1
|
Ewald CY, Nyström A. Mechanotransduction through hemidesmosomes during aging and longevity. J Cell Sci 2023; 136:jcs260987. [PMID: 37522320 DOI: 10.1242/jcs.260987] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023] Open
Abstract
Hemidesmosomes are structural protein complexes localized at the interface of tissues with high mechanical demand and shear forces. Beyond tissue anchoring, hemidesmosomes have emerged as force-modulating structures important for translating mechanical cues into biochemical and transcriptional adaptation (i.e. mechanotransduction) across tissues. Here, we discuss the recent insights into the roles of hemidesmosomes in age-related tissue regeneration and aging in C. elegans, mice and humans. We highlight the emerging concept of preserved dynamic mechanoregulation of hemidesmosomes in tissue maintenance and healthy aging.
Collapse
Affiliation(s)
- Collin Y Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Zürich, Schwerzenbach CH-8603, Switzerland
| | - Alexander Nyström
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg DE-79104, Germany
- Freiburg Institute for Advanced Studies (FRIAS), Albertstraße 19, Freiburg im Breisgau DE-79104, Germany
| |
Collapse
|
2
|
Te Molder L, de Pereda JM, Sonnenberg A. Regulation of hemidesmosome dynamics and cell signaling by integrin α6β4. J Cell Sci 2021; 134:272177. [PMID: 34523678 DOI: 10.1242/jcs.259004] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Hemidesmosomes (HDs) are specialized multiprotein complexes that connect the keratin cytoskeleton of epithelial cells to the extracellular matrix (ECM). In the skin, these complexes provide stable adhesion of basal keratinocytes to the underlying basement membrane. Integrin α6β4 is a receptor for laminins and plays a vital role in mediating cell adhesion by initiating the assembly of HDs. In addition, α6β4 has been implicated in signal transduction events that regulate diverse cellular processes, including proliferation and survival. In this Review, we detail the role of α6β4 in HD assembly and beyond, and we discuss the molecular mechanisms that regulate its function.
Collapse
Affiliation(s)
- Lisa Te Molder
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Jose M de Pereda
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007 Salamanca, Spain
| | - Arnoud Sonnenberg
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
3
|
EGFR-dependent tyrosine phosphorylation of integrin β4 is not required for downstream signaling events in cancer cell lines. Sci Rep 2021; 11:8675. [PMID: 33883672 PMCID: PMC8060419 DOI: 10.1038/s41598-021-88134-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 04/07/2021] [Indexed: 02/02/2023] Open
Abstract
In epithelial cancers, the epidermal growth factor receptor (EGFR) and integrin α6β4 are frequently overexpressed and found to synergistically activate intracellular signaling pathways that promote cell proliferation and migration. In cancer cells, the β4 subunit is phosphorylated at tyrosine residues not normally recognized as kinase substrates; however, the function of these phosphotyrosine residues in cancer cells is a subject of much debate. In EGFR-overexpressing carcinoma cells, we found that the Src family kinase (SFK) inhibitor PP2 reduces β4 tyrosine phosphorylation following the activation of EGFR. However, siRNA mediated knockdown of the SFKs Src, Fyn, Yes and Lyn, individually or in combination, did not affect the EGF-induced phosphorylation of β4. Using phospho-peptide affinity chromatography and mass spectrometry, we found that PLCγ1 binds β4 at the phosphorylated residues Y1422/Y1440, but were unable to verify this interaction in A431 carcinoma cells that overexpress the EGFR. Furthermore, using A431 cells devoid of β4 or reconstituted with phenylalanine specific mutants of β4, the activation of several downstream signaling pathways, including PLCγ/PKC, MAPK and PI3K/Akt, were not substantially affected. We conclude that tyrosine-phosphorylated β4 does not enhance EGFR-mediated signaling in EGFR-overexpressing cells, despite the fact that this integrin subunit is highly tyrosine phosphorylated in these cells.
Collapse
|
4
|
Michopoulou A, Montmasson M, Garnier C, Lambert E, Dayan G, Rousselle P. A novel mechanism in wound healing: Laminin 332 drives MMP9/14 activity by recruiting syndecan-1 and CD44. Matrix Biol 2020; 94:1-17. [PMID: 32621878 DOI: 10.1016/j.matbio.2020.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022]
Abstract
Re-epithelialization describes the resurfacing of a skin wound with new epithelium. In response to various stimuli including that of growth factors, cytokines and extracellular matrix (ECM), wound edge epidermal keratinocytes undergo cytoskeleton rearrangements compatible with their motile behavior and develop protrusive adhesion contacts. Matrix metalloproteinases (MMP) expression is crucial for proper cell movement and ECM remodeling; however, their deposition mechanism is unknown in keratinocytes. Here, we show that similar to cytokine IL-1ß, the precursor laminin 332 pro-migratory fragment G45 induces expression of the MMP-9 pro-enzyme, which together with MMP-14, further exerts its proteolytic activity within epithelial podosomes. This event strictly depends on the expression of the proteoglycan receptor syndecan-1 that was found in a ring surrounding the podosome core, co-localised with CD44. Our findings uncover that by directly recruiting both syndecan-1 and CD44, the laminin-332 G45 domain plays a major role in regulating mechanisms underlying keratinocyte / ECM remodeling during wound repair.
Collapse
Affiliation(s)
- Anna Michopoulou
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, UMR 5305; CNRS; Univ. Lyon 1; SFR BioSciences Gerland-Lyon Sud, 7 passage du Vercors, 69367, Lyon, France
| | - Marine Montmasson
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, UMR 5305; CNRS; Univ. Lyon 1; SFR BioSciences Gerland-Lyon Sud, 7 passage du Vercors, 69367, Lyon, France
| | - Cécile Garnier
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, UMR 5305; CNRS; Univ. Lyon 1; SFR BioSciences Gerland-Lyon Sud, 7 passage du Vercors, 69367, Lyon, France
| | - Elise Lambert
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, UMR 5305; CNRS; Univ. Lyon 1; SFR BioSciences Gerland-Lyon Sud, 7 passage du Vercors, 69367, Lyon, France
| | - Guila Dayan
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, UMR 5305; CNRS; Univ. Lyon 1; SFR BioSciences Gerland-Lyon Sud, 7 passage du Vercors, 69367, Lyon, France
| | - Patricia Rousselle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, UMR 5305; CNRS; Univ. Lyon 1; SFR BioSciences Gerland-Lyon Sud, 7 passage du Vercors, 69367, Lyon, France.
| |
Collapse
|
5
|
Lietha D, Izard T. Roles of Membrane Domains in Integrin-Mediated Cell Adhesion. Int J Mol Sci 2020; 21:ijms21155531. [PMID: 32752284 PMCID: PMC7432473 DOI: 10.3390/ijms21155531] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022] Open
Abstract
The composition and organization of the plasma membrane play important functional and regulatory roles in integrin signaling, which direct many physiological and pathological processes, such as development, wound healing, immunity, thrombosis, and cancer metastasis. Membranes are comprised of regions that are thick or thin owing to spontaneous partitioning of long-chain saturated lipids from short-chain polyunsaturated lipids into domains defined as ordered and liquid-disorder domains, respectively. Liquid-ordered domains are typically 100 nm in diameter and sometimes referred to as lipid rafts. We posit that integrin β senses membrane thickness and that mechanical force on the membrane regulates integrin activation through membrane thinning. This review examines what we know about the nature and mechanism of the interaction of integrins with the plasma membrane and its effects on regulating integrins and its binding partners.
Collapse
Affiliation(s)
- Daniel Lietha
- Cell Signaling and Adhesion Group, Structural and Chemical Biology, Margarita Salas Center for Biological Research (CIB-CSIC), E-28040 Madrid, Spain;
| | - Tina Izard
- Cell Adhesion Laboratory, Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
- Correspondence:
| |
Collapse
|
6
|
Rousselle P, Scoazec JY. Laminin 332 in cancer: When the extracellular matrix turns signals from cell anchorage to cell movement. Semin Cancer Biol 2020; 62:149-165. [PMID: 31639412 DOI: 10.1016/j.semcancer.2019.09.026] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/22/2019] [Accepted: 09/29/2019] [Indexed: 02/07/2023]
Abstract
Laminin 332 is crucial in the biology of epithelia. This large extracellular matrix protein consists of the heterotrimeric assembly of three subunits - α3, β3, and γ2 - and its multifunctionality relies on a number of extracellular proteolytic processing events. Laminin 332 is central to normal epithelium homeostasis by sustaining cell adhesion, polarity, proliferation, and differentiation. It also supports a major function in epithelial tissue formation, repair, and regeneration by buttressing cell migration and survival and basement membrane assembly. Interest in this protein increased after the discovery that its expression is perturbed in tumor cells, cancer-associated fibroblasts, and the tumor microenvironment. This review summarizes current knowledge regarding the established involvement of the laminin 332 γ2 chain in tumor invasiveness and discusses the role of its α3 and β3 subunits.
Collapse
Affiliation(s)
- Patricia Rousselle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS - Université Lyon 1, Institut de Biologie et Chimie des Protéines, SFR BioSciences Gerland-Lyon Sud, 7 passage du Vercors, F-69367, France.
| | - Jean Yves Scoazec
- Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, 94805 Villejuif cedex, France; Université Paris Sud, Faculté de Médecine de Bicêtre, 94270 Le Kremlin Bicêtre, France
| |
Collapse
|
7
|
Manso JA, Gómez-Hernández M, Carabias A, Alonso-García N, García-Rubio I, Kreft M, Sonnenberg A, de Pereda JM. Integrin α6β4 Recognition of a Linear Motif of Bullous Pemphigoid Antigen BP230 Controls Its Recruitment to Hemidesmosomes. Structure 2019; 27:952-964.e6. [PMID: 31006587 DOI: 10.1016/j.str.2019.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/13/2019] [Accepted: 03/22/2019] [Indexed: 11/25/2022]
Abstract
Mechanical stability of epithelia requires firm attachment to the basement membrane via hemidesmosomes. Dysfunction of hemidesmosomal proteins causes severe skin-blistering diseases. Two plakins, plectin and BP230 (BPAG1e), link the integrin α6β4 to intermediate filaments in epidermal hemidesmosomes. Here, we show that a linear sequence within the isoform-specific N-terminal region of BP230 binds to the third and fourth FnIII domains of β4. The crystal structure of the complex and mutagenesis analysis revealed that BP230 binds between the two domains of β4. BP230 induces closing of the two FnIII domains that are locked in place by an interdomain ionic clasp required for binding. Disruption of BP230-β4 binding prevents recruitment of BP230 to hemidesmosomes in human keratinocytes, revealing a key role of this interaction for hemidesmosome assembly. Phosphomimetic substitutions in β4 and BP230 destabilize the complex. Thus, our study provides insights into the architecture of hemidesmosomes and potential mechanisms of regulation.
Collapse
Affiliation(s)
- José A Manso
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas - University of Salamanca, Campus Unamuno, 37007 Salamanca, Spain
| | - María Gómez-Hernández
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas - University of Salamanca, Campus Unamuno, 37007 Salamanca, Spain
| | - Arturo Carabias
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas - University of Salamanca, Campus Unamuno, 37007 Salamanca, Spain
| | - Noelia Alonso-García
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas - University of Salamanca, Campus Unamuno, 37007 Salamanca, Spain
| | - Inés García-Rubio
- Centro Universitario de la Defensa, Ctra. Huesca s/n, 50090 Zaragoza, Spain
| | - Maaike Kreft
- Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Arnoud Sonnenberg
- Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - José M de Pereda
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas - University of Salamanca, Campus Unamuno, 37007 Salamanca, Spain.
| |
Collapse
|
8
|
The Role of Arrestin Domain-Containing 3 in Regulating Endocytic Recycling and Extracellular Vesicle Sorting of Integrin β4 in Breast Cancer. Cancers (Basel) 2018; 10:cancers10120507. [PMID: 30545011 PMCID: PMC6315883 DOI: 10.3390/cancers10120507] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/26/2018] [Accepted: 12/06/2018] [Indexed: 11/24/2022] Open
Abstract
Despite the established role of integrin β4 (ITG β4) in breast cancer progression, the importance of endocytic recycling of ITG β4 and its regulatory mechanism are poorly understood. Here, we found that a sub-population of ITG β4 is sorted into early endosomes, recycled back to the plasma membrane, and secreted in the form of extracellular vesicles (EVs) upon EGF treatment in triple negative breast cancer (TNBC) cells. A metastasis suppressor, ARRDC3 (arrestin domain-containing 3) prevents EGF-driven endocytic recycling of ITG β4 by inducing NEDD4-dependent ubiquitination of ITG β4 and targeting endosomal ITG β4 into lysosomes. Endocytic recycling of ITG β4 is linked to sorting of ITG β4 into EVs (ITG β4+ EVs). ITG β4+ EVs are mainly detectable from supernatants of TNBC cells and their production is inhibited by ARRDC3 expression. ARRDC3 reduces the metastatic potentials of breast cancer cell-derived EVs by reducing ITG β4 levels in EVs. Overall, current studies provide novel mechanistic insights on the regulatory mechanism of ITG β4 recycling, and its importance in invasive potentials of TNBC EVs, thus providing the basis for therapeutic targeting of the ARRDC3/ITG β4 pathway in TNBC.
Collapse
|
9
|
Osmani N, Pontabry J, Comelles J, Fekonja N, Goetz JG, Riveline D, Georges-Labouesse E, Labouesse M. An Arf6- and caveolae-dependent pathway links hemidesmosome remodeling and mechanoresponse. Mol Biol Cell 2017; 29:435-451. [PMID: 29237817 PMCID: PMC6014169 DOI: 10.1091/mbc.e17-06-0356] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 01/08/2023] Open
Abstract
Hemidesmosomes are epithelial-specific cell-matrix adhesions stably anchoring the intracellular keratin network to the extracellular matrix and providing mechanical resilience to epithelia. The small GTPase Arf6 and caveolae are essential for their remodeling, notably in response to external mechanical cues. Hemidesmosomes (HDs) are epithelial-specific cell–matrix adhesions that stably anchor the intracellular keratin network to the extracellular matrix. Although their main role is to protect the epithelial sheet from external mechanical strain, how HDs respond to mechanical stress remains poorly understood. Here we identify a pathway essential for HD remodeling and outline its role with respect to α6β4 integrin recycling. We find that α6β4 integrin chains localize to the plasma membrane, caveolae, and ADP-ribosylation factor-6+ (Arf6+) endocytic compartments. Based on fluorescence recovery after photobleaching and endocytosis assays, integrin recycling between both sites requires the small GTPase Arf6 but neither caveolin1 (Cav1) nor Cavin1. Strikingly, when keratinocytes are stretched or hypo-osmotically shocked, α6β4 integrin accumulates at cell edges, whereas Cav1 disappears from it. This process, which is isotropic relative to the orientation of stretch, depends on Arf6, Cav1, and Cavin1. We propose that mechanically induced HD growth involves the isotropic flattening of caveolae (known for their mechanical buffering role) associated with integrin diffusion and turnover.
Collapse
Affiliation(s)
- Naël Osmani
- IGBMC, Development and Stem Cells Program, CNRS (UMR 7104)/INSERM (U964), 67400 Illkirch, France.,Inserm U1109, MN3T, 67200 Strasbourg, France.,Université de Strasbourg, 67000 Strasbourg, France.,LabEx Medalis, Université de Strasbourg, Strasbourg 67000, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France
| | - Julien Pontabry
- IGBMC, Development and Stem Cells Program, CNRS (UMR 7104)/INSERM (U964), 67400 Illkirch, France.,Université de Strasbourg, 67000 Strasbourg, France
| | - Jordi Comelles
- IGBMC, Development and Stem Cells Program, CNRS (UMR 7104)/INSERM (U964), 67400 Illkirch, France.,Université de Strasbourg, 67000 Strasbourg, France.,Laboratory of Cell Physics, ISIS/IGBMC, CNRS UMR 7006, 67000 Strasbourg, France
| | - Nina Fekonja
- Inserm U1109, MN3T, 67200 Strasbourg, France.,Université de Strasbourg, 67000 Strasbourg, France.,LabEx Medalis, Université de Strasbourg, Strasbourg 67000, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France
| | - Jacky G Goetz
- Inserm U1109, MN3T, 67200 Strasbourg, France.,Université de Strasbourg, 67000 Strasbourg, France.,LabEx Medalis, Université de Strasbourg, Strasbourg 67000, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France
| | - Daniel Riveline
- IGBMC, Development and Stem Cells Program, CNRS (UMR 7104)/INSERM (U964), 67400 Illkirch, France .,Université de Strasbourg, 67000 Strasbourg, France.,Laboratory of Cell Physics, ISIS/IGBMC, CNRS UMR 7006, 67000 Strasbourg, France
| | - Elisabeth Georges-Labouesse
- IGBMC, Development and Stem Cells Program, CNRS (UMR 7104)/INSERM (U964), 67400 Illkirch, France.,Université de Strasbourg, 67000 Strasbourg, France
| | - Michel Labouesse
- IGBMC, Development and Stem Cells Program, CNRS (UMR 7104)/INSERM (U964), 67400 Illkirch, France .,Université de Strasbourg, 67000 Strasbourg, France.,UMR7622-CNRS, IBPS, Sorbonne Université, 75005 Paris, France
| |
Collapse
|
10
|
Sarper M, Allen MD, Gomm J, Haywood L, Decock J, Thirkettle S, Ustaoglu A, Sarker SJ, Marshall J, Edwards DR, Jones JL. Loss of MMP-8 in ductal carcinoma in situ (DCIS)-associated myoepithelial cells contributes to tumour promotion through altered adhesive and proteolytic function. Breast Cancer Res 2017; 19:33. [PMID: 28330493 PMCID: PMC5363009 DOI: 10.1186/s13058-017-0822-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 03/02/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Normal myoepithelial cells (MECs) play an important tumour-suppressor role in the breast but display an altered phenotype in ductal carcinoma in situ (DCIS), gaining tumour-promoter functions. Matrix metalloproteinase-8 (MMP-8) is expressed by normal MECs but is lost in DCIS. This study investigated the function of MMP-8 in MECs and the impact of its loss in DCIS. METHODS Primary normal and DCIS-associated MECs, and normal (N-1089) and DCIS-modified myoepithelial (β6-1089) cell lines, were used to assess MMP-8 expression and function. β6-1089 lacking MMP-8 were transfected with MMP-8 WT and catalytically inactive MMP-8 EA, and MMP-8 in N-1089 MEC was knocked down with siRNA. The effect on adhesion and migration to extracellular matrix (ECM), localisation of α6β4 integrin to hemidesmosomes (HD), TGF-β signalling and gelatinase activity was measured. The effect of altering MEC MMP-8 expression on tumour cell invasion was investigated in 2D and 3D organotypic models. RESULTS Assessment of primary cells and MEC lines confirmed expression of MMP-8 in normal MEC and its loss in DCIS-MEC. Over-expression of MMP-8 WT but not MMP-8 EA in β6-1089 cells increased adhesion to ECM proteins and reduced migration. Conversely, knock-down of MMP-8 in N-1089 reduced adhesion and increased migration. Expression of MMP-8 WT in β6-1089 led to greater localisation of α6β4 to HD and reduced retraction fibre formation, this being reversed by MMP-8 knock-down in N-1089. Over-expression of MMP-8 WT reduced TGF-β signalling and gelatinolytic activity. MMP-8 knock-down enhanced TGF-β signalling and gelatinolytic activity, which was reversed by blocking MMP-9 by knock-down or an inhibitor. MMP-8 WT but not MMP-8 EA over-expression in β6-1089 reduced breast cancer cell invasion in 2D and 3D invasion assays, while MMP-8 knock-down in N-1089 enhanced cancer cell invasion. Staining of breast cancer cases for MMP-8 revealed a statistically significant loss of MMP-8 expression in DCIS with invasion versus pure DCIS (p = 0.001). CONCLUSIONS These data indicate MMP-8 is a vital component of the myoepithelial tumour-suppressor function. It restores MEC interaction with the matrix, opposes TGF-β signalling and MMP-9 proteolysis, which contributes to inhibition of tumour cell invasion. Assessment of MMP-8 expression may help to determine risk of DCIS progression.
Collapse
Affiliation(s)
- Muge Sarper
- Translational Cancer Discovery Team, CRUK Cancer Therapeutics Unit, Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
| | - Michael D Allen
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| | - Jenny Gomm
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Linda Haywood
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Julie Decock
- Cancer Research Centre, Qatar Biomedical Research Institute, Qatar Foundation, Doha, Qatar
| | - Sally Thirkettle
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Ahsen Ustaoglu
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Shah-Jalal Sarker
- Centre for Experimental Cancer Medicine, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - John Marshall
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Dylan R Edwards
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - J Louise Jones
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
11
|
The opposing roles of laminin-binding integrins in cancer. Matrix Biol 2017; 57-58:213-243. [DOI: 10.1016/j.matbio.2016.08.007] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/02/2016] [Accepted: 08/17/2016] [Indexed: 02/06/2023]
|
12
|
Castro-Muñozledo F, Meza-Aguilar DG, Domínguez-Castillo R, Hernández-Zequinely V, Sánchez-Guzmán E. Vimentin as a Marker of Early Differentiating, Highly Motile Corneal Epithelial Cells. J Cell Physiol 2016; 232:818-830. [DOI: 10.1002/jcp.25487] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 07/11/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Federico Castro-Muñozledo
- Department of Cell Biology; Centro de Investigación y de Estudios Avanzados del IPN; México City Mexico
| | - Diana G. Meza-Aguilar
- Department of Cell Biology; Centro de Investigación y de Estudios Avanzados del IPN; México City Mexico
| | - Rocío Domínguez-Castillo
- Department of Molecular Biomedicine; Centro de Investigación y de Estudios Avanzados del IPN; México City Mexico
| | | | - Erika Sánchez-Guzmán
- Department of Cell Biology; Centro de Investigación y de Estudios Avanzados del IPN; México City Mexico
| |
Collapse
|
13
|
Heiler S, Wang Z, Zöller M. Pancreatic cancer stem cell markers and exosomes - the incentive push. World J Gastroenterol 2016; 22:5971-6007. [PMID: 27468191 PMCID: PMC4948278 DOI: 10.3748/wjg.v22.i26.5971] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 06/03/2016] [Accepted: 06/28/2016] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PaCa) has the highest death rate and incidence is increasing. Poor prognosis is due to late diagnosis and early metastatic spread, which is ascribed to a minor population of so called cancer stem cells (CSC) within the mass of the primary tumor. CSC are defined by biological features, which they share with adult stem cells like longevity, rare cell division, the capacity for self renewal, differentiation, drug resistance and the requirement for a niche. CSC can also be identified by sets of markers, which for pancreatic CSC (Pa-CSC) include CD44v6, c-Met, Tspan8, alpha6beta4, CXCR4, CD133, EpCAM and claudin7. The functional relevance of CSC markers is still disputed. We hypothesize that Pa-CSC markers play a decisive role in tumor progression. This is fostered by the location in glycolipid-enriched membrane domains, which function as signaling platform and support connectivity of the individual Pa-CSC markers. Outside-in signaling supports apoptosis resistance, stem cell gene expression and tumor suppressor gene repression as well as miRNA transcription and silencing. Pa-CSC markers also contribute to motility and invasiveness. By ligand binding host cells are triggered towards creating a milieu supporting Pa-CSC maintenance. Furthermore, CSC markers contribute to the generation, loading and delivery of exosomes, whereby CSC gain the capacity for a cell-cell contact independent crosstalk with the host and neighboring non-CSC. This allows Pa-CSC exosomes (TEX) to reprogram neighboring non-CSC towards epithelial mesenchymal transition and to stimulate host cells towards preparing a niche for metastasizing tumor cells. Finally, TEX communicate with the matrix to support tumor cell motility, invasion and homing. We will discuss the possibility that CSC markers are the initial trigger for these processes and what is the special contribution of CSC-TEX.
Collapse
|
14
|
te Molder L, Sonnenberg A. PKD2 and RSK1 Regulate Integrin β4 Phosphorylation at Threonine 1736. PLoS One 2015; 10:e0143357. [PMID: 26580203 PMCID: PMC4651554 DOI: 10.1371/journal.pone.0143357] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/03/2015] [Indexed: 01/26/2023] Open
Abstract
The integrin α6β4, a major component of hemidesmosomes (HDs), stabilizes keratinocyte cell adhesion to the epidermal basement membrane through binding to the cytoskeletal linker protein plectin and association with keratin filaments. Disruption of the α6β4-plectin interaction through phosphorylation of the β4 subunit results in a reduction in adhesive strength of keratinocytes to laminin-332 and the dissolution of HDs. Previously, we have demonstrated that phosphorylation of T1736 in the C-terminal end of the β4 cytoplasmic domain disrupts the interaction of β4 with the plakin domain of plectin. Furthermore, we showed that β4-T1736 can be phosphorylated by PKD1 in vitro, and although both PMA and EGF induced T1736 phosphorylation, only PMA was able to activate PKD1. Here, we show that depletion of [Ca2+]i augments PMA- and EGF-induced phosphorylation of β4-T1736 and that this is caused by inhibition of the calcium-sensitive protein phosphatase calcineurin and augmentation of ERK1/2 activation. We also show that in keratinocytes the PMA-stimulated phosphorylation of β4-T1736 primarily is mediated by PKD2 activation downstream of PKCδ. On the other hand, both the EGF-stimulated phosphorylation of T1736 and the EGF-induced dissolution of HDs are dependent on a functional MAPK signaling pathway, and treatment with the RSK inhibitor BI-D1870 prevented EGF-stimulated phosphorylation of β4-T1736. Moreover, phosphorylation of β4-T1736 is enhanced by overexpression of wild-type RSK1, while it is reduced by the expression of kinase-inactive RSK1 or by siRNA-mediated depletion of RSK1. In summary, our data indicate that different stimuli can lead to the phosphorylation of β4-T1736 by either PKD2 or RSK1.
Collapse
Affiliation(s)
- Lisa te Molder
- The Division of Cell Biology, The Netherlands Cancer Inst., Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Arnoud Sonnenberg
- The Division of Cell Biology, The Netherlands Cancer Inst., Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
15
|
Molecular architecture and function of the hemidesmosome. Cell Tissue Res 2015; 360:529-44. [PMID: 26017636 PMCID: PMC4452579 DOI: 10.1007/s00441-015-2216-6] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 11/03/2014] [Indexed: 01/13/2023]
Abstract
Hemidesmosomes are multiprotein complexes that facilitate the stable adhesion of basal epithelial cells to the underlying basement membrane. The mechanical stability of hemidesmosomes relies on multiple interactions of a few protein components that form a membrane-embedded tightly-ordered complex. The core of this complex is provided by integrin α6β4 and P1a, an isoform of the cytoskeletal linker protein plectin that is specifically associated with hemidesmosomes. Integrin α6β4 binds to the extracellular matrix protein laminin-332, whereas P1a forms a bridge to the cytoplasmic keratin intermediate filament network. Other important components are BPAG1e, the epithelial isoform of bullous pemphigoid antigen 1, BPAG2, a collagen-type transmembrane protein and CD151. Inherited or acquired diseases in which essential components of the hemidesmosome are missing or structurally altered result in tissue fragility and blistering. Modulation of hemidesmosome function is of crucial importance for a variety of biological processes, such as terminal differentiation of basal keratinocytes and keratinocyte migration during wound healing and carcinoma invasion. Here, we review the molecular characteristics of the proteins that make up the hemidesmosome core structure and summarize the current knowledge about how their assembly and turnover are regulated by transcriptional and post-translational mechanisms.
Collapse
|
16
|
Curcumin Prevents Palmitoylation of Integrin β4 in Breast Cancer Cells. PLoS One 2015; 10:e0125399. [PMID: 25938910 PMCID: PMC4418632 DOI: 10.1371/journal.pone.0125399] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/23/2015] [Indexed: 11/19/2022] Open
Abstract
Curcumin has been shown to mitigate cancer phenotypes such as invasive migration, proliferation, and survival by disrupting numerous signaling pathways. Our previous studies showed that curcumin inhibits integrin β4 (ITG β4)-dependent migration by blocking interaction of this integrin with growth factor receptors in lipid rafts. In the current study, we investigated the possibility that curcumin inhibits ITG β4 palmitoylation, a post-translational modification required for its lipid raft localization and signaling activity. We found that the levels of ITG β4 palmitoylation correlated with the invasive potential of breast cancer cells, and that curcumin effectively reduced the levels of ITG β4 palmitoylation in invasive breast cancer cells. Through studies of ITG β4 palmitoylation kinetics, we concluded curcumin suppressed palmitoylation independent of growth factor-induced phosphorylation of key ITG β4 Ser and Tyr residues. Rather, curcumin blocked autoacylation of the palmitoyl acyltransferase DHHC3 that is responsible for ITG β4 palmitoylation. Moreover, these data reveal that curcumin is able to prevent the palmitoylation of a subset of proteins, but not indiscriminately bind to and block all cysteines from modifications. Our studies reveal a novel paradigm for curcumin to account for much of its biological activity, and specifically, how it is able to suppress the signaling function of ITG β4 in breast cancer cells.
Collapse
|
17
|
Stepp MA, Pal-Ghosh S, Tadvalkar G, Pajoohesh-Ganji A. Syndecan-1 and Its Expanding List of Contacts. Adv Wound Care (New Rochelle) 2015; 4:235-249. [PMID: 25945286 DOI: 10.1089/wound.2014.0555] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/01/2014] [Indexed: 12/13/2022] Open
Abstract
Significance: The binding of cytokines and growth factors to heparan sulfate (HS) chains on proteoglycans generates gradients that control development and regulate wound healing. Syndecan-1 (sdc1) is an integral membrane HS proteoglycan. Its structure allows it to bind with cytosolic, transmembrane, and extracellular matrix (ECM) proteins. It plays important roles in mediating key events during wound healing because it regulates a number of important processes, including cell adhesion, cell migration, endocytosis, exosome formation, and fibrosis. Recent Advances: Recent studies reveal that sdc1 regulates wound healing by altering integrin activation. Differences in integrin activation lead to cell-type-specific changes in the rate of cell migration and ECM assembly. Sdc1 also regulates endocytosis and the formation and release of exosomes. Critical Issues: Understanding how sdc1 facilitates wound healing and resolution will improve treatment options for elderly and diabetic patients with delayed wound healing. Studies showing that sdc1 function is altered in cancer are relevant to those interested in controlling fibrosis and scarring. Future Directions: The key to understanding the various functions ascribed to sdc1 is resolving how it interacts with its numerous binding partners. The role played by chondroitin sulfate glycosaminoglycan (GAG) chains on the ability of sdc1 to associate with its ligands needs further investigation. At wound sites heparanase can cleave the HS GAG chains of sdc1, alter its ability to bind cytokines, and induce shedding of the ectodomain. This review will discuss how the unique structure of sdc1 allows it to play key roles in cell signaling, ECM assembly, and wound healing.
Collapse
Affiliation(s)
- Mary Ann Stepp
- Department of Anatomy and Regenerative Biology, George Washington University Medical School, Washington, District of Columbia
- Department of Ophthalmology, George Washington University Medical School, Washington, District of Columbia
| | - Sonali Pal-Ghosh
- Department of Anatomy and Regenerative Biology, George Washington University Medical School, Washington, District of Columbia
| | - Gauri Tadvalkar
- Department of Anatomy and Regenerative Biology, George Washington University Medical School, Washington, District of Columbia
| | - Ahdeah Pajoohesh-Ganji
- Department of Anatomy and Regenerative Biology, George Washington University Medical School, Washington, District of Columbia
| |
Collapse
|
18
|
Molecular architecture and function of the hemidesmosome. Cell Tissue Res 2014; 360:363-78. [PMID: 25487405 PMCID: PMC4544487 DOI: 10.1007/s00441-014-2061-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 11/03/2014] [Indexed: 01/07/2023]
Abstract
Hemidesmosomes are multiprotein complexes that facilitate the stable adhesion of basal epithelial cells to the underlying basement membrane. The mechanical stability of hemidesmosomes relies on multiple interactions of a few protein components that form a membrane-embedded tightly-ordered complex. The core of this complex is provided by integrin α6β4 and P1a, an isoform of the cytoskeletal linker protein plectin that is specifically associated with hemidesmosomes. Integrin α6β4 binds to the extracellular matrix protein laminin-332, whereas P1a forms a bridge to the cytoplasmic keratin intermediate filament network. Other important components are BPAG1e, the epithelial isoform of bullous pemphigoid antigen 1, BPAG2, a collagen-type transmembrane protein and CD151. Inherited or acquired diseases in which essential components of the hemidesmosome are missing or structurally altered result in tissue fragility and blistering. Modulation of hemidesmosome function is of crucial importance for a variety of biological processes, such as terminal differentiation of basal keratinocytes and keratinocyte migration during wound healing and carcinoma invasion. Here, we review the molecular characteristics of the proteins that make up the hemidesmosome core structure and summarize the current knowledge about how their assembly and turnover are regulated by transcriptional and post-translational mechanisms.
Collapse
|
19
|
Osmani N, Labouesse M. Remodeling of keratin-coupled cell adhesion complexes. Curr Opin Cell Biol 2014; 32:30-8. [PMID: 25460779 DOI: 10.1016/j.ceb.2014.10.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/13/2014] [Accepted: 10/18/2014] [Indexed: 12/12/2022]
Abstract
Epithelial cells constitute the main barrier between the inside and outside of organs, acting as gatekeepers of their structure and integrity. Hemidesmosomes and desmosomes are respectively cell-matrix and cell-cell adhesions coupled to the intermediate filament cytoskeleton. These adhesions ensure mechanical integrity of the epithelial barrier. Although desmosomes and hemidesmosomes are essential in maintaining strong cell-cell and cell-matrix adhesions, there is an emerging view that they should be remodeled in order to maintain epithelial homeostasis. Here we review the adhesion properties of desmosomes and hemidesmosomes, as well as the mechanisms driving their remodeling. We also discuss recent data suggesting that keratin-coupled adhesion complexes can sense the biomechanical cellular environment and participate in the cellular response to such external cues.
Collapse
Affiliation(s)
- Naël Osmani
- IGBMC, Development and Stem Cells Program, 67400 Illkirch, France; CNRS (UMR 7104), 67400 Illkirch, France; INSERM (U964), 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France.
| | - Michel Labouesse
- IGBMC, Development and Stem Cells Program, 67400 Illkirch, France; CNRS (UMR 7104), 67400 Illkirch, France; INSERM (U964), 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France.
| |
Collapse
|
20
|
Wang H, Jin H, Beauvais DM, Rapraeger AC. Cytoplasmic domain interactions of syndecan-1 and syndecan-4 with α6β4 integrin mediate human epidermal growth factor receptor (HER1 and HER2)-dependent motility and survival. J Biol Chem 2014; 289:30318-30332. [PMID: 25202019 PMCID: PMC4215216 DOI: 10.1074/jbc.m114.586438] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 09/02/2014] [Indexed: 12/14/2022] Open
Abstract
Epithelial cells are highly dependent during wound healing and tumorigenesis on the α6β4 integrin and its association with receptor tyrosine kinases. Previous work showed that phosphorylation of the β4 subunit upon matrix engagement depends on the matrix receptor syndecan (Sdc)-1 engaging the cytoplasmic domain of the β4 integrin and coupling of the integrin to human epidermal growth factor receptor-2 (HER2). In this study, HER2-dependent migration activated by matrix engagement is compared with migration stimulated by EGF. We find that whereas HER2-dependent migration depends on Sdc1, EGF-dependent migration depends on a complex consisting of human epidermal growth factor receptor-1 (HER1, commonly known as EGFR), α6β4, and Sdc4. The two syndecans recognize distinct sites at the extreme C terminus of the β4 integrin cytoplasmic domain. The binding motif in Sdc1 is QEEXYX, composed in part by its syndecan-specific variable (V) region and in part by the second conserved (C2) region that it shares with other syndecans. A cell-penetrating peptide containing this sequence competes for HER2-dependent epithelial migration and carcinoma survival, although it is without effect on the EGFR-stimulated mechanism. β4 mutants bearing mutations specific for Sdc1 and Sdc4 recognition act as dominant negative mutants to block cell spreading or cell migration that depends on HER2 or EGFR, respectively. The interaction of the α6β4 integrin with the syndecans appears critical for it to be utilized as a signaling platform; migration depends on α3β1 integrin binding to laminin 332 (LN332; also known as laminin 5), whereas antibodies that block α6β4 binding are without effect. These findings indicate that specific syndecan family members are likely to have key roles in α6β4 integrin activation by receptor tyrosine kinases.
Collapse
Affiliation(s)
- Haiyao Wang
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Haining Jin
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - DeannaLee M Beauvais
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Alan C Rapraeger
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin 53705; Carbone Cancer Center, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, Wisconsin 53705.
| |
Collapse
|
21
|
Laval S, Laklai H, Fanjul M, Pucelle M, Laurell H, Billon-Galés A, Le Guellec S, Delisle MB, Sonnenberg A, Susini C, Pyronnet S, Bousquet C. Dual roles of hemidesmosomal proteins in the pancreatic epithelium: the phosphoinositide 3-kinase decides. Oncogene 2014; 33:1934-44. [PMID: 23624916 DOI: 10.1038/onc.2013.146] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 02/14/2013] [Accepted: 03/11/2013] [Indexed: 02/06/2023]
Abstract
Given the failure of chemo- and biotherapies to fight advanced pancreatic cancer, one major challenge is to identify critical events that initiate invasion. One priming step in epithelia carcinogenesis is the disruption of epithelial cell anchorage to the basement membrane which can be provided by hemidesmosomes (HDs). However, the existence of HDs in pancreatic ductal epithelium and their role in carcinogenesis remain unexplored. HDs have been explored in normal and cancer pancreatic cells, and patient samples. Unique cancer cell models where HD assembly can be pharmacologically manipulated by somatostatin/sst2 signaling have been then used to investigate the role and molecular mechanisms of dynamic HD during pancreatic carcinogenesis. We surprisingly report the presence of mature type-1 HDs comprising the integrin α6β4 and bullous pemphigoid antigen BP180 in the human pancreatic ductal epithelium. Importantly, HDs are shown to disassemble during pancreatic carcinogenesis. HD breakdown requires phosphoinositide 3-kinase (PI3K)-dependent induction of the matrix-metalloprotease MMP-9, which cleaves BP180. Consequently, integrin α6β4 delocalizes to the cell-leading edges where it paradoxically promotes cell migration and invasion through S100A4 activation. As S100A4 in turn stimulates MMP-9 expression, a vicious cycle maintains BP180 cleavage. Inactivation of this PI3K-MMP-9-S100A4 signaling loop conversely blocks BP180 cleavage, induces HD reassembly and inhibits cell invasion. We conclude that mature type-1 HDs are critical anchoring structures for the pancreatic ductal epithelium whose disruption, upon PI3K activation during carcinogenesis, provokes pancreatic cancer cell migration and invasion.
Collapse
Affiliation(s)
- S Laval
- 1] INSERM UMR 1037, Laboratoire d'excellence Toulouse Cancer (labex TOUCAN), Equipe labellisée Ligue Nationale Contre le Cancer (LNCC), Centre de Recherche en Cancérologie de Toulouse (CRCT), Toulouse, France [2] Université Toulouse III Paul Sabatier, Toulouse, France
| | - H Laklai
- 1] INSERM UMR 1037, Laboratoire d'excellence Toulouse Cancer (labex TOUCAN), Equipe labellisée Ligue Nationale Contre le Cancer (LNCC), Centre de Recherche en Cancérologie de Toulouse (CRCT), Toulouse, France [2] Université Toulouse III Paul Sabatier, Toulouse, France
| | - M Fanjul
- 1] INSERM UMR 1037, Laboratoire d'excellence Toulouse Cancer (labex TOUCAN), Equipe labellisée Ligue Nationale Contre le Cancer (LNCC), Centre de Recherche en Cancérologie de Toulouse (CRCT), Toulouse, France [2] Université Toulouse III Paul Sabatier, Toulouse, France
| | - M Pucelle
- INSERM UMR 1037, Laboratoire d'excellence Toulouse Cancer (labex TOUCAN), Equipe labellisée Ligue Nationale Contre le Cancer (LNCC), Centre de Recherche en Cancérologie de Toulouse (CRCT), Toulouse, France
| | - H Laurell
- 1] INSERM UMR 1037, Laboratoire d'excellence Toulouse Cancer (labex TOUCAN), Equipe labellisée Ligue Nationale Contre le Cancer (LNCC), Centre de Recherche en Cancérologie de Toulouse (CRCT), Toulouse, France [2] Université Toulouse III Paul Sabatier, Toulouse, France
| | - A Billon-Galés
- 1] INSERM UMR 1037, Laboratoire d'excellence Toulouse Cancer (labex TOUCAN), Equipe labellisée Ligue Nationale Contre le Cancer (LNCC), Centre de Recherche en Cancérologie de Toulouse (CRCT), Toulouse, France [2] Université Toulouse III Paul Sabatier, Toulouse, France
| | - S Le Guellec
- Services d'Anatomie et Cytologie Pathologique of Hôpital Rangueil, Toulouse, France
| | - M-B Delisle
- Services d'Anatomie et Cytologie Pathologique of Hôpital Rangueil, Toulouse, France
| | - A Sonnenberg
- Department of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - C Susini
- 1] INSERM UMR 1037, Laboratoire d'excellence Toulouse Cancer (labex TOUCAN), Equipe labellisée Ligue Nationale Contre le Cancer (LNCC), Centre de Recherche en Cancérologie de Toulouse (CRCT), Toulouse, France [2] Université Toulouse III Paul Sabatier, Toulouse, France
| | - S Pyronnet
- 1] INSERM UMR 1037, Laboratoire d'excellence Toulouse Cancer (labex TOUCAN), Equipe labellisée Ligue Nationale Contre le Cancer (LNCC), Centre de Recherche en Cancérologie de Toulouse (CRCT), Toulouse, France [2] Université Toulouse III Paul Sabatier, Toulouse, France
| | - C Bousquet
- 1] INSERM UMR 1037, Laboratoire d'excellence Toulouse Cancer (labex TOUCAN), Equipe labellisée Ligue Nationale Contre le Cancer (LNCC), Centre de Recherche en Cancérologie de Toulouse (CRCT), Toulouse, France [2] Université Toulouse III Paul Sabatier, Toulouse, France
| |
Collapse
|
22
|
Britton D, Zen Y, Quaglia A, Selzer S, Mitra V, Lößner C, Jung S, Böhm G, Schmid P, Prefot P, Hoehle C, Koncarevic S, Gee J, Nicholson R, Ward M, Castellano L, Stebbing J, Zucht HD, Sarker D, Heaton N, Pike I. Quantification of pancreatic cancer proteome and phosphorylome: indicates molecular events likely contributing to cancer and activity of drug targets. PLoS One 2014; 9:e90948. [PMID: 24670416 PMCID: PMC3966770 DOI: 10.1371/journal.pone.0090948] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 02/05/2014] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE LC-MS/MS phospho-proteomics is an essential technology to help unravel the complex molecular events that lead to and propagate cancer. We have developed a global phospho-proteomic workflow to determine activity of signaling pathways and drug targets in pancreatic cancer tissue for clinical application. METHODS Peptides resulting from tryptic digestion of proteins extracted from frozen tissue of pancreatic ductal adenocarcinoma and background pancreas (n = 12), were labelled with tandem mass tags (TMT 8-plex), separated by strong cation exchange chromatography, then were analysed by LC-MS/MS directly or first enriched for phosphopeptides using IMAC and TiO2, prior to analysis. In-house, commercial and freeware bioinformatic platforms were used to identify relevant biological events from the complex dataset. RESULTS Of 2,101 proteins identified, 152 demonstrated significant difference in abundance between tumor and non-tumor tissue. They included proteins that are known to be up-regulated in pancreatic cancer (e.g. Mucin-1), but the majority were new candidate markers such as HIPK1 & MLCK. Of the 6,543 unique phosphopeptides identified (6,284 unique phosphorylation sites), 635 showed significant regulation, particularly those from proteins involved in cell migration (Rho guanine nucleotide exchange factors & MRCKα) and formation of focal adhesions. Activator phosphorylation sites on FYN, AKT1, ERK2, HDAC1 and other drug targets were found to be highly modulated (≥2 fold) in different cases highlighting their predictive power. CONCLUSION Here we provided critical information enabling us to identify the common and unique molecular events likely contributing to cancer in each case. Such information may be used to help predict more bespoke therapy suitable for an individual case.
Collapse
Affiliation(s)
| | - Yoh Zen
- Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Alberto Quaglia
- Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | | | | | | | | | - Gitte Böhm
- Proteome Sciences plc, Cobham, United Kingdom
| | | | | | | | | | - Julia Gee
- Cardiff School of Pharmacy & Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | - Robert Nicholson
- Cardiff School of Pharmacy & Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | | | - Leandro Castellano
- Faculty of Medicine, Department of Surgery & Cancer, Imperial College, London, United Kingdom
| | - Justin Stebbing
- Faculty of Medicine, Department of Surgery & Cancer, Imperial College, London, United Kingdom
| | | | - Debashis Sarker
- Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Nigel Heaton
- Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Ian Pike
- Proteome Sciences plc, Cobham, United Kingdom
| |
Collapse
|
23
|
Löffek S, Hurskainen T, Jackow J, Sigloch FC, Schilling O, Tasanen K, Bruckner-Tuderman L, Franzke CW. Transmembrane collagen XVII modulates integrin dependent keratinocyte migration via PI3K/Rac1 signaling. PLoS One 2014; 9:e87263. [PMID: 24505282 PMCID: PMC3914815 DOI: 10.1371/journal.pone.0087263] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 12/25/2013] [Indexed: 12/28/2022] Open
Abstract
The hemidesmosomal transmembrane component collagen XVII (ColXVII) plays an important role in the anchorage of the epidermis to the underlying basement membrane. However, this adhesion protein seems to be also involved in the regulation of keratinocyte migration, since its expression in these cells is strongly elevated during reepithelialization of acute wounds and in the invasive front of squamous cell carcinoma, while its absence in ColXVII-deficient keratinocytes leads to altered cell motility. Using a genetic model of murine Col17a1⁻/⁻ keratinocytes we elucidated ColXVII mediated signaling pathways in cell adhesion and migration. Col17a1⁻/⁻ keratinocytes exhibited increased spreading on laminin 332 and accelerated, but less directed cell motility. These effects were accompanied by increased expression of the integrin subunits β4 and β1. The migratory phenotype, as evidenced by formation of multiple unstable lamellipodia, was associated with enhanced phosphoinositide 3-kinase (PI3K) activity. Dissection of the signaling pathway uncovered enhanced phosphorylation of the β4 integrin subunit and the focal adhesion kinase (FAK) as activators of PI3K. This resulted in elevated Rac1 activity as a downstream consequence. These results provide mechanistic evidence that ColXVII coordinates keratinocyte adhesion and directed motility by interfering integrin dependent PI3K activation and by stabilizing lamellipodia at the leading edge of reepithelializing wounds and in invasive squamous cell carcinoma.
Collapse
Affiliation(s)
- Stefanie Löffek
- Department of Dermatology and Venerology, University Medical Center Freiburg, Freiburg, Germany
| | - Tiina Hurskainen
- Department of Dermatology, Oulu Center for Cell-Matrix Research, University of Oulu, and Clinical Research Center, Oulu University Hospital, Oulu, Finland
| | - Joanna Jackow
- Department of Dermatology and Venerology, University Medical Center Freiburg, Freiburg, Germany
| | - Florian Christoph Sigloch
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Oliver Schilling
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
- Bioss Centre for Biological Studies, University of Freiburg, Freiburg, Germany
| | - Kaisa Tasanen
- Department of Dermatology, Oulu Center for Cell-Matrix Research, University of Oulu, and Clinical Research Center, Oulu University Hospital, Oulu, Finland
| | - Leena Bruckner-Tuderman
- Department of Dermatology and Venerology, University Medical Center Freiburg, Freiburg, Germany
- Freiburg Institute of Advanced Studies, School of Life Sciences – LifeNet, University of Freiburg, Freiburg, Germany
| | - Claus-Werner Franzke
- Department of Dermatology and Venerology, University Medical Center Freiburg, Freiburg, Germany
| |
Collapse
|
24
|
Abstract
An abundance of evidence shows supporting roles for tetraspanin proteins in human cancer. Many studies show that the expression of tetraspanins correlates with tumour stage, tumour type and patient outcome. In addition, perturbations of tetraspanins in tumour cell lines can considerably affect cell growth, morphology, invasion, tumour engraftment and metastasis. This Review emphasizes new studies that have used de novo mouse cancer models to show that select tetraspanin proteins have key roles in tumour initiation, promotion and metastasis. This Review also emphasizes how tetraspanin proteins can sometimes participate in tumour angiogenesis. These recent data build an increasingly strong case for tetraspanins as therapeutic targets.
Collapse
|
25
|
Li Q, Yang XH, Xu F, Sharma C, Wang HX, Knoblich K, Rabinovitz I, Granter SR, Hemler ME. Tetraspanin CD151 plays a key role in skin squamous cell carcinoma. Oncogene 2013; 32:1772-83. [PMID: 22824799 PMCID: PMC3482293 DOI: 10.1038/onc.2012.205] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 03/30/2012] [Accepted: 04/23/2012] [Indexed: 11/23/2022]
Abstract
Here we provide the first evidence that tetraspanin CD151 can support de novo carcinogenesis. During two-stage mouse skin chemical carcinogenesis, CD151 reduces tumor lag time and increases incidence, multiplicity, size and progression to malignant squamous cell carcinoma (SCC), while supporting both cell survival during tumor initiation and cell proliferation during the promotion phase. In human skin SCC, CD151 expression is selectively elevated compared with other skin cancer types. CD151 support of keratinocyte survival and proliferation may depend on activation of transcription factor STAT3 (signal transducers and activators of transcription), a regulator of cell proliferation and apoptosis. CD151 also supports protein kinase C (PKC)α-α6β4 integrin association and PKC-dependent β4 S1424 phosphorylation, while regulating α6β4 distribution. CD151-PKCα effects on integrin β4 phosphorylation and subcellular localization are consistent with epithelial disruption to a less polarized, more invasive state. CD151 ablation, while minimally affecting normal cell and normal mouse functions, markedly sensitized mouse skin and epidermoid cells to chemicals/drugs including 7,12-dimethylbenz[α]anthracene (mutagen) and camptothecin (topoisomerase inhibitor), as well as to agents targeting epidermal growth factor receptor, PKC, Jak2/Tyk2 and STAT3. Hence, CD151 'co-targeting' may be therapeutically beneficial. These findings not only support CD151 as a potential tumor target, but also should apply to other cancers utilizing CD151/laminin-binding integrin complexes.
Collapse
Affiliation(s)
- Qinglin Li
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute and Harvard Medical School, Boston MA
| | - Xiuwei H. Yang
- Department of Molecular and Biomedical Pharmacology, University of Kentucky, Lexington, KY
| | - Fenghui Xu
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute and Harvard Medical School, Boston MA
| | - Chandan Sharma
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute and Harvard Medical School, Boston MA
| | - Hong-Xing Wang
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute and Harvard Medical School, Boston MA
| | - Konstantin Knoblich
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute and Harvard Medical School, Boston MA
| | - Isaac Rabinovitz
- Division of Cancer Biology and Angiogenesis, Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston MA
| | - Scott R. Granter
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston MA
| | - Martin E. Hemler
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute and Harvard Medical School, Boston MA
| |
Collapse
|
26
|
Thuma F, Zöller M. EpCAM-associated claudin-7 supports lymphatic spread and drug resistance in rat pancreatic cancer. Int J Cancer 2013; 133:855-66. [PMID: 23390083 DOI: 10.1002/ijc.28085] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 01/21/2013] [Indexed: 12/14/2022]
Abstract
Pancreatic cancer has a dismal prognosis because of early metastatic spread, a suggested feature of cancer-initiating cells (CIC). To control for a functional contribution of the pancreatic CIC-marker EpCAM, we explored metastasis formation by a stable EpCAM-knockdown (ASML-EpC(kd)) of the rat pancreatic adenocarcinoma line BSp73ASML (ASML(wt)). As EpCAM associates with claudin-7, an ASML-claudin-7-knockdown (ASML-cld7(kd)) was included to differentiate between EpC- and EpC-cld7-mediated effects. The metastatic capacity of ASML-EpC(kd) and more pronounced ASML-cld7(kd) cells is strikingly reduced. EpC-associated cld7 interferes with EpC-mediated cell-cell adhesion and supports migration. This requires cld7 phosphorylation and formation of an EpC-cld7-tetraspanin-alpha6beta4 complex in glycolipid-enriched membrane domains (GEM), where cld7 associates via the tetraspanin-alpha6beta4 complex with phosphorylated ezrin. The association of cld7 with alpha6beta4 and cytoskeleton strongly stimulates tumor cell migration. However, EpC does not actively contribute. Instead, GEM-located cld7 associates with presenilin-2, which facilitates EpC cleavage and thereby tumor cell proliferation. Finally, the EpC-cld7 complex promotes drug resistance. Both EpC and cld7 support MAPK and JNK activation, such that in ASML-EpC(kd) and ASML-cld7(kd) cells an undue expansion of proapoptotic molecules is observed. Only cld7 promotes activation of the PI3K/Akt pathway by a strong downregulation of Pten. Accordingly, cisplatin treatment prolongs the survival time of ASML-cld7(kd)-bearing rats. Taken together, cld7 supports tumorigenic features of EpC by provoking EpC cleavage and thereby its cotranscription factor activity. On the other hand, only cld7 is directly engaged in motility and apoptosis resistance. Thus, at least in concern of migrating CIC, it is cld7 that acts as a CIC biomarker.
Collapse
Affiliation(s)
- Florian Thuma
- Department of Tumor Cell Biology, University Hospital of Surgery, Heidelberg, Germany
| | | |
Collapse
|
27
|
Integrin-associated CD151 drives ErbB2-evoked mammary tumor onset and metastasis. Neoplasia 2013; 14:678-89. [PMID: 22952421 DOI: 10.1593/neo.12922] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 07/01/2012] [Accepted: 07/04/2012] [Indexed: 12/14/2022] Open
Abstract
ErbB2+ human breast cancer is a major clinical problem. Prior results have suggested that tetraspanin CD151 might contribute to ErbB2-driven breast cancer growth, survival, and metastasis. In other cancer types, CD151 sometimes supports tumor growth and metastasis. However, a definitive test of CD151 effects on de novo breast cancer initiation, growth, and metastasis has not previously been done. We used CD151 gene-deleted mice expressing the MMTV-ErbB2 transgene to show that CD151 strongly supports ErbB2+ mammary tumor initiation and metastasis. Delayed tumor onset (by 70-100 days) in the absence of CD151 was accompanied by reduced survival of mammary epithelial cells and impaired activation of FAK- and MAPK-dependent pathways. Both primary tumors and metastatic nodules showed smooth, regular borders, consistent with a less invasive phenotype. Furthermore, consistent with impaired oncogenesis and decreased metastasis, CD151-targeted MCF-10A/ErbB2 cells showed substantial decreases in three-dimensional colony formation, EGF-stimulated tumor cell motility, invasion, and transendothelial migration. These CD151-dependent functions were largely mediated through α6β4 integrin. Moreover, CD151 ablation substantially prevented PKC- and EGFR/ERK-dependent α6β4 integrin phosphorylation, consistent with retention of epithelial cell polarity and intermediate filament cytoskeletal connections, which helps to explain diminished metastasis. Finally, clinical data analyses revealed a strong correlation between CD151 and ErbB2 expression and metastasis-free survival of breast cancer patients. In conclusion, we provide strong evidence that CD151 collaborates with LB integrins (particularly α6β4 and ErbB2 (and EGFR) receptors to regulate multiple signaling pathways, thereby driving mammary tumor onset, survival, and metastasis. Consequently, CD151 is a useful therapeutic target in malignant ErbB2+ breast cancer.
Collapse
|
28
|
The role of integrins in the development and homeostasis of the epidermis and skin appendages. Acta Naturae 2013; 5:22-33. [PMID: 24455180 PMCID: PMC3890986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Integrins play a critical role in the regulation of adhesion, migration, proliferation, and differentiation of cells. Because of the variety of the functions they play in the cell, they are necessary for the formation and maintenance of tissue structure integrity. The trove of data accumulated by researchers suggests that integrins participate in the morphogenesis of the epidermis and its appendages. The development of mice with tissue-specific integrin genes knockout and determination of the genetic basis for a number of skin diseases in humans showed the significance of integrins in the biology, physiology, and morphogenesis of the epidermis and hair follicles. This review discusses the data on the role of different classes of integrin receptors in the biology of epidermal cells, as well as the development of the epidermis and hair follicles.
Collapse
|
29
|
Loss of integrin α3 prevents skin tumor formation by promoting epidermal turnover and depletion of slow-cycling cells. Proc Natl Acad Sci U S A 2012; 109:21468-73. [PMID: 23236172 DOI: 10.1073/pnas.1204614110] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Progression through the various stages of skin tumorigenesis is correlated with an altered expression of the integrin α3β1, suggesting that it plays an important role in the tumorigenic process. Using epidermis-specific Itga3 KO mice subjected to the 7,12-dimethylbenzanthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate two-stage skin carcinogenesis protocol, we demonstrate that efficient tumor development is critically dependent on the presence of α3β1. In the absence of α3β1, tumor initiation is dramatically decreased because of increased epidermal turnover, leading to a loss of DMBA-initiated label-retaining keratinocytes. Lineage tracing revealed emigration of α3-deficient keratinocytes residing in the bulge of the hair follicle toward the interfollicular epidermis. Furthermore, tumor growth and cell proliferation were strongly reduced in mice with an epidermis-specific deletion of Itga3. However, the rate of progression of α3β1-null squamous cell carcinomas to undifferentiated, invasive carcinomas was increased. Therefore, α3β1 critically affects skin carcinogenesis with opposing effects early and late in tumorigenesis.
Collapse
|
30
|
Marchiò S, Soster M, Cardaci S, Muratore A, Bartolini A, Barone V, Ribero D, Monti M, Bovino P, Sun J, Giavazzi R, Asioli S, Cassoni P, Capussotti L, Pucci P, Bugatti A, Rusnati M, Pasqualini R, Arap W, Bussolino F. A complex of α6 integrin and E-cadherin drives liver metastasis of colorectal cancer cells through hepatic angiopoietin-like 6. EMBO Mol Med 2012; 4:1156-75. [PMID: 23070965 PMCID: PMC3494873 DOI: 10.1002/emmm.201101164] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 09/04/2012] [Accepted: 09/07/2012] [Indexed: 01/09/2023] Open
Abstract
Homing of colorectal cancer (CRC) cells to the liver is a non-random process driven by a crosstalk between tumour cells and components of the host tissue. Here we report the isolation of a liver metastasis-specific peptide ligand (CGIYRLRSC) that binds a complex of E-cadherin and α(6) integrin on the surface of CRC cells. We identify angiopoietin-like 6 protein as a peptide-mimicked natural ligand enriched in hepatic blood vessels of CRC patients. We demonstrate that an interaction between hepatic angiopoietin-like 6 and tumoural α(6) integrin/E-cadherin drives liver homing and colonization by CRC cells, and that CGIYRLRSC inhibits liver metastasis through interference with this ligand/receptor system. Our results indicate a mechanism for metastasis whereby a soluble factor accumulated in normal vessels functions as a specific ligand for circulating cancer cells. Consistently, we show that high amounts of coexpressed α(6) integrin and E-cadherin in primary tumours represent a poor prognostic factor for patients with advanced CRC.
Collapse
Affiliation(s)
- Serena Marchiò
- Department of Oncology, University of Turin, Candiolo, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Sharma C, Rabinovitz I, Hemler ME. Palmitoylation by DHHC3 is critical for the function, expression, and stability of integrin α6β4. Cell Mol Life Sci 2012; 69:2233-44. [PMID: 22314500 DOI: 10.1007/s00018-012-0924-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 01/05/2012] [Accepted: 01/19/2012] [Indexed: 12/14/2022]
Abstract
The laminin-binding integrin α6β4 plays key roles in both normal epithelial and endothelial cells and during tumor cell progression, metastasis, and angiogenesis. Previous cysteine mutagenesis studies have suggested that palmitoylation of α6β4 protein supports a few integrin-dependent functions and molecular associations. Here we took another approach and obtained strikingly different results. We used overexpression and RNAi knockdown in multiple cell types to identify protein acyl transferase DHHC3 as the enzyme responsible for integrin β4 and α6 palmitoylation. Ablation of DHHC3 markedly diminished integrin-dependent cellular cable formation on Matrigel, integrin signaling through Src, and β4 phosphorylation on key diagnostic amino acids (S1356 and 1424). However, unexpectedly, and in sharp contrast to prior α6β4 mutagenesis results, knockdown of DHHC3 accelerated the degradation of α6β4, likely due to an increase in endosomal exposure to cathepsin D. When proteolytic degradation was inhibited (by Pepstatin A), rescued α6β4 accumulated intracellularly, but was unable to reach the cell surface. DHHC3 ablation effects were strongly selective for α6β4. Cell-surface levels of ~10 other proteins (including α3β1) were not diminished, and the appearance of hundreds of other palmitoylated proteins was not altered. Results obtained here demonstrate a new substrate for the DHHC3 enzyme and provide novel opportunities for modulating α6β4 expression, distribution, and function.
Collapse
Affiliation(s)
- Chandan Sharma
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | | |
Collapse
|
32
|
Kashyap T, Rabinovitz I. The calcium/calcineurin pathway promotes hemidesmosome stability through inhibition of β4 integrin phosphorylation. J Biol Chem 2012; 287:32440-9. [PMID: 22865863 DOI: 10.1074/jbc.m112.385245] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell migration depends on cells being able to create and disassemble adhesive contacts. Hemidesmosomes are multiprotein structures that attach epithelia to basal lamina and disassemble during migration and carcinoma invasion. Phosphorylation of the β4 integrin, a hemidesmosome component, induces disassembly. Although kinases involved in β4 phosphorylation have been identified, little is known about phosphatases countering kinase action. Here we report that calcineurin, a serine-threonine protein phosphatase, regulates β4 phosphorylation. Calcineurin inhibitor cyclosporin A (CsA) and calcineurin-siRNA increase β4 phosphorylation, induce hemidesmosome disassembly, and increase migration in HaCat keratinocytes, suggesting that calcineurin negatively regulates β4 phosphorylation. We found no direct dephosphorylation of β4 by calcineurin or association between β4 and calcineurin, suggesting indirect regulation of β4 phosphorylation. We therefore assessed calcineurin influence on MAPK and PKC, known to phosphorylate β4. CsA increased MAPK activity, whereas MAPK inhibitors reduced CsA-induced β4 phosphorylation, suggesting that calcineurin restricts β4 phosphorylation by MAPK. Calcineurin is activated by calcium. Increased [Ca(2+)](i) reduces β4 phosphorylation and stabilizes hemidesmosomes, effects that are reversed by CsA, indicating that calcineurin mediates calcium effects on β4. However, MAPK activation is increased when [Ca(2+)](i) is increased, suggesting that calcineurin activates an additional mechanism that counteracts MAPK-induced β4 phosphorylation. Interestingly, in some squamous cell carcinoma cells, which have reduced hemidesmosomes and increased β4 phosphorylation, an increase in [Ca(2+)](i) using thapsigargin, bradykinin, or acetylcholine can increase hemidesmosomes and reduce β4 phosphorylation in a calcineurin-dependent manner. These findings have implications in calcineurin-inhibitor induced carcinoma, a complication of immunosuppressive therapy.
Collapse
Affiliation(s)
- Trinayan Kashyap
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
33
|
Faure E, Garrouste F, Parat F, Monferran S, Leloup L, Pommier G, Kovacic H, Lehmann M. P2Y2 receptor inhibits EGF-induced MAPK pathway to stabilise keratinocyte hemidesmosomes. J Cell Sci 2012; 125:4264-77. [PMID: 22718344 DOI: 10.1242/jcs.097600] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
α6β4 integrin is the main component of hemidesmosomes (HD) that stably anchor the epithelium to the underlying basement membrane. Epithelial cell migration requires HD remodelling, which can be promoted by epidermal growth factor (EGF). We previously showed that extracellular nucleotides inhibit growth factor-induced keratinocyte migration. Here, we investigate the effect of extracellular nucleotides on α6β4 integrin localisation in HD during EGF-induced cell migration. Using a combination of pharmacological inhibition and gene silencing approaches, we found that UTP activates the P2Y2 purinergic receptor and Gαq protein to inhibit EGF/ERK1/2-induced cell migration in keratinocytes. Using a keratinocyte cell line expressing an inducible form of the Raf kinase, we show that UTP inhibits the EGF-induced ERK1/2 pathway activation downstream of Raf. Moreover, we established that ERK1/2 activation by EGF leads to the mobilisation of α6β4 integrin from HD. Importantly, activation of P2Y2R and Gαq by UTP promotes HD formation and protects these structures from EGF-triggered dissolution as revealed by confocal analysis of the distribution of α6β4 integrin, plectin, BPAG1, BPAG2 and CD151 in keratinocytes. Finally, we demonstrated that the activation of p90RSK, downstream of ERK1/2, is sufficient to promote EGF-mediated HD dismantling and that UTP does not stabilise HD in cells expressing an activated form of p90RSK. Our data underline an unexpected role of P2Y2R and Gαq in the inhibition of the ERK1/2 signalling pathway and in the modulation of hemidesmosome dynamics and keratinocyte migration.
Collapse
Affiliation(s)
- Emilie Faure
- Aix-Marseille Université, INSERM UMR 911, Centre de Recherche en Oncologie Biologique et en Oncopharmacologie, Marseille 13005, France
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Frijns E, Kuikman I, Litjens S, Raspe M, Jalink K, Ports M, Wilhelmsen K, Sonnenberg A. Phosphorylation of threonine 1736 in the C-terminal tail of integrin β4 contributes to hemidesmosome disassembly. Mol Biol Cell 2012; 23:1475-85. [PMID: 22357621 PMCID: PMC3327322 DOI: 10.1091/mbc.e11-11-0957] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
T1736 is a novel phosphorylation site on the integrin β4 subunit that is phosphorylated downstream of protein kinase C and EGF receptor activation and is a substrate for protein kinase D1 in vitro and in cells. It contributes to the regulation of HD dynamics through modulating the association of β4 with plectin. During wound healing, hemidesmome disassembly enables keratinocyte migration and proliferation. Hemidesmosome dynamics are altered downstream of epidermal growth factor (EGF) receptor activation, following the phosphorylation of integrin β4 residues S1356 and S1364, which reduces the interaction with plectin; however, this event is insufficient to drive complete hemidesmome disassembly. In the studies reported here, we used a fluorescence resonance energy transfer–based assay to demonstrate that the connecting segment and carboxy-terminal tail of the β4 cytoplasmic domain interact, which facilitates the formation of a binding platform for plectin. In addition, analysis of a β4 mutant containing a phosphomimicking aspartic acid residue at T1736 in the C-tail suggests that phosphorylation of this residue regulates the interaction with the plectin plakin domain. The aspartic acid mutation of β4 T1736 impaired hemidesmosome formation in junctional epidermolysis associated with pyloric atresia/β4 keratinocytes. Furthermore, we show that T1736 is phosphorylated downstream of protein kinase C and EGF receptor activation and is a substrate for protein kinase D1 in vitro and in cells, which requires its translocation to the plasma membrane and subsequent activation. In conclusion, we identify T1736 as a novel phosphorylation site that contributes to the regulation of hemidesmome disassembly, a dynamically regulated process involving the concerted phosphorylation of multiple β4 residues.
Collapse
Affiliation(s)
- Evelyne Frijns
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Tripathi AK, Koringa PG, Jakhesara SJ, Ahir VB, Ramani UV, Bhatt VD, Sajnani MR, Patel DA, Joshi AJ, Shanmuga SJ, Rank DN, Joshi CG. A preliminary sketch of horn cancer transcriptome in Indian zebu cattle. Gene 2011; 493:124-31. [PMID: 22134011 DOI: 10.1016/j.gene.2011.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 11/01/2011] [Accepted: 11/03/2011] [Indexed: 01/13/2023]
Abstract
Horn cancer, a type of squamous cell carcinoma, in zebu cattle is an expensive affair in Indian agriculture sector, which accounts for 83.34% of total tumors found. In general, cancer tissue confirms considerably different expression patterns when compared to a normal stage. This includes not only up/down regulation, but also, the aberrant gene expression, the presence of different non-coding RNAs (ncRNAs), pseudogenes expression and genes involved in unusual pathways. We employed Roche 454 next generation sequencing platform to sequence Bos indicus cancerous and normal horn tissue transcripts. This resulted into a total of 909,345 high-confidence deep sequencing reads and detected a range of unusual transcriptional events including tumor associated genes. We also validated expression of two of the four tested genes in five other similar tissue samples by RT-qPCR. Further, seven cancer specific non-coding transcripts were accessed and a few of them have been suggested as cancer specific markers. This study for the first time provides primary transcriptome sketch of Bos indicus horn cancer tissue, and also demonstrates the suitability of the 454 sequencer for transcriptome analysis, which supports the concept of varied gene expression in cancerous condition.
Collapse
Affiliation(s)
- Ajai K Tripathi
- Department of Animal Biotechnology, College of Veterinary Science & Animal Husbandry, Anand Agricultural University, Anand-388 001, Gujarat, India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kashyap T, Germain E, Roche M, Lyle S, Rabinovitz I. Role of β4 integrin phosphorylation in human invasive squamous cell carcinoma: regulation of hemidesmosome stability modulates cell migration. J Transl Med 2011; 91:1414-26. [PMID: 21769085 PMCID: PMC3184203 DOI: 10.1038/labinvest.2011.104] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Hemidesmosomes (HDs) are multiprotein structures that anchor epithelia to the basement membrane. During squamous cell carcinoma (SCC) invasion, there is a reduction in the number of HDs, which may facilitate dissemination. Mechanisms of HD disassembly are incompletely understood. Previous work has shown that epidermal growth factor (EGF)-induced phosphorylation of the β4 integrin on three of its serines, S(1356)S(1360)S(1364), can induce HD disassembly in normal cells. Here, we examine the role of β4 integrin serine phosphorylation in SCC. We have found that around 60% of invasive cutaneous SCC show increased β4 phosphorylation on S(1356) when compared with carcinoma in situ or normal tissue. To assess the mechanisms by which SCC increases β4 phosphorylation, we performed in vitro analyses. Compared with keratinocytes, SCC cells showed increased levels of S(1356) phosphorylation in the absence of EGF, correlating with reduced HD-like structures. In addition, phospho-S(1356) signal was largely segregated from other HD components. Epidermal growth factor receptor and PKC inhibitors inhibited basal levels of S(1356) phosphorylation in SCC, suggesting that cells use intrinsic mechanisms to activate the EGF signaling pathway to induce β4 phosphorylation. Moreover, these inhibitors stabilized HD-like structures in SCC cells and reduced their migratory ability. Mutation of S(1356)S(1360)S(1364) in SCC cells to non-phosphorylatable alanines stabilized HD-like structures and substantially reduced migration, while mutation into phosphorylation mimicking aspartate reduced HD-like structures but had no effect on migration, suggesting that serine phosphorylation function is releasing anchorage rather than promoting migration. Altogether these results suggest that β4 serine phosphorylation may have an important role during SCC invasion by destabilizing HDs and facilitating migration.
Collapse
Affiliation(s)
- Trinayan Kashyap
- Department of Pathology, BIDMC/Harvard Medical School, Boston, MA
| | - Emily Germain
- Department of Pathology, BIDMC/Harvard Medical School, Boston, MA
| | - Michael Roche
- Department of Pathology, UMass Medical School, Worcester, MA
| | - Stephen Lyle
- Department of Pathology, UMass Medical School, Worcester, MA
| | - Isaac Rabinovitz
- Department of Pathology, BIDMC/Harvard Medical School, Boston, MA,Isaac Rabinovitz, Dept. of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Ave. Boston, MA 02215,
| |
Collapse
|
37
|
Abstract
The dermal-epidermal basement membrane is a complex assembly of proteins that provide adhesion and regulate many important processes such as development, wound healing, and cancer progression. This contribution focuses on the structure and function of individual components of the basement membrane, how they assemble together, and how they participate in human tissues and diseases, with an emphasis on skin involvement. Understanding the composition and structure of the basement membrane provides insight into the pathophysiology of inherited blistering disorders, such as epidermolysis bullosa, and acquired bullous diseases, such as the pemphigoid group of autoimmune diseases and epidermolysis bullosa acquisita.
Collapse
Affiliation(s)
- Sana Hashmi
- Stanford University School of Medicine, Li Ka Shing Building, 291 Campus Drive, Stanford, CA 94305, USA
| | | |
Collapse
|
38
|
Abstract
Among the 33 human tetraspanin proteins, CD151, CD9 and Tspan12 play particularly important roles in cancer. Tetraspanin CD151, in partnership with integrins α6β1 and α6β4, modulates tumour cell growth, invasion, migration, metastasis, signalling and drug sensitivity. Tetraspanin CD9 has suppressor functions in multiple tumour cell types. Major CD9 partner proteins, such as EWI-2 and EWI-F, may modulate these tumour-suppressor functions. Tetraspanin Tspan12 mutations are linked to a human disease called familial exudative vitreoretinopathy. In addition, as a regulator of the metalloprotease ADAM10 (a disintegrin and metalloprotease 10) maturation and function, Tspan12 probably contributes to the pro-tumorigenic functions of ADAM10.
Collapse
|
39
|
Soung YH, Chung J. Curcumin inhibition of the functional interaction between integrin α6β4 and the epidermal growth factor receptor. Mol Cancer Ther 2011; 10:883-91. [PMID: 21388972 DOI: 10.1158/1535-7163.mct-10-1053] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The functional interaction between integrin α6β4 and growth factor receptors has been implicated in key signaling pathways important for cancer cell function. However, few attempts have been made to selectively target this interaction for therapeutic intervention. Previous studies showed that curcumin, a yellow pigment isolated from turmeric, inhibits integrin α6β4 signaling important for breast carcinoma cell motility and invasion, but the mechanism is not currently known. To address this issue, we tested the hypothesis that curcumin inhibits the functional interaction between α6β4 and the epidermal growth factor receptor (EGFR). In this study, we found that curcumin disrupts functional and physical interactions between α6β4 and EGFR, and blocks α6β4/EGFR-dependent functions of carcinoma cells expressing the signaling competent form of α6β4. We further showed that curcumin inhibits EGF-dependent mobilization of α6β4 from hemidesmosomes to the leading edges of migrating cells such as lammelipodia and filopodia, and thereby prevents α6β4 distribution to lipid rafts where functional interactions between α6β4 and EGFR occur. These data suggest a novel paradigm in which curcumin inhibits α6β4 signaling and functions by altering intracellular localization of α6β4, thus preventing its association with signaling receptors such as EGFR.
Collapse
Affiliation(s)
- Young Hwa Soung
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71103, USA
| | | |
Collapse
|
40
|
Frijns E, Sachs N, Kreft M, Wilhelmsen K, Sonnenberg A. EGF-induced MAPK signaling inhibits hemidesmosome formation through phosphorylation of the integrin {beta}4. J Biol Chem 2010; 285:37650-62. [PMID: 20870721 DOI: 10.1074/jbc.m110.138818] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Migration of keratinocytes requires a regulated and dynamic turnover of hemidesmosomes (HDs). We and others have previously identified three serine residues on the integrin β4 cytoplasmic domain that play a critical role in the regulation of HD disassembly. In this study we show that only two of these residues (Ser-1356 and Ser-1364) are phosphorylated in keratinocytes after stimulation with either PMA or EGF. Furthermore, in direct contrast to previous studies performed in vitro, we found that the PMA- and EGF-stimulated phosphorylation of β4 is not mediated by PKC, but by ERK1/2 and its downstream effector kinase p90RSK1/2. EGF-stimulated phosphorylation of β4 increased keratinocyte migration, and reduced the number of stable HDs. Furthermore, mutation of the two serines in β4 to phospho-mimicking aspartic acid decreased its interaction with the cytoskeletal linker protein plectin, as well as the strength of α6β4-mediated adhesion to laminin-332. During mitotic cell rounding, when the overall cell-substrate area is decreased and the number of HDs is reduced, β4 was only phosphorylated on Ser-1356 by a distinct, yet unidentified, kinase. Collectively, these data demonstrate an important role of β4 phosphorylation on residues Ser-1356 and Ser-1364 in the formation and/or stability of HDs.
Collapse
Affiliation(s)
- Evelyne Frijns
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
41
|
Soung YH, Clifford JL, Chung J. Crosstalk between integrin and receptor tyrosine kinase signaling in breast carcinoma progression. BMB Rep 2010; 43:311-8. [PMID: 20510013 DOI: 10.5483/bmbrep.2010.43.5.311] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
This review explored the mechanism of breast carcinoma progression by focusing on integrins and receptor tyrosine kinases (or growth factor receptors). While the primary role of integrins was previously thought to be solely as mediators of adhesive interactions between cells and extracellular matrices, it is now believed that integrins also regulate signaling pathways that control cancer cell growth, survival, and invasion. A large body of evidence suggests that the cooperation between integrin and receptor tyrosine kinase signaling regulates certain signaling functions that are important for cancer progression. Recent developments on the crosstalk between integrins and receptor tyrosine kinases, and its implication in mammary tumor progression, are discussed.
Collapse
Affiliation(s)
- Young Hwa Soung
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA
| | | | | |
Collapse
|
42
|
Draheim KM, Chen HB, Tao Q, Moore N, Roche M, Lyle S. ARRDC3 suppresses breast cancer progression by negatively regulating integrin beta4. Oncogene 2010; 29:5032-47. [PMID: 20603614 PMCID: PMC2997682 DOI: 10.1038/onc.2010.250] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Large-scale genetic analyses of human tumor samples have been used to identify novel oncogenes, tumor suppressors and prognostic factors, but the functions and molecular interactions of many individual genes have not been determined. In this study we examined the cellular effects and molecular mechanism of the arrestin family member, ARRDC3, a gene preferentially lost in a subset of breast cancers. Oncomine data revealed that the expression of ARRDC3 decreases with tumor grade, metastases and recurrences. ARRDC3 overexpression represses cancer cell proliferation, migration, invasion, growth in soft agar and in vivo tumorigenicity, whereas downregulation of ARRCD3 has the opposite effects. Mechanistic studies showed that ARRDC3 functions in a novel regulatory pathway that controls the cell surface adhesion molecule, β-4 integrin (ITGβ4), a protein associated with aggressive tumor behavior. Our data indicates ARRDC3 directly binds to a phosphorylated form of ITGβ4 leading to its internalization, ubiquitination and ultimate degradation. The results identify the ARRCD3-ITGβ4 pathway as a new therapeutic target in breast cancer and show the importance of connecting genetic arrays with mechanistic studies in the search for new treatments.
Collapse
Affiliation(s)
- K M Draheim
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | |
Collapse
|
43
|
Ko MS, Marinkovich MP. Role of dermal-epidermal basement membrane zone in skin, cancer, and developmental disorders. Dermatol Clin 2010; 28:1-16. [PMID: 19945611 DOI: 10.1016/j.det.2009.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The dermal-epidermal basement membrane zone is an important epithelial and stromal interface, consisting of an intricately organized collection of intracellular, transmembrane, and extracellular matrix proteins. The basement membrane zone has several main functions including acting as a permeability barrier, forming an adhesive interface between epithelial cells and the underlying matrix, and controlling cellular organization and differentiation. This article identifies key molecular players of the dermal-epidermal membrane zone, and highlights recent research studies that have identified structural and functional roles of these components in the context of various blistering, neoplastic, and developmental syndromes.
Collapse
Affiliation(s)
- Myung S Ko
- Program in Epithelial Biology, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, USA
| | | |
Collapse
|