landrieu
- CNRS ERL9002 Integrative Structural Biology, Lille, France.,Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, France
| |
Collapse
|
21
|
Zhou Y, Qiu N, Mine Y, Meng Y, Keast R, Zhu C. Quantitative Comparative Proteomic Analysis of Chicken Egg Vitelline Membrane Proteins during High-Temperature Storage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9816-9825. [PMID: 32809818 DOI: 10.1021/acs.jafc.0c03538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To explore the thermally induced alterations in chicken egg vitelline membrane (CEVM) protein abundances, a comparative proteomic analysis of CEVM after 10 days of storage at 30 °C was performed. Altogether, 981 proteins were identified, of which 124 protein abundances were decreased and 79 were increased. Bioinformatic analysis suggested that the altered proteins were related to structure (n = 10), mechanical properties (n = 13), chaperone (n = 15), antibacterial (n = 12), and antioxidant (n = 3). Alterations in abundances of structural proteins, possibly resulting from the disintegration of these complexes, were observed in this study, suggesting a loss in fibrous structure. Several proteins involved in mechanical strength (n = 10), elasticity (n = 3), and chaperone were decreased in abundances, which indicated that deficits in these proteins might affect the CEVM mechanical properties. These findings will extend our understanding of CEVM deterioration during high-temperature storage from a proteomic perspective.
Collapse
Affiliation(s)
- Yu Zhou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Ning Qiu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Yoshinori Mine
- Department of Food Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Yaqi Meng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Russell Keast
- Centre for Advanced Sensory Science, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria 3125, Australia
| | - Chunxia Zhu
- Center of Stomatology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan 430030, P. R. China
| |
Collapse
|
22
|
Endo H, Inoue I, Masunaka K, Tanaka M, Yano M. Curcumin induces apoptosis in lung cancer cells by 14-3-3 protein-mediated activation of Bad. Biosci Biotechnol Biochem 2020; 84:2440-2447. [PMID: 32841581 DOI: 10.1080/09168451.2020.1808443] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The anticancer effects of curcumin are based on the induction of apoptosis, but the specific mechanisms have not yet been fully elucidated. To address this issue, we investigated the effects of curcumin on the intrinsic apoptosis pathway using mitochondria from A549 cells. Curcumin decreased the levels of 14-3-3 proteins, key molecules that inhibit the activation of proapoptotic factors known as BH3-only proteins (e.g. Bad). Curcumin-induced suppression of 14-3-3 protein levels was associated with reduced cytosolic Bad and elevation of mitochondrial Bad, leading to a drop in the mitochondrial membrane potential. 14-3-3 proteins generally interact with Bad phosphorylated by AKT, thus preventing its translocation to the mitochondria where it can promote cell death. Curcumin not only decreased the expression of 14-3-3 proteins but also promoted Bad dephosphorylation in an AKT-dependent fashion. Our results provide novel evidence for the induction of apoptosis by curcumin at multiple stages of the mitochondrial cascade.
Collapse
Affiliation(s)
- Hiroshi Endo
- Department of Nutrition, School of Human Cultures, The University of Shiga Prefecture , Hikone, Shiga 522-8533,Japan
| | - Izumi Inoue
- Department of Nutrition, School of Human Cultures, The University of Shiga Prefecture , Hikone, Shiga 522-8533,Japan
| | - Kimiko Masunaka
- Department of Nutrition, School of Human Cultures, The University of Shiga Prefecture , Hikone, Shiga 522-8533,Japan
| | - Masaya Tanaka
- Department of Nutrition, School of Human Cultures, The University of Shiga Prefecture , Hikone, Shiga 522-8533,Japan
| | - Mihiro Yano
- Department of Nutrition, School of Human Cultures, The University of Shiga Prefecture , Hikone, Shiga 522-8533,Japan
| |
Collapse
|
23
|
Qian Y, Cao L, Zhang Q, Amee M, Chen K, Chen L. SMRT and Illumina RNA sequencing reveal novel insights into the heat stress response and crosstalk with leaf senescence in tall fescue. BMC PLANT BIOLOGY 2020; 20:366. [PMID: 32746857 PMCID: PMC7397585 DOI: 10.1186/s12870-020-02572-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 07/23/2020] [Indexed: 05/31/2023]
Abstract
BACKGROUND As a cool-season grass species, tall fescue (Festuca arundinacea) is challenged by increasing temperatures. Heat acclimation or activation of leaf senescence, are two main strategies when tall fescue is exposed to heat stress (HS). However, lacking a genome sequence, the complexity of hexaploidy nature, and the short read of second-generation sequencing hinder a comprehensive understanding of the mechanism. This study aims to characterize the molecular mechanism of heat adaptation and heat-induced senescence at transcriptional and post-transcriptional levels. RESULTS Transcriptome of heat-treated (1 h and 72 h) and senescent leaves of tall fescue were generated by combining single-molecular real-time and Illumina sequencing. In total, 4076; 6917, and 11,918 differentially expressed genes (DEGs) were induced by short- and long-term heat stress (HS), and senescence, respectively. Venn and bioinformatics analyses of DEGs showed that short-term HS strongly activated heat shock proteins (Hsps) and heat shock factors (Hsfs), as well as specifically activated FK506-binding proteins (FKBPs), calcium signaling genes, glutathione S-transferase genes, photosynthesis-related genes, and phytohormone signaling genes. By contrast, long-term HS shared most of DEGs with senescence, including the up-regulated chlorophyll catabolic genes, phytohormone synthesis/degradation genes, stress-related genes, and NACs, and the down-regulated photosynthesis-related genes, FKBPs, and catalases. Subsequently, transient overexpression in tobacco showed that FaHsfA2a (up-regulated specifically by short-term HS) reduced cell membrane damages caused by HS, but FaNAC029 and FaNAM-B1 (up-regulated by long-term HS and senescence) increased the damages. Besides, alternative splicing was widely observed in HS and senescence responsive genes, including Hsps, Hsfs, and phytohormone signaling/synthesis genes. CONCLUSIONS The short-term HS can stimulate gene responses and improve thermotolerance, but long-term HS is a damage and may accelerate leaf senescence. These results contribute to our understanding of the molecular mechanism underlying heat adaptation and heat-induced senescence.
Collapse
Affiliation(s)
- Yiguang Qian
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, People’s Republic of China
| | - Liwen Cao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Qiang Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Maurice Amee
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Ke Chen
- College of Resources and Environmental Science, Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, People’s Republic of China
| | - Liang Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| |
Collapse
|
24
|
Ahmad F, Kumar R, Gupta S, Rathaur S. Identification of a HSP14-3-3 in Setaria cervi and its cross-reactivity with W bancrofti-infected human sera. Parasite Immunol 2020; 42:e12777. [PMID: 32681576 DOI: 10.1111/pim.12777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 11/29/2022]
Abstract
AIM Identification of a 29 kDa heat stress protein in filarial parasite Setaria cervi and evaluation of its diagnostic potential against lymphatic filariasis. METHODS AND RESULTS The Heat shock proteins (HSPs) were induced in filarial parasite S cervi by incubated at 42°C for 2 hours. The 10% SDS-PAGE of cytosolic extract showed several over-expressed bands. The MALDI-LC/MS analysis of 29 kDa band showed 100% similarity with Bm14-3-3 like protein 2. Multiple sequence alignment of Bm14-3-3 like protein 2 sequence with W bancrofti, Caenorhabditis elegans; Loa loa and Homo sapiens showed 100%, 86%, 83% and 78%, sequence similarity respectively. The antigenic efficacy of Sc14-3-3 protein was evaluated with different filarial sera using ELISA which showed cross-reactivity in order to Endemic Normal (EN) < Microfilaraemic (MF) < Chronic(CH) with IgG1 and EN < CH < MF in IgG4 ELISA. IgG1- and IgG4-specific immunoblotting with CH and MF sera further explicated its specific antigenic cross-reactivity. CONCLUSION A 29 kDa heat shock protein of S cervi was identified as 14-3-3 protein having 100% homology to human filarial parasite B malayi. It showed strong reactivity with IgG1 and IgG4 subclass antibodies of W bancrofti-infected human sera suggesting that 14-3-3 protein could be used as a vaccine/ diagnostic marker.
Collapse
Affiliation(s)
- Faiyaz Ahmad
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ranjeet Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sarika Gupta
- National institute of Immunology, New Delhi, India
| | - Sushma Rathaur
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
25
|
Ojelade SA, Lee TV, Giagtzoglou N, Yu L, Ugur B, Li Y, Duraine L, Zuo Z, Petyuk V, De Jager PL, Bennett DA, Arenkiel BR, Bellen HJ, Shulman JM. cindr, the Drosophila Homolog of the CD2AP Alzheimer's Disease Risk Gene, Is Required for Synaptic Transmission and Proteostasis. Cell Rep 2019; 28:1799-1813.e5. [PMID: 31412248 PMCID: PMC6703184 DOI: 10.1016/j.celrep.2019.07.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/30/2019] [Accepted: 07/15/2019] [Indexed: 12/11/2022] Open
Abstract
The Alzheimer's disease (AD) susceptibility gene, CD2-associated protein (CD2AP), encodes an actin binding adaptor protein, but its function in the nervous system is largely unknown. Loss of the Drosophila ortholog cindr enhances neurotoxicity of human Tau, which forms neurofibrillary tangle pathology in AD. We show that Cindr is expressed in neurons and present at synaptic terminals. cindr mutants show impairments in synapse maturation and both synaptic vesicle recycling and release. Cindr associates and genetically interacts with 14-3-3ζ, regulates the ubiquitin-proteasome system, and affects turnover of Synapsin and the plasma membrane calcium ATPase (PMCA). Loss of cindr elevates PMCA levels and reduces cytosolic calcium. Studies of Cd2ap null mice support a conserved role in synaptic proteostasis, and CD2AP protein levels are inversely related to Synapsin abundance in human postmortem brains. Our results reveal CD2AP neuronal requirements with relevance to AD susceptibility, including for proteostasis, calcium handling, and synaptic structure and function.
Collapse
Affiliation(s)
- Shamsideen A Ojelade
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Tom V Lee
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Nikolaos Giagtzoglou
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Berrak Ugur
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yarong Li
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Lita Duraine
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhongyuan Zuo
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Vlad Petyuk
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute, Columbia University Medical Center, New York, NY 10032, USA; Cell Circuits Program, Broad Institute, Cambridge, MA 02142, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Benjamin R Arenkiel
- Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hugo J Bellen
- Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joshua M Shulman
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
26
|
Fan X, Cui L, Zeng Y, Song W, Gaur U, Yang M. 14-3-3 Proteins Are on the Crossroads of Cancer, Aging, and Age-Related Neurodegenerative Disease. Int J Mol Sci 2019; 20:ijms20143518. [PMID: 31323761 PMCID: PMC6678932 DOI: 10.3390/ijms20143518] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022] Open
Abstract
14-3-3 proteins are a family of conserved regulatory adaptor molecules which are expressed in all eukaryotic cells. These proteins participate in a variety of intracellular processes by recognizing specific phosphorylation motifs and interacting with hundreds of target proteins. Also, 14-3-3 proteins act as molecular chaperones, preventing the aggregation of unfolded proteins under conditions of cellular stress. Furthermore, 14-3-3 proteins have been shown to have similar expression patterns in tumors, aging, and neurodegenerative diseases. Therefore, we put forward the idea that the adaptor activity and chaperone-like activity of 14-3-3 proteins might play a substantial role in the above-mentioned conditions. Interestingly, 14-3-3 proteins are considered to be standing at the crossroads of cancer, aging, and age-related neurodegenerative diseases. There are great possibilities to improve the above-mentioned diseases and conditions through intervention in the activity of the 14-3-3 protein family.
Collapse
Affiliation(s)
- Xiaolan Fan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Lang Cui
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yao Zeng
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Wenhao Song
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Uma Gaur
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Mingyao Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
27
|
14-3-3 Proteins Reduce Cell-to-Cell Transfer and Propagation of Pathogenic α-Synuclein. J Neurosci 2018; 38:8211-8232. [PMID: 30093536 DOI: 10.1523/jneurosci.1134-18.2018] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 02/07/2023] Open
Abstract
α-Synuclein (αsyn) is the key protein that forms neuronal aggregates in the neurodegenerative disorders Parkinson's disease (PD) and dementia with Lewy bodies. Recent evidence points to the prion-like spread of αsyn from one brain region to another. Propagation of αsyn is likely dependent on release, uptake, and misfolding. Under normal circumstances, this highly expressed brain protein functions normally without promoting pathology, yet the underlying endogenous mechanisms that prevent αsyn spread are not understood. 14-3-3 proteins are highly expressed brain proteins that have chaperone function and regulate protein trafficking. In this study, we investigated the potential role of the 14-3-3 proteins in the regulation of αsyn spread using two models of αsyn spread. In a paracrine αsyn model, 14-3-3θ promoted release of αsyn complexed with 14-3-3θ. Despite higher amounts of released αsyn, extracellular αsyn showed reduced oligomerization and seeding capability, reduced internalization, and reduced toxicity in primary mixed-gender mouse neurons. 14-3-3 inhibition reduced the amount of αsyn released, yet released αsyn was more toxic and demonstrated increased oligomerization, seeding capability, and internalization. In the preformed fibril model, 14-3-3 θ reduced αsyn aggregation and neuronal death, whereas 14-3-3 inhibition enhanced αsyn aggregation and neuronal death in primary mouse neurons. 14-3-3s blocked αsyn spread to distal chamber neurons not exposed directly to fibrils in multichamber, microfluidic devices. These findings point to 14-3-3s as a direct regulator of αsyn propagation, and suggest that dysfunction of 14-3-3 function may promote αsyn pathology in PD and related synucleinopathies.SIGNIFICANCE STATEMENT Transfer of misfolded aggregates of α-synuclein from one brain region to another is implicated in the pathogenesis of Parkinson's disease and other synucleinopathies. This process is dependent on active release, internalization, and misfolding of α-synuclein. 14-3-3 proteins are highly expressed chaperone proteins that interact with α-synuclein and regulate protein trafficking. We used two different models in which toxicity is associated with cell-to-cell transfer of α-synuclein to test whether 14-3-3s impact α-synuclein toxicity. We demonstrate that 14-3-3θ reduces α-synuclein transfer and toxicity by inhibiting oligomerization, seeding capability, and internalization of α-synuclein, whereas 14-3-3 inhibition accelerates the transfer and toxicity of α-synuclein in these models. Dysfunction of 14-3-3 function may be a critical mechanism by which α-synuclein propagation occurs in disease.
Collapse
|
28
|
Tan L, Wang Q, Zeng T, Long T, Guan X, Wu S, Zheng W, Fu H, Meng Y, Wu Y, Tian Y, Yu J, Chen J, Li H, Cao L. Clinical significance of detecting HLA-DR, 14-3-3η protein and d-dimer in the diagnosis of rheumatoid arthritis. Biomark Med 2018; 12:697-705. [PMID: 29856230 DOI: 10.2217/bmm-2017-0371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
AIM To investigate the clinical significance of detecting several biomarkers collectively in the diagnosis of rheumatoid arthritis (RA). METHODS 128 RA patients, 174 non-RA patients and 80 healthy controls were enrolled. HLA-DR4 and HLA-DR53 were detected by the PCR-SSP method, 14-3-3η protein, anti-CCP and anti-Sa were detected by ELISA and DD was detected by latex immunoturbidimetric assay. RESULTS The positive rates of HLA-DR4, HLA-DR53, 14-3-3η protein, anti-CCP and anti-Sa were obviously higher in the RA group (43.8, 38.3, 51.6, 80 and 40.6%, respectively); anti-CCP was of highest sensitivity (79.68%), highest specificity (97.5%) and Youden index (0.77). The AUC of 14-3-3η protein, DD, anti-CCP, anti-Sa were 0.813, 0.859, 0.930, 0.861, respectively. CONCLUSION All biomarkers were strongly correlated risk factors for RA; the combination of multiple biomarkers might be of help for diagnostic and therapeutic strategies in RA of recent onset.
Collapse
Affiliation(s)
- Liming Tan
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang Jiangxi 330006, PR China
| | - Qiaohua Wang
- School of Public Health, Nanchang University, Nanchang Jiangxi 330031, PR China
| | - Tingting Zeng
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang Jiangxi 330006, PR China
| | - Tingting Long
- School of Public Health, Nanchang University, Nanchang Jiangxi 330031, PR China
| | - Xiaolin Guan
- School of Public Health, Nanchang University, Nanchang Jiangxi 330031, PR China
| | - Sifan Wu
- School of Public Health, Nanchang University, Nanchang Jiangxi 330031, PR China
| | - Wei Zheng
- School of Public Health, Nanchang University, Nanchang Jiangxi 330031, PR China
| | - Huiying Fu
- School of Public Health, Nanchang University, Nanchang Jiangxi 330031, PR China
| | - Yimei Meng
- School of Public Health, Nanchang University, Nanchang Jiangxi 330031, PR China
| | - Yang Wu
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang Jiangxi 330006, PR China
| | - Yongjian Tian
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang Jiangxi 330006, PR China
| | - Jianlin Yu
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang Jiangxi 330006, PR China
| | - Juanjuan Chen
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang Jiangxi 330006, PR China
| | - Hua Li
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang Jiangxi 330006, PR China
| | - Liping Cao
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang Jiangxi 330006, PR China
| |
Collapse
|
29
|
Wang X, Cheng D, Jiang W, Ma Y. Mechanisms Underlying Aluminum Neurotoxicity Related to 14-3-3ζ Protein. Toxicol Sci 2018; 163:45-56. [DOI: 10.1093/toxsci/kfy021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Xiaomei Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People’s Republic of China
| | - Dai Cheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People’s Republic of China
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, People’s Republic of China
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People’s Republic of China
| | - Yuxia Ma
- Department of Nutrition and Hygiene, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
30
|
Woodcock JM, Goodwin KL, Sandow JJ, Coolen C, Perugini MA, Webb AI, Pitson SM, Lopez AF, Carver JA. Role of salt bridges in the dimer interface of 14-3-3ζ in dimer dynamics, N-terminal α-helical order, and molecular chaperone activity. J Biol Chem 2017; 293:89-99. [PMID: 29109150 DOI: 10.1074/jbc.m117.801019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/24/2017] [Indexed: 11/06/2022] Open
Abstract
The 14-3-3 family of intracellular proteins are dimeric, multifunctional adaptor proteins that bind to and regulate the activities of many important signaling proteins. The subunits within 14-3-3 dimers are predicted to be stabilized by salt bridges that are largely conserved across the 14-3-3 protein family and allow the different isoforms to form heterodimers. Here, we have examined the contributions of conserved salt-bridging residues in stabilizing the dimeric state of 14-3-3ζ. Using analytical ultracentrifugation, our results revealed that Asp21 and Glu89 both play key roles in dimer dynamics and contribute to dimer stability. Furthermore, hydrogen-deuterium exchange coupled with mass spectrometry showed that mutation of Asp21 promoted disorder in the N-terminal helices of 14-3-3ζ, suggesting that this residue plays an important role in maintaining structure across the dimer interface. Intriguingly, a D21N 14-3-3ζ mutant exhibited enhanced molecular chaperone ability that prevented amorphous protein aggregation, suggesting a potential role for N-terminal disorder in 14-3-3ζ's poorly understood chaperone action. Taken together, these results imply that disorder in the N-terminal helices of 14-3-3ζ is a consequence of the dimer-monomer dynamics and may play a role in conferring chaperone function to 14-3-3ζ protein.
Collapse
Affiliation(s)
- Joanna M Woodcock
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia 5000.
| | - Katy L Goodwin
- School of Physical Sciences, University of Adelaide, Adelaide, South Australia 5005
| | - Jarrod J Sandow
- Division of Systems Biology and Personalised Medicine, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052
| | - Carl Coolen
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia 5000
| | - Matthew A Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086
| | - Andrew I Webb
- Division of Systems Biology and Personalised Medicine, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia 5000
| | - Angel F Lopez
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia 5000
| | - John A Carver
- Research School of Chemistry, Australian National University, Acton, Australian Capital Territory 2601, Australia
| |
Collapse
|
31
|
McFerrin MB, Chi X, Cutter G, Yacoubian TA. Dysregulation of 14-3-3 proteins in neurodegenerative diseases with Lewy body or Alzheimer pathology. Ann Clin Transl Neurol 2017; 4:466-477. [PMID: 28695147 PMCID: PMC5497531 DOI: 10.1002/acn3.421] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/13/2017] [Accepted: 04/17/2017] [Indexed: 01/28/2023] Open
Abstract
Objective The highly conserved 14‐3‐3 proteins interact with key players involved in Parkinson's disease (PD) and other neurodegenerative disorders. We recently demonstrated that 14‐3‐3 phosphorylation is increased in PD models and that increased 14‐3‐3 phosphorylation reduces the neuroprotective effects of 14‐3‐3 proteins. Here, we investigated whether 14‐3‐3 phosphorylation is altered in postmortem brains from control, PD, Alzheimer's Disease (AD), Alzheimer's with Lewy Bodies (ADLB), Dementia with Lewy Bodies (DLB), and Progressive Supranuclear Palsy (PSP) subjects at three conserved sites: serine 58 (S58), serine 185 (S185), and serine 232 (S232). Methods S58, S185, and S232 phosphorylation was measured by western blot analysis of Triton X‐100 soluble and insoluble fractions from postmortem temporal cortex. Results The ratio of soluble phospho‐S232 to insoluble phospho‐S232 was reduced by 32%, 60%, 37%, and 52% in PD, AD, ADLB, and DLB, respectively. S185 and S58 phosphorylation were mildly elevated in the soluble fraction in DLB. We also noted a dramatic reduction in soluble pan 14‐3‐3 levels by ~35% in AD, ADLB, and DLB. Lower ratios of soluble to insoluble S232 phosphorylation (pointing to higher insoluble pS232) correlated with lower soluble pan 14‐3‐3 levels, suggesting that S232 phosphorylation may promote insolubilization of 14‐3‐3s. The phospho‐S232 ratio and soluble pan 14‐3‐3 levels correlated with clinical and pathological severity. Interpretation These data reveal dysregulation of 14‐3‐3 proteins in neurodegeneration associated with Lewy body or Alzheimer pathology. S232 phosphorylation may drive insolubilization of 14‐3‐3s and thus contribute to the pathophysiology in neurodegenerative disorders associated with Lewy body or Alzheimer pathology.
Collapse
Affiliation(s)
- Michael B McFerrin
- Department of Neurology Center for Neurodegeneration and Experimental Therapeutics University of Alabama at Birmingham Birmingham Alabama
| | - Xiaofei Chi
- Department of Biostatics University of Alabama at Birmingham Birmingham Alabama.,Present address: Department of Biostatistics University of Arkansas for Medical Sciences Little Rock Arkansas
| | - Gary Cutter
- Department of Biostatics University of Alabama at Birmingham Birmingham Alabama
| | - Talene A Yacoubian
- Department of Neurology Center for Neurodegeneration and Experimental Therapeutics University of Alabama at Birmingham Birmingham Alabama
| |
Collapse
|
32
|
Wang Q, Zhao X, Zhang Z, Zhao H, Huang D, Cheng G, Yang Y. Proteomic analysis of physiological function response to hot summer in liver from lactating dairy cows. J Therm Biol 2017; 65:82-87. [PMID: 28343581 DOI: 10.1016/j.jtherbio.2017.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 02/18/2017] [Accepted: 02/21/2017] [Indexed: 11/28/2022]
Abstract
Lactation performance of dairy cattle is susceptible to heat stress. The liver is one of the most crucial organs affected by high temperature in dairy cows. However, the physiological adaption by the liver to hot summer conditions has not been well elucidated in lactating dairy cows. In the present study, proteomic analysis of the liver in dairy cows in spring and hot summer was performed using a label-free method. In total, 127 differentially expressed proteins were identified; most of the upregulated proteins were involved in protein metabolic processes and responses to stimuli, whereas most of the downregulated proteins were related to oxidation-reduction. Pathway analysis indicated that 3 upregulated heat stress proteins (HSP90α, HSP90β, and endoplasmin) were enriched in the NOD-like receptor signaling pathway, whereas several downregulated NADH dehydrogenase proteins were involved in the oxidative phosphorylation pathway. The protein-protein interaction network indicated that several upregulated HSPs (HSP90α, HSP90β, and GRP78) were involved in more interactions than other proteins and were thus considered as central hub nodes. Our findings provide novel insights into the physiological adaption of liver function in lactating dairy cows to natural high temperature.
Collapse
Affiliation(s)
- Qiangjun Wang
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China; College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiaowei Zhao
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Huiling Zhao
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Dongwei Huang
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Guanglong Cheng
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Yongxin Yang
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| |
Collapse
|
33
|
Sluchanko NN, Gusev NB. Moonlighting chaperone‐like activity of the universal regulatory 14‐3‐3 proteins. FEBS J 2017; 284:1279-1295. [DOI: 10.1111/febs.13986] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 11/20/2016] [Accepted: 12/06/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Nikolai N. Sluchanko
- Laboratory of Structural Biochemistry of Proteins A. N. Bach Institute of Biochemistry Federal Research Center of Biotechnology of the Russian Academy of Sciences Moscow Russia
| | - Nikolai B. Gusev
- Department of Biochemistry School of Biology Moscow State University Russia
| |
Collapse
|
34
|
Trujillo-Ocampo A, Cázares-Raga FE, Celestino-Montes A, Cortés-Martínez L, Rodríguez MH, Hernández-Hernández FDLC. IDENTIFICATION AND EXPRESSION ANALYSIS OF TWO 14-3-3 PROTEINS IN THE MOSQUITO Aedes aegypti, AN IMPORTANT ARBOVIRUSES VECTOR. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2016; 93:143-159. [PMID: 27592842 DOI: 10.1002/arch.21348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The 14-3-3 proteins are evolutionarily conserved acidic proteins that form a family with several isoforms in many cell types of plants and animals. In invertebrates, including dipteran and lepidopteran insects, only two isoforms have been reported. 14-3-3 proteins are scaffold molecules that form homo- or heterodimeric complexes, acting as molecular adaptors mediating phosphorylation-dependent interactions with signaling molecules involved in immunity, cell differentiation, cell cycle, proliferation, apoptosis, and cancer. Here, we describe the presence of two isoforms of 14-3-3 in the mosquito Aedes aegypti, the main vector of dengue, yellow fever, chikungunya, and zika viruses. Both isoforms have the conserved characteristics of the family: two protein signatures (PS1 and PS2), an annexin domain, three serine residues, targets for phosphorylation (positions 58, 184, and 233), necessary for their function, and nine alpha helix-forming segments. By sequence alignment and phylogenetic analysis, we found that the molecules correspond to Ɛ and ζ isoforms (Aeae14-3-3ε and Aeae14-3-3ζ). The messengers and protein products were present in all stages of the mosquito life cycle and all the tissues analyzed, with a small predominance of Aeae14-3-3ζ except in the midgut and ovaries of adult females. The 14-3-3 proteins in female midgut epithelial cells were located in the cytoplasm. Our results may provide insights to further investigate the functions of these proteins in mosquitoes.
Collapse
Affiliation(s)
- Abel Trujillo-Ocampo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Febe Elena Cázares-Raga
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Antonio Celestino-Montes
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Leticia Cortés-Martínez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Mario H Rodríguez
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Fidel de la Cruz Hernández-Hernández
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México.
| |
Collapse
|
35
|
Joo Y, Schumacher B, Landrieu I, Bartel M, Smet-Nocca C, Jang A, Choi HS, Jeon NL, Chang KA, Kim HS, Ottmann C, Suh YH. Involvement of 14-3-3 in tubulin instability and impaired axon development is mediated by Tau. FASEB J 2015; 29:4133-44. [PMID: 26103986 DOI: 10.1096/fj.14-265009] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 06/15/2015] [Indexed: 01/06/2023]
Abstract
14-3-3 proteins act as adapters that exert their function by interacting with their various protein partners. 14-3-3 proteins have been implicated in a variety of human diseases including neurodegenerative diseases. 14-3-3 proteins have recently been reported to be abundant in the neurofibrillary tangles (NFTs) observed inside the neurons of brains affected by Alzheimer's disease (AD). These NFTs are mainly constituted of phosphorylated Tau protein, a microtubule-associated protein known to bind 14-3-3. Despite this indication of 14-3-3 protein involvement in the AD pathogenesis, the role of 14-3-3 in the Tauopathy remains to be clarified. In the present study, we shed light on the role of 14-3-3 proteins in the molecular pathways leading to Tauopathies. Overexpression of the 14-3-3σ isoform resulted in a disruption of the tubulin cytoskeleton and prevented neuritic outgrowth in neurons. NMR studies validated the phosphorylated residues pSer214 and pSer324 in Tau as the 2 primary sites for 14-3-3 binding, with the crystal structure of 14-3-3σ in complex with Tau-pSer214 and Tau-pSer324 revealing the molecular details of the interaction. These data suggest a rationale for a possible pharmacologic intervention of the Tau/14-3-3 interaction.
Collapse
Affiliation(s)
- Yuyoung Joo
- *Department of Pharmacology, College of Medicine and Neuroscience Research Institute, Medical Research Council, and School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Republic of Korea; Department of Pharmacology, College of Medicine, Gachon University, Incheon, Republic of Korea; Chemical Genomics Centre of the Max Planck Society, Dortmund, Germany; Unité Mixte de Recherche 8576, Centre National de la Recherche Scientifique-University of Lille, Villeneuve d'Ascq, France; Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands; and Korea Brain Research Institute, Daegu, Republic of Korea
| | - Benjamin Schumacher
- *Department of Pharmacology, College of Medicine and Neuroscience Research Institute, Medical Research Council, and School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Republic of Korea; Department of Pharmacology, College of Medicine, Gachon University, Incheon, Republic of Korea; Chemical Genomics Centre of the Max Planck Society, Dortmund, Germany; Unité Mixte de Recherche 8576, Centre National de la Recherche Scientifique-University of Lille, Villeneuve d'Ascq, France; Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands; and Korea Brain Research Institute, Daegu, Republic of Korea
| | - Isabelle Landrieu
- *Department of Pharmacology, College of Medicine and Neuroscience Research Institute, Medical Research Council, and School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Republic of Korea; Department of Pharmacology, College of Medicine, Gachon University, Incheon, Republic of Korea; Chemical Genomics Centre of the Max Planck Society, Dortmund, Germany; Unité Mixte de Recherche 8576, Centre National de la Recherche Scientifique-University of Lille, Villeneuve d'Ascq, France; Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands; and Korea Brain Research Institute, Daegu, Republic of Korea
| | - Maria Bartel
- *Department of Pharmacology, College of Medicine and Neuroscience Research Institute, Medical Research Council, and School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Republic of Korea; Department of Pharmacology, College of Medicine, Gachon University, Incheon, Republic of Korea; Chemical Genomics Centre of the Max Planck Society, Dortmund, Germany; Unité Mixte de Recherche 8576, Centre National de la Recherche Scientifique-University of Lille, Villeneuve d'Ascq, France; Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands; and Korea Brain Research Institute, Daegu, Republic of Korea
| | - Caroline Smet-Nocca
- *Department of Pharmacology, College of Medicine and Neuroscience Research Institute, Medical Research Council, and School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Republic of Korea; Department of Pharmacology, College of Medicine, Gachon University, Incheon, Republic of Korea; Chemical Genomics Centre of the Max Planck Society, Dortmund, Germany; Unité Mixte de Recherche 8576, Centre National de la Recherche Scientifique-University of Lille, Villeneuve d'Ascq, France; Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands; and Korea Brain Research Institute, Daegu, Republic of Korea
| | - Ahram Jang
- *Department of Pharmacology, College of Medicine and Neuroscience Research Institute, Medical Research Council, and School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Republic of Korea; Department of Pharmacology, College of Medicine, Gachon University, Incheon, Republic of Korea; Chemical Genomics Centre of the Max Planck Society, Dortmund, Germany; Unité Mixte de Recherche 8576, Centre National de la Recherche Scientifique-University of Lille, Villeneuve d'Ascq, France; Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands; and Korea Brain Research Institute, Daegu, Republic of Korea
| | - Hee Soon Choi
- *Department of Pharmacology, College of Medicine and Neuroscience Research Institute, Medical Research Council, and School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Republic of Korea; Department of Pharmacology, College of Medicine, Gachon University, Incheon, Republic of Korea; Chemical Genomics Centre of the Max Planck Society, Dortmund, Germany; Unité Mixte de Recherche 8576, Centre National de la Recherche Scientifique-University of Lille, Villeneuve d'Ascq, France; Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands; and Korea Brain Research Institute, Daegu, Republic of Korea
| | - Noo Li Jeon
- *Department of Pharmacology, College of Medicine and Neuroscience Research Institute, Medical Research Council, and School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Republic of Korea; Department of Pharmacology, College of Medicine, Gachon University, Incheon, Republic of Korea; Chemical Genomics Centre of the Max Planck Society, Dortmund, Germany; Unité Mixte de Recherche 8576, Centre National de la Recherche Scientifique-University of Lille, Villeneuve d'Ascq, France; Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands; and Korea Brain Research Institute, Daegu, Republic of Korea
| | - Keun-A Chang
- *Department of Pharmacology, College of Medicine and Neuroscience Research Institute, Medical Research Council, and School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Republic of Korea; Department of Pharmacology, College of Medicine, Gachon University, Incheon, Republic of Korea; Chemical Genomics Centre of the Max Planck Society, Dortmund, Germany; Unité Mixte de Recherche 8576, Centre National de la Recherche Scientifique-University of Lille, Villeneuve d'Ascq, France; Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands; and Korea Brain Research Institute, Daegu, Republic of Korea
| | - Hye-Sun Kim
- *Department of Pharmacology, College of Medicine and Neuroscience Research Institute, Medical Research Council, and School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Republic of Korea; Department of Pharmacology, College of Medicine, Gachon University, Incheon, Republic of Korea; Chemical Genomics Centre of the Max Planck Society, Dortmund, Germany; Unité Mixte de Recherche 8576, Centre National de la Recherche Scientifique-University of Lille, Villeneuve d'Ascq, France; Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands; and Korea Brain Research Institute, Daegu, Republic of Korea
| | - Christian Ottmann
- *Department of Pharmacology, College of Medicine and Neuroscience Research Institute, Medical Research Council, and School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Republic of Korea; Department of Pharmacology, College of Medicine, Gachon University, Incheon, Republic of Korea; Chemical Genomics Centre of the Max Planck Society, Dortmund, Germany; Unité Mixte de Recherche 8576, Centre National de la Recherche Scientifique-University of Lille, Villeneuve d'Ascq, France; Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands; and Korea Brain Research Institute, Daegu, Republic of Korea
| | - Yoo-Hun Suh
- *Department of Pharmacology, College of Medicine and Neuroscience Research Institute, Medical Research Council, and School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Republic of Korea; Department of Pharmacology, College of Medicine, Gachon University, Incheon, Republic of Korea; Chemical Genomics Centre of the Max Planck Society, Dortmund, Germany; Unité Mixte de Recherche 8576, Centre National de la Recherche Scientifique-University of Lille, Villeneuve d'Ascq, France; Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands; and Korea Brain Research Institute, Daegu, Republic of Korea
| |
Collapse
|
36
|
Sikulu MT, Monkman J, Dave KA, Hastie ML, Dale PE, Kitching RL, Killeen GF, Kay BH, Gorman JJ, Hugo LE. Proteomic changes occurring in the malaria mosquitoes Anopheles gambiae and Anopheles stephensi during aging. J Proteomics 2015; 126:234-44. [PMID: 26100052 DOI: 10.1016/j.jprot.2015.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/14/2015] [Accepted: 06/13/2015] [Indexed: 11/19/2022]
Abstract
UNLABELLED The age of mosquitoes is a crucial determinant of their ability to transmit pathogens and their resistance to insecticides. We investigated changes to the abundance of proteins found in heads and thoraces of the malaria mosquitoes Anopheles gambiae and Anopheles stephensi as they aged. Protein expression changes were assessed using two-dimensional difference gel electrophoresis and the identity of differentially expressed proteins was determined by using either matrix-assisted laser desorption ionization tandem time-of-flight mass spectrometry or capillary high-pressure liquid chromatography coupled with a linear ion-trap (LTQ)-Orbitrap XL hybrid mass spectrometer. Protein biomarkers were validated by semi quantitative Western blot analysis. Nineteen and nine age dependent protein spots were identified for A. stephensi and A. gambiae, respectively. Among the proteins down-regulated with age were homologs of ADF/Cofilin, cytochome c1, heat shock protein-70 and eukaryotic translation initiation factor 5A (eIF5a). Proteins up-regulated with age included probable methylmalonate-semialdehyde dehydrogenase, voltage-dependent anion-selective channel and fructose bisphosphate aldolase. Semi quantitative Western blot analysis confirmed expression patterns observed by 2-D DIGE for eIF5a and ADF/Cofilin. Further work is recommended to determine whether these biomarkers are robust to infection, blood feeding and insecticide resistance. Robust biomarkers could then be incorporated into rapid diagnostic assays for ecological and epidemiological studies. BIOLOGICAL SIGNIFICANCE In this study, we have identified several proteins with characteristic changes in abundance in both A. gambiae and A. stephensi during their aging process. These changes may highlight underlying mechanisms beneath the relationship between mosquito age and factors affecting Plasmodium transmission and mosquito control. The similarity of changes in protein abundance between these species and the primary dengue vector Aedes aegypti, has revealed conserved patterns of aging-specific protein regulation.
Collapse
Affiliation(s)
- Maggy T Sikulu
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| | - James Monkman
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| | - Keyur A Dave
- The Protein Discovery Centre, QIMR Berghofer Medical Research Institute, Brisbane, Australia.
| | - Marcus L Hastie
- The Protein Discovery Centre, QIMR Berghofer Medical Research Institute, Brisbane, Australia.
| | - Patricia E Dale
- Environmental Research Institute and Griffith School of Environment, Griffith University, Brisbane, Queensland, Australia.
| | - Roger L Kitching
- Environmental Research Institute and Griffith School of Environment, Griffith University, Brisbane, Queensland, Australia.
| | - Gerry F Killeen
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, Ifakara, United Republic of Tanzania; Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.
| | - Brian H Kay
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| | - Jeffery J Gorman
- The Protein Discovery Centre, QIMR Berghofer Medical Research Institute, Brisbane, Australia.
| | - Leon E Hugo
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| |
Collapse
|
37
|
Sluchanko NN, Uversky VN. Hidden disorder propensity of the N-terminal segment of universal adapter protein 14-3-3 is manifested in its monomeric form: Novel insights into protein dimerization and multifunctionality. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:492-504. [PMID: 25747569 DOI: 10.1016/j.bbapap.2015.02.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 02/17/2015] [Accepted: 02/24/2015] [Indexed: 11/30/2022]
Abstract
The multiplicity of functions of 14-3-3 proteins, integrated into many cellular interactions and signaling networks, is primarily based upon their dimeric α-helical structure that is capable of binding phosphorylated protein partners as well as displaying a "moonlighting" chaperone-like activity. The structure and functions of 14-3-3 proteins are regulated in different ways, including Ser58 phosphorylation in the interface, which shifts equilibrium towards the formation of protein monomers whose role is poorly understood. While modification of Ser58 induced only partial dissociation, the engineered triple mutation of human 14-3-3ζ located in the first α-helix deeply monomerized the protein, allowing for a structural analysis of the monomeric form. Dimer-incapable 14-3-3 proteins retained binding capacity and specificity towards some phosphopartners, and also demonstrated increased chaperone-like activity on various substrates. Here, we found a substantial propensity of the N-terminal segment (~40 residues) of 14-3-3 proteins to intrinsic disorder, showing remarkable conservation across different isoforms and organisms. We hypothesized that this intrinsic disorder propensity, hidden in the α-helical 14-3-3 dimer, can be manifested upon its dissociation and interrogated novel monomeric 14-3-3ζ carrying both monomerizing and S58E mutations (14-3-3ζmS58E). CD spectroscopy showed that, at physiological temperatures, this protein has ~10-15% reduced helicity relative to the wild type protein, corresponding to roughly 40 residues. Along with the known flexibility of C-terminus, SAXS-based modeling of the 14-3-3ζmS58E structure strongly suggested pliability of its N-terminus. The unraveled disorder propensity of the N-terminal tails of 14-3-3 proteins provides new clues for better understanding of the molecular mechanisms of dimerization and multifunctionality of these universal adapter proteins.
Collapse
Affiliation(s)
- Nikolai N Sluchanko
- A. N. Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky prospect 33, Moscow 119071, Russian Federation.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation; Biology Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation.
| |
Collapse
|
38
|
BIS targeting induces cellular senescence through the regulation of 14-3-3 zeta/STAT3/SKP2/p27 in glioblastoma cells. Cell Death Dis 2014; 5:e1537. [PMID: 25412315 PMCID: PMC4260756 DOI: 10.1038/cddis.2014.501] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/17/2014] [Accepted: 10/20/2014] [Indexed: 01/17/2023]
Abstract
Cellular senescence is an important mechanism for preventing tumor progression. The elevated expression of Bcl-2-interacting cell death suppressor (BIS), an anti-apoptotic and anti-stress protein, often correlates with poor prognosis in several cancers including glioblastoma; however, the role of BIS in the regulation of senescence has not been well defined. Here, we describe for the first time that the depletion of BIS induces G1 arrest and cellular senescence through the accumulation of p27 that is independent of p53, p21 or p16. The increase in p27 expression in BIS-depleted cells was attributable to an impairment of the ubiquitin-mediated degradation of p27, which was caused by a decrease in S-phase kinase-associated protein 2 (SKP2) at the transcriptional level. As an underlying molecular mechanism, we demonstrate that the loss of activity of signal transducer and activator of transcription 3 (STAT3) was specifically linked to the suppression of SKP2 expression. Despite a reduction in phospho-STAT3 levels, total STAT3 levels were unexpectedly increased by BIS depletion, specifically in the insoluble fraction. Our results show that 14-3-3ζ expression is decreased by BIS knockdown and that 14-3-3ζ depletion per se significantly induced senescence phenotypes. In addition, the ectopic expression of 14-3-3ζ blocked senescence caused by BIS depletion, which was paralleled with a decrease in insoluble STAT3 in A172 glioblastoma cells. These findings indicate that the impairment of the protein quality control conferred by BIS and/or 14-3-3ζ is critical for BIS depletion-induced senescence. Moreover, BIS knockdown also induced senescence along with an accumulation of total STAT3 and p27 in several different cell types as well as embryonic fibroblasts derived from Bis-knock out mice with/without variations in 14-3-3ζ levels. Therefore, our findings suggest that a downregulation of BIS expression could serve as a potential strategy for restricting tumor progression via an induction of senescence through the regulation of STAT3/SKP2/p27 pathway.
Collapse
|
39
|
Sommer MS, Schleiff E. Protein targeting and transport as a necessary consequence of increased cellular complexity. Cold Spring Harb Perspect Biol 2014; 6:6/8/a016055. [PMID: 25085907 DOI: 10.1101/cshperspect.a016055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
With increasing intracellular complexity, a new cell-biological problem that is the allocation of cytoplasmically synthesized proteins to their final destinations within the cell emerged. A special challenge is thereby the translocation of proteins into or across cellular membranes. The underlying mechanisms are only in parts well understood, but it can be assumed that the course of cellular evolution had a deep impact on the design of the required molecular machines. In this article, we aim to summarize the current knowledge and concepts of the evolutionary development of protein trafficking as a necessary premise and consequence of increased cellular complexity.
Collapse
Affiliation(s)
- Maik S Sommer
- Institute for Molecular Biosciences, Department of Biosciences, Molecular Cell Biology of Plants, Goethe University Frankfurt am Main, D-60438 Frankfurt, Germany
| | - Enrico Schleiff
- Institute for Molecular Biosciences, Department of Biosciences, Molecular Cell Biology of Plants, Goethe University Frankfurt am Main, D-60438 Frankfurt, Germany Cluster of Excellence Macromolecular Complexes, Goethe University Frankfurt am Main, D-60438 Frankfurt, Germany Centre of Membrane Proteomics, Goethe University Frankfurt am Main, D-60438 Frankfurt, Germany
| |
Collapse
|
40
|
Feng E, Chen H, Li Y, Jiang W, Wang Z, Yin Y. Gene cloning, expression, and function analysis of SpL14-3-3ζ in Spodoptera litura and its response to the entomopathogenic fungus Nomuraea rileyi. Comp Biochem Physiol B Biochem Mol Biol 2014; 172-173:49-56. [PMID: 24747013 DOI: 10.1016/j.cbpb.2014.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 04/07/2014] [Accepted: 04/09/2014] [Indexed: 10/25/2022]
Abstract
The 14-3-3 proteins, a highly evolutionarily conserved and ubiquitous protein family in eukaryotic cells, have a range of biological functions including regulation of signal transduction, stress response, apoptosis, and control of the cell cycle. To investigate the function of 14-3-3 in Spodoptera litura, the full length of 14-3-3ζ was cloned from S. litura on the basis of an expressed sequence tag of 14-3-3ζ from the S. litura fat body suppression subtractive hybridization library, and named SpL14-3-3ζ. SpL14-3-3ζ cDNA was 1196 bp with an open reading frame of 744 bp, encoding 247 amino acids. Multiple alignment analysis revealed the putative amino acids shared >80% homology with 14-3-3ζ from other organisms and shared typical conservative structures. Phylogenetic analysis confirmed SpL14-3-3ζ was closely related to other available Lepidoptera 14-3-3ζ. Real-time PCR analysis indicated SpL14-3-3ζ was expressed throughout the developmental stages of S. litura, with a relatively high expression level in pre-pupa, and was expressed constitutively in all examined tissues with relatively high levels in hemocytes and midgut. Moreover, the transcription level of SpL14-3-3ζ could be induced by Nomuraea rileyi infection, up-regulated in hemocytes, followed by head, fat body and midgut. Knocking down SpL14-3-3ζ transcripts by RNAi significantly increased S. litura sensitivity to fungal infection, and resulted in higher mortality of S. litura during the larval development. These results provide novel insights into the 14-3-3ζ signal regulation which may be related to host defense as well as larval development in S. litura.
Collapse
Affiliation(s)
- Eryan Feng
- School of Life Science, Chongqing University, Chongqing Engineering Research Center for Fungal Insecticide, 400030, China
| | - Huan Chen
- Institute of Plant Physiology and Ecology, Chinese Academy of Sciences Key Laboratory of Insect Developmental and Evolutionary Biology, CAS, Shanghai, 200032, China
| | - Yan Li
- School of Life Science, Chongqing University, Chongqing Engineering Research Center for Fungal Insecticide, 400030, China
| | - Wei Jiang
- School of Life Science, Chongqing University, Chongqing Engineering Research Center for Fungal Insecticide, 400030, China
| | - Zhongkang Wang
- School of Life Science, Chongqing University, Chongqing Engineering Research Center for Fungal Insecticide, 400030, China
| | - Youping Yin
- School of Life Science, Chongqing University, Chongqing Engineering Research Center for Fungal Insecticide, 400030, China.
| |
Collapse
|
41
|
Sluchanko NN, Roman SG, Chebotareva NA, Gusev NB. Chaperone-like activity of monomeric human 14-3-3ζ on different protein substrates. Arch Biochem Biophys 2014; 549:32-9. [PMID: 24681339 DOI: 10.1016/j.abb.2014.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/05/2014] [Accepted: 03/18/2014] [Indexed: 12/28/2022]
Abstract
Members of the 14-3-3 protein family interact with hundreds of different, predominantly phosphorylated, proteins. 14-3-3 dimers are prevalent but exist at the equilibrium with the monomers. Our previous studies using the engineered monomeric 14-3-3ζ (14-3-3ζm) showed that 14-3-3ζ monomer retained binding activity towards selected phosphorylated partners and, in addition, it prevented heat-induced aggregation of myosin subfragment 1. Since the chaperone-like activity of 14-3-3 monomers has been insufficiently studied, here we have analyzed the effect of 14-3-3ζm on the aggregation of different model proteins. We found that 14-3-3ζm demonstrated considerable chaperone-like activity by inhibiting the DTT-induced aggregation of insulin and thermally-induced aggregation of alcohol dehydrogenase and phosphorylase kinase. Importantly, the anti-aggregating activity of 14-3-3ζm was concentration-dependent and overall, was more pronounced than that of its dimeric counterpart. In some cases, the chaperone-like effect of 14-3-3ζm was comparable, or even higher, than that of the small heat shock proteins, HspB6 and HspB5. We suggest that 14-3-3s not only can bind and regulate the activity of multiple phosphoproteins, but also possess moonlighting chaperone-like activity, which is especially pronounced in the case of monomeric forms of 14-3-3 which can be present under certain stress conditions.
Collapse
Affiliation(s)
- Nikolai N Sluchanko
- A. N. Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russian Federation.
| | - Svetlana G Roman
- A. N. Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russian Federation
| | - Natalia A Chebotareva
- A. N. Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russian Federation
| | - Nikolai B Gusev
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119991, Russian Federation
| |
Collapse
|
42
|
Ibuprofen enhances the anticancer activity of cisplatin in lung cancer cells by inhibiting the heat shock protein 70. Cell Death Dis 2014; 5:e1027. [PMID: 24481441 PMCID: PMC4040650 DOI: 10.1038/cddis.2013.550] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 11/27/2013] [Accepted: 12/10/2013] [Indexed: 01/07/2023]
Abstract
Hsp70 is often overexpressed in cancer cells, and the selective cellular survival advantage that it confers may contribute to the process of tumour formation. Thus, the pharmacological manipulation of Hsp70 levels in cancer cells may be an effective means of preventing the progression of tumours. We found that the downregulation of Hsp70 by ibuprofen in vitro enhances the antitumoural activity of cisplatin in lung cancer. Ibuprofen prominently suppressed the expression of Hsp70 in A549 cells derived from lung adenocarcinoma and sensitized them to cisplatin in association with an increase in the mitochondrial apoptotic cascade, whereas ibuprofen alone did not induce cell death. The cisplatin-dependent events occurring up- and downstream of mitochondrial disruption were accelerated by treatment with ibuprofen. The increase in cisplatin-induced apoptosis caused by the depletion of Hsp70 by RNA interference is evidence that the increased apoptosis by ibuprofen is mediated by its effect on Hsp70. Our observations indicate that the suppression of Hsp70 by ibuprofen mediates the sensitivity to cisplatin by enhancing apoptosis at several stages of the mitochondrial cascade. Ibuprofen, therefore, is a potential therapeutic agent that might allow lowering the doses of cisplatin and limiting the many challenge associated with its toxicity and development of drug resistance.
Collapse
|
43
|
Ramteke MP, Shelke P, Ramamoorthy V, Somavarapu AK, Gautam AKS, Nanaware PP, Karanam S, Mukhopadhyay S, Venkatraman P. Identification of a novel ATPase activity in 14-3-3 proteins--evidence from enzyme kinetics, structure guided modeling and mutagenesis studies. FEBS Lett 2013; 588:71-8. [PMID: 24269678 DOI: 10.1016/j.febslet.2013.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 10/16/2013] [Accepted: 11/05/2013] [Indexed: 12/21/2022]
Abstract
14-3-3 Proteins bind phosphorylated sequences in proteins and regulate multiple cellular functions. For the first time, we show that pure recombinant human 14-3-3 ζ, γ, ε and τ isofoms hydrolyze ATP with similar Km and kcat values. In sharp contrast the sigma isoform has no detectable activity. Docking studies identify two putative binding pockets in 14-3-3 zeta. Mutation of D124A in the amphipathic pocket enhances binding affinity and catalysis. Mutation of a critical Arg (R55A) at the dimer interface in zeta reduces binding and decreases catalysis. These experimental results coincide with a binding pose at the dimer interface. This newly identified function could be a moon lighting function in some of these isoforms.
Collapse
Affiliation(s)
- Manoj P Ramteke
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
| | - Pradnya Shelke
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
| | - Vidhya Ramamoorthy
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
| | - Arun Kumar Somavarapu
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
| | - Amit Kumar Singh Gautam
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
| | - Padma P Nanaware
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
| | - Sudheer Karanam
- Vlife Sciences Technologies Pvt. Ltd., 2nd Floor, Plot No-05, Ram Indu Park, Baner Road, Pune 411045, India
| | - Sami Mukhopadhyay
- Vlife Sciences Technologies Pvt. Ltd., 2nd Floor, Plot No-05, Ram Indu Park, Baner Road, Pune 411045, India
| | - Prasanna Venkatraman
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India.
| |
Collapse
|
44
|
Zhao GY, Ding JY, Lu CL, Lin ZW, Guo J. The overexpression of 14-3-3ζ and Hsp27 promotes non–small cell lung cancer progression. Cancer 2013; 120:652-63. [PMID: 24804299 DOI: 10.1002/cncr.28452] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The 14-3-3ζ protein has been identified as a putative oncoprotein in several cancers, including non–small cell lung cancer (NSCLC). However, the mechanisms underlying its functions have not been well defined. METHODS Proteins that interact with 14-3-3ζ were identified through coimmunoprecipitation and mass spectrometry in NSCLC cells. The interaction of 14-3-3ζ with these molecular partners and their roles in the invasiveness and metastasis of NSCLC cells were assayed through specific disruptions in the 14-3-3ζ signaling network. In addition, the clinical implications of this 14-3-3ζ complex were examined in samples from patients with NSCLC. RESULTS Among the identified proteins that interacted with 14-3-3ζ, there were 230 proteins in 95-D cells, 181 proteins in 95-C cells, and 203 proteins in A549 cells; and 16 interacting proteins were identified that overlapped between all cell lines. Further studies revealed 14-3-3ζ complexes within the heat shock protein 27 (Hsp27) protein and demonstrated that the interference of Hsp27 or 14-3-3ζ inhibited the invasion and metastasis of NSCLC cells. The invasive and metastatic capabilities of cells with both Hsp27 and 14-3-3ζ interference could be completely restored only by Hsp27 and 14-3-3ζ complementary DNA transfection and not by either agent alone. Clinically, the postoperative 5-year overall survival (OS) in patients who had high expression of both 14-3-3ζ and Hsp27 was significantly lower than the 5-year OS in patients who had low expression of both 14-3-3ζ and Hsp27 (26.5% vs 59.7%, respectively). Multivariate analysis revealed that the combined expression of 14-3-3ζ and Hsp27 was an independent prognostic indicator of OS(P = .036). CONCLUSIONS The current data suggest that the combined expression of 14-3-3ζ and Hsp27 may be a biomarker for predicting survival in patients with NSCLC, and this combination may have potential as a therapeutic target for NSCLC.
Collapse
|
45
|
Xu Z, Graham K, Foote M, Liang F, Rizkallah R, Hurt M, Wang Y, Wu Y, Zhou Y. 14-3-3 protein targets misfolded chaperone-associated proteins to aggresomes. J Cell Sci 2013; 126:4173-86. [PMID: 23843611 DOI: 10.1242/jcs.126102] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The aggresome is a key cytoplasmic organelle for sequestration and clearance of toxic protein aggregates. Although loading misfolded proteins cargos to dynein motors has been recognized as an important step in the aggresome formation process, the molecular machinery that mediates the association of cargos with the dynein motor is poorly understood. Here, we report a new aggresome-targeting pathway that involves isoforms of 14-3-3, a family of conserved regulatory proteins. 14-3-3 interacts with both the dynein-intermediate chain (DIC) and an Hsp70 co-chaperone Bcl-2-associated athanogene 3 (BAG3), thereby recruiting chaperone-associated protein cargos to dynein motors for their transport to aggresomes. This molecular cascade entails functional dimerization of 14-3-3, which we show to be crucial for the formation of aggresomes in both yeast and mammalian cells. These results suggest that 14-3-3 functions as a molecular adaptor to promote aggresomal targeting of misfolded protein aggregates and may link such complexes to inclusion bodies observed in various neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhe Xu
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Huang XY, Ke AW, Shi GM, Zhang X, Zhang C, Shi YH, Wang XY, Ding ZB, Xiao YS, Yan J, Qiu SJ, Fan J, Zhou J. αB-crystallin complexes with 14-3-3ζ to induce epithelial-mesenchymal transition and resistance to sorafenib in hepatocellular carcinoma. Hepatology 2013; 57:2235-2247. [PMID: 23316005 DOI: 10.1002/hep.26255] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 12/13/2012] [Indexed: 12/11/2022]
Abstract
UNLABELLED The overall survival of patients with hepatocellular carcinoma (HCC) remains poor, and the molecular pathogenesis remains incompletely defined in HCC. Here we report that increased expression of αB-Crystallin in human HCC predicts poor survival and disease recurrence after surgery. Multivariate analysis identifies αB-Crystallin expression as an independent predictor for postoperative recurrence and overall survival. We show that elevated expression of αB-Crystallin promotes HCC progression in vivo and in vitro. We demonstrate that αB-Crystallin overexpression fosters HCC progression by inducing epithelial-mesenchymal transition (EMT) in HCC cells through activation of the extracellular-regulated protein kinase (ERK) cascade, which can counteract the effect of sorafenib. αB-Crystallin complexes with and elevates 14-3-3ζ protein, leading to up-regulation of ERK1/2 activity. Moreover, overexpression of αB-Crystallin in HCC cells induces EMT progression through an ERK1/2/Fra-1/slug signaling pathway. Clinically, our data reveal that overexpression of both αB-Crystallin and 14-3-3ζ correlates with the HCC poorest survival outcomes, and sorafenib response is impaired in patients with αB-Crystallin overexpression. CONCLUSION These data suggest that the αB-Crystallin-14-3-3ζ complex acts synergistically to promote HCC progression by constitutively activating ERK signaling. This study reveals αB-Crystallin as a potential therapeutic target for HCC and a biomarker for predicting sorafenib treatment response. (HEPATOLOGY 2013).
Collapse
Affiliation(s)
- Xiao-Yong Huang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Wang C, Yao C, Li Y, Cai W, Bao X, Girton J, Johansen J, Johansen KM. Evidence against a role for the JIL-1 kinase in H3S28 phosphorylation and 14-3-3 recruitment to active genes in Drosophila. PLoS One 2013; 8:e62484. [PMID: 23638096 PMCID: PMC3640051 DOI: 10.1371/journal.pone.0062484] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 03/21/2013] [Indexed: 01/19/2023] Open
Abstract
JIL-1 is the major kinase controlling phosphorylation of histone H3S10 and has been demonstrated to function to counteract heterochromatization and gene silencing. However, an alternative model has been proposed in which JIL-1 is required for transcription to occur, additionally phosphorylates H3S28, and recruits 14-3-3 to active genes. Since these findings are incompatible with our previous demonstration that there are robust levels of transcription in the complete absence of JIL-1 and that JIL-1 is not present at developmental or heat shock-induced polytene chromosome puffs, we have reexamined JIL-1’s possible role in H3S28 phosphorylation and 14-3-3 recruitment. Using two different H3S28ph antibodies we show by immunocytochemistry and immunoblotting that in Drosophila the H3S28ph mark is not present at detectable levels above background on polytene chromosomes at interphase but only on chromosomes at pro-, meta-, and anaphase during cell division in S2 cells and third instar larval neuroblasts. Moreover, this mitotic H3S28ph signal is also present in a JIL-1 null mutant background at undiminished levels suggesting that JIL-1 is not the mitotic H3S28ph kinase. We also demonstrate that H3S28ph is not enriched at heat shock puffs. Using two different pan-specific 14-3-3 antibodies as well as an enhancer trap 14-3-3ε-GFP line we show that 14-3-3, while present in salivary gland nuclei, does not localize to chromosomes but only to the nuclear matrix surrounding the chromosomes. In our hands 14-3-3 is not recruited to developmental or heat shock puffs. Furthermore, using a lacO repeat tethering system to target LacI-JIL-1 to ectopic sites on polytene chromosomes we show that only H3S10ph is present and upregulated at such sites, not H3S28ph or 14-3-3. Thus, our results argue strongly against a model where JIL-1 is required for H3S28 phosphorylation and 14-3-3 recruitment at active genes.
Collapse
Affiliation(s)
- Chao Wang
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Changfu Yao
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Yeran Li
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Weili Cai
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Xiaomin Bao
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Jack Girton
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Jørgen Johansen
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
- * E-mail: (KMJ); (JJ)
| | - Kristen M. Johansen
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
- * E-mail: (KMJ); (JJ)
| |
Collapse
|
48
|
Inglis PW, Ciampi AY, Salomão AN, Costa TDSA, Azevedo VCR. Expression of stress-related genes in zebrawood (Astronium fraxinifolium, Anacardiaceae) seedlings following germination in microgravity. Genet Mol Biol 2013; 37:81-92. [PMID: 24688295 PMCID: PMC3958331 DOI: 10.1590/s1415-47572014000100014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 12/02/2013] [Indexed: 11/21/2022] Open
Abstract
Seeds of a tropical tree species from Brazil, Astronium fraxinifolium, or zebrawood, were germinated, for the first time in microgravity, aboard the International Space Station for nine days. Following three days of subsequent growth under normal terrestrial gravitational conditions, greater root length and numbers of secondary roots was observed in the microgravity-treated seedlings compared to terrestrially germinated controls. Suppression subtractive hybridization of cDNA and EST analysis were used to detect differential gene expression in the microgravity-treated seedlings in comparison to those initially grown in normal gravity (forward subtraction). Despite their return to, and growth in normal gravity, the subtracted library derived from microgravity-treated seedlings was enriched in known microgravity stress-related ESTs, corresponding to large and small heat shock proteins, 14-3-3-like protein, polyubiquitin, and proteins involved in glutathione metabolism. In contrast, the reverse-subtracted library contained a comparatively greater variety of general metabolism-related ESTs, but was also enriched for peroxidase, possibly indicating the suppression of this protein in the microgravity-treated seedlings. Following continued growth for 30 days, higher concentrations of total chlorophyll were detected in the microgravity-exposed seedlings.
Collapse
Affiliation(s)
- Peter W Inglis
- Laboratorio de Genética Vegetal, Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Brasília, DF, Brazil
| | - Ana Y Ciampi
- Laboratorio de Genética Vegetal, Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Brasília, DF, Brazil
| | - Antonieta N Salomão
- Laboratorio de Sementes, Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Brasília, DF, Brazil
| | - Tânia da S A Costa
- Laboratório de Química de Produtos Naturais, Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Brasília, DF, Brazil
| | - Vânia C R Azevedo
- Laboratorio de Genética Vegetal, Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Brasília, DF, Brazil
| |
Collapse
|
49
|
Hashiguchi M, Hashiguchi T. Kinase–Kinase Interaction and Modulation of Tau Phosphorylation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 300:121-60. [DOI: 10.1016/b978-0-12-405210-9.00004-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
50
|
Kjellqvist S, Maleki S, Olsson T, Chwastyniak M, Branca RMM, Lehtiö J, Pinet F, Franco-Cereceda A, Eriksson P. A combined proteomic and transcriptomic approach shows diverging molecular mechanisms in thoracic aortic aneurysm development in patients with tricuspid- and bicuspid aortic valve. Mol Cell Proteomics 2012. [PMID: 23184916 DOI: 10.1074/mcp.m112.021873] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Thoracic aortic aneurysm is a pathological local dilatation of the aorta, potentially leading to aortic rupture or dissection. The disease is a common complication of patients with bicuspid aortic valve, a congenital disorder present in 1-2% of the population. Using two dimensional fluorescence difference gel electrophoresis proteomics followed by mRNA expression, and alternative splicing analysis of the identified proteins, differences in dilated and nondilated aorta tissues between 44 patients with bicuspid and tricuspid valves was examined. The pattern of protein expression was successfully validated with LC-MS/MS. A multivariate analysis of protein expression data revealed diverging protein expression fingerprints in patients with tricuspid compared with the patients with bicuspid aortic valves. From 302 protein spots included in the analysis, 69 and 38 spots were differentially expressed between dilated and nondilated aorta specifically in patients with tricuspid and bicuspid aortic valve, respectively. 92 protein spots were differentially expressed between dilated and nondilated aorta in both phenotypes. Similarly, mRNA expression together with alternative splicing analysis of the identified proteins also showed diverging fingerprints in the two patient groups. Differential splicing was abundant but the expression levels of differentially spliced mRNA transcripts were low compared with the wild type transcript and there was no correlation between splicing and the number of spots. Therefore, the different spots are likely to represent post-translational modifications. The identification of differentially expressed proteins suggests that dilatation in patients with a tricuspid aortic valve involves inflammatory processes whereas aortic aneurysm in patients with BAV may be the consequence of impaired repair capacity. The results imply that aortic aneurysm formation in patients with bicuspid and tricuspid aortic valves involve different biological pathways leading to the same phenotype.
Collapse
Affiliation(s)
- Sanela Kjellqvist
- Atherosclerosis Research Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|