1
|
Wu Y, Yan Y, Qi J, Liu Y, Wang T, Chen H, Guan X, Zheng C, Zeng P. Mendelian randomization and genetic pleiotropy analysis for the connection between inflammatory bowel disease and Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111203. [PMID: 39579960 DOI: 10.1016/j.pnpbp.2024.111203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND The gut-microbiome-brain axis (GMBA) implies the connection between inflammatory bowel disease (IBD) and Alzheimer's disease (AD). We aimed to comprehensively explore the relation between IBD (and its subtypes) and AD, early-onset AD (EOAD) and late-onset AD (LOAD) from a genetic pleiotropy perspective. METHODS Relying on summary statistics (N = 472,868 for AD, 185,204 for EOAD, 191,061 for LOAD, 59,957 for IBD, 45,975 for CD, and 40,266 for UC), we first performed Mendelian Randomization to examine the causal association between IBD and AD by leveraging vertical pleiotropy. Then, we estimated global and local genetic correlations, followed by cross-trait association analysis to identify SNPs and genes with horizontal pleiotropy. Particularly, we utilized multi-trait colocalization analysis to assess the role of microbes in the common genetic etiology underlying the two types of diseases. Finally, we conducted functional enrichment analysis for pleiotropic genes. RESULTS We discovered suggestively causal relations between IBD (and its subtypes) and EOAD (ORIBD = 1.06 [1.01-1.11], ORCD = 1.05 [1.01-1.10], ORUC = 1.08 [1.01-1.15]) as well as between UC and LOAD (OR = 1.04 [1.01-1.08]), and discovered 44 local regions showing suggestively significant genetic correlations between IBD (and its subtypes) and AD (and EODA and LOAD). We further detected substantial genetic overlap, as characterized by 182 AD-associated, 3 EOAD-associated and 51 LOAD-associated pleiotropic SNPs as well as 291 pleiotropic genes. Pleiotropic genes more likely enriched in the GMBA-relevant tissues such as brain, intestine and esophagus. Moreover, we identified three microorganisms related to these disease pairs, including the Catenibacterium, Clostridia, and Prevotella species. CONCLUSION The suggestively causal associations and shared genetic basis between IBD and its subtypes with AD, EOAD and LOAD may commonly drive their co-occurrence, and gut microbes might partly explain the shared genetic etiology. Further studies are warranted to elaborate the possibly biological mechanisms underlying the two types of diseases.
Collapse
Affiliation(s)
- Yuxuan Wu
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yu Yan
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jike Qi
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yuxin Liu
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Ting Wang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Hao Chen
- Department of Neurology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China
| | - Xinying Guan
- Department of Neurology, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu 222002, China
| | - Chu Zheng
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Ping Zeng
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
2
|
Nazari E, Khalili-Tanha G, Pourali G, Khojasteh-Leylakoohi F, Azari H, Dashtiahangar M, Fiuji H, Yousefli Z, Asadnia A, Maftooh M, Akbarzade H, Nassiri M, Hassanian SM, Ferns GA, Peters GJ, Giovannetti E, Batra J, Khazaei M, Avan A. The diagnostic and prognostic value of C1orf174 in colorectal cancer. BIOIMPACTS : BI 2024; 15:30566. [PMID: 40256241 PMCID: PMC12008501 DOI: 10.34172/bi.30566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 04/22/2025]
Abstract
Introduction Colorectal cancer (CRC) is among the lethal cancers, indicating the need for the identification of novel biomarkers for the detection of patients in earlier stages. RNA and microRNA sequencing were analyzed using bioinformatics and machine learning algorithms to identify differentially expressed genes (DEGs), followed by validation in CRC patients. Methods The genome-wide RNA sequencing of 631 samples, comprising 398 patients and 233 normal cases was extracted from the Cancer Genome Atlas (TCGA). The DEGs were identified using DESeq package in R. Survival analysis was evaluated using Kaplan-Meier analysis to identify prognostic biomarkers. Predictive biomarkers were determined by machine learning algorithms such as Deep learning, Decision Tree, and Support Vector Machine. The biological pathways, protein-protein interaction (PPI), the co-expression of DEGs, and the correlation between DEGs and clinical data were evaluated. Additionally, the diagnostic markers were assessed with a combioROC package. Finally, the candidate tope score gene was validated by Real-time PCR in CRC patients. Results The survival analysis revealed five novel prognostic genes, including KCNK13, C1orf174, CLEC18A, SRRM5, and GPR89A. Thirty-nine upregulated, 40 downregulated genes, and 20 miRNAs were detected by SVM with high accuracy and AUC. The upregulation of KRT20 and FAM118A genes and the downregulation of LRAT and PROZ genes had the highest coefficient in the advanced stage. Furthermore, our findings showed that three miRNAs (mir-19b-1, mir-326, and mir-330) upregulated in the advanced stage. C1orf174, as a novel gene, was validated using RT-PCR in CRC patients. The combineROC curve analysis indicated that the combination of C1orf174-AKAP4-DIRC1-SKIL-Scan29A4 can be considered as diagnostic markers with sensitivity, specificity, and AUC values of 0.90, 0.94, and 0.92, respectively. Conclusion Machine learning algorithms can be used to Identify key dysregulated genes/miRNAs involved in the pathogenesis of diseases, leading to the detection of patients in earlier stages. Our data also demonstrated the prognostic value of C1orf174 in colorectal cancer.
Collapse
Affiliation(s)
- Elham Nazari
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazaleh Khalili-Tanha
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hanieh Azari
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hamid Fiuji
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam U.M.C., VU. University Medical Center (VUMC), Amsterdam, The Netherlands
| | - Zahra Yousefli
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Asadnia
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mina Maftooh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Hamed Akbarzade
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadreza Nassiri
- Recombinant Proteins Research Group, The Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Godefridus J Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam U.M.C., VU. University Medical Center (VUMC), Amsterdam, The Netherlands
- Professor In Biochemistry, Medical University of Gdansk,Gdansk, Poland
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam U.M.C., VU. University Medical Center (VUMC), Amsterdam, The Netherlands
- Cancer Pharmacology Lab, AIRC Start up Unit, Fondazione Pisana per La Scienza, Pisa, Italy
| | - Jyotsna Batra
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane 4059, Australia
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane 4059, Australia
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane 4059, Australia
| |
Collapse
|
3
|
Liu W, Luo G. NEDD9 is transcriptionally regulated by HDAC4 and promotes breast cancer metastasis and macrophage M2 polarization via the FAK/NF-κB signaling pathway. Neoplasia 2024; 57:101059. [PMID: 39326322 PMCID: PMC11470473 DOI: 10.1016/j.neo.2024.101059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Breast cancer is a malignancy with a generally poor prognosis. With the advancement of molecular research, we have gained deeper insights into the cellular processes that drive breast cancer development. However, the precise mechanisms remain elusive. RESULTS Based on the CPTAC database, we found that NEDD9 expression is up-regulated in breast cancer tissues and is associated with poor prognosis in breast cancer patients. Functional experiments showed that NEDD9 promotes tumor growth and metastasis both in vitro and in vivo. Overexpression of NEDD9 disrupts mammary epithelial acinus formation and triggers epithelial-mesenchymal transition in breast cancer cells, effects that are reversed upon NEDD9 gene silencing. Mechanistically, NEDD9 upregulates its expression by inhibiting HDAC4 activity, leading to enhanced H3K9 acetylation of the NEDD9 gene promoter and activation of the FAK/NF-κB signaling pathway. Furthermore, NEDD9 overexpression promotes IL-6 secretion, which further drives breast cancer progression. Notably, NEDD9 activation fosters the pro-tumoral M2 macrophage polarization in the tumor microenvironment. NEDD9 stimulates IL-6 secretion, polarizes monocytes towards an M2-like phenotype, and enhances BC cell invasiveness. CONCLUSIONS These findings suggest that NEDD9 upregulation plays a pivotal role in breast cancer metastasis and macrophage M2 polarization via the FAK/NF-κB signaling axis. Targeting NEDD9 may offer a promising therapeutic approach for breast cancer treatment.
Collapse
Affiliation(s)
- Wenhong Liu
- Department of Radiology, The First Affiliated Hospital of University of South China, Hengyang City, 421001, Hunan Province, China
| | - Guanghua Luo
- Department of Radiology, The First Affiliated Hospital of University of South China, Hengyang City, 421001, Hunan Province, China.
| |
Collapse
|
4
|
Lyu J, Okada H, Sunagozaka H, Kawaguchi K, Shimakami T, Nio K, Murai K, Shirasaki T, Yoshida M, Arai K, Yamashita T, Tanaka T, Harada K, Takamura T, Kaneko S, Yamashita T, Honda M. Potential utility of l-carnitine for preventing liver tumors derived from metabolic dysfunction-associated steatohepatitis. Hepatol Commun 2024; 8:e0425. [PMID: 38619434 PMCID: PMC11019826 DOI: 10.1097/hc9.0000000000000425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/26/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Recent reports have unveiled the potential utility of l-carnitine to alleviate metabolic dysfunction-associated steatohepatitis (MASH) by enhancing mitochondrial metabolic function. However, its efficacy at preventing the development of HCC has not been assessed fully. METHODS l-carnitine (2 g/d) was administered to 11 patients with MASH for 10 weeks, and blood liver function tests were performed. Five patients received a serial liver biopsy, and liver histology and hepatic gene expression were evaluated using this tissue. An atherogenic plus high-fat diet MASH mouse model received long-term l-carnitine administration, and liver histology and liver tumor development were evaluated. RESULTS Ten-week l-carnitine administration significantly improved serum alanine transaminase and aspartate transaminase levels along with a histological improvement in the NAFLD activity score, while steatosis and fibrosis were not improved. Gene expression profiling revealed a significant improvement in the inflammation and profibrotic gene signature as well as the recovery of lipid metabolism. Long-term l-carnitine administration to atherogenic plus high-fat diet MASH mice substantially improved liver histology (inflammation, steatosis, and fibrosis) and significantly reduced the incidence of liver tumors. l-carnitine directly reduced the expression of the MASH-associated and stress-induced transcriptional factor early growth response 1. Early growth response 1 activated the promoter activity of neural precursor cell expressed, developmentally downregulated protein 9 (NEDD9), an oncogenic protein. Thus, l-carnitine reduced the activation of the NEDD9, focal adhesion kinase 1, and AKT oncogenic signaling pathway. CONCLUSIONS Short-term l-carnitine administration ameliorated MASH through its anti-inflammatory effects. Long-term l-carnitine administration potentially improved the steatosis and fibrosis of MASH and may eventually reduce the risk of HCC.
Collapse
Affiliation(s)
- Junyan Lyu
- Department of Clinical Laboratory Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Hikari Okada
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Hajime Sunagozaka
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Kazunori Kawaguchi
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Tetsuro Shimakami
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Kouki Nio
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Kazuhisa Murai
- Department of Clinical Laboratory Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Takayoshi Shirasaki
- Department of Clinical Laboratory Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Mika Yoshida
- Department of Clinical Laboratory Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Kuniaki Arai
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Tatsuya Yamashita
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Takuji Tanaka
- Research Center of Diagnostic Pathology, Gifu Municipal Hospital, Gifu, Japan
| | - Kenichi Harada
- Department of Human Pathology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Toshinari Takamura
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Taro Yamashita
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Masao Honda
- Department of Clinical Laboratory Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| |
Collapse
|
5
|
Histone deacetylase inhibitors promote breast cancer metastasis by elevating NEDD9 expression. Signal Transduct Target Ther 2023; 8:11. [PMID: 36604412 PMCID: PMC9816171 DOI: 10.1038/s41392-022-01221-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/13/2022] [Accepted: 09/29/2022] [Indexed: 01/07/2023] Open
Abstract
Histone deacetylase (HDAC) is a kind of protease that modifies histone to regulate gene expression, and is usually abnormally activated in tumors. The approved pan-HDAC inhibitors have demonstrated clinical benefits for patients in some hematologic malignancies. Only limited therapeutic success in breast cancer has been observed in clinical trials. In this study, we declare that pan-HDAC inhibitors targeting NEDD9-FAK pathway exacerbate breast cancer metastasis in preclinical models, which may severely impede their clinical success. NEDD9 is not an oncogene, however, it has been demonstrated recently that there are high level or activity changes of NEDD9 in a variety of cancer, including leukemia, colon cancer, and breast cancer. Mechanistically, pan-HDAC inhibitors enhance H3K9 acetylation at the nedd9 gene promoter via inhibition of HDAC4 activity, thus increase NEDD9 expression, and then activate FAK phosphorylation. The realization that pan-HDAC inhibitors can alter the natural history of breast cancer by increasing invasion warrants clinical attention. In addition, although NEDD9 has been reported to have a hand in breast cancer metastasis, it has not received much attention, and no therapeutic strategies have been developed. Notably, we demonstrate that FAK inhibitors can reverse breast cancer metastasis induced by upregulation of NEDD9 via pan-HDAC inhibitors, which may offer a potential combination therapy for breast cancer.
Collapse
|
6
|
Li J, Zhang X, Hou Z, Cai S, Guo Y, Sun L, Li A, Li Q, Wang E, Miao Y. P130cas-FAK interaction is essential for YAP-mediated radioresistance of non-small cell lung cancer. Cell Death Dis 2022; 13:783. [PMID: 36088346 PMCID: PMC9464229 DOI: 10.1038/s41419-022-05224-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 01/21/2023]
Abstract
Based on the RNA-sequencing data, previous studies revealed that extracellular matrix receptor interaction and focal adhesion signaling pathways were enriched in radioresistant non-small cell lung cancer (NSCLC) cell lines. As the principal members of these signaling pathways, recent studies showed that FAK controlled YAP's nuclear translocation and activation in response to mechanical activation. However, the underlying mechanisms are largely unknown. This study was designed to determine whether P130cas plays a role in FAK-YAP axis-mediated radioresistance. We found that P130cas promoted proliferation, altered the cell cycle profile, and enhanced tumor growth using cell lines and xenograft mouse models. After treating the cell lines and xenograft models with a single dose of 5 Gy irradiation, we observed that P130cas effectively induced radioresistance in vitro and in vivo. We confirmed that P130cas interacted with and promoted YAP stabilization, thereby facilitating YAP's activation and nuclear translocation and downregulating the radiosensitivity of NSCLC. Our data also revealed that P130cas and FAK directly interacted with each other and worked together to regulate YAP's activation and nuclear translocation. Furthermore, the present study identified that P130cas, FAK and YAP formed a triple complex to induce radioresistance. Using P130cas-ΔSH3, FAK- P712/715A mutant, YAP-ΔSH3bm and YAP-ΔWW mutant, our results showed that targeting P130cas-FAK interaction may be a more cost-effective way to overcome the YAP activation mediated radioresistance in NSCLC. Using the data of the public database and our clinical samples, the present study suggested that the expression of P130cas correlated with YAP expression and indicated a poor overall response rate of NSCLC patients who underwent radiation therapy. Overall, our study extends the knowledge of FAK-YAP interaction and provides new insight into understanding the underlying mechanisms to overcome the radioresistance of NSCLC.
Collapse
Affiliation(s)
- Jingduo Li
- grid.412636.40000 0004 1757 9485Department of Pathology, the College of Basic Medical Science and the First Hospital of China Medical University, Shenyang, China
| | - Xiupeng Zhang
- grid.412636.40000 0004 1757 9485Department of Pathology, the College of Basic Medical Science and the First Hospital of China Medical University, Shenyang, China
| | - Zaiyu Hou
- grid.412636.40000 0004 1757 9485Department of Pathology, the College of Basic Medical Science and the First Hospital of China Medical University, Shenyang, China
| | - Siqi Cai
- grid.412636.40000 0004 1757 9485Department of Pathology, the College of Basic Medical Science and the First Hospital of China Medical University, Shenyang, China
| | - Yingxue Guo
- grid.412636.40000 0004 1757 9485Department of Pathology, the College of Basic Medical Science and the First Hospital of China Medical University, Shenyang, China
| | - Limei Sun
- grid.412636.40000 0004 1757 9485Department of Pathology, the College of Basic Medical Science and the First Hospital of China Medical University, Shenyang, China
| | - Ailin Li
- grid.412467.20000 0004 1806 3501Department of Radiation Oncology, the Shengjing Hospital of China Medical University, Shenyang, China
| | - Qingchang Li
- grid.412636.40000 0004 1757 9485Department of Pathology, the College of Basic Medical Science and the First Hospital of China Medical University, Shenyang, China
| | - Enhua Wang
- grid.412636.40000 0004 1757 9485Department of Pathology, the College of Basic Medical Science and the First Hospital of China Medical University, Shenyang, China
| | - Yuan Miao
- grid.412636.40000 0004 1757 9485Department of Pathology, the College of Basic Medical Science and the First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Tikhomirova M, Topchu I, Mazitova A, Barmin V, Ratner E, Sabirov A, Abramova Z, Deneka AY. NEDD9 Restrains dsDNA Damage Response during Non-Small Cell Lung Cancer (NSCLC) Progression. Cancers (Basel) 2022; 14:2517. [PMID: 35626121 PMCID: PMC9139181 DOI: 10.3390/cancers14102517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/05/2022] [Accepted: 05/18/2022] [Indexed: 12/10/2022] Open
Abstract
DNA damaging modalities are the backbone of treatments for non-small cell lung cancer (NSCLC). Alterations in DNA damage response (DDR) in tumor cells commonly contribute to emerging resistance to platinating agents, other targeted therapies, and radiation. The goal of this study is to identify the previously unreported role of NEDD9 scaffolding protein in controlling DDR processes and sensitivity to DNA damaging therapies. Using a siRNA-mediated approach to deplete NEDD9 in a group of human and murine KRAS/TP53-mutant NSCLC cell lines, coupled with a set of cell viability and clonogenic assays, flow cytometry analysis, and Western blotting, we evaluated the effects of NEDD9 silencing on cellular proliferation, DDR and epithelial-to-mesenchymal transition (EMT) signaling, cell cycle, and sensitivity to cisplatin and UV irradiation. Using publicly available NSCLC datasets (TCGA) and an independent cohort of primary NSCLC tumors, subsequent in silico and immunohistochemical (IHC) analyses were performed to assess relevant changes in NEDD9 RNA and protein expression across different stages of NSCLC. The results of our study demonstrate that NEDD9 depletion is associated with the increased tumorigenic capacity of NSCLC cells. These phenotypes were accompanied by significantly upregulated ATM-CHK2 signaling, shifting towards a more mesenchymal phenotype in NEDD9 depleted cells and elevated sensitivity to UV-irradiation. IHC analyses revealed an association between reduced NEDD9 protein expression and a decrease in overall (OS) and progression-free survival (PFS) of the NSCLC patients. These data, for the first time, identified NEDD9 as a negative regulator of ATM kinase activity and related DDR signaling in numerous KRAS/TP53 mutated NSCLC, with its effects on the regulation of DDR-dependent EMT signaling, sensitivity to DNA damaging modalities in tumor cells, and the survival of the patients.
Collapse
Affiliation(s)
- Mariya Tikhomirova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420000 Kazan, Russia; (M.T.); (I.T.); (A.M.); (Z.A.)
| | - Iuliia Topchu
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420000 Kazan, Russia; (M.T.); (I.T.); (A.M.); (Z.A.)
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60610, USA
| | - Aleksandra Mazitova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420000 Kazan, Russia; (M.T.); (I.T.); (A.M.); (Z.A.)
- Department of Medicine and Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Vitaly Barmin
- Moscow P.A. Gertsen Oncological Research Institute, 125284 Moscow, Russia;
| | - Ekaterina Ratner
- Republican M.Z.Sigal Clinical Oncology Hospital, 420029 Kazan, Russia; (E.R.); (A.S.)
| | - Alexey Sabirov
- Republican M.Z.Sigal Clinical Oncology Hospital, 420029 Kazan, Russia; (E.R.); (A.S.)
| | - Zinaida Abramova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420000 Kazan, Russia; (M.T.); (I.T.); (A.M.); (Z.A.)
| | - Alexander Y. Deneka
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420000 Kazan, Russia; (M.T.); (I.T.); (A.M.); (Z.A.)
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|
8
|
Stage E, Risacher SL, Lane KA, Gao S, Nho K, Saykin AJ, Apostolova LG, for the Alzheimer's Disease Neuroimaging Initiative. Association of the top 20 Alzheimer's disease risk genes with [ 18F]flortaucipir PET. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2022; 14:e12308. [PMID: 35592828 PMCID: PMC9092485 DOI: 10.1002/dad2.12308] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 04/12/2023]
Abstract
Introduction We previously reported genetic associations of the top Alzheimer's disease (AD) risk alleles with amyloid deposition and neurodegeneration. Here, we report the association of these variants with [18F]flortaucipir standardized uptake value ratio (SUVR). Methods We analyzed the [18F]flortaucipir scans of 352 cognitively normal (CN), 160 mild cognitive impairment (MCI), and 54 dementia (DEM) participants from Alzheimer's Disease Neuroimaging Initiative (ADNI)2 and 3. We ran step-wise regression with log-transformed [18F]flortaucipir meta-region of interest SUVR as the outcome measure and genetic variants, age, sex, and apolipoprotein E (APOE) ε4 as predictors. The results were visualized using parametric mapping at familywise error cluster-level-corrected P < .05. Results APOE ε4 showed significant (P < .05) associations with tau deposition across all disease stages. Other significantly associated genes include variants in ABCA7 in CN, CR1 in MCI, BIN1 and CASS4 in MCI and dementia participants. Discussion We found significant associations to tau deposition for ABCA7, BIN1, CASS4, and CR1, in addition to APOE ε4. These four variants have been previously associated with tau metabolism through model systems.
Collapse
Affiliation(s)
- Eddie Stage
- Department of NeurologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Shannon L. Risacher
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
| | - Kathleen A. Lane
- Department of BiostatisticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Sujuan Gao
- Department of BiostatisticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Kwangsik Nho
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
| | - Andrew J. Saykin
- Department of NeurologyIndiana University School of MedicineIndianapolisIndianaUSA
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
| | - Liana G. Apostolova
- Department of NeurologyIndiana University School of MedicineIndianapolisIndianaUSA
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | | |
Collapse
|
9
|
MKL1 deficiency results in a severe neutrophil motility defect due to impaired actin polymerization. Blood 2021; 135:2171-2181. [PMID: 32128589 DOI: 10.1182/blood.2019002633] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 02/18/2020] [Indexed: 12/26/2022] Open
Abstract
Megakaryoblastic leukemia 1 (MKL1) promotes the regulation of essential cell processes, including actin cytoskeletal dynamics, by coactivating serum response factor. Recently, the first human with MKL1 deficiency, leading to a novel primary immunodeficiency, was identified. We report a second family with 2 siblings with a homozygous frameshift mutation in MKL1. The index case died as an infant from progressive and severe pneumonia caused by Pseudomonas aeruginosa and poor wound healing. The younger sibling was preemptively transplanted shortly after birth. The immunodeficiency was marked by a pronounced actin polymerization defect and a strongly reduced motility and chemotactic response by MKL1-deficient neutrophils. In addition to the lack of MKL1, subsequent proteomic and transcriptomic analyses of patient neutrophils revealed actin and several actin-related proteins to be downregulated, confirming a role for MKL1 as a transcriptional coregulator. Degranulation was enhanced upon suboptimal neutrophil activation, whereas production of reactive oxygen species was normal. Neutrophil adhesion was intact but without proper spreading. The latter could explain the observed failure in firm adherence and transendothelial migration under flow conditions. No apparent defect in phagocytosis or bacterial killing was found. Also, monocyte-derived macrophages showed intact phagocytosis, and lymphocyte counts and proliferative capacity were normal. Nonhematopoietic primary fibroblasts demonstrated defective differentiation into myofibroblasts but normal migration and F-actin content, most likely as a result of compensatory mechanisms of MKL2, which is not expressed in neutrophils. Our findings extend current insight into the severe immune dysfunction in MKL1 deficiency, with cytoskeletal dysfunction and defective extravasation of neutrophils as the most prominent features.
Collapse
|
10
|
Xu JL, Guo Y. FCGR1A Serves as a Novel Biomarker and Correlates With Immune Infiltration in Four Cancer Types. Front Mol Biosci 2020; 7:581615. [PMID: 33344503 PMCID: PMC7744780 DOI: 10.3389/fmolb.2020.581615] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/03/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND FCGR1A encodes a protein that plays an important role in the immune response. The prognostic impact and immune infiltration of FCGR1A in heterogeneous cancers remain unclear. METHODS Differential expression of FCGR1A between tumor and normal tissues and the discrepancies in overall survival (OS) among diverse cancer types were performed by Gene Expression Profiling Interactive Analysis. The correlation between FCGR1A and immune cells or gene marker sets of immune infiltrates was analyzed via Tumor Immune Estimation Resource (TIMER). Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and protein-to-protein interaction (PPI) network were used to explore the function and related genes of FCGR1A. The relationships among these genes were further analyzed by TIMER. RESULTS FCGR1A is highly expressed in various cancer types. FCGR1A was significantly correlated with the OS of cervical and endocervical cancer (CESC), cholangiocarcinoma (CHOL), kidney renal clear cell carcinoma (KIRC), and skin cutaneous melanoma (SKCM) (P < 0.05). High expression of FCGR1A meant a better prognosis besides KIRC. FCGR1A showed significant differences at different stages of KIRC and SKCM (P < 0.05). Furthermore, FCGR1A was notably associated with infiltrating levels of CD4+ T cells, CD8+ T cells, B cells, macrophages, neutrophils, and dendritic cells in the four cancers (P < 0.05). FCGR1A also showed close relevance with different immune gene markers. The copy number variation of FCGR1A significantly influenced the abundance of immune infiltration in KIRC and SKCM. GO, KEGG analysis, and PPI network analysis revealed that FCGR1A is involved in many pathophysiological processes and was most related to FCGR3A. And this gene indicated highly significant positive correlations with FCGR1A in four cancers. CONCLUSION FCGR1A may be a potential prognostic biomarker and related to immune infiltration levels in diverse cancers, especially in CESC, CHOL, KIRC, and SKCM. Besides, FCGR1A may be involved in the activation, regulation, or induction of immune cells and diverse physiological and pathological processes.
Collapse
Affiliation(s)
- Ji-li Xu
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yong Guo
- Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, China
| |
Collapse
|
11
|
Podleśny-Drabiniok A, Marcora E, Goate AM. Microglial Phagocytosis: A Disease-Associated Process Emerging from Alzheimer’s Disease Genetics. Trends Neurosci 2020; 43:965-979. [DOI: 10.1016/j.tins.2020.10.002] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/02/2020] [Accepted: 10/05/2020] [Indexed: 01/02/2023]
|
12
|
Huang W, Yu J, Liu T, Defnet AE, Zalesak S, Farese AM, MacVittie TJ, Kane MA. Proteomics of Non-human Primate Plasma after Partial-body Radiation with Minimal Bone Marrow Sparing. HEALTH PHYSICS 2020; 119:621-632. [PMID: 32947488 PMCID: PMC7541796 DOI: 10.1097/hp.0000000000001350] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
High-dose radiation exposure results in organ-specific sequelae that occurs in a time- and dose-dependent manner. The partial body irradiation with minimal bone marrow sparing model was developed to mimic intentional or accidental radiation exposures in humans where bone marrow sparing is likely and permits the concurrent analysis of coincident short- and long-term damage to organ systems. To help inform on the natural history of the radiation-induced injury of the partial body irradiation model, we quantitatively profiled the plasma proteome of non-human primates following 12 Gy partial body irradiation with 2.5% bone marrow sparing with 6 MV LINAC-derived photons at 0.80 Gy min over a time period of 3 wk. The plasma proteome was analyzed by liquid chromatography-tandem mass spectrometry. A number of trends were identified in the proteomic data including pronounced protein changes as well as protein changes that were consistently upregulated or downregulated at all time points and dose levels interrogated. Pathway and gene ontology analysis were performed; bioinformatic analysis revealed significant pathway and biological process perturbations post high-dose irradiation and shed light on underlying mechanisms of radiation damage. Additionally, proteins were identified that had the greatest potential to serve as biomarkers for radiation exposure.
Collapse
Affiliation(s)
- Weiliang Huang
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Jianshi Yu
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Tian Liu
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Amy E. Defnet
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Stephanie Zalesak
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Ann M. Farese
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | - Thomas J. MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | - Maureen A. Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
- Correspondence: Maureen A. Kane, University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, 20 N. Pine Street, Room N731, Baltimore, MD 21201, Phone: (410) 706-5097, Fax: (410) 706-0886,
| |
Collapse
|
13
|
Jiawei Z, Min M, Yingru X, Xin Z, Danting L, Yafeng L, Jun X, Wangfa H, Lijun Z, Jing W, Dong H. Identification of Key Genes in Lung Adenocarcinoma and Establishment of Prognostic Mode. Front Mol Biosci 2020; 7:561456. [PMID: 33195408 PMCID: PMC7653064 DOI: 10.3389/fmolb.2020.561456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/07/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The development of human tumors is associated with the abnormal expression of various functional genes, and a massive tumor-based database needs to be deeply mined. Based on a multigene prediction model, access to urgent prognosis of patients has become possible. MATERIALS AND METHODS We selected three RNA expression profiles (GSE32863, GSE10072, and GSE43458) from the lung adenocarcinoma (LUAD) database of the Gene Expression Omnibus (GEO) and analyzed the differentially expressed genes (DEGs) between tumor and normal tissue using GEO2R program. After that, we analyzed the transcriptome data of 479 LUAD samples (54 normal tissue samples and 425 cancer tissue samples) and their clinical follow-up data from the (TCGA) database. Kaplan-Meier (KM) curve and receiver operating characteristic (ROC) were used to assess the prediction model. Multivariate Cox analysis was used to identify independent predictors. TCGA pancreatic adenocarcinoma datasets were used to establish a nomogram model. RESULTS We found 98 significantly prognosis-related genes using KM and COX analysis, among which six genes were found to be the DEGs in GEO. Using multivariate analysis, it was found that a single gene could not be used as an independent predictor of prognosis. However, the risk score calculated by weighting these six genes could serve as an independent prognosis predictor. COX analysis performed with multiple covariates such as age, gender, tumor stage, and TNM typing showed that risk score could still be utilized as an independent risk factor for patient survival rate (p = 0.013) and had an applicable reliability (area under the curve, AUC = 0.665). By combining risk score and various clinical features, the nomogram model was constructed, which had been proven to have high consistency for the prediction of 3- and 5-year survival rate (concordance = 0.751) and high accuracy as tested by ROC (AUC = 0.71;AUC = 0.708). CONCLUSION We proposed a method to predict the prognosis of LUAD by weighting multiple genes and constructed a nomogram model suitable for the prognostic evaluation of LUAD, which could provide a new tool for the identification of therapeutic targets and the efficacy evaluation of LUAD.
Collapse
Affiliation(s)
- Zhou Jiawei
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Mu Min
- Key Laboratory of Industrial Dust Prevention and Control and Occupational Safety and Health, Ministry of Education, Anhui University of Science and Technology, Huainan, China
| | - Xing Yingru
- Affiliated Cancer Hospital, Anhui University of Science and Technology, Huainan, China
| | - Zhang Xin
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Li Danting
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Liu Yafeng
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Xie Jun
- Affiliated Cancer Hospital, Anhui University of Science and Technology, Huainan, China
| | - Hu Wangfa
- Affiliated Cancer Hospital, Anhui University of Science and Technology, Huainan, China
| | - Zhang Lijun
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Wu Jing
- School of Medicine, Anhui University of Science and Technology, Huainan, China
- Key Laboratory of Industrial Dust Prevention and Control and Occupational Safety and Health, Ministry of Education, Anhui University of Science and Technology, Huainan, China
| | - Hu Dong
- School of Medicine, Anhui University of Science and Technology, Huainan, China
- Key Laboratory of Industrial Dust Prevention and Control and Occupational Safety and Health, Ministry of Education, Anhui University of Science and Technology, Huainan, China
| |
Collapse
|
14
|
Kurakin A, Bredesen DE. Alzheimer's disease as a systems network disorder: chronic stress/dyshomeostasis, innate immunity, and genetics. Aging (Albany NY) 2020; 12:17815-17844. [PMID: 32957083 PMCID: PMC7585078 DOI: 10.18632/aging.103883] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/25/2020] [Indexed: 01/24/2023]
Abstract
Ineffective results of clinical trials of over 200 anti-Alzheimer's drug candidates, with a 99.6% attrition rate, suggest that the current paradigm of Alzheimer's disease (AD) may be incomplete, necessitating exploration of alternative and complementary frameworks.Using algorithms for hypothesis independent search and expert-assisted synthesis of heterogeneous data, we attempted to reconcile multimodal clinical profiles of early-stage AD patients and accumulated research data within a parsimonious framework. Results of our analysis suggest that Alzheimer's may not be a brain disease but a progressive system-level network disorder, which is driven by chronic network stress and dyshomeostasis. The latter can be caused by various endogenous and exogenous factors, such as chronic inflammatory conditions, infections, vascular dysfunction, head trauma, environmental toxicity, and immune disorders. Whether originating in the brain or on the periphery, chronic stress, toxicity, and inflammation are communicated to the central nervous system (CNS) via humoral and neural routes, preferentially targeting high-centrality regulatory nodes and circuits of the nervous system, and eventually manifesting as a neurodegenerative CNS disease.In this report, we outline an alternative perspective on AD as a systems network disorder and discuss biochemical and genetic evidence suggesting the central role of chronic tissue injury/dyshomeostasis, innate immune reactivity, and inflammation in the etiopathobiology of Alzheimer's disease.
Collapse
Affiliation(s)
- Alexei Kurakin
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Dale E. Bredesen
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA,Buck Institute for Research on Aging, Novato, CA 94945, USA
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Over the last decade over 40 loci have been associated with risk of Alzheimer's disease (AD). However, most studies have either focused on identifying risk loci or performing unbiased screens without a focus on protective variation in AD. Here, we provide a review of known protective variants in AD and their putative mechanisms of action. Additionally, we recommend strategies for finding new protective variants. RECENT FINDINGS Recent Genome-Wide Association Studies have identified both common and rare protective variants associated with AD. These include variants in or near APP, APOE, PLCG2, MS4A, MAPT-KANSL1, RAB10, ABCA1, CCL11, SORL1, NOCT, SCL24A4-RIN3, CASS4, EPHA1, SPPL2A, and NFIC. SUMMARY There are very few protective variants with functional evidence and a derived allele with a frequency below 20%. Additional fine mapping and multi-omic studies are needed to further validate and characterize known variants as well as specialized genome-wide scans to identify novel variants.
Collapse
Affiliation(s)
- Shea J Andrews
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Equal first author
| | - Brian Fulton-Howard
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Equal first author
| | - Alison Goate
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
16
|
Takatori S, Wang W, Iguchi A, Tomita T. Genetic Risk Factors for Alzheimer Disease: Emerging Roles of Microglia in Disease Pathomechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1118:83-116. [PMID: 30747419 DOI: 10.1007/978-3-030-05542-4_5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The accumulation of aggregated amyloid β (Aβ) peptides in the brain is deeply involved in Alzheimer disease (AD) pathogenesis. Mutations in APP and presenilins play major roles in Aβ pathology in rare autosomal-dominant forms of AD, whereas pathomechanisms of sporadic AD, accounting for the majority of cases, remain unknown. In this chapter, we review current knowledge on genetic risk factors of AD, clarified by recent advances in genome analysis technology. Interestingly, TREM2 and many genes associated with disease risk are predominantly expressed in microglia, suggesting that these risk factors are involved in pathogenicity through common mechanisms involving microglia. Therefore, we focus on factors closely associated with microglia and discuss their possible roles in pathomechanisms of AD. Furthermore, we review current views on the pathological roles of microglia and emphasize the importance of microglial changes in response to Aβ deposition and mechanisms underlying the phenotypic changes. Importantly, functional outcomes of microglial activation can be both protective and deleterious to neurons. We further describe the involvement of microglia in tau pathology and the activation of other glial cells. Through these topics, we shed light on microglia as a promising target for drug development for AD and other neurological disorders.
Collapse
Affiliation(s)
- Sho Takatori
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Wenbo Wang
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Akihiro Iguchi
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
17
|
Haworth S, Shungin D, van der Tas JT, Vucic S, Medina-Gomez C, Yakimov V, Feenstra B, Shaffer JR, Lee MK, Standl M, Thiering E, Wang C, Bønnelykke K, Waage J, Jessen LE, Nørrisgaard PE, Joro R, Seppälä I, Raitakari O, Dudding T, Grgic O, Ongkosuwito E, Vierola A, Eloranta AM, West NX, Thomas SJ, McNeil DW, Levy SM, Slayton R, Nohr EA, Lehtimäki T, Lakka T, Bisgaard H, Pennell C, Kühnisch J, Marazita ML, Melbye M, Geller F, Rivadeneira F, Wolvius EB, Franks PW, Johansson I, Timpson NJ. Consortium-based genome-wide meta-analysis for childhood dental caries traits. Hum Mol Genet 2018; 27:3113-3127. [PMID: 29931343 PMCID: PMC6097157 DOI: 10.1093/hmg/ddy237] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/29/2018] [Accepted: 06/14/2018] [Indexed: 12/26/2022] Open
Abstract
Prior studies suggest dental caries traits in children and adolescents are partially heritable, but there has been no large-scale consortium genome-wide association study (GWAS) to date. We therefore performed GWAS for caries in participants aged 2.5-18.0 years from nine contributing centres. Phenotype definitions were created for the presence or absence of treated or untreated caries, stratified by primary and permanent dentition. All studies tested for association between caries and genotype dosage and the results were combined using fixed-effects meta-analysis. Analysis included up to 19 003 individuals (7530 affected) for primary teeth and 13 353 individuals (5875 affected) for permanent teeth. Evidence for association with caries status was observed at rs1594318-C for primary teeth [intronic within ALLC, odds ratio (OR) 0.85, effect allele frequency (EAF) 0.60, P 4.13e-8] and rs7738851-A (intronic within NEDD9, OR 1.28, EAF 0.85, P 1.63e-8) for permanent teeth. Consortium-wide estimated heritability of caries was low [h2 of 1% (95% CI: 0%: 7%) and 6% (95% CI 0%: 13%) for primary and permanent dentitions, respectively] compared with corresponding within-study estimates [h2 of 28% (95% CI: 9%: 48%) and 17% (95% CI: 2%: 31%)] or previously published estimates. This study was designed to identify common genetic variants with modest effects which are consistent across different populations. We found few single variants associated with caries status under these assumptions. Phenotypic heterogeneity between cohorts and limited statistical power will have contributed; these findings could also reflect complexity not captured by our study design, such as genetic effects which are conditional on environmental exposure.
Collapse
Affiliation(s)
- Simon Haworth
- Medical Research Council Integrative Epidemiology Unit at Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Dmitry Shungin
- Department of Odontology, Umeå University, Umeå 901 87, Sweden
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Justin T van der Tas
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics
| | - Strahinja Vucic
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics
| | - Carolina Medina-Gomez
- The Generation R Study Group
- Department of Internal Medicine
- Department of Epidemiology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam 3015 CN, The Netherlands
| | - Victor Yakimov
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen DK-2300, Denmark
| | - Bjarke Feenstra
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen DK-2300, Denmark
| | - John R Shaffer
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Myoung Keun Lee
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Marie Standl
- Institute of Epidemiology I, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg D-85764, Germany
| | - Elisabeth Thiering
- Institute of Epidemiology I, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg D-85764, Germany
- Division of Metabolic and Nutritional Medicine, Dr von Hauner Children's Hospital, University of Munich Medical Center, Munich 80337, Germany
| | - Carol Wang
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth WA 6009, Australia
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofe Hospital, University of Copenhagen, Copenhagen 2730, Denmark
| | - Johannes Waage
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofe Hospital, University of Copenhagen, Copenhagen 2730, Denmark
| | - Leon Eyrich Jessen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofe Hospital, University of Copenhagen, Copenhagen 2730, Denmark
| | - Pia Elisabeth Nørrisgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofe Hospital, University of Copenhagen, Copenhagen 2730, Denmark
| | - Raimo Joro
- Institute of Biomedicine, School of Medicine, University of Eastern Finland Kuopio Campus, 70211 Kuopio, Finland
| | - Ilkka Seppälä
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere - Faculty of Medicine and Life Sciences, University of Tampere, Tampere 33520, Finland
| | - Olli Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku 20520, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku 20520, Finland
| | - Tom Dudding
- Medical Research Council Integrative Epidemiology Unit at Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Olja Grgic
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics
- The Generation R Study Group
| | | | - Anu Vierola
- Institute of Biomedicine, School of Medicine, University of Eastern Finland Kuopio Campus, 70211 Kuopio, Finland
| | - Aino-Maija Eloranta
- Institute of Biomedicine, School of Medicine, University of Eastern Finland Kuopio Campus, 70211 Kuopio, Finland
| | - Nicola X West
- Bristol Dental School, University of Bristol, Bristol BS1 2LY, UK
| | - Steven J Thomas
- Bristol Dental School, University of Bristol, Bristol BS1 2LY, UK
| | - Daniel W McNeil
- Department of Psychology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WA 26506-6286, USA
| | - Steven M Levy
- Department of Preventive and Community Dentistry, College of Dentistry, University of Iowa, Cedar Rapids, IA 52242-1010, USA
| | - Rebecca Slayton
- Department of Pediatric Dentistry (Retired), School of Dentistry, University of Washington, Seattle, WA 98195, USA
| | - Ellen A Nohr
- Research Unit for Gynaecology and Obstetrics, Department of Clinical Research, University of Southern Denmark, Odense 5000, Denmark
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere - Faculty of Medicine and Life Sciences, University of Tampere, Tampere 33520, Finland
| | - Timo Lakka
- Institute of Biomedicine, School of Medicine, University of Eastern Finland Kuopio Campus, 70211 Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio 70210, Finland
- Kuopio Research Institute of Exercise Medicine, Kuopio 70100, Finland
| | - Hans Bisgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofe Hospital, University of Copenhagen, Copenhagen 2730, Denmark
| | - Craig Pennell
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth WA 6009, Australia
| | - Jan Kühnisch
- Department of Conservative Dentistry and Periodontology, University Hospital, Ludwig-Maximilians-Universität München, Munich 80336, Germany
| | - Mary L Marazita
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Mads Melbye
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen DK-2300, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen 2200, Denmark
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Frank Geller
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen DK-2300, Denmark
| | - Fernando Rivadeneira
- The Generation R Study Group
- Department of Internal Medicine
- Department of Epidemiology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam 3015 CN, The Netherlands
| | - Eppo B Wolvius
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics
| | - Paul W Franks
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Malmö 202 13, Sweden
- Department of Public Health and Clinical Medicine, Umeå University, Umeå 901 85, Sweden
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | | | - Nicholas J Timpson
- Medical Research Council Integrative Epidemiology Unit at Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| |
Collapse
|
18
|
Dourlen P, Chapuis J, Lambert JC. Using High-Throughput Animal or Cell-Based Models to Functionally Characterize GWAS Signals. CURRENT GENETIC MEDICINE REPORTS 2018; 6:107-115. [PMID: 30147999 PMCID: PMC6096908 DOI: 10.1007/s40142-018-0141-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW The advent of genome-wide association studies (GWASs) constituted a breakthrough in our understanding of the genetic architecture of multifactorial diseases. For Alzheimer's disease (AD), more than 20 risk loci have been identified. However, we are now facing three new challenges: (i) identifying the functional SNP or SNPs in each locus, (ii) identifying the causal gene(s) in each locus, and (iii) understanding these genes' contribution to pathogenesis. RECENT FINDINGS To address these issues and thus functionally characterize GWAS signals, a number of high-throughput strategies have been implemented in cell-based and whole-animal models. Here, we review high-throughput screening, high-content screening, and the use of the Drosophila model (primarily with reference to AD). SUMMARY We describe how these strategies have been successfully used to functionally characterize the genes in GWAS-defined risk loci. In the future, these strategies should help to translate GWAS data into knowledge and treatments.
Collapse
Affiliation(s)
- Pierre Dourlen
- INSERM U1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- Institut Pasteur de Lille, Lille, France
- University Lille, U1167-Excellence Laboratory LabEx DISTALZ, Lille, France
| | - Julien Chapuis
- INSERM U1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- Institut Pasteur de Lille, Lille, France
- University Lille, U1167-Excellence Laboratory LabEx DISTALZ, Lille, France
| | - Jean-Charles Lambert
- INSERM U1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- Institut Pasteur de Lille, Lille, France
- University Lille, U1167-Excellence Laboratory LabEx DISTALZ, Lille, France
| |
Collapse
|
19
|
Exploring the mechanistic insights of Cas scaffolding protein family member 4 with protein tyrosine kinase 2 in Alzheimer's disease by evaluating protein interactions through molecular docking and dynamic simulations. Neurol Sci 2018; 39:1361-1374. [PMID: 29789968 DOI: 10.1007/s10072-018-3430-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 04/26/2018] [Indexed: 01/02/2023]
Abstract
Cas scaffolding protein family member 4 and protein tyrosine kinase 2 are signaling proteins, which are involved in neuritic plaques burden, neurofibrillary tangles, and disruption of synaptic connections in Alzheimer's disease. In the current study, a computational approach was employed to explore the active binding sites of Cas scaffolding protein family member 4 and protein tyrosine kinase 2 proteins and their significant role in the activation of downstream signaling pathways. Sequential and structural analyses were performed on Cas scaffolding protein family member 4 and protein tyrosine kinase 2 to identify their core active binding sites. Molecular docking servers were used to predict the common interacting residues in both Cas scaffolding protein family member 4 and protein tyrosine kinase 2 and their involvement in Alzheimer's disease-mediated pathways. Furthermore, the results from molecular dynamic simulation experiment show the stability of targeted proteins. In addition, the generated root mean square deviations and fluctuations, solvent-accessible surface area, and gyration graphs also depict their backbone stability and compactness, respectively. A better understanding of CAS and their interconnected protein signaling cascade may help provide a treatment for Alzheimer's disease. Further, Cas scaffolding protein family member 4 could be used as a novel target for the treatment of Alzheimer's disease by inhibiting the protein tyrosine kinase 2 pathway.
Collapse
|
20
|
Lin E, Tsai SJ, Kuo PH, Liu YL, Yang AC, Kao CF. Association and interaction effects of Alzheimer's disease-associated genes and lifestyle on cognitive aging in older adults in a Taiwanese population. Oncotarget 2018; 8:24077-24087. [PMID: 28199971 PMCID: PMC5421828 DOI: 10.18632/oncotarget.15269] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/29/2017] [Indexed: 12/21/2022] Open
Abstract
Genome-wide association studies and meta-analyses implicated that increased risk of developing Alzheimers diseases (AD) has been associated with the ABCA7, APOE, BIN1, CASS4, CD2AP, CD33, CELF1, CLU, CR1, DSG2, EPHA1, FERMT2, HLA-DRB1, HLA-DRB4, INPP5D, MEF2C, MS4A4A, MS4A4E, MS4A6E, NME8, PICALM, PLD3, PTK2B, RIN3, SLC24A4, SORL1, and ZCWPW1 genes. In this study, we assessed whether single nucleotide polymorphisms (SNPs) within these 27 AD-associatedgenes are linked with cognitive aging independently and/or through complex interactions in an older Taiwanese population. We also analyzed the interactions between lifestyle and these genes in influencing cognitive aging. A total of 634 Taiwanese subjects aged over 60 years from the Taiwan Biobank were analyzed. Mini-Mental State Examination (MMSE) scores were performed for all subjects to evaluate cognitive functions. Out of the 588 SNPs tested in this study, only the association between CASS4-rs911159 and cognitive aging persisted significantly (P = 2.2 × 10−5) after Bonferroni correction. Our data also showed a nominal association of cognitive aging with the SNPs in six more key AD-associated genes, including EPHA1-rs10952552, FERMT2-rs4901317, MEF2C-rs9293506, PLD3-rs11672825, RIN3-rs1885747, and SLC24A4-rs67063100 (P = 0.0018∼0.0097). Additionally, we found the interactions among CASS4-rs911159, EPHA-rs10952552, FERMT2-rs4901317, MEF2C-rs9293506, or SLC24A4-rs67063100 on cognitive aging (P = 0.004∼0.035). Moreover, our analysis suggested the interactions of SLC24A4-rs67063100 or MEF2C-rs9293506 with lifestyle such as alcohol consumption, smoking status, physical activity, or social support on cognitive aging (P = 0.008∼0.041). Our study indicates that the AD-associated genes may contribute to the risk of cognitive aging independently as well as through gene-gene and gene-lifestyle interactions.
Collapse
Affiliation(s)
- Eugene Lin
- Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Vita Genomics, Inc., Taipei, Taiwan.,TickleFish Systems Corporation, Seattle, WA, USA
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan
| | - Po-Hsiu Kuo
- Department of Public Health, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Li Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Albert C Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Feng Kao
- Department of Agronomy, College of Agriculture & Natural Resources, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
21
|
Lin CH, Lin E, Lane HY. Genetic Biomarkers on Age-Related Cognitive Decline. Front Psychiatry 2017; 8:247. [PMID: 29209239 PMCID: PMC5702307 DOI: 10.3389/fpsyt.2017.00247] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/07/2017] [Indexed: 12/29/2022] Open
Abstract
With ever-increasing elder populations, age-related cognitive decline, which is characterized as a gradual decline in cognitive capacity in the aging process, has turned out to be a mammoth public health concern. Since genetic information has become increasingly important to explore the biological mechanisms of cognitive decline, the search for genetic biomarkers of cognitive aging has received much attention. There is growing evidence that single-nucleotide polymorphisms (SNPs) within the ADAMTS9, BDNF, CASS4, COMT, CR1, DNMT3A, DTNBP1, REST, SRR, TOMM40, circadian clock, and Alzheimer's diseases-associated genes may contribute to susceptibility to cognitive aging. In this review, we first illustrated evidence of the genetic contribution to disease susceptibility to age-related cognitive decline in recent studies ranging from approaches of candidate genes to genome-wide association studies. We then surveyed a variety of association studies regarding age-related cognitive decline with consideration of gene-gene and gene-environment interactions. Finally, we highlighted their limitations and future directions. In light of advances in precision medicine and multi-omics technologies, future research in genomic medicine promises to lead to innovative ideas that are relevant to disease prevention and novel drugs for cognitive aging.
Collapse
Affiliation(s)
- Chieh-Hsin Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Center for General Education, Cheng Shiu University, Kaohsiung, Taiwan
| | - Eugene Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Electrical Engineering, University of Washington, Seattle, WA, United States
- TickleFish Systems Corporation, Seattle, WA, United States
| | - Hsien-Yuan Lane
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Psychiatry, Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
22
|
Dysregulation of Blimp1 transcriptional repressor unleashes p130Cas/ErbB2 breast cancer invasion. Sci Rep 2017; 7:1145. [PMID: 28442738 PMCID: PMC5430666 DOI: 10.1038/s41598-017-01332-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/28/2017] [Indexed: 12/29/2022] Open
Abstract
ErbB2 overexpression is detected in approximately 20% of breast cancers and is correlated with poor survival. It was previously shown that the adaptor protein p130Cas/BCAR1 is a crucial mediator of ErbB2 transformation and that its overexpression confers invasive properties to ErbB2-positive human mammary epithelial cells. We herein prove, for the first time, that the transcriptional repressor Blimp1 is a novel mediator of p130Cas/ErbB2-mediated invasiveness. Indeed, high Blimp1 expression levels are detected in invasive p130Cas/ErbB2 cells and correlate with metastatic status in human breast cancer patients. The present study, by using 2D and 3D breast cancer models, shows that the increased Blimp1 expression depends on both MAPK activation and miR-23b downmodulation. Moreover, we demonstrate that Blimp1 triggers cell invasion and metastasis formation via its effects on focal adhesion and survival signaling. These findings unravel the previously unidentified role that transcriptional repressor Blimp1 plays in the control of breast cancer invasiveness.
Collapse
|
23
|
Bradbury PM, Turner K, Mitchell C, Griffin KR, Middlemiss S, Lau L, Dagg R, Taran E, Cooper-White J, Fabry B, O’Neill GM. The focal adhesion targeting (FAT) domain of p130 Crk associated substrate (p130Cas) confers mechanosensing function. J Cell Sci 2017; 130:1263-1273. [DOI: 10.1242/jcs.192930] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 02/02/2017] [Indexed: 11/20/2022] Open
Abstract
The Cas family of focal adhesion proteins contain a highly conserved C-terminal focal adhesion targeting (FAT) domain. To determine the role of the FAT domain we compared wildtype exogenous NEDD9 with a hybrid construct in which the NEDD9 FAT domain is exchanged for the p130Cas FAT domain. Fluorescence recovery after photobleaching (FRAP) revealed significantly slowed exchange of the fusion protein at focal adhesions and significantly slower 2D migration. No differences were detected in cell stiffness measured with Atomic Force Microscopy (AFM) and cell adhesion forces measured with a magnetic tweezer device. Thus the slowed migration was not due to changes in cell stiffness or adhesion strength. Analysis of cell migration on surfaces of increasing rigidity revealed a striking reduction of cell motility in cells expressing the p130Cas FAT domain. The p130Cas FAT domain induced rigidity-dependent tyrosine phosphorylation of the NEDD9 substrate domain. This in turn reduced post-translational cleavage of NEDD9 which we show inhibits NEDD9-induced migration. Collectively, our data therefore suggest that the p130Cas FAT domain uniquely confers mechanosensing function.
Collapse
Affiliation(s)
- Peta M. Bradbury
- Children’s Cancer Research Unit, Kids Research Institute, The Children’s Hospital at Westmead, Westmead, 2145, New South Wales, Australia
- Discipline of Paediatrics and Child Health, The University of Sydney, Sydney, 2000, New South Wales, Australia
| | - Kylie Turner
- Children’s Cancer Research Unit, Kids Research Institute, The Children’s Hospital at Westmead, Westmead, 2145, New South Wales, Australia
| | - Camilla Mitchell
- Children’s Cancer Research Unit, Kids Research Institute, The Children’s Hospital at Westmead, Westmead, 2145, New South Wales, Australia
| | - Kaitlyn R. Griffin
- Children’s Cancer Research Unit, Kids Research Institute, The Children’s Hospital at Westmead, Westmead, 2145, New South Wales, Australia
| | - Shiloh Middlemiss
- Children’s Cancer Research Unit, Kids Research Institute, The Children’s Hospital at Westmead, Westmead, 2145, New South Wales, Australia
| | - Loretta Lau
- Children’s Cancer Research Unit, Kids Research Institute, The Children’s Hospital at Westmead, Westmead, 2145, New South Wales, Australia
| | - Rebecca Dagg
- Children’s Cancer Research Unit, Kids Research Institute, The Children’s Hospital at Westmead, Westmead, 2145, New South Wales, Australia
| | - Elena Taran
- Australian National Fabrication Facility- Queensland node, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, Queensland, Australia
| | - Justin Cooper-White
- Tissue Engineering and Microfluidics Laboratory, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, Queensland, Australia
| | - Ben Fabry
- Department of Physics, University of Erlangen-Nuremberg, Germany
| | - Geraldine M. O’Neill
- Children’s Cancer Research Unit, Kids Research Institute, The Children’s Hospital at Westmead, Westmead, 2145, New South Wales, Australia
- Discipline of Paediatrics and Child Health, The University of Sydney, Sydney, 2000, New South Wales, Australia
| |
Collapse
|
24
|
Li A, Zhang W, Xia H, Miao Y, Zhou H, Zhang X, Dong Q, Li Q, Qiu X, Wang E. Overexpression of CASS4 promotes invasion in non-small cell lung cancer by activating the AKT signaling pathway and inhibiting E-cadherin expression. Tumour Biol 2016; 37:15157-15164. [PMID: 27677288 DOI: 10.1007/s13277-016-5411-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/13/2016] [Indexed: 11/24/2022] Open
Abstract
The role of Crk-associated substrate (CAS) family members in regulating invasion and metastasis has been described in several cancers. As the fourth member of the CAS family, CASS4 is also related with positive lymph node metastasis and poor prognosis in lung cancer. However, the underlying mechanisms and downstream effectors of CASS4 in the development and progression of non-small cell lung cancer (NSCLC) remain unclear. In this study, CASS4 overexpression inhibited E-cadherin expression and enhanced invasion in NSCLC cell line transfected with CASS4 plasmid, while CASS4 depletion upregulated E-cadherin expression and inhibited invasion in NSCLC cell line transfected with CASS4 siRNA. The effect of CASS4 overexpression in facilitating invasion of NSCLC cells was reversed by restoring E-cadherin expression, which indicates that CASS4 may promote invasion by inhibiting E-cadherin expression. Subsequent immunohistochemistry results confirmed that CASS4 overexpression correlated with loss of E-cadherin expression. We next investigated the phosphorylation levels of focal adhesion kinase (FAK), p38, extracellular signal-related kinase (ERK), and AKT after CASS4 plasmid or CASS4 siRNA transfection. CASS4 facilitated AKT (Ser473) phosphorylation. Treatment with an AKT phosphorylation inhibitor reversed the increased invasive capacity and downregulation of E-cadherin protein induced by CASS4 overexpression. Taken together, the present results indicate that CASS4 may promote NSCLC invasion by activating the AKT signaling pathway, thereby inhibiting E-cadherin expression.
Collapse
Affiliation(s)
- Ailin Li
- Department of Radiotherapy, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Weiwei Zhang
- Department of Radiotherapy, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Huifang Xia
- Department of Radiotherapy, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yuan Miao
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, China.
| | - Haijing Zhou
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, China
| | - Xiupeng Zhang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, China
| | - Qianze Dong
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, China
| | - Qingchang Li
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, China
| | - Xueshan Qiu
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, China
| | - Enhua Wang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, China
| |
Collapse
|
25
|
Abstract
Alzheimer's disease (AD) is a progressive, neurodegenerative disease and the most common form of dementia in elderly people. It is an emerging public health problem that poses a huge societal burden. Linkage analysis was the first milestone in unraveling the mutations in APP, PSEN1, and PSEN2 that cause early-onset AD, followed by the discovery of apolipoprotein E-ε4 allele as the only one genetic risk factor for late-onset AD. Genome-wide association studies have revolutionized genetic research and have identified over 20 genetic loci associated with late-onset AD. Recently, next-generation sequencing technologies have enabled the identification of rare disease variants, including unmasking small mutations with intermediate risk of AD in PLD3, TREM2, UNC5C, AKAP9, and ADAM10. This review provides an overview of the genetic basis of AD and the relationship between these risk genes and the neuropathologic features of AD. An understanding of genetic mechanisms underlying AD pathogenesis and the potentially implicated pathways will lead to the development of novel treatment for this devastating disease.
Collapse
Affiliation(s)
- Mohan Giri
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, People’s Republic of China
| | - Man Zhang
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, People’s Republic of China
| | - Yang Lü
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, People’s Republic of China
| |
Collapse
|
26
|
Knutson DC, Mitzey AM, Talton LE, Clagett-Dame M. Mice null for NEDD9 (HEF1α) display extensive hippocampal dendritic spine loss and cognitive impairment. Brain Res 2015; 1632:141-55. [PMID: 26683084 DOI: 10.1016/j.brainres.2015.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/23/2015] [Accepted: 12/01/2015] [Indexed: 01/28/2023]
Abstract
NEDD9 (neural precursor cell expressed, developmentally down-regulated 9) is a member of the CAS (Crk-associated substrate) family of scaffolding proteins that regulate cell adhesion and migration. A Nedd9 knock-out/lacZ knock-in mouse (Nedd9(-/)(-)) was developed in order to study Nedd9 expression and function in the nervous system. Herein we show that NEDD9 is expressed in the adult brain and is prominently expressed in the hippocampus. Behavioral testing uncovered functional deficits in Nedd9(-)(/)(-) mice. In the Morris water maze test, Nedd9(-)(/)(-) mice showed deficits in both the ability to learn the task as well as in their ability to recall the platform location. There was no change in the gross morphology of the hippocampus, and stereological analysis of BrdU-labeled newly formed hippocampal cells suggested that this defect is not secondary to altered neurogenesis. However, analysis of the hippocampus revealed extensive loss of dendritic spine density in both the dentate gyrus (DG) and CA1 regions. Spine loss occurred equally across all branch orders and regions of the dendrite. Analysis of spine density in Nedd9(-)(/)(-) mice at 1.5, 6 and 10 months revealed an age-dependent spine loss. This work shows that NEDD9 is required for the maintenance of dendritic spines in the hippocampus, and suggests it could play a role in learning and memory.
Collapse
Affiliation(s)
- D C Knutson
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - A M Mitzey
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - L E Talton
- Behavioral Testing Core Facility, University of California, Los Angeles, CA 90095, USA
| | - M Clagett-Dame
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA; Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA.
| |
Collapse
|
27
|
Deneka A, Korobeynikov V, Golemis EA. Embryonal Fyn-associated substrate (EFS) and CASS4: The lesser-known CAS protein family members. Gene 2015; 570:25-35. [PMID: 26119091 DOI: 10.1016/j.gene.2015.06.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 06/23/2015] [Indexed: 01/15/2023]
Abstract
The CAS (Crk-associated substrate) adaptor protein family consists of four members: CASS1/BCAR1/p130Cas, CASS2/NEDD9/HEF1/Cas-L, CASS3/EFS/Sin and CASS4/HEPL. While CAS proteins lack enzymatic activity, they contain specific recognition and binding sites for assembly of larger signaling complexes that are essential for cell proliferation, survival, migration, and other processes. All family members are intermediates in integrin-dependent signaling pathways mediated at focal adhesions, and associate with FAK and SRC family kinases to activate downstream effectors regulating the actin cytoskeleton. Most studies of CAS proteins to date have been focused on the first two members, BCAR1 and NEDD9, with altered expression of these proteins now appreciated as influencing disease development and prognosis for cancer and other serious pathological conditions. For these family members, additional mechanisms of action have been defined in receptor tyrosine kinase (RTK) signaling, estrogen receptor signaling or cell cycle progression, involving discrete partner proteins such as SHC, NSP proteins, or AURKA. By contrast, EFS and CASS4 have been less studied, although structure-function analyses indicate they conserve many elements with the better-known family members. Intriguingly, a number of recent studies have implicated these proteins in immune system function, and the pathogenesis of developmental disorders, autoimmune disorders including Crohn's disease, Alzheimer's disease, cancer and other diseases. In this review, we summarize the current understanding of EFS and CASS4 protein function in the context of the larger CAS family group.
Collapse
Affiliation(s)
- Alexander Deneka
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, United States; Kazan Federal University, 420000, Kazan, Russian Federation
| | - Vladislav Korobeynikov
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, United States; Novosibirsk State University, Medical Department, 630090, Novosibirsk, Russian Federation
| | - Erica A Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, United States.
| |
Collapse
|
28
|
Zhang SS, Wu LH, Liu Q, Chen KS, Zhang XF. Elevated expression of NEDD9 is associated with metastatic activity in gastric cancer. Onco Targets Ther 2015; 8:633-40. [PMID: 25792847 PMCID: PMC4360801 DOI: 10.2147/ott.s77904] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objective To investigate the protein and mRNA expression of NEDD9 in gastric cancer (GC) tissues, adjacent atypical hyperplasia tissues, and normal gastric mucosa tissues, and analyze its relationship with the pathological features and prognosis of GC. Methods Forty cases of GC tissues, 20 cases of adjacent atypical hyperplasia tissues, and 40 cases of normal gastric mucous tissues were collected. Immunohistochemistry and Western blot were used to examine the expression of NEDD9 protein in various tissues. Situ hybridization and reverse transcription polymerase chain reaction were applied to detect the expression of NEDD9 mRNA in various tissues. The correlation of NEDD9 expression with invasion and metastasis of GC was analyzed. Results The protein expression level of NEDD9 was significantly higher in GC tissues than in adjacent atypical hyperplasia tissues and normal gastric mucous tissues (P<0.05). The protein expression level of NEDD9 was positively related to the invasion depth of carcinoma and tumor lymph node metastasis (P<0.05), but unrelated to age, sex, tumor size, and clinical classification of cancer (P<0.05). The mRNA expression level of NEDD9 was also significantly higher in GC tissues than in adjacent atypical hyperplasia tissues and normal gastric mucous tissues (P<0.05), and positively related with the tumor lymph node metastasis and invasion depth of carcinoma (P<0.05). Conclusion NEDD9 is involved in the occurrence and development of GC, and it may be an important biological marker of GC metastasis and infiltration.
Collapse
Affiliation(s)
- Si-Sen Zhang
- The Emergency Department, People's Hospital of Zhengzhou, Zhengzhou, Henan, People's Republic of China
| | - Li-Hua Wu
- The Emergency Department, People's Hospital of Zhengzhou, Zhengzhou, Henan, People's Republic of China
| | - Qing Liu
- The Emergency Department, People's Hospital of Zhengzhou, Zhengzhou, Henan, People's Republic of China
| | - Kui-Sheng Chen
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Xie-Fu Zhang
- General Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
29
|
Yang BH, Floess S, Hagemann S, Deyneko IV, Groebe L, Pezoldt J, Sparwasser T, Lochner M, Huehn J. Development of a unique epigenetic signature during in vivo Th17 differentiation. Nucleic Acids Res 2015; 43:1537-48. [PMID: 25593324 PMCID: PMC4330377 DOI: 10.1093/nar/gkv014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Activated naive CD4+ T cells are highly plastic cells that can differentiate into various T helper (Th) cell fates characterized by the expression of effector cytokines like IFN-γ (Th1), IL-4 (Th2) or IL-17A (Th17). Although previous studies have demonstrated that epigenetic mechanisms including DNA demethylation can stabilize effector cytokine expression, a comprehensive analysis of the changes in the DNA methylation pattern during differentiation of naive T cells into Th cell subsets is lacking. Hence, we here performed a genome-wide methylome analysis of ex vivo isolated naive CD4+ T cells, Th1 and Th17 cells. We could demonstrate that naive CD4+ T cells share more demethylated regions with Th17 cells when compared to Th1 cells, and that overall Th17 cells display the highest number of demethylated regions, findings which are in line with the previously reported plasticity of Th17 cells. We could identify seven regions located in Il17a, Zfp362, Ccr6, Acsbg1, Dpp4, Rora and Dclk1 showing pronounced demethylation selectively in ex vivo isolated Th17 cells when compared to other ex vivo isolated Th cell subsets and in vitro generated Th17 cells, suggesting that this unique epigenetic signature allows identifying and functionally characterizing in vivo generated Th17 cells.
Collapse
Affiliation(s)
- Bi-Huei Yang
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stefan Floess
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stefanie Hagemann
- Institute for Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Igor V Deyneko
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lothar Groebe
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Joern Pezoldt
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Tim Sparwasser
- Institute for Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Matthias Lochner
- Institute for Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
30
|
Sertkaya S, Hamid SM, Dilsiz N, Varisli L. Decreased expression of EFS is correlated with the advanced prostate cancer. Tumour Biol 2014; 36:799-805. [PMID: 25296736 DOI: 10.1007/s13277-014-2703-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/01/2014] [Indexed: 01/17/2023] Open
Abstract
Prostate cancer is the most frequently diagnosed malignant neoplasm in men in the developed countries. Although the progression of prostate cancer and the processes of invasion and metastasis by tumor cells are comparatively well understood, the genes involved in these processes are not fully determined. Therefore, a common area of research interest is the identification of novel molecules that are involved in these processes. In the present study, we have used in silico and experimental approaches to compare the expression of embryonal Fyn-associated substrate (EFS) between normal prostate and prostate cancer. We showed that EFS expression is remarkably downregulated in prostate cancer cells, compared to normal prostate cells. We also found that decreased expression of EFS in prostate cancer cells is due to DNA methylation. In addition, we showed that high EFS expression is important to suppress a malignant behavior of prostate cancer cells. Therefore, we suggest that EFS should be considered as a novel tumor suppressor gene in prostate cancer.
Collapse
Affiliation(s)
- Selda Sertkaya
- Arts and Science Faculty, Department of Biology, Cancer Biology Laboratory, Harran University, Sanliurfa, Turkey
| | | | | | | |
Collapse
|
31
|
Abstract
Mutations inactivating the cilia-localized Pkd1 protein result in autosomal dominant polycystic kidney disease (ADPKD), a serious inherited syndrome affecting ∼ 1 in 500 people, in which accumulation of renal cysts eventually destroys kidney function. Severity of ADPKD varies throughout the population, for reasons thought to involve differences both in intragenic Pkd1 mutations and in modifier alleles. The scaffolding protein NEDD9, commonly dysregulated during cancer progression, interacts with Aurora-A (AURKA) kinase to control ciliary resorption, and with Src and other partners to influence proliferative signaling pathways often activated in ADPKD. We here demonstrate Nedd9 expression is deregulated in human ADPKD and a mouse ADPKD model. Although genetic ablation of Nedd9 does not independently influence cystogenesis, constitutive absence of Nedd9 strongly promotes cyst formation in the tamoxifen-inducible Pkd1fl/fl;Cre/Esr1(+) mouse model of ADPKD. This cystogenic effect is associated with striking morphological defects in the cilia of Pkd1(-/-);Nedd9(-/-) mice, associated with specific loss of ciliary localization of adenylase cyclase III in the doubly mutant genotype. Ciliary phenotypes imply a failure of Aurora-A activation: Compatible with this idea, Pkd1(-/-);Nedd9(-/-) mice had ciliary resorption defects, and treatment of Pkd1(-/-) mice with a clinical Aurora-A kinase inhibitor exacerbated cystogenesis. In addition, activation of the ADPKD-associated signaling effectors Src, Erk, and the mTOR effector S6 was enhanced, and Ca(2+) response to external stimuli was reduced, in Pkd1(-/-);Nedd9(-/-) versus Pkd1(-/-) mice. Together, these results indicated an important modifier action of Nedd9 on ADPKD pathogenesis involving failure to activate Aurora-A.
Collapse
|
32
|
Adaptors for disorders of the brain? The cancer signaling proteins NEDD9, CASS4, and PTK2B in Alzheimer's disease. Oncoscience 2014; 1:486-503. [PMID: 25594051 PMCID: PMC4278314 DOI: 10.18632/oncoscience.64] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 07/23/2014] [Indexed: 12/19/2022] Open
Abstract
No treatment strategies effectively limit the progression of Alzheimer's disease (AD), a common and debilitating neurodegenerative disorder. The absence of viable treatment options reflects the fact that the pathophysiology and genotypic causes of the disease are not well understood. The advent of genome-wide association studies (GWAS) has made it possible to broadly investigate genotypic alterations driving phenotypic occurrences. Recent studies have associated single nucleotide polymorphisms (SNPs) in two paralogous scaffolding proteins, NEDD9 and CASS4, and the kinase PTK2B, with susceptibility to late-onset AD (LOAD). Intriguingly, NEDD9, CASS4, and PTK2B have been much studied as interacting partners regulating oncogenesis and metastasis, and all three are known to be active in the brain during development and in cancer. However, to date, the majority of studies of these proteins have emphasized their roles in the directly cancer relevant processes of migration and survival signaling. We here discuss evidence for roles of NEDD9, CASS4 and PTK2B in additional processes, including hypoxia, vascular changes, inflammation, microtubule stabilization and calcium signaling, as potentially relevant to the pathogenesis of LOAD. Reciprocally, these functions can better inform our understanding of the action of NEDD9, CASS4 and PTK2B in cancer.
Collapse
|
33
|
Chang JX, Gao F, Zhao GQ, Zhang GJ. Effects of lentivirus-mediated RNAi knockdown of NEDD9 on human lung adenocarcinoma cells in vitro and in vivo. Oncol Rep 2014; 32:1543-9. [PMID: 25051398 DOI: 10.3892/or.2014.3347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/28/2014] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the biological behavior of lung adenocarcinoma A549 cells following transfection with NEDD9-specific lentiviral particles in vitro and in vivo. NEDD9-specific lentiviral particles were chemically synthesized and transfected into the human lung adenocarcinoma A549 cell line. NEDD9 mRNA and protein levels were determined by fluorescence quantitative RT-PCR and western blotting. Cell proliferation was evaluated using soft agar colony formation assays and flow cytometric analysis. Migration and invasion were evaluated by wound-healing and transwell assays and xenograft animal models. Transfection was successful, and expression levels of NEDD9 mRNA and protein in the lentivirus-NEDD9-siRNA group were downregulated. As indicated by soft agar colony formation assays, the number of clones in the siRNA group were significantly lower than the number of colonies in the blank and negative control groups (P<0.01). In addition, the percentage of cells in the S phase in the siRNA group was significantly lower than the percentages in the blank and negative control groups (P<0.05). Furthermore, as detected by cell migration and invasion assays, values of wound healing were increased and the number of invading cells were decreased in the siRNA group (both P<0.05). We also showed that lentivirus-mediated NEDD9-siRNA decreased the growth potential of subcutaneous A549 xenografts in vivo. These data imply that knockdown of the NEDD9 gene results in suppression of tumor cell proliferation, migration, invasion and cell growth in vitro and in vivo. Lentivirus-mediated NEDD9-siRNA may have potential therapeutic utility for human lung adenocarcinoma.
Collapse
Affiliation(s)
- Jing-Xia Chang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Feng Gao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Guo-Qiang Zhao
- Department of Microorganisms and Immunization, Preclinical Medicine of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Guo-Jun Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
34
|
Nikonova AS, Gaponova AV, Kudinov AE, Golemis EA. CAS proteins in health and disease: an update. IUBMB Life 2014; 66:387-95. [PMID: 24962474 DOI: 10.1002/iub.1282] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 06/07/2014] [Indexed: 12/30/2022]
Abstract
The CAS family of scaffolding proteins has increasingly attracted scrutiny as important for regulation of cancer-associated signaling. BCAR1 (also known as p130Cas), NEDD9 (HEF1, Cas-L), EFS (Sin), and CASS4 (HEPL) are regulated by and mediate cell attachment, growth factor, and chemokine signaling. Altered expression and activity of CAS proteins are now known to promote metastasis and drug resistance in cancer, influence normal development, and contribute to the pathogenesis of heart and pulmonary disease. In this article, we provide an update on recently published studies describing signals regulating and regulated by CAS proteins, and evidence for biological activity of CAS proteins in normal development, cancer, and other pathological conditions.
Collapse
Affiliation(s)
- Anna S Nikonova
- Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
35
|
Rosenthal SL, Kamboh MI. Late-Onset Alzheimer's Disease Genes and the Potentially Implicated Pathways. CURRENT GENETIC MEDICINE REPORTS 2014; 2:85-101. [PMID: 24829845 PMCID: PMC4013444 DOI: 10.1007/s40142-014-0034-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Late-onset Alzheimer's disease (LOAD) is a devastating neurodegenerative disease with no effective treatment or cure. In addition to APOE, recent large genome-wide association studies have identified variation in over 20 loci that contribute to disease risk: CR1, BIN1, INPP5D, MEF2C, TREM2, CD2AP, HLA-DRB1/HLA-DRB5, EPHA1, NME8, ZCWPW1, CLU, PTK2B, PICALM, SORL1, CELF1, MS4A4/MS4A6E, SLC24A4/RIN3,FERMT2, CD33, ABCA7, CASS4. In addition, rare variants associated with LOAD have also been identified in APP, TREM2 and PLD3 genes. Previous research has identified inflammatory response, lipid metabolism and homeostasis, and endocytosis as the likely modes through which these gene products participate in Alzheimer's disease. Despite the clustering of these genes across a few common pathways, many of their roles in disease pathogenesis have yet to be determined. In this review, we examine both general and postulated disease functions of these genes and consider a comprehensive view of their potential roles in LOAD risk.
Collapse
Affiliation(s)
- Samantha L. Rosenthal
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - M. Ilyas Kamboh
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261 USA
- Alzheimer’s Disease Research Center, University of Pittsburgh, Pittsburgh, PA USA
| |
Collapse
|
36
|
Baquiran JB, Bradbury P, O'Neill GM. Tyrosine Y189 in the substrate domain of the adhesion docking protein NEDD9 is conserved with p130Cas Y253 and regulates NEDD9-mediated migration and focal adhesion dynamics. PLoS One 2013; 8:e69304. [PMID: 23874939 PMCID: PMC3706375 DOI: 10.1371/journal.pone.0069304] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 06/07/2013] [Indexed: 11/19/2022] Open
Abstract
The focal adhesion docking protein NEDD9/HEF1/Cas-L regulates cell migration and cancer invasion. NEDD9 is a member of the Cas family of proteins that share conserved overall protein-protein interaction domain structure, including a substrate domain that is characterized by extensive tyrosine (Y) phosphorylation. Previous studies have suggested that phosphorylation of Y253 in the substrate domain of the Cas family protein p130Cas is specifically required for p130Cas function in cell migration. While it is clear that tyrosine phosphorylation of the NEDD9 substrate domain is similarly required for the regulation of cell motility, whether individual NEDD9 tyrosine residues have discrete function in regulating motility has not previously been reported. In the present study we have used a global sequence alignment of Cas family proteins to identify a putative NEDD9 equivalent of p130Cas Y253. We find that NEDD9 Y189 aligns with p130Cas Y253 and that it is conserved among NEDD9 vertebrate orthologues. Expression of NEDD9 in which Y189 is mutated to phenylalanine results in increased rates of cell migration and is correlated with increased disassembly of GFP.NEDD9 focal adhesions. Conversely, mutation to Y189D significantly inhibits cell migration. Our previous data has suggested that NEDD9 stabilizes focal adhesions and the present data therefore suggests that phosphorylation of Y189 NEDD9 is required for this function. These findings indicate that the individual tyrosine residues of the NEDD9 substrate domain may serve discrete functional roles. Given the important role of this protein in promoting cancer invasion, greater understanding of the function of the individual tyrosine residues is important for the future design of approaches to target NEDD9 to arrest cancer cell invasion.
Collapse
Affiliation(s)
- Jaime B. Baquiran
- Children’s Cancer Research Unit, Kids Research Institute, The Children’s Hospital at Westmead, Westmead, NSW, Australia
| | - Peta Bradbury
- Children’s Cancer Research Unit, Kids Research Institute, The Children’s Hospital at Westmead, Westmead, NSW, Australia
- Discipline of Paediatrics and Child Health, The University of Sydney, Sydney, NSW, Australia
| | - Geraldine M. O'Neill
- Children’s Cancer Research Unit, Kids Research Institute, The Children’s Hospital at Westmead, Westmead, NSW, Australia
- Discipline of Paediatrics and Child Health, The University of Sydney, Sydney, NSW, Australia
- * E-mail:
| |
Collapse
|
37
|
Abstract
The Crk family of adaptors is implicated in regulating various biological and pathological processes such as cell proliferation, adhesion, migration, invasion, phagocytosis, and survival. A large number of studies have shown that Crk plays an important role in aggressive and malignant behaviors of human cancers. In immunohistochemical analyses and gene-expression profiles, enhanced expression of Crk has been identified in adenocarcinomas of lung, breast, and stomach and in sarcomas and glioma. Overexpression of Crk in tumor cells induces the prominent tyrosine phosphorylations of scaffolding molecules such as p130(Cas) and paxillin through Src family tyrosine kinases and stimulates the activation loop of intracellular signalling, ultimately contributing to the increased motility and aggressive potential of cancer cells. Crk proteins thus are not simply conduits for intracellular signal transduction but also can control the amplitude of signalling. This review summarizes the significance of Crk and its mediated signaling assemblies, particularly in regulating tumor metastasis and invasion, and discusses the possibilities that they are potential cancer therapeutic targets.
Collapse
Affiliation(s)
- Masumi Tsuda
- Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | |
Collapse
|
38
|
Wallez Y, Mace PD, Pasquale EB, Riedl SJ. NSP-CAS Protein Complexes: Emerging Signaling Modules in Cancer. Genes Cancer 2012; 3:382-93. [PMID: 23226576 DOI: 10.1177/1947601912460050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The CAS (CRK-associated substrate) family of adaptor proteins comprises 4 members, which share a conserved modular domain structure that enables multiple protein-protein interactions, leading to the assembly of intracellular signaling platforms. Besides their physiological role in signal transduction downstream of a variety of cell surface receptors, CAS proteins are also critical for oncogenic transformation and cancer cell malignancy through associations with a variety of regulatory proteins and downstream effectors. Among the regulatory partners, the 3 recently identified adaptor proteins constituting the NSP (novel SH2-containing protein) family avidly bind to the conserved carboxy-terminal focal adhesion-targeting (FAT) domain of CAS proteins. NSP proteins use an anomalous nucleotide exchange factor domain that lacks catalytic activity to form NSP-CAS signaling modules. Additionally, the NSP SH2 domain can link NSP-CAS signaling assemblies to tyrosine-phosphorylated cell surface receptors. NSP proteins can potentiate CAS function by affecting key CAS attributes such as expression levels, phosphorylation state, and subcellular localization, leading to effects on cell adhesion, migration, and invasion as well as cell growth. The consequences of these activities are well exemplified by the role that members of both families play in promoting breast cancer cell invasiveness and resistance to antiestrogens. In this review, we discuss the intriguing interplay between the NSP and CAS families, with a particular focus on cancer signaling networks.
Collapse
Affiliation(s)
- Yann Wallez
- Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | | | | | | |
Collapse
|
39
|
Miao Y, Wang L, Liu Y, Li AL, Liu SL, Cao HY, Zhang XP, Jiang GY, Liu D, Wang EH. Overexpression and cytoplasmic accumulation of Hepl is associated with clinicopathological parameters and poor prognosis in non-small cell lung cancer. Tumour Biol 2012; 34:107-14. [PMID: 23001926 DOI: 10.1007/s13277-012-0517-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 09/05/2012] [Indexed: 01/04/2023] Open
Abstract
Hepl, first described in 2008, is the fourth member of the Crk-associated substrate (CAS) family and is specifically expressed in the lung. Compared to other CAS proteins, Hepl has a varying effect on cell migration in different cell types. We speculated that Hepl may play a role in lung cancer invasion and metastasis. We quantified the expression and subcellular localization of Hepl in 143 non-small cell lung cancer (NSCLC) tissues, adjacent noncancerous tissues, and eight lung cancer cell lines using Western blotting, immunohistochemistry, and immunofluorescent staining. Expression of Hepl was correlated with the clinicopathological features of NSCLC. Hepl was overexpressed in 72.3 % (103/143) of the NSCLC tissues, compared to the adjacent noncancerous lung tissues (P = 0.022). Overexpression of Hepl was associated with lymph node metastasis and high TNM stage (P = 0.005 and P = 0.045, respectively). Kaplan-Meier survival curves and the log-rank test indicated that overexpression of Hepl correlated with poorer overall survival in NSCLC (P < 0.001), and Cox regression analysis demonstrated that overexpression of Hepl was an independent prognostic factor in NSCLC. Furthermore, cytoplasmic accumulation of Hepl was observed in a high metastatic potential lung cancer cell lines (H1299 and BE1), but not in low metastatic potential cell lines (LTE and A549). This study reveals that Hepl is overexpressed in the nucleus and aberrantly accumulates in the cytoplasm of NSCLC cells, and indicates that Hepl may play a role in the progression of lung cancer, including lymph node metastasis and TNM stage. Additionally, Hepl may be a useful prognostic factor in lung cancer.
Collapse
Affiliation(s)
- Yuan Miao
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Moore SW, Zhang X, Lynch CD, Sheetz MP. Netrin-1 attracts axons through FAK-dependent mechanotransduction. J Neurosci 2012; 32:11574-85. [PMID: 22915102 PMCID: PMC3461192 DOI: 10.1523/jneurosci.0999-12.2012] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 06/01/2012] [Accepted: 06/29/2012] [Indexed: 11/21/2022] Open
Abstract
The mechanism by which extracellular cues influence intracellular biochemical cascades that guide axons is important, yet poorly understood. Because of the mechanical nature of axon extension, we explored whether the physical interactions of growth cones with their guidance cues might be involved. In the context of mouse spinal commissural neuron axon attraction to netrin-1, we found that mechanical attachment of netrin-1 to the substrate was required for axon outgrowth, growth cone expansion, axon attraction and phosphorylation of focal adhesion kinase (FAK) and Crk-associated substrate (CAS). Myosin II activity was necessary for traction forces >30 pN on netrin-1. Interestingly, while these myosin II-dependent forces on netrin-1 substrates or beads were needed to increase the kinase activity and phosphorylation of FAK, they were not necessary for netrin-1 to increase CAS phosphorylation. When FAK kinase activity was inhibited, the growth cone's ability to recruit additional adhesions and to generate forces >60 pN on netrin-1 was disrupted. Together, these findings demonstrate an important role for mechanotransduction during chemoattraction to netrin-1 and that mechanical activation of FAK reinforces interactions with netrin-1 allowing greater forces to be exerted.
Collapse
Affiliation(s)
- Simon W Moore
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA.
| | | | | | | |
Collapse
|
41
|
Regulation of p130(Cas)/BCAR1 expression in tamoxifen-sensitive and tamoxifen-resistant breast cancer cells by EGR1 and NAB2. Neoplasia 2012; 14:108-20. [PMID: 22431919 DOI: 10.1593/neo.111760] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 01/20/2012] [Accepted: 01/20/2012] [Indexed: 01/19/2023] Open
Abstract
Elevated levels of p130(Cas)/BCAR1 (Crk-associated substrate/breast cancer antiestrogen resistance 1) are found in aggressive breast tumors and are associated with tamoxifen resistance of mammary cancers. p130(Cas) promotes the integration of protein complexes involved in multiple signaling pathways frequently deregulated in breast cancer. To elucidate mechanisms leading to p130(Cas) up-regulation in mammary carcinomas and during acquired tamoxifen resistance, the regulation of p130(Cas)/BCAR1 was studied. Because multiple putative binding motifs for the inducible transcription factor EGR1 were identified in the 5' region of BCAR1, the p130(Cas)/BCAR1 regulation by EGR1 and its coregulator NAB2 was investigated. Overexpression or short interfering RNA (siRNA)-mediated down-regulation of EGR1 or NAB2, and chromatin immunoprecipitations indicated that EGR1 and NAB2 act in concert to positively regulate p130(Cas)/BCAR1 expression in breast cancer cells. p130(Cas) depletion using siRNA showed that, in tamoxifen-sensitive MCF-7 cells, p130(Cas) regulates EGR1 and NAB2 expression, whereas in the derivative tamoxifen-resistant TAM-R cells, only NAB2 levels were influenced. BCAR1 messenger RNA and p130(Cas) protein were upregulated by phorbol esters following the kinetics of late response genes in MCF-7 but not in TAM-R cells. Thus, in MCF-7 cells, we identified a positive feedback loop where p130(Cas) positively regulates EGR1 and NAB2, which in turn induce p130(Cas) expression. Importantly, compared with MCF-7, enhanced NAB2 expression and increased EGR1 binding to the BCAR1 5' region observed in TAM-R may lead to the constitutively increased p130(Cas)/BCAR1 levels in TAM-R cells. The uncovered differences in this EGR1/NAB2/p130(Cas) network in MCF-7 versus TAM-R cells may also contribute to p130(Cas) up-regulation during acquired tamoxifen resistance.
Collapse
|
42
|
Bradbury P, Mahmassani M, Zhong J, Turner K, Paul A, Verrills NM, O'Neill GM. PP2A phosphatase suppresses function of the mesenchymal invasion regulator NEDD9. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:290-7. [PMID: 22061964 DOI: 10.1016/j.bbamcr.2011.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 10/18/2011] [Accepted: 10/18/2011] [Indexed: 12/26/2022]
Abstract
The mesenchymal mode of cancer cell invasion characterized by active adhesion turnover and a polarized actin cytoskeleton, is critically regulated by the adaptor protein NEDD9/HEF1/Cas-L. While it is known that NEDD9 is subject to extensive phosphorylation modification, the molecules that determine NEDD9 phosphorylation to stimulate adhesion turnover and mesenchymal cell morphologies are currently unknown. Earlier studies have suggested that the serine/threonine phosphatase PP2A regulates interconversion between a low molecular mass NEDD9 phosphoform and higher molecular mass phosphoforms. However, previous studies have used chemical inhibitors to block PP2A activity. In the present study we therefore aimed to specifically inhibit PP2A activity via siRNA and dominant negative approaches to investigate the effect of PP2A on interconversion between 115 kDa and 105 kDa NEDD9 and determine the functional consequence of PP2A activity for NEDD9 function. Strikingly, we find that while the phosphatase inhibitor Calyculin A indeed abrogates detachment-induced dephosphorylation of the 115 kDa NEDD9 phosphoform, PP2A depletion does not inhibit 115 kDa to 105 kDa interconversion. Our data suggest instead that PP2A targets discrete NEDD9 phosphorylation modifications separate to the events that mediate interconversion between the two forms. Functionally, PP2A depletion increases NEDD9 mediated cell spreading and mutation of S369 in the serine-rich region of NEDD9 to aspartate mimics this effect. Importantly, mutation of S369 to alanine abrogates the ability of dominant negative PP2A to increase NEDD9-mediated cell spreading. Collectively, our data reveal that the tumour suppressor PP2A may act via S369 to regulated NEDD9-mediated cell spreading.
Collapse
Affiliation(s)
- Peta Bradbury
- Children's Cancer Research Unit, Kids Research Institute, The Children's Hospital at Westmead, Westmead, NSW, 2145 Australia
| | | | | | | | | | | | | |
Collapse
|
43
|
Wade R, Di Bernardo MC, Richards S, Rossi D, Crowther-Swanepoel D, Gaidano G, Oscier DG, Catovsky D, Houlston RS. Association between single nucleotide polymorphism-genotype and outcome of patients with chronic lymphocytic leukemia in a randomized chemotherapy trial. Haematologica 2011; 96:1496-503. [PMID: 21659360 PMCID: PMC3186311 DOI: 10.3324/haematol.2011.043471] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/05/2011] [Accepted: 05/31/2011] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND There is variability in the outcome of patients with chronic lymphocytic leukemia with apparently the same stage of disease. Identifying genetic variants that influence patients' outcome and response to treatment may provide important insights into the biology of the disease. DESIGN AND METHODS We investigated the possibility that genetic variation influences outcome by conducting a genome-wide analysis of 346,831 single nucleotide polymorphisms in 356 patients entered into a phase III trial comparing the efficacy of fludarabine, chlorambucil, and fludarabine with cyclophosphamide as first-line treatment. Genotypes were linked to individual patients' outcome data and response to chemotherapy. The association between genotype and progression-free survival was assessed by Cox regression analysis adjusting for treatment and clinicopathology. RESULTS The strongest associations were shown for rs1949733 (ACOX3; P=8.22x10-7), rs1342899 (P=7.72×10(-7)) and rs11158493 (PPP2R5E; P=8.50×10(-7)). In addition, the 52 single nucleotide polymorphisms associated at P<10(-4) included rs438034 (CENPF; P=4.86×10(-6)), previously correlated with cancer progression, and rs2255235 (B2M; P=3.10×10(-5)) and rs2064501 (IL22RA2; P=4.81×10(-5)) which map to B-cell genes. CONCLUSIONS Our findings provide evidence that genetic variation is a determinant of progression-free survival of patients with chronic lymphocytic leukemia. Specific associations warrant further analyses.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Female
- Gene Expression Regulation, Leukemic
- Genotype
- Genotyping Techniques
- Humans
- Kaplan-Meier Estimate
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- Middle Aged
- Neoplasm Staging
- Polymorphism, Single Nucleotide
- Protein Phosphatase 2/genetics
- Quality Control
- RNA, Messenger
- Reproducibility of Results
Collapse
Affiliation(s)
- Rachel Wade
- Clinical Trial Service Unit, University of Oxford, Oxford, UK
| | | | - Sue Richards
- Clinical Trial Service Unit, University of Oxford, Oxford, UK
| | - Davide Rossi
- Division of Hematology, Department of Clinical and Experimental Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | | | - Gianluca Gaidano
- Division of Hematology, Department of Clinical and Experimental Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | - David G. Oscier
- Department of Haematology, Royal Bournemouth Hospital, Bournemouth, Dorset, UK
| | - Daniel Catovsky
- Section of Haemato-Oncology, Institute of Cancer Research, Sutton, Surrey, UK
| | - Richard S. Houlston
- Section of Cancer Genetics, Institute of Cancer Research, Sutton, Surrey, UK
| |
Collapse
|
44
|
Plotnikova OV, Pugacheva EN, Golemis EA. Aurora A kinase activity influences calcium signaling in kidney cells. ACTA ACUST UNITED AC 2011; 193:1021-32. [PMID: 21670214 PMCID: PMC3115793 DOI: 10.1083/jcb.201012061] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aurora A is abnormally expressed and activated in cells lining cysts associated with polycystic kidney disease and can phosphorylate and inactivate polycystin 2. Most studies of Aurora A (AurA) describe it as a mitotic centrosomal kinase. However, we and others have recently identified AurA functions as diverse as control of ciliary resorption, cell differentiation, and cell polarity control in interphase cells. In these activities, AurA is transiently activated by noncanonical signals, including Ca2+-dependent calmodulin binding. These and other observations suggested that AurA might be involved in pathological conditions, such as polycystic kidney disease (PKD). In this paper, we show that AurA is abundant in normal kidney tissue but is also abnormally expressed and activated in cells lining PKD-associated renal cysts. PKD arises from mutations in the PKD1 or PKD2 genes, encoding polycystins 1 and 2 (PC1 and PC2). AurA binds, phosphorylates, and reduces the activity of PC2, a Ca2+-permeable nonselective cation channel and, thus, limits the amplitude of Ca2+ release from the endoplasmic reticulum. These and other findings suggest AurA may be a relevant new biomarker or target in the therapy of PKD.
Collapse
Affiliation(s)
- Olga V Plotnikova
- Department of Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | |
Collapse
|
45
|
NEDD9 and BCAR1 negatively regulate E-cadherin membrane localization, and promote E-cadherin degradation. PLoS One 2011; 6:e22102. [PMID: 21765937 PMCID: PMC3134485 DOI: 10.1371/journal.pone.0022102] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Accepted: 06/17/2011] [Indexed: 01/08/2023] Open
Abstract
The Cas scaffolding proteins (NEDD9/HEF1/CAS-L, BCAR1/p130Cas, EFSSIN, and HEPL/CASS4) regulate cell migration, division and survival, and are often deregulated in cancer. High BCAR1 expression is linked to poor prognosis in breast cancer patients, while upregulation of NEDD9 contributes to the metastatic behavior of melanoma and glioblastoma cells. Our recent work knocking out the single Drosophila Cas protein, Dcas, identified a genetic interaction with E-cadherin. As E-cadherin is often downregulated during epithelial-mesenchymal transition (EMT) prior to metastasis, if such an activity was conserved in mammals it might partially explain how Cas proteins promote aggressive tumor behavior. We here establish that Cas proteins negatively regulate E-cadherin expression in human mammary cells. Cas proteins do not affect E-cadherin transcription, but rather, BCAR1 and NEDD9 signal through SRC to promote E-cadherin removal from the cell membrane and lysosomal degradation. We also find mammary tumors arising in MMTV-polyoma virus T-antigen mice have enhanced junctional E-cadherin in a Nedd9−/− background. Cumulatively, these results suggest a new role for Cas proteins in cell-cell adhesion signaling in cancer.
Collapse
|
46
|
Estradiol stabilizes the 105-kDa phospho-form of the adhesion docking protein NEDD9 and suppresses NEDD9-dependent cell spreading in breast cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:340-5. [DOI: 10.1016/j.bbamcr.2010.11.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 11/24/2010] [Accepted: 11/29/2010] [Indexed: 11/21/2022]
|
47
|
Cabodi S, del Pilar Camacho-Leal M, Di Stefano P, Defilippi P. Integrin signalling adaptors: not only figurants in the cancer story. Nat Rev Cancer 2010; 10:858-70. [PMID: 21102636 DOI: 10.1038/nrc2967] [Citation(s) in RCA: 247] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Current evidence highlights the ability of adaptor (or scaffold) proteins to create signalling platforms that drive cellular transformation upon integrin-dependent adhesion and growth factor receptor activation. The understanding of the biological effects that are regulated by these adaptors in tumours might be crucial for the identification of new targets and the development of innovative therapeutic strategies for human cancer. In this Review we discuss the relevance of adaptor proteins in signalling that originates from integrin-mediated cell-extracellular matrix (ECM) adhesion and growth factor stimulation in the context of cell transformation and tumour progression. We specifically underline the contribution of p130 Crk-associated substrate (p130CAS; also known as BCAR1), neural precursor cell expressed, developmentally down-regulated 9 (NEDD9; also known as HEF1), CRK and the integrin-linked kinase (ILK)-pinch-parvin (IPP) complex to cancer, along with the more recently identified p140 Cas-associated protein (p140CAP; also known as SRCIN1).
Collapse
Affiliation(s)
- Sara Cabodi
- Molecular Biotechnology Centre and Department of Genetics, Biology and Biochemistry, University of Torino, Via Nizza 52, Torino 10126, Italy
| | | | | | | |
Collapse
|
48
|
Tikhmyanova N, Tulin AV, Roegiers F, Golemis EA. Dcas supports cell polarization and cell-cell adhesion complexes in development. PLoS One 2010; 5:e12369. [PMID: 20808771 PMCID: PMC2927436 DOI: 10.1371/journal.pone.0012369] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 07/29/2010] [Indexed: 01/17/2023] Open
Abstract
Mammalian Cas proteins regulate cell migration, division and survival, and are often deregulated in cancer. However, the presence of four paralogous Cas family members in mammals (BCAR1/p130Cas, EFS/Sin1, NEDD9/HEF1/Cas-L, and CASS4/HEPL) has limited their analysis in development. We deleted the single Drosophila Cas gene, Dcas, to probe the developmental function of Dcas. Loss of Dcas had limited effect on embryonal development. However, we found that Dcas is an important modulator of the severity of the developmental phenotypes of mutations affecting integrins (If and mew) and their downstream effectors Fak56D or Src42A. Strikingly, embryonic lethal Fak56D-Dcas double mutant embryos had extensive cell polarity defects, including mislocalization and reduced expression of E-cadherin. Further genetic analysis established that loss of Dcas modified the embryonal lethal phenotypes of embryos with mutations in E-cadherin (Shg) or its signaling partners p120- and beta-catenin (Arm). These results support an important role for Cas proteins in cell-cell adhesion signaling in development.
Collapse
Affiliation(s)
- Nadezhda Tikhmyanova
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
- Department of Biochemistry, Drexel University Medical School, Philadelphia, Pennsylvania, United States of America
| | - Alexei V. Tulin
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Fabrice Roegiers
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Erica A. Golemis
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
49
|
Lucas JT, Salimath BP, Slomiany MG, Rosenzweig SA. Regulation of invasive behavior by vascular endothelial growth factor is HEF1-dependent. Oncogene 2010; 29:4449-59. [PMID: 20498643 PMCID: PMC2921319 DOI: 10.1038/onc.2010.185] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 04/08/2010] [Accepted: 04/19/2010] [Indexed: 12/13/2022]
Abstract
We previously reported a vascular endothelial growth factor (VEGF) autocrine loop in head and neck squamous cell carcinoma (HNSCC) cell lines, supporting a role for VEGF in HNSCC tumorigenesis. Using a phosphotyrosine proteomics approach, we screened the HNSCC cell line, squamous cell carcinoma-9 for effectors of VEGFR2 signaling. A cluster of proteins involved in cell migration and invasion, including the p130Cas paralog, human enhancer of filamentation 1 (HEF1/Cas-L/Nedd9) was identified. HEF1 silencing and overexpression studies revealed a role for VEGF in regulating cell migration, invasion and matrix metalloproteinase (MMP) expression in a HEF1-dependent manner. Moreover, cells plated on extracellular matrix-coated coverslips showed enhanced invadopodia formation in response to VEGF that was HEF1-dependent. Immunolocalization revealed that HEF1 colocalized to invadopodia with MT1-MMP. Analysis of HNSCC tissue microarrays for HEF1 immunoreactivity revealed a 6.5-fold increase in the odds of having a metastasis with a high HEF1 score compared with a low HEF1 score. These findings suggest that HEF1 may be prognostic for advanced stage HNSCC. They also show for the first time that HEF1 is required for VEGF-mediated HNSCC cell migration and invasion, consistent with HEF1's recent identification as a metastatic regulator. These results support a strategy targeting VEGF:VEGFR2 in HNSCC therapeutics.
Collapse
Affiliation(s)
- John T. Lucas
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC
| | - Bharathi P. Salimath
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC
| | - Mark G. Slomiany
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, SC
| | - Steven A. Rosenzweig
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
50
|
Donato DM, Ryzhova LM, Meenderink LM, Kaverina I, Hanks SK. Dynamics and mechanism of p130Cas localization to focal adhesions. J Biol Chem 2010; 285:20769-79. [PMID: 20430882 PMCID: PMC2898362 DOI: 10.1074/jbc.m109.091207] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 03/10/2010] [Indexed: 01/09/2023] Open
Abstract
The docking protein p130Cas is a major Src substrate involved in integrin signaling and mechanotransduction. Tyrosine phosphorylation of p130Cas in focal adhesions (FAs) has been linked to enhanced cell migration, invasion, proliferation, and survival. However, the mechanism of p130Cas targeting to FAs is uncertain, and dynamic aspects of its localization have not been explored. Using live cell microscopy, we show that fluorophore-tagged p130Cas is a component of FAs throughout the FA assembly and disassembly stages, although it resides transiently in FAs with a high mobile fraction. Deletion of either the N-terminal Src homology 3 (SH3) domain or the Cas-family C-terminal homology (CCH) domain significantly impaired p130Cas FA localization, and deletion of both domains resulted in full exclusion. Focal adhesion kinase was implicated in the FA targeting function of the p130Cas SH3 domain. Consistent with their roles in FA targeting, both the SH3 and CCH domains were found necessary for p130Cas to fully undergo tyrosine phosphorylation and promote cell migration. By revealing the capacity of p130Cas to function in FAs throughout their lifetime, clarifying FA targeting mechanism, and demonstrating the functional importance of the highly conserved CCH domain, our results advance the understanding of an important aspect of integrin signaling.
Collapse
Affiliation(s)
- Dominique M. Donato
- From the Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Larisa M. Ryzhova
- From the Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Leslie M. Meenderink
- From the Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Irina Kaverina
- From the Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Steven K. Hanks
- From the Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|