1
|
Chen W, Imasaka M, Lee M, Fukui H, Nishiura H, Ohmuraya M. Reg family proteins contribute to inflammation and pancreatic stellate cells activation in chronic pancreatitis. Sci Rep 2023; 13:12201. [PMID: 37500741 PMCID: PMC10374637 DOI: 10.1038/s41598-023-39178-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023] Open
Abstract
Chronic pancreatitis (CP) is a disease characterized by the inflammation and destruction of pancreatic tissue, leading to the replacement of functional tissue with fibrotic tissue. The regenerating gene (Reg) family proteins have recently been implicated in the repair and regeneration of inflamed pancreatic tissue, though the exact mechanisms of their involvement in the pathogenesis of CP are not yet fully understood. To investigate the role of Reg family proteins in CP, we generated global knockout mice (Reg-/-) for Reg1-3 (Reg1,2,3a,3b,3d,3g) genes using the CRISPR/Cas9 system. We then investigated the effect of Reg family protein deficiency in a genetic model of CP (X-SPINK1) mice by knocking out Reg1-3 genes. We examined pancreatic morphology, inflammatory cytokines expression, and activation of pancreatic stellate cells (PSCs) at different ages. Reg-/- mice showed no abnormalities in general growth and pancreas development. Deficiency of Reg1-3 in CP mice led to a reduction in pancreatic parenchymal loss, decreased deposition of collagen, and reduced expression of proinflammatory cytokines. Additionally, Reg proteins were found to stimulate PSCs activation. Overall, our study suggests that Reg1-3 deficiency can lead to the remission of CP and Reg family proteins could be a potential therapeutic target for the treatment of CP.
Collapse
Affiliation(s)
- Wenting Chen
- Department of Genetics, Hyogo Medical University, 1-1, Mukogawa-Cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Mai Imasaka
- Department of Genetics, Hyogo Medical University, 1-1, Mukogawa-Cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Miyu Lee
- Department of Genetics, Hyogo Medical University, 1-1, Mukogawa-Cho, Nishinomiya, Hyogo, 663-8501, Japan
- Clinical Training Center, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, 569-8686, Japan
| | - Hirokazu Fukui
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan
| | - Hiroshi Nishiura
- Division of Functional Pathology, Department of Pathology, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan
| | - Masaki Ohmuraya
- Department of Genetics, Hyogo Medical University, 1-1, Mukogawa-Cho, Nishinomiya, Hyogo, 663-8501, Japan.
| |
Collapse
|
2
|
Yan X, Zhao Z, Weaver J, Sun T, Yun JW, Roneker CA, Hu F, Doliba NM, McCormick CCW, Vatamaniuk MZ, Lei XG. Role and mechanism of REG2 depletion in insulin secretion augmented by glutathione peroxidase-1 overproduction. Redox Biol 2022; 56:102457. [PMID: 36063729 PMCID: PMC9463454 DOI: 10.1016/j.redox.2022.102457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/15/2022] [Accepted: 08/24/2022] [Indexed: 11/23/2022] Open
Abstract
We previously reported a depletion of murine regenerating islet-derived protein 2 (REG2) in pancreatic islets of glutathione peroxidase-1 (Gpx1) overexpressing (OE) mice. The present study was to explore if and how the REG2 depletion contributed to an augmented glucose stimulated insulin secretion (GSIS) in OE islets. After we verified a consistent depletion (90%, p < 0.05) of REG2 mRNA, transcript, and protein in OE islets compared with wild-type (WT) controls, we treated cultured and perifused OE islets (70 islets/sample) with REG2 (1 μg/ml or ml · min) and observed 30-40% (p < 0.05) inhibitions of GSIS by REG2. Subsequently, we obtained evidences of co-immunoprecipitation, cell surface ligand binding, and co-immunofluorescence for a ligand-receptor binding between REG2 and transmembrane, L-type voltage-dependent Ca2+ channel (CaV1.2) in beta TC3 cells. Mutating the C-type lectin binding domain of REG2 or deglycosylating CaV1.2 removed the inhibition of REG2 on GSIS and(or) the putative binding between the two proteins. Treating cultured OE and perifused WT islets with REG2 (1 μg/ml or ml · min) decreased (p < 0.05) Ca2+ influx triggered by glucose or KCl. An intraperitoneal (ip) injection of REG2 (2 μg/g) to OE mice (6-month old, n = 10) decreased their plasma insulin concentration (46%, p < 0.05) and elevated their plasma glucose concentration (25%, p < 0.05) over a 60 min period after glucose challenge (ip, 1 g/kg). In conclusion, our study identifies REG2 as a novel regulator of Ca2+ influx and insulin secretion, and reveals a new cascade of GPX1/REG2/CaV1.2 to explain how REG2 depletion in OE islets could decrease its binding to CaV1.2, resulting in uninhibited Ca2+ influx and augmented GSIS. These findings create new links to bridge redox biology, tissue regeneration, and insulin secretion.
Collapse
Affiliation(s)
- Xi Yan
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| | - Zeping Zhao
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| | - Jeremy Weaver
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| | - Tao Sun
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| | - Jun-Won Yun
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA; Laboratory of Veterinary Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Carol A Roneker
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| | - Fenghua Hu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Nicolai M Doliba
- Institute of Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - Marko Z Vatamaniuk
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA.
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
3
|
Yun JW, Zhao Z, Yan X, Vatamaniuk MZ, Lei XG. Glutathione peroxidase-1 inhibits transcription of regenerating islet-derived protein-2 in pancreatic islets. Free Radic Biol Med 2019; 134:385-393. [PMID: 30703484 PMCID: PMC6588445 DOI: 10.1016/j.freeradbiomed.2019.01.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/06/2019] [Accepted: 01/20/2019] [Indexed: 12/22/2022]
Abstract
Our group previously demonstrated that overexpression of selenium-dependent glutathione peroxidase-1 (GPX1) in mice (OE) led to escalated glucose-stimulated insulin secretion and hyperinsulinemia. Because we found a strong correlation of this phenotype with a diminished expression of regenerating islet-derived protein 2 (REG2) in the OE pancreatic islets, the present study was to reveal underlying mechanisms for that down-regulation of REG2 by GPX1 as a major scavenger of reactive oxygen species. We first treated the OE and wild-type (WT) mice and their islets with ROS-generating diquat, streptozotocin, and H2O2 and ROS-scavenging ebselen and N-acetylcysteine (NAC). Their effects on pancreatic and islet REG2 protein and(or) secretion were opposite (P < 0.05). Thereafter, we identified 13 transcriptional factors with putative binding sites in the Reg2 proximate promoter, and found that only activator protein-1 (AP-1) and albumin D box-binding protein (DBP) mRNA and protein levels were affected (elevated) (P < 0.05) by the GPX1 overproduction in the OE pancreatic islets compared with the WT islets. Contrary to that of Reg2 expression, their mRNA abundances in the cultured islets were elevated (P < 0.05) by ebselen and NAC, but decreased (P < 0.05) by H2O2. Both AP-1 and DBP could bind to the Reg2 promoter at the location of -168 to 0 base pair (bp) in the OE islets. Deleting the AP-1 (-143/-137 and -60/-57 bp) and(or) DBP (-35/-29 bp) binding domains in the Reg2 promoter attenuated and(or) abolished the inhibition of Reg2 promoter activation by ebselen as the GPX1 mimic in βTC-3 cells. In conclusion, the down-regulation of Reg2 expression in the GPX1-overproducing pancreatic islets was mediated by a transcriptional inhibition of the gene through two ROS responsive transcription factors AP-1 and DBP. Our findings reveal GPX1 as a novel regulator of Reg2 expression, and linking these two previously-unrelated proteins will have broad biomedical implications.
Collapse
Affiliation(s)
- Jun-Won Yun
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA; Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Zeping Zhao
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
| | - Xi Yan
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
| | | | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
4
|
The role of keratins in the digestive system: lessons from transgenic mouse models. Histochem Cell Biol 2018; 150:351-359. [PMID: 30039330 DOI: 10.1007/s00418-018-1695-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2018] [Indexed: 01/17/2023]
Abstract
Keratins are the largest subfamily of intermediate filament proteins. They are either type I acidic or type II basic keratins. Keratins form obligate heteropolymer in epithelial cells and their expression patterns are tissue-specific. Studies have shown that keratin mutations are the cause of many diseases in humans or predispose humans to acquiring them. Using mouse models to study keratin-associated human diseases is critical, because they allow researchers to get a better understanding of these diseases and their progressions, and so many such studies have been conducted. Acknowledging the importance, researches with genetically modified mice expressing human disease-associated keratin mutants have been widely done. Numerous studies using keratin knockout mice, keratin-overexpressed mice, or transgenic mice expressing keratin mutants have been conducted. This review summarizes the mouse models that have been used to study type I and type II keratin expression in the digestive organs, namely, the liver, pancreas, and colon.
Collapse
|
5
|
Aragão WAB, da Costa NMM, Fagundes NCF, Silva MCF, Alves-Junior SM, Pinheiro JJV, Amado LL, Crespo-López ME, Maia CSF, Lima RR. Chronic exposure to inorganic mercury induces biochemical and morphological changes in the salivary glands of rats. Metallomics 2018; 9:1271-1278. [PMID: 28795724 DOI: 10.1039/c7mt00123a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mercury exposure is considered to be a public health problem due to the generation of toxic effects on human health as a result of environmental and occupational conditions. The inorganic form of mercury (HgCl2) can cause several biological changes in cells and tissues through its cumulative toxic potential, but little has been experimentally proven about the effects of inorganic mercury on salivary glands, an important modulator organ of oral health. This study analyzes the effects of prolonged low dose exposure to HgCl2 on the salivary glands of rats. Adult animals received a dose of 0.375 mg kg-1 day-1 over a period of 45 days. The parotid and submandibular glands were collected for analysis of the mercury levels and evaluation of oxidative stress, histological parameters and immunomodulation for metallothionein I and II (MT-I/II). In this investigation, biochemical and tissue changes in the salivary glands were verified due to the mercury levels, causing reduction in antioxidant capacity against peroxyl radicals, with consequent cellular lipid peroxidation and an increase in nitrite levels, volumetric changes and cytoskeletal damage in the submandibular glands, with less severe damage to the parotid glands. The results also have shown the occurrence of a cytoprotection mechanism due to increased MT-I/II expression, but not enough to avoid the morphology and oxidative damage. This evidence highlights, for the first time, that inorganic mercury is able to alter the morphology and oxidative biochemistry in salivary glands when exposed for a long time in low doses.
Collapse
Affiliation(s)
- W A B Aragão
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Street Augusto Corrêa 1, Guamá, 66075-900, Belém, Pará, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Omary MB. Intermediate filament proteins of digestive organs: physiology and pathophysiology. Am J Physiol Gastrointest Liver Physiol 2017; 312:G628-G634. [PMID: 28360031 PMCID: PMC5495917 DOI: 10.1152/ajpgi.00455.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 01/31/2023]
Abstract
Intermediate filament proteins (IFs), such as cytoplasmic keratins in epithelial cells and vimentin in mesenchymal cells and the nuclear lamins, make up one of the three major cytoskeletal protein families. Whether in digestive organs or other tissues, IFs share several unique features including stress-inducible overexpression, abundance, cell-selective and differentiation state expression, and association with >80 human diseases when mutated. Whereas most IF mutations cause disease, mutations in simple epithelial keratins 8, 18, or 19 or in lamin A/C predispose to liver disease with or without other tissue manifestations. Keratins serve major functions including protection from apoptosis, providing cellular and subcellular mechanical integrity, protein targeting to subcellular compartments, and scaffolding and regulation of cell-signaling processes. Keratins are essential for Mallory-Denk body aggregate formation that occurs in association with several liver diseases, whereas an alternate type of keratin and lamin aggregation occurs upon liver involvement in porphyria. IF-associated diseases have no known directed therapy, but high-throughput drug screening to identify potential therapies is an appealing ongoing approach. Despite the extensive current knowledge base, much remains to be discovered regarding IF physiology and pathophysiology in digestive and nondigestive organs.
Collapse
Affiliation(s)
- M. Bishr Omary
- Department of Molecular and Integrative Physiology and Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
7
|
Li Q, Li B, Miao X, Ramgattie C, Gao ZH, Liu JL. Reg2 Expression Is Required for Pancreatic Islet Compensation in Response to Aging and High-Fat Diet-Induced Obesity. Endocrinology 2017; 158:1634-1644. [PMID: 28009527 DOI: 10.1210/en.2016-1551] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/22/2016] [Indexed: 12/11/2022]
Abstract
Maintaining pancreatic β-cell mass and function is essential for normal insulin production and glucose homeostasis. Regenerating islet-derived 2 (Reg2, Reg II, human ortholog Reg1B) gene is normally expressed in pancreatic acinar cells and is significantly induced in response to diabetes, pancreatitis, and high-fat diet (HFD) and during pancreatic regeneration. To evaluate the role of endogenous Reg2 production in normal β-cell function, we characterized Reg2 gene-deficient (Reg2-/-) mice under normal conditions and when subjected to several pathological challenges. At a young age, Reg2 gene deficiency caused no obvious change in normal islet morphology or glucose tolerance. There was no change in the severity of streptozotocin-induced diabetes or caerulein-induced acute pancreatitis in the Reg2-/- mice, indicating that the increased Reg2 expression under those conditions was not essential to protect the islet or acinar cells. However, 13- to 14-month-old Reg2-/- mice developed glucose intolerance associated with significantly decreased islet β-cell ratio and serum insulin level. Similarly, after young mice were fed an HFD for 19 weeks, diminished islet mass expansion and serum insulin level were observed in Reg2-/- vs wild-type mice. This was associated with a decline in the rate of individual β-cell proliferation measured by Ki67 labeling. In both conditions, the β-cells were smaller in gene-deficient vs wild-type mice. Our results indicate that normal expression of Reg2 gene is required for appropriate compensations in pancreatic islet proliferation and expansion in response to obesity and aging.
Collapse
Affiliation(s)
- Qing Li
- Fraser Laboratories for Diabetes Research, Department of Medicine, McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Bing Li
- Fraser Laboratories for Diabetes Research, Department of Medicine, McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Xiaoliang Miao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 21009, China
| | - Christopher Ramgattie
- Fraser Laboratories for Diabetes Research, Department of Medicine, McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Zu-Hua Gao
- Department of Pathology, McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Jun-Li Liu
- Fraser Laboratories for Diabetes Research, Department of Medicine, McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
- Montreal Diabetes Research Centre, Montreal, Quebec H2X 0A9, Canada
| |
Collapse
|
8
|
Keratins regulate colonic epithelial cell differentiation through the Notch1 signalling pathway. Cell Death Differ 2017; 24:984-996. [PMID: 28475172 PMCID: PMC5442467 DOI: 10.1038/cdd.2017.28] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 12/30/2016] [Accepted: 02/14/2017] [Indexed: 12/22/2022] Open
Abstract
Keratins (K) are intermediate filament proteins important in stress protection and mechanical support of epithelial tissues. K8, K18 and K19 are the main colonic keratins, and K8-knockout (K8−/−) mice display a keratin dose-dependent hyperproliferation of colonic crypts and a colitis-phenotype. However, the impact of the loss of K8 on intestinal cell differentiation has so far been unknown. Here we show that K8 regulates Notch1 signalling activity and differentiation in the epithelium of the large intestine. Proximity ligation and immunoprecipitation assays demonstrate that K8 and Notch1 co-localize and interact in cell cultures, and in vivo in the colonic epithelial cells. K8 with its heteropolymeric partner K18 enhance Notch1 protein levels and activity in a dose dependent manner. The levels of the full-length Notch1 receptor (FLN), the Notch1 intracellular domain (NICD) and expression of Notch1 downstream target genes are reduced in the absence of K8, and the K8-dependent loss of Notch1 activity can be rescued with re-expression of K8/K18 in K8-knockout CRISPR/Cas9 Caco-2 cells protein levels. In vivo, K8 deletion with subsequent Notch1 downregulation leads to a shift in differentiation towards a goblet cell and enteroendocrine phenotype from an enterocyte cell fate. Furthermore, the K8−/− colonic hyperproliferation results from an increased number of transit amplifying progenitor cells in these mice. K8/K18 thus interact with Notch1 and regulate Notch1 signalling activity during differentiation of the colonic epithelium.
Collapse
|
9
|
Xiong X, Li Q, Cui W, Gao ZH, Liu JL. Deteriorated high-fat diet-induced diabetes caused by pancreatic β-cell-specific overexpression of Reg3β gene in mice. Endocrine 2016; 54:360-370. [PMID: 27259509 DOI: 10.1007/s12020-016-0998-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 05/23/2016] [Indexed: 12/18/2022]
Abstract
Reg family proteins have long been implicated in islet β-cell proliferation, survival, and regeneration. In our previous study, we reported that Reg3β overexpression did not increase islet growth but prevented streptozotocin-induced islet damage by inducing specific genes. In order to explore its role in type 2 diabetes (T2D), we established high-fat diet (HFD)-induced obesity and diabetes in RIP-I/Reg3β mice. Glucose and insulin tolerance tests, immunofluorescence for insulin, eIF2α, and GLUT2 in islets, Western blots on phosphorylated AMPKα and hepatic histology were performed. Both RIP-I/Reg3β and wild-type mice gained weight rapidly and became hyperglycemic after 10 weeks on the HFD. However, the transgenic mice exhibited more significant acceleration in blood glucose levels, further deterioration of glucose intolerance and insulin resistance, and a lower intensity of insulin staining. Immunofluorescence revealed similar magnitude of islet compensation to a wild-type HFD. The normal GLUT2 distribution in the transgenic β-cells was disrupted and the staining was obviously diminished on the cell membrane. HFD feeding also caused a further decrease in the level of AMPKα phosphorylation in the transgenic islets. Our results suggest that unlike its protective effect against T1D, overexpressed Reg3β was unable to protect the β-cells against HFD-induced damage.
Collapse
Affiliation(s)
- Xiaoquan Xiong
- Fraser Laboratories for Diabetes Research, Department of Medicine, RI-McGill University Health Centre, Room E02.7220, 1001 Décarie Blvd, Montreal, QC, H4A 3J1, Canada
| | - Qing Li
- Fraser Laboratories for Diabetes Research, Department of Medicine, RI-McGill University Health Centre, Room E02.7220, 1001 Décarie Blvd, Montreal, QC, H4A 3J1, Canada
| | - Wei Cui
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zu-Hua Gao
- Department of Pathology, RI-McGill University Health Centre, Room E04.1820, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada.
| | - Jun-Li Liu
- Fraser Laboratories for Diabetes Research, Department of Medicine, RI-McGill University Health Centre, Room E02.7220, 1001 Décarie Blvd, Montreal, QC, H4A 3J1, Canada.
- Montreal Diabetes Research Centre, Montreal, Canada.
| |
Collapse
|
10
|
Alam CM, Silvander JSG, Daniel EN, Tao GZ, Kvarnström SM, Alam P, Omary MB, Hänninen A, Toivola DM. Keratin 8 modulates β-cell stress responses and normoglycaemia. J Cell Sci 2013; 126:5635-44. [PMID: 24144696 DOI: 10.1242/jcs.132795] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Keratin intermediate filament (IF) proteins are epithelial cell cytoskeletal components that provide structural stability and protection from cell stress, among other cellular and tissue-specific functions. Numerous human diseases are associated with IF gene mutations, but the function of keratins in the endocrine pancreas and their potential significance for glycaemic control are unknown. The impact of keratins on β-cell organisation and systemic glucose control was assessed using keratin 8 (K8) wild-type (K8(+/+)) and K8 knockout (K8(-/-)) mice. Islet β-cell keratins were characterised under basal conditions, in streptozotocin (STZ)-induced diabetes and in non-obese diabetic (NOD) mice. STZ-induced diabetes incidence and islet damage was assessed in K8(+/+) and K8(-/-) mice. K8 and K18 were the predominant keratins in islet β-cells and K8(-/-) mice expressed only remnant K18 and K7. K8 deletion resulted in lower fasting glucose levels, increased glucose tolerance and insulin sensitivity, reduced glucose-stimulated insulin secretion and decreased pancreatic insulin content. GLUT2 localisation and insulin vesicle morphology were disrupted in K8(-/-) β-cells. The increased levels of cytoplasmic GLUT2 correlated with resistance to high-dose STZ-induced injury in K8(-/-) mice. However, K8 deletion conferred no long-term protection from STZ-induced diabetes and prolonged STZ-induced stress caused increased exocrine damage in K8(-/-) mice. β-cell keratin upregulation occurred 2 weeks after treatments with low-dose STZ in K8(+/+) mice and in diabetic NOD mice, suggesting a role for keratins, particularly in non-acute islet stress responses. These results demonstrate previously unrecognised functions for keratins in β-cell intracellular organisation, as well as for systemic blood glucose control under basal conditions and in diabetes-induced stress.
Collapse
Affiliation(s)
- Catharina M Alam
- Department of Biosciences, Cell Biology, Åbo Akademi University, Tykistökatu 6A, FIN-20520 Turku, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Gong L, Liu FQ, Wang Y, Hou XG, Zhang W, Qin WD, Zhang Y, Chen L, Zhang MX. Poly (ADP-ribose) transferase/polymerase-1-deficient mice resistant to age-dependent decrease in β-cell proliferation. Mol Med 2012; 18:816-24. [PMID: 22481269 DOI: 10.2119/molmed.2011.00458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Accepted: 03/29/2012] [Indexed: 01/09/2023] Open
Abstract
Basal and adaptive β-cell regeneration capacity declines with old age, but the underlying molecular mechanisms remain incompletely understood. Poly (adenosine diphosphate [ADP]-ribose) polymerase 1 (PARP-1) is considered a multifunctional enzyme and transcription factor that regulates pancreatic β-cell death, regeneration and insulin secretion. We analyzed the capacity of β-cell regeneration in 2-month-old (young) and 12-month-old (old) wild-type (WT) and PARP-1⁻/⁻ mice before and after low-dose streptozotocin (STZ), a stimulus of β-cell regeneration and the underlying mechanism. Before STZ administration, young WT and PARP-1⁻/⁻ mice showed similar β-cell proliferation. By contrast, old WT but not old PARP-1⁻/⁻ mice showed severely restricted β-cell proliferation. In further assessment of the adaptive β-cell regeneration capacity with age, we observed that with a single low dose of STZ, young WT and PARP-1⁻/⁻ mice showed a similar increase in β-cell proliferation, with few changes in old WT mice. Surprisingly, adaptive β-cell proliferation capacity was significantly higher in old PARP-1⁻/⁻ mice than old WT mice after STZ administration. The ability of β-cell mass to expand was associated with increased levels of the regenerating (Reg) genes RegI and RegII but not RegIV. Therefore, PARP-1 is a key regulator in β-cell regeneration with advancing age in mice.
Collapse
Affiliation(s)
- Lei Gong
- Department of Endocrinology, Shandong University, Qilu Hospital, Jinan, Shandong, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Lunova M, Zizer E, Kucukoglu O, Schwarz C, Dillmann WH, Wagner M, Strnad P. Hsp72 overexpression accelerates the recovery from caerulein-induced pancreatitis. PLoS One 2012; 7:e39972. [PMID: 22792201 PMCID: PMC3390337 DOI: 10.1371/journal.pone.0039972] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 06/05/2012] [Indexed: 12/22/2022] Open
Abstract
Background and Aims Heat shock protein (Hsp) 72 is a molecular chaperone which is upregulated in response to a variety of stress situations and has a general cytoprotective function. Increased Hsp72 levels were implicated in protection from acute pancreatitis; a hypothesis which was not tested in a transgenic mouse model yet. Methods To analyze the role of Hsp72 during acute pancreatitis, well-characterized transgenic animals overexpressing rat Hsp72 (Hsp72 mice) under the control of the ß-actin promoter were subjected to caerulein- and L-arginine-induced acute pancreatitis. The severity of experimental pancreatitis was determined via serum lipase levels, morphometric evaluation and quantification of pancreatic edema/inflammation. Results Hsp72 mice displayed ∼100-times Hsp72 overexpression, but no changes in the remaining chaperones. Robust Hsp72 signal was observed in pancreatic acini, but not in islets or ductal cells. In both models, elevated Hsp72 did not protect from development of acute pancreatitis and the pancreatitis-associated lung injury, but accelerated recovery from caerulein-induced tissue injury (lower lipase levels, edema, inflammation and necrosis 36 h after caerulein administration). The observed protective function of Hsp72 in caerulein-induced pancreatitis is likely due to an attenuated NF-κB signalling. Conclusions Hsp72 overexpression accelerates the recovery from acute pancreatitis and may represent a potential treatment strategy.
Collapse
Affiliation(s)
- Mariia Lunova
- Department of Internal Medicine I, University Medical Center Ulm, Ulm, Germany
- * E-mail: (ML); (PS)
| | - Eugen Zizer
- Department of Internal Medicine I, University Medical Center Ulm, Ulm, Germany
| | - Ozlem Kucukoglu
- Department of Internal Medicine I, University Medical Center Ulm, Ulm, Germany
| | - Carolin Schwarz
- Department of Internal Medicine I, University Medical Center Ulm, Ulm, Germany
| | - Wolfgang H. Dillmann
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, San Diego, California, United States of America
| | - Martin Wagner
- Department of Internal Medicine I, University Medical Center Ulm, Ulm, Germany
| | - Pavel Strnad
- Department of Internal Medicine I, University Medical Center Ulm, Ulm, Germany
- * E-mail: (ML); (PS)
| |
Collapse
|
13
|
Weiss L, Bernstein S, Jones R, Amunugama R, Krizman D, Jebailey L, Almogi-Hazan O, Yekhtin Z, Shiner R, Reibstein I, Triche E, Slavin S, Or R, Barnea ER. Preimplantation factor (PIF) analog prevents type I diabetes mellitus (TIDM) development by preserving pancreatic function in NOD mice. Endocrine 2011; 40:41-54. [PMID: 21424847 DOI: 10.1007/s12020-011-9438-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 01/31/2011] [Indexed: 01/07/2023]
Abstract
Preimplantation factor (PIF) is a novel embryo-secreted immunomodulatory peptide. Its synthetic analog (sPIF) modulates maternal immunity without suppression. There is an urgent need to develop agents that could prevent the development of type 1 diabetes mellitus (TIDM). Herein, we examine sPIF's preventive effect on TIDM development by using acute adoptive-transfer (ATDM) and spontaneously developing (SDM) in non-obese diabetic (NOD) murine models. Diabetes was evaluated by urinary and plasma glucose, intraperitoneal glucose tolerance test (IPGTT), pancreatic islets insulin staining by immunohistochemistry and by pancreatic proteome evaluation using mass spectrometry, followed by signal pathway analysis. Continuous administration of sPIF for 4-weeks prevents diabetes development in ATDM model in >90% of recipients demonstrated by normal IPGTT, preserved islets architecture, number, and insulin staining. (P < 0.01). sPIF effect was specific; its protective effects are not replicated by scrambled PIF (χ(2) = 0.009) control. sPIF led also to increased circulating Th2 and Th1 cytokines. In SDM model, 4-week continuous sPIF administration prevented onset of diabetes for 21 weeks post-therapy (P < 0.01). Low-dose sPIF administration for 16 weeks prevented diabetes development up to 14 weeks post-therapy, evidenced by preserved islets architecture and insulin staining. In SDM model, pancreatic proteome pathway analysis demonstrated that sPIF regulates protein traffic, prevents protein misfolding and aggregation, and reduces oxidative stress and islets apoptosis, leading to preserved insulin staining. sPIF further increased insulin receptor expression and reduced actin and tubulin proteins, thereby blocking neutrophil invasion and inflammation. Exocrine pancreatic function was also preserved. sPIF administration results in marked prevention of spontaneous and induced adoptive-transfer diabetes suggesting its potential effectiveness in treating early-stage TIDM.
Collapse
Affiliation(s)
- Lola Weiss
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah University Hospital Ein Kerem, Hebrew University, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Strnad P, Schwarz P, Rasenack MCD, Kucukoglu O, Habib RI, Heuberger D, Ehehalt R, Müller MW, Stiehl A, Adler G, Kulaksiz H. Hepcidin is an antibacterial, stress-inducible peptide of the biliary system. PLoS One 2011; 6:e16454. [PMID: 21283681 PMCID: PMC3025980 DOI: 10.1371/journal.pone.0016454] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 12/20/2010] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND/AIMS Hepcidin (gene name HAMP), an IL-6-inducible acute phase peptide with antimicrobial properties, is the key negative regulator of iron metabolism. Liver is the primary source of HAMP synthesis, but it is also produced by other tissues such as kidney or heart and is found in body fluids such as urine or cerebrospinal fluid. While the role of hepcidin in biliary system is unknown, a recent study demonstrated that conditional gp130-knockout mice display diminished hepcidin levels and increased rate of biliary infections. METHODS Expression and localization of HAMP in biliary system was analyzed by real time RT-PCR, in-situ hybridization, immunostaining and -blotting, while prohepcidin levels in human bile were determined by ELISA. RESULTS Hepcidin was detected in mouse/human gallbladder and bile duct epithelia. Biliary HAMP is stress-inducible, in that it is increased in biliary cell lines upon IL-6 stimulation and in gallbladder mucosa of patients with acute cholecystitis. Hepcidin is also present in the bile and elevated prohepcidin levels were observed in bile of primary sclerosing cholangitis (PSC) patients with concurrent bacterial cholangitis compared to PSC subjects without bacterial infection (median values 22.3 vs. 8.9; p = 0.03). In PSC-cholangitis subjects, bile prohepcidin levels positively correlated with C-reactive protein and bilirubin levels (r = 0.48 and r = 0.71, respectively). In vitro, hepcidin enhanced the antimicrobial capacity of human bile (p<0.05). CONCLUSION Hepcidin is a stress-inducible peptide of the biliary epithelia and a potential marker of biliary stress. In the bile, hepcidin may serve local functions such as protection from bacterial infections.
Collapse
Affiliation(s)
- Pavel Strnad
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Peggy Schwarz
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | | | - Ozlem Kucukoglu
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Rayan I. Habib
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Dominik Heuberger
- Department of Internal Medicine, Division of Gastroenterology, University Hospital Heidelberg, Heidelberg, Germany
| | - Robert Ehehalt
- Department of Internal Medicine, Division of Gastroenterology, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael W. Müller
- Department of General and Visceral Surgery, Medical Center Stuttgart, Stuttgart, Germany
| | - Adolf Stiehl
- Department of Internal Medicine, Division of Gastroenterology, University Hospital Heidelberg, Heidelberg, Germany
| | - Guido Adler
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Hasan Kulaksiz
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
- Department of Internal Medicine, Division of Gastroenterology, University Hospital Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
15
|
Li B, Wang X, Liu JL. Pancreatic acinar-specific overexpression of Reg2 gene offered no protection against either experimental diabetes or pancreatitis in mice. Am J Physiol Gastrointest Liver Physiol 2010; 299:G413-21. [PMID: 20489047 DOI: 10.1152/ajpgi.00500.2009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Reg proteins are normally expressed in pancreatic acinar cells, and the level of several of these proteins was significantly induced upon damage to the endocrine or exocrine pancreas. It has been established that Reg1 and pancreatic islet neogenesis-associated protein [INGAP, Reg3delta] promote the growth or regeneration of the endocrine islet cells. Recent reports suggest that Reg2 is an autoantigen normally expressed in islet beta-cells. Reg2 overexpression in vitro offered protection to insulinoma cells. Overexpressed Reg3alpha increased cyclin D1 and CDK4 levels and the rate of proliferation in insulinoma cells. Acinar-specific overexpression of INGAP increased beta-cell mass and protected the animals from streptozotocin-induced diabetes. Moreover, Reg2 gene expression was induced during pancreatitis. We hypothesized that Reg2 is a secreted protein that promotes the growth, survival, and/or regeneration of pancreatic endocrine and exocrine cells. To test its effectiveness, we used elastase-1 promoter (Ela-Reg2) to develop an acinar cell-specific overexpression of the Reg2 gene. Western blot analysis, real-time PCR, and immunohistochemistry revealed barely detectable levels of endogenous Reg2 in the pancreas of normal wild-type mice and increased Reg2 levels in the pancreas of Ela-Reg2 mice that were similar to or higher than Reg2 levels induced in experimental diabetes or pancreatitis. Compared with wild-type littermates, growth, blood glucose and insulin levels, and glucose tolerance were normal in Ela-Reg2 mice; pancreatic histology revealed no change in endocrine or exocrine tissues. Acinar-specific overexpression of the Reg2 gene offered no protection against streptozotocin-induced beta-cell damage and diabetes, in hyperglycemia and weight loss, and no advantage in restoring glucose homeostasis and islet function within 3 mo. Furthermore, serum amylase level and pancreatic histochemistry showed that Reg2 overexpression did not protect acinar cells against caerulein-induced acute pancreatitis. In contrast to INGAP or Reg3beta, exocrine overexpression of Reg2 offered no protection to the endocrine or exocrine pancreas, indicating clear subtype specificities of the Reg family of proteins.
Collapse
Affiliation(s)
- Bing Li
- Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | | | | |
Collapse
|
16
|
Omary MB, Ku NO, Strnad P, Hanada S. Toward unraveling the complexity of simple epithelial keratins in human disease. J Clin Invest 2009; 119:1794-805. [PMID: 19587454 DOI: 10.1172/jci37762] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Simple epithelial keratins (SEKs) are found primarily in single-layered simple epithelia and include keratin 7 (K7), K8, K18-K20, and K23. Genetically engineered mice that lack SEKs or overexpress mutant SEKs have helped illuminate several keratin functions and served as important disease models. Insight into the contribution of SEKs to human disease has indicated that K8 and K18 are the major constituents of Mallory-Denk bodies, hepatic inclusions associated with several liver diseases, and are essential for inclusion formation. Furthermore, mutations in the genes encoding K8, K18, and K19 predispose individuals to a variety of liver diseases. Hence, as we discuss here, the SEK cytoskeleton is involved in the orchestration of several important cellular functions and contributes to the pathogenesis of human liver disease.
Collapse
Affiliation(s)
- M Bishr Omary
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
17
|
Zheng SQ, He J. Advances in regenerating gene family and digestive system neoplasms. Shijie Huaren Xiaohua Zazhi 2008; 16:2644-2648. [DOI: 10.11569/wcjd.v16.i23.2644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Since the first member of regenerating gene (Reg) family was discovered in 1988, it has been verified that regenerating genes play important roles in diabetes, inflammation and injury, and digestive system tumors. Now, more members of Reg family have been cloned. With further investigations, the great role of Reg family, especially Reg IV, in digestive system neoplasms has attracted more and more attention.
Collapse
|
18
|
Toivola DM, Nakamichi I, Strnad P, Michie SA, Ghori N, Harada M, Zeh K, Oshima RG, Baribault H, Omary MB. Keratin overexpression levels correlate with the extent of spontaneous pancreatic injury. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:882-92. [PMID: 18349119 DOI: 10.2353/ajpath.2008.070830] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mutation of the adult hepatocyte keratins K8 and K18 predisposes to liver disease. In contrast, exocrine pancreas K8 and K18 are dispensable and are co-expressed with limited levels of membrane-proximal K19 and K20. Overexpression of mutant K18 or genetic ablation of K8 in mouse pancreas is well tolerated whereas overexpression of K8 causes spontaneous chronic pancreatitis. To better understand the effect of exocrine pancreatic keratin overexpression, we compared transgenic mice that overexpress K18, K8, or K8/K18, associated with minimal, modest, or large increases in keratin expression, respectively, with nontransgenic wild-type (WT) mice. Overexpression of the type-II keratin K8 up-regulated type-I keratins K18, K19, and K20 and generated K19/K20-containing neocytoplasmic typical or short filaments; however, overexpression of K18 had no effect on K8 levels. K8- and K18-overexpressing pancreata were histologically similar to WT, whereas K8/K18 pancreata displayed age-enhanced vacuolization and atrophy of the exocrine pancreas and exhibited keratin hyperphosphorylation. Zymogen granules in K8/K18 pancreata were 50% smaller and more dispersed than their normal apical concentration but were twice as numerous as in WT controls. Therefore, modest keratin overexpression has minor effects on the exocrine pancreas whereas significant keratin overexpression alters zymogen granule organization and causes aging-associated exocrine atrophy. Keratin absence or mutation is well tolerated after pancreatic but not liver injury, whereas excessive overexpression is toxic to the pancreas but not the liver when induced under basal conditions.
Collapse
Affiliation(s)
- Diana M Toivola
- Department of Medicine, Veterans Administration Palo Alto Health Care System, Palo Alto, CA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|