1
|
Li L, Zeng Y, Cheng G, Yang H. Acetylation and deacetylation dynamics in stress response to cancer and infections. Semin Immunol 2025; 78:101957. [PMID: 40288003 DOI: 10.1016/j.smim.2025.101957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
In response to stress stimuli, cells have evolved various mechanisms to integrate internal and external signals to achieve dynamic homeostasis. Lysine acetyltransferase (KATs) and deacetyltransferase (KDACs) are the key modulators of epigenetic modifications, enabling cells to modulate cellular responses through the acetylation and deacetylation of both histone and nonhistone proteins. Understanding the signaling pathways involved in cellular stress response, along with the roles of KATs and KDACs may pave the way for the development of novel therapeutic strategies. This review discusses the molecular mechanisms of acetylation and deacetylation in stress responses related to tumorigenesis, viral and bacterial infections. In tumorigenesis section, we focused on the tumor cells' intrinsic and external molecules and signaling pathways regulated by acetylation and deacetylation modification. In viral and bacterial infections, we summarized the update research on acetylation and deacetylation modification in viral and bacterial infections, which systematical introduction on this topic is not too much. Additionally, we provide an overview of current therapeutic interventions and clinical trials involving KAT and KDAC inhibitors in the treatment of cancer, as well as viral and bacterial infection-related diseases.
Collapse
Affiliation(s)
- Lili Li
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu 215123, China; Guangzhou National Laboratory, Guangzhou, Guangdong 510005, China
| | - Yanqiong Zeng
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu 215123, China
| | - Genhong Cheng
- Guangzhou National Laboratory, Guangzhou, Guangdong 510005, China
| | - Heng Yang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu 215123, China
| |
Collapse
|
2
|
Górka J, Miękus K. Molecular landscape of clear cell renal cell carcinoma: targeting the Wnt/β-catenin signaling pathway. Discov Oncol 2025; 16:524. [PMID: 40227498 PMCID: PMC11996749 DOI: 10.1007/s12672-025-02228-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 03/25/2025] [Indexed: 04/15/2025] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cell carcinoma and is characterized by a complex molecular landscape driven by genetic and epigenetic alternations. Among the crucial signaling pathways implicated in ccRCC, the Wnt/β-catenin pathway plays a significant role in tumor progression and prognosis. This review delves into the molecular basis of ccRCC, highlighting the genetic and epigenetic modifications that contribute to its pathogenesis. We explore the significance of the Wnt/β-catenin pathway, focusing on its role in disease development, particularly the nuclear transport of β-catenin and its activation and downstream effects. Furthermore, we examine the role of antagonist genes in regulating this pathway within the context of ccRCC, providing insights into potential therapeutic targets. Dysregulation of this pathway, which is characterized by abnormal activation and nuclear translocation of β-catenin, plays a significant role in promoting tumor growth and metastasis. We explore the intricate molecular aspects of ccRCC, with a particular emphasis on this topic, underscoring the role of the pathway and emphasizing the importance and relevance of antagonist genes. Understanding the intricate interplay between these molecular mechanisms is crucial for developing innovative strategies to improve ccRCC treatment and patient outcomes.
Collapse
Affiliation(s)
- Judyta Górka
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Katarzyna Miękus
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.
| |
Collapse
|
3
|
Lee HJ, Lim SH, Lee H, Han JM, Min DS. Phospholipase D6 activates Wnt/β-catenin signaling through mitochondrial metabolic reprogramming to promote tumorigenesis in colorectal cancer. Exp Mol Med 2025; 57:910-924. [PMID: 40259095 PMCID: PMC12046002 DOI: 10.1038/s12276-025-01446-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/24/2025] [Accepted: 02/18/2025] [Indexed: 04/23/2025] Open
Abstract
Phospholipase D6 (PLD6) is a critical enzyme involved in mitochondrial fusion with a key role in spermatogenesis. However, the role of PLD6 in cancer remains unknown. Notably, Wnt signaling, energy metabolism and mitochondrial function show complex interactions in colorectal cancer (CRC) progression. Here we found that PLD6 is highly expressed in CRC and positively correlated with poor prognosis. We present a novel function of PLD6 in activating Wnt/β-catenin signaling by enhancing mitochondrial metabolism. PLD6 depletion suppresses the oncogenic properties of CRC cells and impairs mitochondrial respiration, leading to reduced mitochondrial length, membrane potential, calcium levels and reactive oxygen species. PLD6 depletion also disrupts mitochondrial metabolic reprogramming by inhibiting the tricarboxylic acid cycle and mitochondrial oxidative phosphorylation, resulting in altered intracellular levels of citrate and acetyl-CoA-both key modulators of Wnt/β-catenin activation. PLD6-mediated acetyl-CoA production enhances β-catenin stability by promoting its acetylation via the acetyltransferases CREB-binding protein and P300/CREB-binding-protein-associated factor. Consequently, PLD6 ablation reduces cancer stem cell-associated gene expression downstream of Wnt/β-catenin signaling, suppressing stem-like traits and chemoresistance to 5-fluorouracil. Furthermore, PLD6 depletion attenuates CRC tumorigenesis in both subcutaneous and orthotopic tumor models. Overall, PLD6 acts as an oncogenic switch by promoting mitochondria-mediated retrograde signaling, thereby regulating Wnt signaling in CRC.
Collapse
Affiliation(s)
- Hyun Ji Lee
- Department of Pharmacy, Yonsei University, Incheon, South Korea
| | - Seong Hun Lim
- Department of Pharmacy, Yonsei University, Incheon, South Korea
| | - Hyesung Lee
- Department of Pharmacy, Yonsei University, Incheon, South Korea
| | - Jung Min Han
- Department of Pharmacy, Yonsei University, Incheon, South Korea
- Yonsei Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon, South Korea
| | - Do Sik Min
- Department of Pharmacy, Yonsei University, Incheon, South Korea.
- Yonsei Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon, South Korea.
| |
Collapse
|
4
|
García-Martínez JM, Chocarro-Calvo A, Martínez-Useros J, Regueira-Acebedo N, Fernández-Aceñero MJ, Muñoz A, Larriba MJ, García-Jiménez C. SIRT1 Mediates the Antagonism of Wnt/β-Catenin Pathway by Vitamin D in Colon Carcinoma Cells. Int J Biol Sci 2024; 20:5495-5509. [PMID: 39494323 PMCID: PMC11528448 DOI: 10.7150/ijbs.95875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 09/05/2024] [Indexed: 11/05/2024] Open
Abstract
Cancer initiation and progression result from genetic and epigenetic alterations caused by interactions between environmental and endogenous factors leading to aberrant cell signalling. Colorectal cancers (CRC) are linked to abnormal activation of the Wnt/β-catenin pathway, whose key feature is the nuclear accumulation of acetylated β-catenin in colon epithelial cells. Nuclear β-catenin acts as a transcriptional co-activator, targeting genes involved in cell proliferation and invasion. 1α,25-Dihydroxyvitamin D3 (1,25(OH)2D3 or calcitriol), the active form of vitamin D, antagonizes Wnt/β-catenin over-activation by engaging its high affinity receptor, VDR. Here we unveil that 1,25(OH)2D3-bound VDR activates Silent Information Regulator of Transcription, sirtuin 1 (SIRT1), leading to β-catenin deacetylation and nuclear exclusion, downregulation of its pro-tumourigenic target genes and inhibition of human colon carcinoma cell proliferation. Notably, orthogonal SIRT1 activation mimics nuclear exclusion of β-catenin while SIRT1 inhibition blocks the effects of 1,25(OH)2D3. Thus, SIRT1 emerges as a crucial mediator in the protective action of vitamin D against CRC. The mutual negative feedback loop unveiled here between Wnt and SIRT1 represents an important surrogate target in CRC. Since nuclear localisation of β-catenin is a critical driver of CRC that requires its acetylation, we provide a mechanistic foundation for the epidemiological evidence linking vitamin D deficiency and increased CRC risk and mortality.
Collapse
Affiliation(s)
- José Manuel García-Martínez
- Physiology Area, Department of Basic Health Sciences. Health Sciences Faculty, University Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - Ana Chocarro-Calvo
- Physiology Area, Department of Basic Health Sciences. Health Sciences Faculty, University Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - Javier Martínez-Useros
- Physiology Area, Department of Basic Health Sciences. Health Sciences Faculty, University Rey Juan Carlos, Alcorcón, Madrid, Spain
- Translational Oncology Division, OncoHealth Institute, Health Research Institute-University Hospital Fundación Jiménez Díaz-Universidad Autónoma de Madrid, Spain
| | - Nerea Regueira-Acebedo
- Physiology Area, Department of Basic Health Sciences. Health Sciences Faculty, University Rey Juan Carlos, Alcorcón, Madrid, Spain
| | | | - Alberto Muñoz
- Instituto de Investigaciones Βiomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Βiomédica en Red de Cáncer (CIΒERONC), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - María Jesús Larriba
- Instituto de Investigaciones Βiomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Βiomédica en Red de Cáncer (CIΒERONC), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Custodia García-Jiménez
- Physiology Area, Department of Basic Health Sciences. Health Sciences Faculty, University Rey Juan Carlos, Alcorcón, Madrid, Spain
| |
Collapse
|
5
|
Song P, Gao Z, Bao Y, Chen L, Huang Y, Liu Y, Dong Q, Wei X. Wnt/β-catenin signaling pathway in carcinogenesis and cancer therapy. J Hematol Oncol 2024; 17:46. [PMID: 38886806 PMCID: PMC11184729 DOI: 10.1186/s13045-024-01563-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Abstract
The Wnt/β-catenin signaling pathway plays a crucial role in various physiological processes, encompassing development, tissue homeostasis, and cell proliferation. Under normal physiological conditions, the Wnt/β-catenin signaling pathway is meticulously regulated. However, aberrant activation of this pathway and downstream target genes can occur due to mutations in key components of the Wnt/β-catenin pathway, epigenetic modifications, and crosstalk with other signaling pathways. Consequently, these dysregulations contribute significantly to tumor initiation and progression. Therapies targeting the Wnt/β-catenin signaling transduction have exhibited promising prospects and potential for tumor treatment. An increasing number of medications targeting this pathway are continuously being developed and validated. This comprehensive review aims to summarize the latest advances in our understanding of the role played by the Wnt/β-catenin signaling pathway in carcinogenesis and targeted therapy, providing valuable insights into acknowledging current opportunities and challenges associated with targeting this signaling pathway in cancer research and treatment.
Collapse
Affiliation(s)
- Pan Song
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Zirui Gao
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yige Bao
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Li Chen
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yuhe Huang
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yanyan Liu
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Qiang Dong
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041, China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
6
|
Xu Y, Yu Y, Yan R, Ke X, Qu Y. Modulating β-catenin homeostasis for cancer therapy. Trends Cancer 2024; 10:507-518. [PMID: 38521655 DOI: 10.1016/j.trecan.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/05/2024] [Accepted: 02/26/2024] [Indexed: 03/25/2024]
Abstract
β-Catenin is a well-established driver of many cancers; however, there are challenges in developing agents targeting β-catenin for clinical use. Recent progress has indicated that most of the pathological changes in β-catenin may be commonly caused by loss of protein homeostasis. Modulation of β-catenin homeostasis, especially by hyperactivation of β-catenin, potentially leads to robust antitumor outcomes. Here, we comprehensively dissect the protein homeostasis of β-catenin in terms of time, compartmentalization, supramolecular assemblies, and dynamics, with emphasis on changes in β-catenin homeostasis upon oncogenic mutations. We propose that altered β-catenin homeostasis could be deleterious for β-catenin-dependent cancers and that modulation of β-catenin homeostasis offers a novel avenue for targeting β-catenin for cancer therapy.
Collapse
Affiliation(s)
- Yu Xu
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Ying Yu
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Rong Yan
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Xisong Ke
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China.
| | - Yi Qu
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China.
| |
Collapse
|
7
|
Yang Y, Li S, Li Y, Lv L, Ye D, Kang J, Yu T, Wang Y, Wu H. α-Catenin acetylation is essential for its stability and blocks its tumor suppressor effects in breast cancer through Yap1. Cancer Gene Ther 2023; 30:1624-1635. [PMID: 37679528 DOI: 10.1038/s41417-023-00665-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
α-Catenin plays a critical role in tissue integrity, repair, and embryonic development. However, the post-translational modifications of α-catenin and the correlative roles in regulating cancer progression remain unclear. Here, we report that α-catenin is acetylated by p300, and identify three acetylation sites, K45, K866, and K881. Conversely, α-catenin acetylation can be reversed by deacetylase HDAC6. Mechanistically, α-catenin acetylation releases the transcriptional coactivator Yes-associated protein 1 (Yap1) by blocking the interaction between α-catenin and Yap1, and promotes the accumulation of Yap1 in the nucleus. Through this mechanism, acetylation weakens the capacity of α-catenin to inhibit breast cancer cell proliferation and tumor growth in mice. Meanwhile, we show that CDDP induces acetylation of α-catenin, and acetylated α-catenin resists the apoptosis under CDDP conditions. Additionally, acetylation inhibits the proteasome-dependent degradation of α-catenin, thus enhancing the stability of α-catenin for storage. Taken together, our results demonstrate that α-catenin can be acetylated, an event that is key for the subcellular distribution of Yap1 and subsequent facilitation of breast tumorigenesis.
Collapse
Affiliation(s)
- Yuxi Yang
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, China
| | - Shujing Li
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, China
| | - Yulin Li
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, China
| | - Linlin Lv
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, China
- The first affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dongman Ye
- Cancer Hospital of Dalian University of Technology, Shenyang, China
| | - Jie Kang
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, China
| | - Tao Yu
- Cancer Hospital of Dalian University of Technology, Shenyang, China.
| | - Yaming Wang
- The first affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Huijian Wu
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, China.
| |
Collapse
|
8
|
Wang C, Huang M, Lin Y, Zhang Y, Pan J, Jiang C, Cheng M, Li S, He W, Li Z, Tu Z, Fan J, Zeng H, Lin J, Wang Y, Yao N, Liu T, Qi Q, Liu X, Zhang Z, Chen M, Xia L, Zhang D, Ye W. ENO2-derived phosphoenolpyruvate functions as an endogenous inhibitor of HDAC1 and confers resistance to antiangiogenic therapy. Nat Metab 2023; 5:1765-1786. [PMID: 37667133 DOI: 10.1038/s42255-023-00883-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/31/2023] [Indexed: 09/06/2023]
Abstract
Metabolic reprogramming is associated with resistance to antiangiogenic therapy in cancer. However, its molecular mechanisms have not been clearly elucidated. Here, we identify the glycolytic enzyme enolase 2 (ENO2) as a driver of resistance to antiangiogenic therapy in colorectal cancer (CRC) mouse models and human participants. ENO2 overexpression induces neuroendocrine differentiation, promotes malignant behaviour in CRC and desensitizes CRC to antiangiogenic drugs. Mechanistically, the ENO2-derived metabolite phosphoenolpyruvate (PEP) selectively inhibits histone deacetylase 1 (HDAC1) activity, which increases the acetylation of β-catenin and activates the β-catenin pathway in CRC. Inhibition of ENO2 with enolase inhibitors AP-III-a4 or POMHEX synergizes the efficacy of antiangiogenic drugs in vitro and in mice bearing drug-resistant CRC xenograft tumours. Together, our findings reveal that ENO2 constitutes a useful predictive biomarker and therapeutic target for resistance to antiangiogenic therapy in CRC, and uncover a previously undefined and metabolism-independent role of PEP in regulating resistance to antiangiogenic therapy by functioning as an endogenous HDAC1 inhibitor.
Collapse
Affiliation(s)
- Chenran Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- The First Affiliated Hospital of Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Maohua Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Yuning Lin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Yiming Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Jinghua Pan
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Chang Jiang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Minjing Cheng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Shenrong Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Wenzhuo He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zhengqiu Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Zhengchao Tu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Jun Fan
- School of Medicine, Jinan University, Guangzhou, China
| | - Huhu Zeng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Jiahui Lin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Yongjin Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Nan Yao
- School of Medicine, Jinan University, Guangzhou, China
| | - Tongzheng Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Qi Qi
- School of Medicine, Jinan University, Guangzhou, China
| | - Xiangning Liu
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhimin Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Minfeng Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China.
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China.
| | - Liangping Xia
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Dongmei Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China.
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China.
| | - Wencai Ye
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China.
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China.
| |
Collapse
|
9
|
He K, Gan WJ. Wnt/β-Catenin Signaling Pathway in the Development and Progression of Colorectal Cancer. Cancer Manag Res 2023; 15:435-448. [PMID: 37250384 PMCID: PMC10224676 DOI: 10.2147/cmar.s411168] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023] Open
Abstract
The Wnt/β-catenin signaling pathway is a growth control pathway involved in various biological processes as well as the development and progression of cancer. Colorectal cancer (CRC) is one of the most common malignancies in the world. The hyperactivation of Wnt signaling is observed in almost all CRC and plays a crucial role in cancer-related processes such as cancer stem cell (CSC) propagation, angiogenesis, epithelial-mesenchymal transition (EMT), chemoresistance, and metastasis. This review will discuss how the Wnt/β-catenin signaling pathway is involved in the carcinogenesis and progression of CRC and related therapeutic approaches.
Collapse
Affiliation(s)
- Kuang He
- Department of Pathology, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Wen-Juan Gan
- Department of Pathology, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| |
Collapse
|
10
|
Schäfer J, Wenck N, Janik K, Linnert J, Stingl K, Kohl S, Nagel-Wolfrum K, Wolfrum U. The Usher syndrome 1C protein harmonin regulates canonical Wnt signaling. Front Cell Dev Biol 2023; 11:1130058. [PMID: 36846582 PMCID: PMC9944737 DOI: 10.3389/fcell.2023.1130058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Human Usher syndrome (USH) is the most common form of hereditary combined deaf-blindness. USH is a complex genetic disorder, and the pathomechanisms underlying the disease are far from being understood, especially in the eye and retina. The USH1C gene encodes the scaffold protein harmonin which organizes protein networks due to binary interactions with other proteins, such as all USH proteins. Interestingly, only the retina and inner ear show a disease-related phenotype, although USH1C/harmonin is almost ubiquitously expressed in the human body and upregulated in colorectal cancer. We show that harmonin binds to β-catenin, the key effector of the canonical Wnt (cWnt) signaling pathway. We also demonstrate the interaction of the scaffold protein USH1C/harmonin with the stabilized acetylated β-catenin, especially in nuclei. In HEK293T cells, overexpression of USH1C/harmonin significantly reduced cWnt signaling, but a USH1C-R31* mutated form did not. Concordantly, we observed an increase in cWnt signaling in dermal fibroblasts derived from an USH1C R31*/R80Pfs*69 patient compared with healthy donor cells. RNAseq analysis reveals that both the expression of genes related to the cWnt signaling pathway and cWnt target genes were significantly altered in USH1C patient-derived fibroblasts compared to healthy donor cells. Finally, we show that the altered cWnt signaling was reverted in USH1C patient fibroblast cells by the application of Ataluren, a small molecule suitable to induce translational read-through of nonsense mutations, hereby restoring some USH1C expression. Our results demonstrate a cWnt signaling phenotype in USH establishing USH1C/harmonin as a suppressor of the cWnt/β-catenin pathway.
Collapse
Affiliation(s)
- Jessica Schäfer
- Institute of Molecular Physiology, Molecular Cell Biology and Photoreceptor Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Nicole Wenck
- Institute of Molecular Physiology, Molecular Cell Biology and Photoreceptor Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Katharina Janik
- Institute of Molecular Physiology, Molecular Cell Biology and Photoreceptor Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Joshua Linnert
- Institute of Molecular Physiology, Molecular Cell Biology and Photoreceptor Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Katarina Stingl
- Centre for Ophthalmology, University Eye Hospital, University of Tübingen, Tübingen, Germany
| | - Susanne Kohl
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Kerstin Nagel-Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology and Photoreceptor Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany,Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology and Photoreceptor Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany,*Correspondence: Uwe Wolfrum,
| |
Collapse
|
11
|
Fan L, Yang X, Zheng M, Yang X, Ning Y, Gao M, Zhang S. Regulation of SUMOylation Targets Associated With Wnt/β-Catenin Pathway. Front Oncol 2022; 12:943683. [PMID: 35847921 PMCID: PMC9280480 DOI: 10.3389/fonc.2022.943683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/07/2022] [Indexed: 11/23/2022] Open
Abstract
Wnt/β-catenin signaling is a delicate and complex signal transduction pathway mediated by multiple signaling molecules, which plays a significant role in regulating human physiology and pathology. Abnormally activated Wnt/β-catenin signaling pathway plays a crucial role in promoting malignant tumor occurrence, development, recurrence, and metastasis, particularly in cancer stem cells. Studies have shown that the Wnt/β-catenin signaling pathway controls cell fate and function through the transcriptional and post-translational regulation of omics networks. Therefore, precise regulation of Wnt/β-catenin signaling as a cancer-targeting strategy may contribute to the treatment of some malignancies. SUMOylation is a post-translational modification of proteins that has been found to play a major role in the Wnt/β-catenin signaling pathway. Here, we review the complex regulation of Wnt/β-catenin signaling by SUMOylation and discuss the potential targets of SUMOylation therapy.
Collapse
Affiliation(s)
- Linlin Fan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xudong Yang
- Tianjin Rehabilitation Center, Tianjin, China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Xiaohui Yang
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yidi Ning
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Ming Gao
- Department of Thyroid Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
12
|
Kristipati RR, Jose TG, Dhamodharan P, Chandrasekaran S, Arumugam M. Gene expression and network based study of colorectal adenocarcinoma reveals tankyrase, PIK3CB and cyclin G-associated kinase as potential target candidates. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Ning J, Sun Q, Su Z, Tan L, Tang Y, Sayed S, Li H, Xue VW, Liu S, Chen X, Lu D. The CK1δ/ϵ-Tip60 Axis Enhances Wnt/β-Catenin Signaling via Regulating β-Catenin Acetylation in Colon Cancer. Front Oncol 2022; 12:844477. [PMID: 35494070 PMCID: PMC9039669 DOI: 10.3389/fonc.2022.844477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/22/2022] [Indexed: 11/16/2022] Open
Abstract
Casein kinase 1δ/ϵ (CK1δ/ϵ) are well-established positive modulators of the Wnt/β-catenin signaling pathway. However, the molecular mechanisms involved in the regulation of β-catenin transcriptional activity by CK1δ/ϵ remain unclear. In this study, we found that CK1δ/ϵ could enhance β-catenin-mediated transcription through regulating β-catenin acetylation. CK1δ/ϵ interacted with Tip60 and facilitated the recruitment of Tip60 to β-catenin complex, resulting in increasing β-catenin acetylation at K49. Importantly, Tip60 significantly enhanced the SuperTopFlash reporter activity induced by CK1δ/ϵ or/and β-catenin. Furthermore, a CK1δ/CK1ϵ/β-catenin/Tip60 complex was detected in colon cancer cells. Simultaneous knockdown of CK1δ and CK1ϵ significantly attenuated the interaction between β-catenin and Tip60. Notably, inhibition of CK1δ/ϵ or Tip60, with shRNA or small molecular inhibitors downregulated the level of β-catenin acetylation at K49 in colon cancer cells. Finally, combined treatment with CK1 inhibitor SR3029 and Tip60 inhibitor MG149 had more potent inhibitory effect on β-catenin acetylation, the transcription of Wnt target genes and the viability and proliferation in colon cancer cells. Taken together, our results revealed that the transcriptional activity of β-catenin could be modulated by the CK1δ/ϵ-β-catenin-Tip60 axis, which may be a potential therapeutic target for colon cancer.
Collapse
Affiliation(s)
- Jiong Ning
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, China.,Shenzhen University-Friedrich Schiller Universität Jena Joint PhD Program in Biomedical Sciences, Shenzhen University School of Medicine, Shenzhen, China
| | - Qi Sun
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, China
| | - Zijie Su
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, China.,Department of Research, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Lifeng Tan
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, China
| | - Yun Tang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, China
| | - Sapna Sayed
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, China
| | - Huan Li
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, China
| | - Vivian Weiwen Xue
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, China
| | - Shanshan Liu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, China
| | - Xianxiong Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, China
| | - Desheng Lu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, China.,Shenzhen University-Friedrich Schiller Universität Jena Joint PhD Program in Biomedical Sciences, Shenzhen University School of Medicine, Shenzhen, China
| |
Collapse
|
14
|
Su R, Wu X, Tao L, Wang C. The role of epigenetic modifications in Colorectal Cancer Metastasis. Clin Exp Metastasis 2022; 39:521-539. [PMID: 35429301 PMCID: PMC9338907 DOI: 10.1007/s10585-022-10163-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/18/2022] [Indexed: 12/19/2022]
Abstract
Distant metastasis is the major contributor to the high mortality rate of colorectal cancer (CRC). To overcome the poor prognosis caused by distant metastasis, the mechanisms of CRC metastasis should be further explored. Epigenetic events are the main mediators of gene regulation and further affect tumor progression. Recent studies have found that some epigenetic enzymes are often dysregulated or mutated in multiple tumor types, which prompted us to study the roles of these enzymes in CRC metastasis. In this review, we summarized the alteration of enzymes related to various modifications, including histone modification, nonhistone modification, DNA methylation, and RNA methylation, and their epigenetic mechanisms during the progression of CRC metastasis. Existing data suggest that targeting epigenetic enzymes is a promising strategy for the treatment of CRC metastasis.
Collapse
Affiliation(s)
- Riya Su
- Department of pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xinlin Wu
- Department of General Surgery, the Affiliated Hospital of Inner Mongolia Medical University, Huhhot, China
| | - Liang Tao
- Department of pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Changshan Wang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China.
| |
Collapse
|
15
|
The interaction of canonical Wnt/β-catenin signaling with protein lysine acetylation. Cell Mol Biol Lett 2022; 27:7. [PMID: 35033019 PMCID: PMC8903542 DOI: 10.1186/s11658-021-00305-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
Canonical Wnt/β-catenin signaling is a complex cell-communication mechanism that has a central role in the progression of various cancers. The cellular factors that participate in the regulation of this signaling are still not fully elucidated. Lysine acetylation is a significant protein modification which facilitates reversible regulation of the target protein function dependent on the activity of lysine acetyltransferases (KATs) and the catalytic function of lysine deacetylases (KDACs). Protein lysine acetylation has been classified into histone acetylation and non-histone protein acetylation. Histone acetylation is a kind of epigenetic modification, and it can modulate the transcription of important biological molecules in Wnt/β-catenin signaling. Additionally, as a type of post-translational modification, non-histone acetylation directly alters the function of the core molecules in Wnt/β-catenin signaling. Conversely, this signaling can regulate the expression and function of target molecules based on histone or non-histone protein acetylation. To date, various inhibitors targeting KATs and KDACs have been discovered, and some of these inhibitors exert their anti-tumor activity via blocking Wnt/β-catenin signaling. Here, we discuss the available evidence in understanding the complicated interaction of protein lysine acetylation with Wnt/β-catenin signaling, and lysine acetylation as a new target for cancer therapy via controlling this signaling.
Collapse
|
16
|
Kim I, Kim JH, Kim K, Seong S, Lee KB, Kim N. IRF2 enhances RANKL-induced osteoclast differentiation via regulating NF-κB/NFATc1 signaling. BMB Rep 2021. [PMID: 34488926 PMCID: PMC8505232 DOI: 10.5483/bmbrep.2021.54.9.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Interferon regulatory factors (IRFs) play roles in various biological processes including cytokine signaling, cell growth regulation and hematopoietic development. Although it has been reported that several IRFs are involved in bone metabolism, the role of IRF2 in bone cells has not been elucidated. Here, we investigated the involvement of IRF2 in RANKL-induced osteoclast differentiation. IRF2 overexpression in osteoclast pre-cursor cells enhanced osteoclast differentiation by regulating the expression of NFATc1, a master regulator of osteoclasto-genesis. Conversely, IRF2 knockdown inhibited osteoclast differentiation and decreased the NFATc1 expression. Moreover, IRF2 increased the translocation of NF-κB subunit p65 to the nucleus in response to RANKL and subsequently induced the expression of NFATc1. IRF2 plays an important role in RANKL-induced osteoclast differentiation by regulating NF-κB/NFATc1 signaling pathway. Taken together, we demonstrated the molecular mechanism of IRF2 in osteoclast differentiation, and provide a molecular basis for potential therapeutic targets for the treatment of bone diseases characterized by excessive bone resorption.
Collapse
Affiliation(s)
- Inyoung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea
| | - Jung Ha Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea
| | - Kabsun Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea
| | - Semun Seong
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea
| | - Keun-Bae Lee
- Department of Orthopedic Surgery, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea
| | - Nacksung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea
| |
Collapse
|
17
|
Huang M, Zhang D, Wu JY, Xing K, Yeo E, Li C, Zhang L, Holland E, Yao L, Qin L, Binder ZA, O'Rourke DM, Brem S, Koumenis C, Gong Y, Fan Y. Wnt-mediated endothelial transformation into mesenchymal stem cell-like cells induces chemoresistance in glioblastoma. Sci Transl Med 2021; 12:12/532/eaay7522. [PMID: 32102932 DOI: 10.1126/scitranslmed.aay7522] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/25/2019] [Indexed: 12/12/2022]
Abstract
Therapeutic resistance remains a persistent challenge for patients with malignant tumors. Here, we reveal that endothelial cells (ECs) acquire transformation into mesenchymal stem cell (MSC)-like cells in glioblastoma (GBM), driving tumor resistance to cytotoxic treatment. Transcriptome analysis by RNA sequencing (RNA-seq) revealed that ECs undergo mesenchymal transformation and stemness-like activation in GBM microenvironment. Furthermore, we identified a c-Met-mediated axis that induces β-catenin phosphorylation at Ser675 and Wnt signaling activation, inducing multidrug resistance-associated protein-1(MRP-1) expression and leading to EC stemness-like activation and chemoresistance. Last, genetic ablation of β-catenin in ECs overcome GBM tumor resistance to temozolomide (TMZ) chemotherapy in vivo. Combination of Wnt inhibition and TMZ chemotherapy eliminated tumor-associated ECs, inhibited GBM growth, and increased mouse survival. These findings identified a cell plasticity-based, microenvironment-dependent mechanism that controls tumor chemoresistance, and suggest that targeting Wnt/β-catenin-mediated EC transformation and stemness activation may overcome therapeutic resistance in GBM.
Collapse
Affiliation(s)
- Menggui Huang
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Duo Zhang
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Janet Y Wu
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.,Department of Biology, Oberlin College, Oberlin, OH 44074, USA
| | - Kun Xing
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Eujin Yeo
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Chunsheng Li
- Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Lin Zhang
- Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Eric Holland
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Lutian Yao
- Department of Orthopedic Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ling Qin
- Department of Orthopedic Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Zev A Binder
- Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.,Glioblastoma Translational Center of Excellence, University of Pennsylvania Abramson Cancer Center, Philadelphia, PA 19104, USA
| | - Donald M O'Rourke
- Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.,Glioblastoma Translational Center of Excellence, University of Pennsylvania Abramson Cancer Center, Philadelphia, PA 19104, USA
| | - Steven Brem
- Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.,Glioblastoma Translational Center of Excellence, University of Pennsylvania Abramson Cancer Center, Philadelphia, PA 19104, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Yanqing Gong
- Division of Human Genetics and Translational Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Yi Fan
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA. .,Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.,Glioblastoma Translational Center of Excellence, University of Pennsylvania Abramson Cancer Center, Philadelphia, PA 19104, USA
| |
Collapse
|
18
|
ATP-citrate lyase regulates stemness and metastasis in hepatocellular carcinoma via the Wnt/β-catenin signaling pathway. Hepatobiliary Pancreat Dis Int 2021; 20:251-261. [PMID: 33129711 DOI: 10.1016/j.hbpd.2020.05.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/29/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most highly malignant tumors. Liver tumor-initiating cells (LTICs) have been considered to contribute to HCC progression and metastasis. ATP-citrate lyase (ACLY), as a key enzyme for de novo lipogenesis, has been reported to be upregulated in various tumors. However, its expression and role in HCC and LTICs remain unknown. METHODS The expressions of ACLY in HCC tissues were detected by quantitative real-time PCR (qRT-PCR), Western blotting and immunohistochemistry. Kaplan-Meier curves and Chi-square test were used to determine the clinical significance of ACLY expression in HCC patients. A series of assays were performed to determine the function of ACLY on stemness, migration and invasion of HCC cells. Luciferase reporter assay, Western blotting and immunoprecipitation were used to study the regulation of the Wnt/β-catenin signaling by ACLY. Rescue experiments were performed to investigate whether β-catenin was the mediator of ACLY-regulated stemness and migration in HCC cells. RESULTS ACLY was highly expressed in HCC tissues and LTICs. Overexpression of ACLY was significantly correlated with poor prognosis, progression and metastasis of HCC patients. Knockdown of ACLY remarkably suppressed stemness properties, migration and invasion in HCC cells. Mechanistically, ACLY could regulate the canonical Wnt pathway by affecting the stability of β-catenin, and Lys49 acetylation of β-catenin might mediate ACLY-regulated β-catenin level in HCC cells. CONCLUSIONS ACLY is a potent regulator of Wnt/β-catenin signaling in modulating LTICs stemness and metastasis in HCC. ACLY may serve as a new target for the diagnosis and treatment of HCC.
Collapse
|
19
|
Hu J, Xia X, Zhao Q, Li S. Lysine acetylation of NKG2D ligand Rae-1 stabilizes the protein and sensitizes tumor cells to NKG2D immune surveillance. Cancer Lett 2021; 502:143-153. [PMID: 33279621 PMCID: PMC10142196 DOI: 10.1016/j.canlet.2020.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/23/2020] [Accepted: 12/01/2020] [Indexed: 02/08/2023]
Abstract
Shedding, loss of expression, or internalization of natural killer group 2, member D (NKG2D) ligands from the tumor cell surface leads to immune evasion, which is associated with poor prognosis in patients with cancer. In many cancers, matrix metalloproteinases cause the proteolytic shedding of NKG2D ligands. However, it remained unclear how to protect NKG2D ligands from shedding. Here, we showed that the shedding of the mouse NKG2D ligand Rae-1 can be prevented by two critical acetyltransferases, GCN5 and PCAF, which acetylate the lysine residues of Rae-1 to avoid shedding both in vitro and in vivo. In contrast, mutations at lysines 80 and 87 of Rae-1 abrogated this acetylation and thereby desensitized tumor cells to NKG2D-dependent immune surveillance. Notably, the protein levels of GCN5 correlated with the expression levels of the human NKG2D ligand ULPB1 in a human tumor tissue microarray and, more importantly, with prolonged overall survival in many cancers. Our results suggest that the acetylation of Rae-1 protein at lysines 80 and 87 by GCN5 and PCAF protects Rae-1 from shedding so as to activate NKG2D-dependent immune surveillance. This discovery may shed light on new targets for NKG2D immunotherapy in cancer treatment.
Collapse
Affiliation(s)
- Jiemiao Hu
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 853, Houston, TX, 77030, USA
| | - Xueqing Xia
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 853, Houston, TX, 77030, USA
| | - Qingnan Zhao
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 853, Houston, TX, 77030, USA
| | - Shulin Li
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 853, Houston, TX, 77030, USA.
| |
Collapse
|
20
|
Identification of epigenetic factor KAT2B gene variants for possible roles in congenital heart diseases. Biosci Rep 2021; 40:222531. [PMID: 32239175 PMCID: PMC7160239 DOI: 10.1042/bsr20191779] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 03/23/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023] Open
Abstract
Congenital heart disease (CHD) is a group of anatomic malformations in the heart with high morbidity and mortality. The mammalian heart is a complex organ, the formation and development of which are strictly regulated and controlled by gene regulatory networks of many signaling pathways such as TGF-β. KAT2B is an important histone acetyltransferase epigenetic factor in the TGF-β signaling pathway, and alteration in the gene is associated with the etiology of cardiovascular diseases. The aim of this work was to validate whether KAT2B variations might be associated with CHD. We sequenced the KAT2B gene for 400 Chinese Han CHD patients and evaluated SNPs rs3021408 and rs17006625. The statistical analyses and Hardy-Weinberg equilibrium tests of the CHD and control populations were conducted by the software SPSS (version 19.0) and PLINK. The experiment-wide significance threshold matrix of LD correlation for the markers and haplotype diagram of LD structure were calculated using the online software SNPSpD and Haploview software. We analyzed the heterozygous variants within the CDS region of the KAT2B genes and found that rs3021408 and rs17006625 were associated with the risk of CHD.
Collapse
|
21
|
Shi YH, Zhang XL, Ying PJ, Wu ZQ, Lin LL, Chen W, Zheng GQ, Zhu WZ. Neuroprotective Effect of Astragaloside IV on Cerebral Ischemia/Reperfusion Injury Rats Through Sirt1/Mapt Pathway. Front Pharmacol 2021; 12:639898. [PMID: 33841157 PMCID: PMC8033022 DOI: 10.3389/fphar.2021.639898] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/17/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Ischemic stroke is a common disease with poor prognosis, which has become one of the leading causes of morbidity and mortality worldwide. Astragaloside IV (AS-IV) is the main bioactive ingredient of Astragali Radix (which has been used for ischemic stroke for thousands of years) and has been found to have multiple bioactivities in the nervous system. In the present study, we aimed to explore the neuroprotective effects of AS-IV in rats with cerebral ischemia/reperfusion (CIR) injury targeting the Sirt1/Mapt pathway. Methods: Sprague-Dawley rats (male, 250-280 g) were randomly divided into the Sham group, middle cerebral artery occlusion/reperfusion (MCAO/R) group, AS-IV group, MCAO/R + EX527 (SIRT1-specific inhibitor) group, and AS-IV + EX527 group. Each group was further assigned into several subgroups according to ischemic time (6 h, 1 d, 3 d, and 7 days). The CIR injury was induced in MCAO/R group, AS-IV group, MCAO/R + EX527 group, and AS-IV + EX527 group by MCAO surgery in accordance with the modified Zea Longa criteria. Modified Neurological Severity Scores (mNSS) were used to evaluate the neurological deficits; TTC (2,3,5-triphenyltetrazolium chloride) staining was used to detect cerebral infarction area; Western Blot was used to assess the protein levels of SIRT1, acetylated MAPT (ac-MAPT), phosphorylated MAPT (p-MAPT), and total MAPT (t-MAPT); Real-time Quantitative Polymerase Chain Reaction (qRT-PCR) was used in the detection of Sirt1 and Mapt transcriptions. Results: Compared with the MCAO/R group, AS-IV can significantly improve the neurological dysfunction (p < 0.05), reduce the infarction area (p < 0.05), raise the expression of SIRT1 (p < 0.05), and alleviate the abnormal hyperacetylation and hyperphosphorylation of MAPT (p < 0.05). While compared with the AS-IV group, AS-IV + EX527 group showed higher mNSS scores (p < 0.05), more severe cerebral infarction (p < 0.05), lower SIRT1 expression (p < 0.01), and higher ac-MAPT and p-MAPT levels (p < 0.05). Conclusion: AS-IV can improve the neurological deficit after CIR injury in rats and reduce the cerebral infarction area, which exerts neuroprotective effects probably through the Sirt1/Mapt pathway.
Collapse
Affiliation(s)
- Yi-Hua Shi
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xi-Le Zhang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peng-Jie Ying
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zi-Qian Wu
- Department of Neurology, Wenzhou Hospital of Traditional Chinese Medicine Affiliated toZhejiang Chinese Medical University, Wenzhou, China
| | - Le-Le Lin
- Department of Neurology, Wenzhou Hospital of Traditional Chinese Medicine Affiliated toZhejiang Chinese Medical University, Wenzhou, China
| | - Wei Chen
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guo-Qing Zheng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wen-Zong Zhu
- Department of Neurology, Wenzhou Hospital of Traditional Chinese Medicine Affiliated toZhejiang Chinese Medical University, Wenzhou, China
| |
Collapse
|
22
|
Li D, Shao NY, Moonen JR, Zhao Z, Shi M, Otsuki S, Wang L, Nguyen T, Yan E, Marciano DP, Contrepois K, Li CG, Wu JC, Snyder MP, Rabinovitch M. ALDH1A3 Coordinates Metabolism With Gene Regulation in Pulmonary Arterial Hypertension. Circulation 2021; 143:2074-2090. [PMID: 33764154 DOI: 10.1161/circulationaha.120.048845] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Metabolic alterations provide substrates that influence chromatin structure to regulate gene expression that determines cell function in health and disease. Heightened proliferation of smooth muscle cells (SMC) leading to the formation of a neointima is a feature of pulmonary arterial hypertension (PAH) and systemic vascular disease. Increased glycolysis is linked to the proliferative phenotype of these SMC. METHODS RNA sequencing was applied to pulmonary arterial SMC (PASMC) from PAH patients with and without a BMPR2 (bone morphogenetic receptor 2) mutation versus control PASMC to uncover genes required for their heightened proliferation and glycolytic metabolism. Assessment of differentially expressed genes established metabolism as a major pathway, and the most highly upregulated metabolic gene in PAH PASMC was aldehyde dehydrogenase family 1 member 3 (ALDH1A3), an enzyme previously linked to glycolysis and proliferation in cancer cells and systemic vascular SMC. We determined if these functions are ALDH1A3-dependent in PAH PASMC, and if ALDH1A3 is required for the development of pulmonary hypertension in a transgenic mouse. Nuclear localization of ALDH1A3 in PAH PASMC led us to determine whether and how this enzyme coordinately regulates gene expression and metabolism in PAH PASMC. RESULTS ALDH1A3 mRNA and protein were increased in PAH versus control PASMC, and ALDH1A3 was required for their highly proliferative and glycolytic properties. Mice with Aldh1a3 deleted in SMC did not develop hypoxia-induced pulmonary arterial muscularization or pulmonary hypertension. Nuclear ALDH1A3 converted acetaldehyde to acetate to produce acetyl coenzyme A to acetylate H3K27, marking active enhancers. This allowed for chromatin modification at NFYA (nuclear transcription factor Y subunit α) binding sites via the acetyltransferase KAT2B (lysine acetyltransferase 2B) and permitted NFY-mediated transcription of cell cycle and metabolic genes that is required for ALDH1A3-dependent proliferation and glycolysis. Loss of BMPR2 in PAH SMC with or without a mutation upregulated ALDH1A3, and transcription of NFYA and ALDH1A3 in PAH PASMC was β-catenin dependent. CONCLUSIONS Our studies have uncovered a metabolic-transcriptional axis explaining how dividing cells use ALDH1A3 to coordinate their energy needs with the epigenetic and transcriptional regulation of genes required for SMC proliferation. They suggest that selectively disrupting the pivotal role of ALDH1A3 in PAH SMC, but not endothelial cells, is an important therapeutic consideration.
Collapse
Affiliation(s)
- Dan Li
- Vera Moulton Wall Center for Pulmonary Vascular Diseases (D.L., J-R.M., S.O., L.W., T.N., E.Y., M.R.), Stanford University School of Medicine, CA.,Cardiovascular Institute (D.L., N-Y.S., J-R.M., S.O., L.W., T.N., E.Y., J.C.W., M.P.S., M.R.), Stanford University School of Medicine, CA.,Department of Pediatrics (D.L., J-R-.M., S.O., L.W., T.N., E.Y., M.R.), Stanford University School of Medicine, CA
| | - Ning-Yi Shao
- Cardiovascular Institute (D.L., N-Y.S., J-R.M., S.O., L.W., T.N., E.Y., J.C.W., M.P.S., M.R.), Stanford University School of Medicine, CA.,Department of Medicine (N-Y.S., J.C.W.), Stanford University School of Medicine, CA.,Health Sciences, University of Macau, Macau Special Administrative Region, People's Republic of China (N-Y.S.)
| | - Jan-Renier Moonen
- Vera Moulton Wall Center for Pulmonary Vascular Diseases (D.L., J-R.M., S.O., L.W., T.N., E.Y., M.R.), Stanford University School of Medicine, CA.,Cardiovascular Institute (D.L., N-Y.S., J-R.M., S.O., L.W., T.N., E.Y., J.C.W., M.P.S., M.R.), Stanford University School of Medicine, CA.,Department of Pediatrics (D.L., J-R-.M., S.O., L.W., T.N., E.Y., M.R.), Stanford University School of Medicine, CA
| | - Zhixin Zhao
- Department of Genetics (Z.Z., M.S., D.P.M., K.C., M.P.S.), Stanford University School of Medicine, CA
| | - Minyi Shi
- Department of Genetics (Z.Z., M.S., D.P.M., K.C., M.P.S.), Stanford University School of Medicine, CA
| | - Shoichiro Otsuki
- Vera Moulton Wall Center for Pulmonary Vascular Diseases (D.L., J-R.M., S.O., L.W., T.N., E.Y., M.R.), Stanford University School of Medicine, CA.,Cardiovascular Institute (D.L., N-Y.S., J-R.M., S.O., L.W., T.N., E.Y., J.C.W., M.P.S., M.R.), Stanford University School of Medicine, CA.,Department of Pediatrics (D.L., J-R-.M., S.O., L.W., T.N., E.Y., M.R.), Stanford University School of Medicine, CA
| | - Lingli Wang
- Vera Moulton Wall Center for Pulmonary Vascular Diseases (D.L., J-R.M., S.O., L.W., T.N., E.Y., M.R.), Stanford University School of Medicine, CA.,Cardiovascular Institute (D.L., N-Y.S., J-R.M., S.O., L.W., T.N., E.Y., J.C.W., M.P.S., M.R.), Stanford University School of Medicine, CA.,Department of Pediatrics (D.L., J-R-.M., S.O., L.W., T.N., E.Y., M.R.), Stanford University School of Medicine, CA
| | - Tiffany Nguyen
- Cardiovascular Institute (D.L., N-Y.S., J-R.M., S.O., L.W., T.N., E.Y., J.C.W., M.P.S., M.R.), Stanford University School of Medicine, CA.,Department of Pediatrics (D.L., J-R-.M., S.O., L.W., T.N., E.Y., M.R.), Stanford University School of Medicine, CA
| | - Elaine Yan
- Vera Moulton Wall Center for Pulmonary Vascular Diseases (D.L., J-R.M., S.O., L.W., T.N., E.Y., M.R.), Stanford University School of Medicine, CA.,Cardiovascular Institute (D.L., N-Y.S., J-R.M., S.O., L.W., T.N., E.Y., J.C.W., M.P.S., M.R.), Stanford University School of Medicine, CA.,Department of Pediatrics (D.L., J-R-.M., S.O., L.W., T.N., E.Y., M.R.), Stanford University School of Medicine, CA
| | - David P Marciano
- Department of Genetics (Z.Z., M.S., D.P.M., K.C., M.P.S.), Stanford University School of Medicine, CA
| | - Kévin Contrepois
- Department of Genetics (Z.Z., M.S., D.P.M., K.C., M.P.S.), Stanford University School of Medicine, CA
| | - Caiyun G Li
- Department of Radiation Oncology (C.G.L.), Stanford University School of Medicine, CA
| | - Joseph C Wu
- Cardiovascular Institute (D.L., N-Y.S., J-R.M., S.O., L.W., T.N., E.Y., J.C.W., M.P.S., M.R.), Stanford University School of Medicine, CA.,Department of Medicine (N-Y.S., J.C.W.), Stanford University School of Medicine, CA
| | - Michael P Snyder
- Cardiovascular Institute (D.L., N-Y.S., J-R.M., S.O., L.W., T.N., E.Y., J.C.W., M.P.S., M.R.), Stanford University School of Medicine, CA.,Department of Genetics (Z.Z., M.S., D.P.M., K.C., M.P.S.), Stanford University School of Medicine, CA
| | - Marlene Rabinovitch
- Vera Moulton Wall Center for Pulmonary Vascular Diseases (D.L., J-R.M., S.O., L.W., T.N., E.Y., M.R.), Stanford University School of Medicine, CA.,Cardiovascular Institute (D.L., N-Y.S., J-R.M., S.O., L.W., T.N., E.Y., J.C.W., M.P.S., M.R.), Stanford University School of Medicine, CA.,Department of Pediatrics (D.L., J-R-.M., S.O., L.W., T.N., E.Y., M.R.), Stanford University School of Medicine, CA
| |
Collapse
|
23
|
Rispal J, Escaffit F, Trouche D. Chromatin Dynamics in Intestinal Epithelial Homeostasis: A Paradigm of Cell Fate Determination versus Cell Plasticity. Stem Cell Rev Rep 2020; 16:1062-1080. [PMID: 33051755 PMCID: PMC7667136 DOI: 10.1007/s12015-020-10055-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2020] [Indexed: 12/12/2022]
Abstract
The rapid renewal of intestinal epithelium is mediated by a pool of stem cells, located at the bottom of crypts, giving rise to highly proliferative progenitor cells, which in turn differentiate during their migration along the villus. The equilibrium between renewal and differentiation is critical for establishment and maintenance of tissue homeostasis, and is regulated by signaling pathways (Wnt, Notch, Bmp…) and specific transcription factors (TCF4, CDX2…). Such regulation controls intestinal cell identities by modulating the cellular transcriptome. Recently, chromatin modification and dynamics have been identified as major actors linking signaling pathways and transcriptional regulation in the control of intestinal homeostasis. In this review, we synthesize the many facets of chromatin dynamics involved in controlling intestinal cell fate, such as stemness maintenance, progenitor identity, lineage choice and commitment, and terminal differentiation. In addition, we present recent data underlying the fundamental role of chromatin dynamics in intestinal cell plasticity. Indeed, this plasticity, which includes dedifferentiation processes or the response to environmental cues (like microbiota’s presence or food ingestion), is central for the organ’s physiology. Finally, we discuss the role of chromatin dynamics in the appearance and treatment of diseases caused by deficiencies in the aforementioned mechanisms, such as gastrointestinal cancer, inflammatory bowel disease or irritable bowel syndrome. Graphical abstract ![]()
Collapse
Affiliation(s)
- Jérémie Rispal
- LBCMCP, Centre of Integrative Biology (CBI), Université de Toulouse, CNRS, UPS, Toulouse, 31062, France
| | - Fabrice Escaffit
- LBCMCP, Centre of Integrative Biology (CBI), Université de Toulouse, CNRS, UPS, Toulouse, 31062, France.
| | - Didier Trouche
- LBCMCP, Centre of Integrative Biology (CBI), Université de Toulouse, CNRS, UPS, Toulouse, 31062, France
| |
Collapse
|
24
|
Targeting the β-catenin signaling for cancer therapy. Pharmacol Res 2020; 160:104794. [DOI: 10.1016/j.phrs.2020.104794] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023]
|
25
|
Bian J, Dannappel M, Wan C, Firestein R. Transcriptional Regulation of Wnt/β-Catenin Pathway in Colorectal Cancer. Cells 2020; 9:cells9092125. [PMID: 32961708 PMCID: PMC7564852 DOI: 10.3390/cells9092125] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
The Wnt/β-catenin signaling pathway exerts integral roles in embryogenesis and adult homeostasis. Aberrant activation of the pathway is implicated in growth-associated diseases and cancers, especially as a key driver in the initiation and progression of colorectal cancer (CRC). Loss or inactivation of Adenomatous polyposis coli (APC) results in constitutive activation of Wnt/β-catenin signaling, which is considered as an initiating event in the development of CRC. Increased Wnt/β-catenin signaling is observed in virtually all CRC patients, underscoring the importance of this pathway for therapeutic intervention. Prior studies have deciphered the regulatory networks required for the cytoplasmic stabilisation or degradation of the Wnt pathway effector, β-catenin. However, the mechanism whereby nuclear β-catenin drives or inhibits expression of Wnt target genes is more diverse and less well characterised. Here, we describe a brief synopsis of the core canonical Wnt pathway components, set the spotlight on nuclear mediators and highlight the emerging role of chromatin regulators as modulators of β-catenin-dependent transcription activity and oncogenic output.
Collapse
Affiliation(s)
- Jia Bian
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (J.B.); (M.D.); (C.W.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3800, Australia
| | - Marius Dannappel
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (J.B.); (M.D.); (C.W.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3800, Australia
| | - Chunhua Wan
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (J.B.); (M.D.); (C.W.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3800, Australia
| | - Ron Firestein
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (J.B.); (M.D.); (C.W.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3800, Australia
- Correspondence:
| |
Collapse
|
26
|
Xu YC, Xu YH, Zhao T, Wu LX, Yang SB, Luo Z. Waterborne Cu exposure increased lipid deposition and lipogenesis by affecting Wnt/β-catenin pathway and the β-catenin acetylation levels of grass carp Ctenopharyngodon idella. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114420. [PMID: 32244122 DOI: 10.1016/j.envpol.2020.114420] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/12/2020] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
Lipid metabolism could be used as a biomarker for environmental monitoring of metal pollution, including Cu. Given the potential role of the Wnt/β-catenin signaling pathway and acetylation in lipid metabolism, the aim of this study was to investigate the mechanism of Wnt signaling and acetylation mediating Cu-induced lipogenesis. Grass carp Ctenopharyngodon idella, widely distributed freshwater teleost, were used as the model. We found that waterborne Cu exposure increased the accumulation of Cu and lipid, up-regulated lipogenesis, suppressed Wnt signaling, reduced β-catenin protein level and its nuclear location, reduced the sirt1 mRNA levels and up-regulated the β-catenin acetylation level. Further investigation found that Cu up-regulated lipogenesis through Wnt/β-catenin pathway; Cu regulated the β-catenin acetylation, and K311 was the key acetylated residue after Cu incubation. SIRT1 mediated Cu-induced changes of acetylated β-catenin and played an essential role in nuclear accumulation of β-catenin and Cu-induced lipogenesis. Cu facilitated lipid accumulation via the regulation of Wnt pathway by SIRT1. For the first time, our study uncovered the novel mechanism for Wnt/β-catenin pathway and β-catenin acetylation levels mediating Cu-induced lipid deposition, which provided insights into the association between Cu exposure and lipid metabolism in fish and had important environmental implications for monitoring metal pollution in the water by using new biomarkers involved in lipid metabolism.
Collapse
Affiliation(s)
- Yi-Chuang Xu
- Laboratory of Molecular Nutrition, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yi-Huan Xu
- Laboratory of Molecular Nutrition, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tao Zhao
- Laboratory of Molecular Nutrition, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Li-Xiang Wu
- Laboratory of Molecular Nutrition, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shui-Bo Yang
- Laboratory of Molecular Nutrition, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhi Luo
- Laboratory of Molecular Nutrition, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
27
|
Koutelou E, Farria AT, Dent SYR. Complex functions of Gcn5 and Pcaf in development and disease. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194609. [PMID: 32730897 DOI: 10.1016/j.bbagrm.2020.194609] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Abstract
A wealth of biochemical and cellular data, accumulated over several years by multiple groups, has provided a great degree of insight into the molecular mechanisms of actions of GCN5 and PCAF in gene activation. Studies of these lysine acetyltransferases (KATs) in vitro, in cultured cells, have revealed general mechanisms for their recruitment by sequence-specific binding factors and their molecular functions as transcriptional co-activators. Genetic studies indicate that GCN5 and PCAF are involved in multiple developmental processes in vertebrates, yet our understanding of their molecular functions in these contexts remains somewhat rudimentary. Understanding the functions of GCN5/PCAF in developmental processes provides clues to the roles of these KATs in disease states. Here we will review what is currently known about the developmental roles of GCN5 and PCAF, as well as emerging role of these KATs in oncogenesis.
Collapse
Affiliation(s)
- Evangelia Koutelou
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, United States of America; Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America
| | - Aimee T Farria
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, United States of America; Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America
| | - Sharon Y R Dent
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, United States of America; Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America.
| |
Collapse
|
28
|
Wang L, Deng K, Gong L, Zhou L, Sayed S, Li H, Sun Q, Su Z, Wang Z, Liu S, Zhu H, Song J, Lu D. Chlorquinaldol targets the β-catenin and T-cell factor 4 complex and exerts anti-colorectal cancer activity. Pharmacol Res 2020; 159:104955. [PMID: 32485279 DOI: 10.1016/j.phrs.2020.104955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/06/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023]
Abstract
Aberrant activation of Wnt signaling plays a critical role in the initiation and progression of colorectal cancer (CRC). Chlorquinaldol (CQD) is a topical antimicrobial agent used to treat skin infections. Little is known about the anticancer activity of CQD and its underlying mechanisms. In this study, CQD was demonstrated to inhibit Wnt/β-catenin signaling through targeting the downstream part of this pathway. The results showed that CQD could inhibit the acetylation of β-catenin and disrupt the interaction of β-catenin with T-cell factor 4 (TCF4), leading to reduced binding of β-catenin to the promoters of Wnt target genes and downregulation of the expression of these target genes. Moreover, treatment with CQD suppressed the proliferation, migration, invasion and stemness of CRC cells. In APCmin/+ mice and CRC cell xenografts, administration of CQD suppressed tumor growth and the expression of Wnt target genes c-Myc and Leucine-rich G protein-coupled receptor-5 (LGR5). These results strongly suggest that CQD may be a promising therapeutic agent in the treatment of CRC.
Collapse
Affiliation(s)
- Ling Wang
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Cancer Research Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, Guangdong, 518060, China
| | - Ke Deng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Cancer Research Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, Guangdong, 518060, China
| | - Liang Gong
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Cancer Research Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, Guangdong, 518060, China
| | - Liang Zhou
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Cancer Research Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, Guangdong, 518060, China
| | - Sapna Sayed
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Cancer Research Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, Guangdong, 518060, China
| | - Huan Li
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Cancer Research Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, Guangdong, 518060, China
| | - Qi Sun
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Cancer Research Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, Guangdong, 518060, China
| | - Zijie Su
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Cancer Research Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, Guangdong, 518060, China
| | - Zhongyuan Wang
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Cancer Research Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, Guangdong, 518060, China
| | - Shanshan Liu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Cancer Research Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, Guangdong, 518060, China
| | - Huifang Zhu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Cancer Research Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, Guangdong, 518060, China
| | - Jiaxing Song
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Cancer Research Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, Guangdong, 518060, China.
| | - Desheng Lu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Cancer Research Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, Guangdong, 518060, China.
| |
Collapse
|
29
|
Chen X, Wang C, Jiang Y, Wang Q, Tao Y, Zhang H, Zhao Y, Hu Y, Li C, Ye D, Liu D, Jiang W, Chin EY, Chen S, Liu Y, Wang M, Liu S, Zhang X. Bcl-3 promotes Wnt signaling by maintaining the acetylation of β-catenin at lysine 49 in colorectal cancer. Signal Transduct Target Ther 2020; 5:52. [PMID: 32355204 PMCID: PMC7193563 DOI: 10.1038/s41392-020-0138-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/24/2019] [Accepted: 02/18/2020] [Indexed: 11/09/2022] Open
Abstract
Wnt/β-catenin signaling plays a critical role in colorectal cancer (CRC) tumorigenesis and the homeostasis of colorectal cancer stem cells (CSCs), but its molecular mechanism remains unclear. B-cell lymphoma 3 (Bcl-3), a member of the IκB family, is overexpressed in CRC and promotes tumorigenicity. Here, we report a novel function of Bcl-3 in maintaining colorectal CSC homeostasis by activating Wnt/β-catenin signaling. Silencing Bcl-3 suppresses the self-renewal capacity of colorectal CSCs and sensitizes CRC cells to chemotherapeutic drugs through a decrease in Wnt/β-catenin signaling. Moreover, our data show that Bcl-3 is a crucial component of Wnt/β-catenin signaling and is essential for β-catenin transcriptional activity in CRC cells. Interestingly, Wnt3a increases the level and nuclear translocation of Bcl-3, which binds directly to β-catenin and enhances the acetylation of β-catenin at lysine 49 (Ac-K49-β-catenin) and transcriptional activity. Bcl-3 depletion decreases the Ac-K49-β-catenin level by increasing the level of histone deacetylase 1 to remove acetyl groups from β-catenin, thus interrupting Wnt/β-catenin activity. In CRC clinical specimens, Bcl-3 expression negatively correlates with the overall survival of CRC patients. A significantly positive correlation was found between the expression of Bcl-3 and Ac-K49-β-catenin. Collectively, our data reveal that Bcl-3 plays a crucial role in CRC chemoresistance and colorectal CSC maintenance via its modulation of the Ac-K49-β-catenin, which serves as a promising therapeutic target for CRC.
Collapse
Affiliation(s)
- Xi Chen
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
| | - Chen Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Yuhang Jiang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou, 510000, China
| | - Qi Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
| | - Yu Tao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou, 510000, China
| | - Haohao Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou, 510000, China
| | - Yongxu Zhao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
| | - Yiming Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou, 510000, China
| | - Cuifeng Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou, 510000, China
| | - Deji Ye
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
| | - Dandan Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
| | - Wenxia Jiang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
| | - Eugene Y Chin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
| | - Sheng Chen
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yongzhong Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Mingliang Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Sanhong Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China.
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China.
| | - Xiaoren Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China.
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou, 510000, China.
| |
Collapse
|
30
|
Ma Y, Wu C, Liu J, Liu Y, Lv J, Sun Z, Wang D, Jiang C, Sheng Q, You Z, Nie Z. The stability and antiapoptotic activity of Bm30K-3 can be improved by lysine acetylation in the silkworm, Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21649. [PMID: 31777104 DOI: 10.1002/arch.21649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/05/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Acetylation is an important, highly conserved, and reversible post-translational modification of proteins. Previously, we showed by nano-HPLC/MS/MS that many nutrient storage proteins in the silkworm are acetylated. Among these proteins, most of the known 30K proteins were shown to be acetylated, including 23 acetylated 30K proteins containing 49 acetylated sites (Kac), indicating the importance of the acetylation of 30K proteins in silkworm. In this study, Bm30K-3, a 30K protein containing three Kac sites, was further assessed in functional studies of its acetylation. Increasing the level of Bm30K-3 acetylation by adding the deacetylase inhibitor trichostatin A (TSA) increased the levels of this protein and further inhibited cellular apoptosis induced by H2 O2 . In contrast, decreasing the level of acetylation by adding the acetylase inhibitor C646 could reduce the level of Bm30K-3 and increase H2 O2 -induced apoptosis. Subsequently, BmN cells were treated with CHX and MG132, and increasing the acetylation level using TSA was shown to inhibit protein degradation and improve the stability of Bm30K-3. Furthermore, the acetylation of Bm30K-3 could compete with its ability to be ubiquitinated, suggesting that acetylation could inhibit the ubiquitin-mediated proteasome degradation pathway, improving the stability and accumulation of proteins in cells. These results further indicate that acetylation might regulate nutrition storage and utilization in Bombyx mori, which requires further study.
Collapse
Affiliation(s)
- Yafei Ma
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Chengcheng Wu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jiahan Liu
- School of Forestry and Biotechnology, Zhejiang A & F University, Linan, China
| | - Yue Liu
- Zhejiang Economic & Trade Polytechnic, Hangzhou, China
| | - Jiao Lv
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zihan Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Dan Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Caiying Jiang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qing Sheng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhengying You
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zuoming Nie
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
31
|
Liu E, Zhou Q, Xie AJ, Li X, Li M, Ye J, Li S, Ke D, Wang Q, Xu ZP, Li L, Yang Y, Liu GP, Wang XC, Li HL, Wang JZ. Tau acetylates and stabilizes β-catenin thereby promoting cell survival. EMBO Rep 2020; 21:e48328. [PMID: 31930681 DOI: 10.15252/embr.201948328] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 11/30/2019] [Accepted: 12/11/2019] [Indexed: 12/19/2022] Open
Abstract
Overexpressing Tau counteracts apoptosis and increases dephosphorylated β-catenin levels, but the underlying mechanisms are elusive. Here, we show that Tau can directly and robustly acetylate β-catenin at K49 in a concentration-, time-, and pH-dependent manner. β-catenin K49 acetylation inhibits its phosphorylation and its ubiquitination-associated proteolysis, thus increasing β-catenin protein levels. K49 acetylation further promotes nuclear translocation and the transcriptional activity of β-catenin, and increases the expression of survival-promoting genes (bcl2 and survivin), counteracting apoptosis. Mutation of Tau's acetyltransferase domain or co-expressing non-acetylatable β-catenin-K49R prevents increased β-catenin signaling and abolishes the anti-apoptotic function of Tau. Our data reveal that Tau preserves β-catenin by acetylating K49, and upregulated β-catenin/survival signaling in turn mediates the anti-apoptotic effect of Tau.
Collapse
Affiliation(s)
- Enjie Liu
- Key Laboratory of Ministry of Education of China for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiuzhi Zhou
- Key Laboratory of Ministry of Education of China for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ao-Ji Xie
- Key Laboratory of Ministry of Education of China for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoguang Li
- Key Laboratory of Ministry of Education of China for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengzhu Li
- Key Laboratory of Ministry of Education of China for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinwang Ye
- Key Laboratory of Ministry of Education of China for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shihong Li
- Key Laboratory of Ministry of Education of China for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Ke
- Key Laboratory of Ministry of Education of China for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qun Wang
- Key Laboratory of Ministry of Education of China for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Peng Xu
- Key Laboratory of Ministry of Education of China for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Li
- Key Laboratory of Ministry of Education of China for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Yang
- Key Laboratory of Ministry of Education of China for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gong-Ping Liu
- Key Laboratory of Ministry of Education of China for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Chuan Wang
- Key Laboratory of Ministry of Education of China for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Lian Li
- Key Laboratory of Ministry of Education of China for Neurological Disorders, Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Zhi Wang
- Key Laboratory of Ministry of Education of China for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
32
|
Iaconelli J, Xuan L, Karmacharya R. HDAC6 Modulates Signaling Pathways Relevant to Synaptic Biology and Neuronal Differentiation in Human Stem-Cell-Derived Neurons. Int J Mol Sci 2019; 20:ijms20071605. [PMID: 30935091 PMCID: PMC6480207 DOI: 10.3390/ijms20071605] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/12/2019] [Accepted: 03/18/2019] [Indexed: 12/18/2022] Open
Abstract
Recent studies show that histone deacetylase 6 (HDAC6) has important roles in the human brain, especially in the context of a number of nervous system disorders. Animal models of neurodevelopmental, neurodegenerative, and neuropsychiatric disorders show that HDAC6 modulates important biological processes relevant to disease biology. Pan-selective histone deacetylase (HDAC) inhibitors had been studied in animal behavioral assays and shown to induce synaptogenesis in rodent neuronal cultures. While most studies of HDACs in the nervous system have focused on class I HDACs located in the nucleus (e.g., HDACs 1,2,3), recent findings in rodent models suggest that the cytoplasmic class IIb HDAC, HDAC6, plays an important role in regulating mood-related behaviors. Human studies suggest a significant role for synaptic dysfunction in the prefrontal cortex (PFC) and hippocampus in depression. Studies of HDAC inhibitors (HDACi) in human neuronal cells show that HDAC6 inhibitors (HDAC6i) increase the acetylation of specific lysine residues in proteins involved in synaptogenesis. This has led to the hypothesis that HDAC6i may modulate synaptic biology not through effects on the acetylation of histones, but by regulating acetylation of non-histone proteins.
Collapse
Affiliation(s)
- Jonathan Iaconelli
- Center for Genomic Medicine, Harvard Medical School and Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA.
- Chemical Biology Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| | - Lucius Xuan
- Center for Genomic Medicine, Harvard Medical School and Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA.
- Chemical Biology Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| | - Rakesh Karmacharya
- Center for Genomic Medicine, Harvard Medical School and Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA.
- Chemical Biology Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA 02478, USA.
- Program in Neuroscience, Harvard University, Cambridge, MA 02138, USA.
- Chemical Biology PhD Program, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
33
|
Zhou R, Yang Y, Park SY, Seo YW, Jung SC, Kim KK, Kim K, Kim H. p300/CBP-associated factor promotes autophagic degradation of δ-catenin through acetylation and decreases prostate cancer tumorigenicity. Sci Rep 2019; 9:3351. [PMID: 30833716 PMCID: PMC6399259 DOI: 10.1038/s41598-019-40238-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 02/12/2019] [Indexed: 01/21/2023] Open
Abstract
δ-Catenin shares common binding partners with β-catenin. As acetylation and deacetylation regulate β-catenin stability, we searched for histone acetyltransferases (HATs) or histone deacetylases (HDACs) affecting δ-catenin acetylation status and protein levels. We showed that p300/CBP-associated factor (PCAF) directly bound to and acetylated δ-catenin, whereas several class I and class II HDACs reversed this effect. Unlike β-catenin, δ-catenin was downregulated by PCAF-mediated acetylation and upregulated by HDAC-mediated deacetylation. The HDAC inhibitor trichostatin A attenuated HDAC1-mediated δ-catenin upregulation, whereas HAT or autophagy inhibitors, but not proteasome inhibitors, abolished PCAF-mediated δ-catenin downregulation. The results suggested that PCAF-mediated δ-catenin acetylation promotes its autophagic degradation in an Atg5/LC3-dependent manner. Deletions or point mutations identified several lysine residues in different δ-catenin domains involved in PCAF-mediated δ-catenin downregulation. PCAF overexpression in prostate cancer cells markedly reduced δ-catenin levels and suppressed cell growth and motility. PCAF-mediated δ-catenin downregulation inhibited E-cadherin processing and decreased the nuclear distribution of β-catenin, resulting in the suppression of β-catenin/LEF-1-mediated downstream effectors. These data demonstrate that PCAF downregulates δ-catenin by promoting its autophagic degradation and suppresses δ-catenin-mediated oncogenic signals.
Collapse
Affiliation(s)
- Rui Zhou
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Republic of Korea
| | - Yi Yang
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Republic of Korea
| | - So-Yeon Park
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Republic of Korea
| | - Young-Woo Seo
- Korea Basic Science Institute, Gwangju Center, Gwangju, Republic of Korea
| | - Sang-Chul Jung
- Department of Environmental Engineering, Sunchon National University, Sunchon, Republic of Korea
| | - Kyung Keun Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Kwonseop Kim
- College of Pharmacy and Research Institute for Drug Development, Chonnam National University, Gwangju, Republic of Korea
| | - Hangun Kim
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Republic of Korea.
| |
Collapse
|
34
|
Kaowinn S, Oh S, Moon J, Yoo AY, Kang HY, Lee MR, Kim JE, Hwang DY, Youn SE, Koh SS, Chung YH. CGK062, a small chemical molecule, inhibits cancer upregulated gene 2‑induced oncogenesis through NEK2 and β‑catenin. Int J Oncol 2019; 54:1295-1305. [PMID: 30968157 PMCID: PMC6411349 DOI: 10.3892/ijo.2019.4724] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 02/04/2019] [Indexed: 12/17/2022] Open
Abstract
The mechanisms through which cancer‑upregulated gene 2 (CUG2), a novel oncogene, affects Wnt/β‑catenin signaling, essential for tumorigenesis, are unclear. In this study, we aimed to elucidate some of these mechanisms in A549 lung cancer cells. Under the overexpression of CUG2, the protein levels and activity of β‑catenin were evaluated by western blot analysis and luciferase assay. To examine a biological consequence of β‑catenin under CUG2 overexpression, cell migration, invasion and sphere formation assay were performed. The upregulation of β‑catenin induced by CUG2 overexpression was also accessed by xenotransplantation in mice. We first found that CUG2 overexpression increased β‑catenin expression and activity. The suppression of β‑catenin decreased cancer stem cell (CSC)‑like phenotypes, indicating that β‑catenin is involved in CUG2‑mediated CSC‑like phenotypes. Notably, CUG2 overexpression increased the phosphorylation of β‑catenin at Ser33/Ser37, which is known to recruit E3 ligase for β‑catenin degradation. Moreover, CUG2 interacted with and enhanced the expression and kinase activity of never in mitosis gene A‑related kinase 2 (NEK2). Recombinant NEK2 phosphorylated β‑catenin at Ser33/Ser37, while NEK2 knockdown decreased the phosphorylation of β‑catenin, suggesting that NEK2 is involved in the phosphorylation of β‑catenin at Ser33/Ser37. Treatment with CGK062, a small chemical molecule, which promotes the phosphorylation of β‑catenin at Ser33/Ser37 through protein kinase C (PKC)α to induce its degradation, reduced β‑catenin levels and inhibited the CUG2‑induced features of malignant tumors, including increased cell migration, invasion and sphere formation. Furthermore, CGK062 treatment suppressed CUG2‑mediated tumor formation in nude mice. Taken together, the findings of this study suggest that CUG2 enhances the phosphorylation of β‑catenin at Ser33/Ser37 by activating NEK2, thus stabilizing β‑catenin. CGK062 may thus have potential for use as a therapeutic drug against CUG2‑overexpressing lung cancer cells.
Collapse
Affiliation(s)
- Sirichat Kaowinn
- BK21 Plus, Department of Cogno‑Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Sangtaek Oh
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Jeong Moon
- BK21 Plus, Department of Cogno‑Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Ah Young Yoo
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea
| | - Ho Young Kang
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea
| | - Mi Rim Lee
- Department of Biomaterials, Pusan National University, Miryang 50463, Republic of Korea
| | - Ji Eun Kim
- Department of Biomaterials, Pusan National University, Miryang 50463, Republic of Korea
| | - Dae Youn Hwang
- Department of Biomaterials, Pusan National University, Miryang 50463, Republic of Korea
| | - So Eun Youn
- Department of Biosciences, Dong‑A University, Busan 49315, Republic of Korea
| | - Sang Seok Koh
- Department of Biosciences, Dong‑A University, Busan 49315, Republic of Korea
| | - Young-Hwa Chung
- BK21 Plus, Department of Cogno‑Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
35
|
Shao X, Wei X. FOXP1 enhances fibrosis via activating Wnt/β-catenin signaling pathway in endometriosis. Am J Transl Res 2018; 10:3610-3618. [PMID: 30662612 PMCID: PMC6291715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 10/21/2018] [Indexed: 06/09/2023]
Abstract
Endometriosis is a common gynecological disorder affecting 6-10% women. Endometriosis is associated with excess fibrosis, leading to chronic pain, scarring and aberrant tissue function. However, molecular and cellular mechanisms underlying fibrosis during endometriosis still remain elusive. In this study we used endometrial and endometriotic stromal cells isolated from patients, and employed siRNA to knockdown Forkhead box protein P1 (FOXP1) to investigate the effect of FOXP1 on collagen contraction, cell proliferation and mitigation. Western blot and quantitative PCR were applied for analysis of protein and mRNA levels, respectively. Compared to control stromal cells, endometriotic stromal cells from patients exhibited higher levels of FOXP1 expression and Wnt-related β-catenin acetylation. FOXP1 knockdown decreased not only Wnt signaling, but also the expression of fibrotic marker genes, including connective tissue growth factor, type I collagen, α-smooth muscle actin and fibronectin. Furthermore, FOXP1 knockdown reversed the endometriotic cellular phenotypes, including reducing collagen gel contraction, inhibiting cell proliferation and migration. Finally, Wnt signaling inhibitor AVX939 blocked β-catenin acetylation and endometrial stromal cell proliferation induced by ectopic FOXP1 expression. FOXP1 enhances fibrosis during endometriosis through upregulating Wnt signaling activity.
Collapse
Affiliation(s)
- Xu Shao
- Liaocheng People's Hospital Dongchang West Road #67, Liaocheng 252000, China
| | - Xin Wei
- Liaocheng People's Hospital Dongchang West Road #67, Liaocheng 252000, China
| |
Collapse
|
36
|
The role of acetyltransferases for the temporal-specific accessibility of β-catenin to the myogenic gene locus. Sci Rep 2018; 8:15057. [PMID: 30305648 PMCID: PMC6180044 DOI: 10.1038/s41598-018-32888-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/13/2018] [Indexed: 12/17/2022] Open
Abstract
Molecules involved in WNT/β-catenin signaling show spatiotemporal-specific expression and play vital roles in muscle development. Our previous study showed that WNT/β-catenin signaling promotes myoblast proliferation and differentiation through the regulation of the cyclin A2 (Ccna2)/cell division cycle 25C (Cdc25c) and Fermitin family homolog 2 (Fermt2) genes, respectively. However, it remains unclear how β-catenin targets different genes from stage to stage during myogenesis. Here, we show that the accessibility of β-catenin to the promoter region of its target genes is regulated by developmental stage-specific histone acetyltransferases (HATs), lysine acetyltransferase 2B (KAT2B), and cAMP-response element-binding protein (CREB)-binding protein (CBP). We found that KAT2B was specifically expressed at the myoblast proliferation stage and formed a complex with β-catenin to induce Ccna2/Cdc25c expression. On the other hand, CBP was specifically expressed during myoblast differentiation and formed a complex with β-catenin to induce Fermt2 expression. Our findings indicate that β-catenin efficiently accesses to its target gene’s promoters by forming a complex with developmental stage-specific acetyltransferases during myogenesis.
Collapse
|
37
|
CREPT facilitates colorectal cancer growth through inducing Wnt/β-catenin pathway by enhancing p300-mediated β-catenin acetylation. Oncogene 2018; 37:3485-3500. [PMID: 29563608 PMCID: PMC6021369 DOI: 10.1038/s41388-018-0161-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 12/31/2017] [Accepted: 01/12/2018] [Indexed: 12/17/2022]
Abstract
Using whole genome sequencing, we identified gene amplification of CREPT in colorectal cancer (CRC). In this study, we aim to clarify its clinical significance, biological effects, and mechanism in CRC. CREPT was upregulated in CRC cell lines and in 47.37% (72/152) of primary CRC tumors. Amplification of CREPT was detected in 48.28% (56/116) of primary CRC tumors, which was positively correlated with its overexpression (P < 0.001). Multivariate analysis showed that CRC patients with CREPT protein overexpression were significantly associated with poor disease-free survival (P < 0.05). CREPT significantly accelerated CRC cell proliferation and metastasis both in vitro and in vivo. RNA-sequencing (seq) analysis uncovered that the tumor-promoting effect by CREPT was attributed to enhancing Wnt/β-catenin signaling. Using co-immunoprecipitation coupled with mass spectroscopy, we identified p300 protein was a novel CREPT interacting partner. CREPT greatly increased the interaction between p300 and β-catenin, thus promoting p300-mediated β-catenin acetylation and stabilization. Moreover, CREPT cooperated with p300, leading to elevated active histone acetylation markers H3K27ac and H4Ac and decreased repressive histone marker H3K9me3 at the promoters of Wnt downstream targets. In summary, CREPT plays a pivotal oncogenic role in colorectal carcinogenesis through promoting Wnt/β-catenin pathway via cooperating with p300. CREPT may serve as a prognostic biomarker of patients with CRC.
Collapse
|
38
|
Yun X, Jiang H, Lai N, Wang J, Shimoda LA. Aquaporin 1-mediated changes in pulmonary arterial smooth muscle cell migration and proliferation involve β-catenin. Am J Physiol Lung Cell Mol Physiol 2017; 313:L889-L898. [PMID: 28798257 DOI: 10.1152/ajplung.00247.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/18/2017] [Accepted: 07/31/2017] [Indexed: 12/22/2022] Open
Abstract
Exposure to hypoxia induces migration and proliferation of pulmonary arterial smooth muscle cells (PASMCs), leading to vascular remodeling and contributing to the development of hypoxic pulmonary hypertension. The mechanisms controlling PASMC growth and motility are incompletely understood, although aquaporin 1 (AQP1) plays an important role. In tumor, kidney, and stem cells, AQP1 has been shown to interact with β-catenin, a dual function protein that activates the transcription of crucial target genes (i.e., c-Myc and cyclin D1) related to cell migration and proliferation. Thus the goal of this study was to examine mechanisms by which AQP1 mediates PASMC migration and proliferation, with a focus on β-catenin. Using primary rat PASMCs from resistance level pulmonary arteries infected with adenoviral constructs containing green fluorescent protein (control; AdGFP), wild-type AQP1 (AdAQP1), or AQP1 with the COOH-terminal tail deleted (AdAQP1M), we demonstrated that increasing AQP1 expression upregulated β-catenin protein levels and the expression (mRNA and protein) of the known β-catenin targets c-Myc and cyclin D1. In contrast, infection with AdAQP1M had no effect on any of these variables. Using silencing approaches to reduce β-catenin levels prevented both hypoxia- and AQP1-induced migration and proliferation of PASMCs, as well as induction of c-Myc and cyclin D1 by AQP1. Thus our results indicate that elevated AQP1 levels upregulate β-catenin protein levels, via a mechanism requiring the AQP1 COOH-terminal tail, enhancing expression of β-catenin targets and promoting PASMC proliferation and migration.
Collapse
Affiliation(s)
- Xin Yun
- Guangzhou Institute of Respiratory Diseases, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China; and.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Haiyang Jiang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Ning Lai
- Guangzhou Institute of Respiratory Diseases, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China; and
| | - Jian Wang
- Guangzhou Institute of Respiratory Diseases, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China; and.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Larissa A Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
39
|
Fernandez HR, Lindén SK. The aspirin metabolite salicylate inhibits lysine acetyltransferases and MUC1 induced epithelial to mesenchymal transition. Sci Rep 2017; 7:5626. [PMID: 28717171 PMCID: PMC5514058 DOI: 10.1038/s41598-017-06149-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 06/09/2017] [Indexed: 02/06/2023] Open
Abstract
MUC1 is a transmembrane mucin that can promote cancer progression, and its upregulation correlates with a worse prognosis in colon cancer. We examined the effects of overexpression of MUC1 in colon cancer cells, finding that it induced epithelial to mesenchymal transition (EMT), including enhanced migration and invasion, and increased Akt phosphorylation. When the clones were treated with the aspirin metabolite salicylate, Akt phosphorylation was decreased and EMT inhibited. As the salicylate motif is necessary for the activity of the lysine acetyltransferase (KAT) inhibitor anacardic acid, we hypothesized these effects were associated with the inhibition of KAT activity. This was supported by anacardic acid treatment producing the same effect on EMT. In vitro KAT assays confirmed that salicylate directly inhibited PCAF/Kat2b, Tip60/Kat5 and hMOF/Kat8, and this inhibition was likely involved in the reversal of EMT in the metastatic prostate cancer cell line PC-3. Salicylate treatment also inhibited EMT induced by cytokines, illustrating the general effect it had on this process. The inhibition of both EMT and KATs by salicylate presents a little explored activity that could explain some of the anti-cancer effects of aspirin.
Collapse
Affiliation(s)
- Harvey R Fernandez
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sara K Lindén
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
40
|
Dar MS, Singh P, Mir RA, Dar MJ. Βeta-catenin N-terminal domain: An enigmatic region prone to cancer causing mutations. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:122-133. [PMID: 28927523 DOI: 10.1016/j.mrrev.2017.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/29/2017] [Accepted: 06/05/2017] [Indexed: 12/21/2022]
Abstract
The Wnt/β-catenin is a highly conserved signaling pathway involved in cell fate decisions during various stages of development. Dysregulation of canonical Wnt/β-catenin signaling has been associated with various diseases including cancer. β-Catenin, the central component of canonical Wnt signaling pathway, is a multi-functional protein playing both structural and signaling roles. β-Catenin is composed of three distinct domains: N-terminal domain, C-terminal domain and a central armadillo repeat domain. N-terminal domain of β-catenin harbours almost all of the cancer causing mutations, thus deciphering its critical structural and functional roles offers great potential in cancer detection and therapy. Here, in this review, we have collected information from pharmacological analysis, bio-physical and structural studies, molecular modeling, in-vivo and in-vitro assays, and transgenic animal experiments employing various N-terminal domain variants of β-catenin to discuss the interaction of β-catenin with its binding partners that specifically interact with this domain and the implications of these interactions on signaling, cell fate determination, and in tumorigenesis. A thorough understanding of interactions between β-catenin and its binding partners will enable us to more effectively understand how β-catenin switches between its multiple roles, and will lead to the development of specific assays for the identification of small molecules as chemotherapeutic agents to treat diseases, including cancer and neurological disorders, where Wnt/β-catenin signaling is dysregulated.
Collapse
Affiliation(s)
- Mohd Saleem Dar
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India; Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, J&K, India
| | - Paramjeet Singh
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India; Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, J&K, India
| | - Riyaz A Mir
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi, India
| | - Mohd Jamal Dar
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India; Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, J&K, India.
| |
Collapse
|
41
|
Laguesse S, Close P, Van Hees L, Chariot A, Malgrange B, Nguyen L. Loss of Elp3 Impairs the Acetylation and Distribution of Connexin-43 in the Developing Cerebral Cortex. Front Cell Neurosci 2017; 11:122. [PMID: 28507509 PMCID: PMC5410572 DOI: 10.3389/fncel.2017.00122] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/12/2017] [Indexed: 12/19/2022] Open
Abstract
The Elongator complex is required for proper development of the cerebral cortex. Interfering with its activity in vivo delays the migration of postmitotic projection neurons, at least through a defective α-tubulin acetylation. However, this complex is already expressed by cortical progenitors where it may regulate the early steps of migration by targeting additional proteins. Here we report that connexin-43 (Cx43), which is strongly expressed by cortical progenitors and whose depletion impairs projection neuron migration, requires Elongator expression for its proper acetylation. Indeed, we show that Cx43 acetylation is reduced in the cortex of Elp3cKO embryos, as well as in a neuroblastoma cell line depleted of Elp1 expression, suggesting that Cx43 acetylation requires Elongator in different cellular contexts. Moreover, we show that histones deacetylase 6 (HDAC6) is a deacetylase of Cx43. Finally, we report that acetylation of Cx43 regulates its membrane distribution in apical progenitors of the cerebral cortex.
Collapse
Affiliation(s)
- Sophie Laguesse
- GIGA-Neurosciences, University of LiègeLiège, Belgium.,Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of LiègeLiège, Belgium
| | - Pierre Close
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of LiègeLiège, Belgium.,GIGA-Molecular Biology of Diseases, University of LiègeLiège, Belgium
| | - Laura Van Hees
- GIGA-Neurosciences, University of LiègeLiège, Belgium.,Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of LiègeLiège, Belgium
| | - Alain Chariot
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of LiègeLiège, Belgium.,GIGA-Molecular Biology of Diseases, University of LiègeLiège, Belgium.,Walloon Excellence in Lifesciences and Biotechnology (WELBIO)Wallonia, Belgium
| | - Brigitte Malgrange
- GIGA-Neurosciences, University of LiègeLiège, Belgium.,Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of LiègeLiège, Belgium
| | - Laurent Nguyen
- GIGA-Neurosciences, University of LiègeLiège, Belgium.,Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of LiègeLiège, Belgium
| |
Collapse
|
42
|
Abstract
Aberrations in the epigenetic landscape are a hallmark of cancer. Alterations in enzymes that are “writers,” “erasers,” or “readers” of histone modification marks are common. Bromodomains are “readers” that bind acetylated lysines in histone tails. Their most important function is the regulation of gene transcription by the recruitment of different molecular partners. Moreover, proteins containing bromodomains are also epigenetic regulators, although little is known about the specific function of these domains. In recent years, there has been increasing interest in developing small molecules that can target specific bromodomains. First, this has helped clarify biological functions of bromodomain-containing proteins. Secondly, it opens a new front for combatting cancer. In this review we will describe the structures and mechanisms associated with Bromodomain and Extra-Terminal motif (BET) inhibitors and non-BET inhibitors, their current status of development, and their promising role as anti-cancer agents.
Collapse
Affiliation(s)
- Montserrat Pérez-Salvia
- a Cancer Epigenetics and Biology Program (PEBC) , Bellvitge Biomedical Research Institute (IDIBELL) , Barcelona , Catalonia , Spain
| | - Manel Esteller
- a Cancer Epigenetics and Biology Program (PEBC) , Bellvitge Biomedical Research Institute (IDIBELL) , Barcelona , Catalonia , Spain.,b Department of Physiological Sciences II, School of Medicine , University of Barcelona , Barcelona , Catalonia , Spain.,c Institució Catalana de Recerca i Estudis Avançats (ICREA) , Barcelona , Catalonia , Spain
| |
Collapse
|
43
|
Wnt/β-catenin-dependent acetylation of Pygo2 by CBP/p300 histone acetyltransferase family members. Biochem J 2016; 473:4193-4203. [DOI: 10.1042/bcj20160590] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/13/2016] [Accepted: 09/19/2016] [Indexed: 01/03/2023]
Abstract
Pygopus 2 (Pygo2) is a chromatin effector that plays an essential role in canonical Wnt signaling associated with development and stem cell growth. Its function is to facilitate histone acetylation by recruitment of histone acetyltransferases (HATs) at active sites of β-catenin-mediated transcription. In the present study, we report that Pygo2 itself is transiently acetylated when bound to the activated TCF/β-catenin transcription complex, which correlated with β-catenin binding and Axin2 gene activation. The HAT CBP/p300, but not GCN5/PCAF, targeted specific lysine residues of the N-terminal homology domain of Pygo2 for acetylation. Functional analyses revealed that the presence of CBP and p300 increased the association of Pygo2 with GCN5, independent of Pygo2 acetylation status. Finally, while acetylation of Pygo2 had little effect on active β-catenin complex formation, p300-mediated Pygo2 acetylation resulted in the displacement of Pygo2 from the nucleus to the cytoplasm by targeting specific lysine residues in the Pygo2 nuclear localization sequence. Taken together, these findings are consistent with a model in which acetylation of Pygo2 by CBP/p300 family members in the active TCF/β-catenin complex occurs coincident with histone acetylation and may be required for the recycling of Pygo2 away from the complex subsequent to target gene activation.
Collapse
|
44
|
Gil J, Ramírez-Torres A, Encarnación-Guevara S. Lysine acetylation and cancer: A proteomics perspective. J Proteomics 2016; 150:297-309. [PMID: 27746255 DOI: 10.1016/j.jprot.2016.10.003] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 10/07/2016] [Accepted: 10/09/2016] [Indexed: 12/17/2022]
Abstract
Lysine acetylation is a reversible modification controlled by two groups of enzymes: lysine acetyltransferases (KATs) and lysine deacetylases (KDACs). Acetylated lysine residues are recognized by bromodomains, a family of evolutionarily conserved domains. The use of high-resolution mass spectrometry-based proteomics, in combination with the enrichment of acetylated peptides through immunoprecipitation with anti-acetyl-lysine antibodies, has expanded the number of acetylated proteins from histones and a few nuclear proteins to more than 2000 human proteins. Because acetylation targets almost all cellular processes, this modification has been associated with cancer. Several KATs, KDACs and bromodomain-containing proteins have been linked to cancer development. Many small molecules targeting some of these proteins have been or are being tested as potential cancer therapies. The stoichiometry of lysine acetylation has not been explored in cancer, representing a promising field in which to increase our knowledge of how this modification is affected in cancer. In this review, we will focus on the strategies that can be used to go deeper in the characterization of the protein lysine acetylation emphasizing in cancer research.
Collapse
Affiliation(s)
- Jeovanis Gil
- Programa de Genómica Funcional de Procariontes, Centro de Ciencias Genómicas-UNAM, Av. Universidad s/n, Col. Chamilpa, Cuernavaca, Morelos CP 62210, Mexico.
| | - Alberto Ramírez-Torres
- Programa de Genómica Funcional de Procariontes, Centro de Ciencias Genómicas-UNAM, Av. Universidad s/n, Col. Chamilpa, Cuernavaca, Morelos CP 62210, Mexico
| | - Sergio Encarnación-Guevara
- Programa de Genómica Funcional de Procariontes, Centro de Ciencias Genómicas-UNAM, Av. Universidad s/n, Col. Chamilpa, Cuernavaca, Morelos CP 62210, Mexico.
| |
Collapse
|
45
|
Hirsch CL, Wrana JL, Dent SYR. KATapulting toward Pluripotency and Cancer. J Mol Biol 2016; 429:1958-1977. [PMID: 27720985 DOI: 10.1016/j.jmb.2016.09.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/30/2016] [Indexed: 12/20/2022]
Abstract
Development is generally regarded as a unidirectional process that results in the acquisition of specialized cell fates. During this process, cellular identity is precisely defined by signaling cues that tailor the chromatin landscape for cell-specific gene expression programs. Once established, these pathways and cell states are typically resistant to disruption. However, loss of cell identity occurs during tumor initiation and upon injury response. Moreover, terminally differentiated cells can be experimentally provoked to become pluripotent. Chromatin reorganization is key to the establishment of new gene expression signatures and thus new cell identity. Here, we explore an emerging concept that lysine acetyltransferase (KAT) enzymes drive cellular plasticity in the context of somatic cell reprogramming and tumorigenesis.
Collapse
Affiliation(s)
- Calley L Hirsch
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto M5G 1X5, Canada.
| | - Jeffrey L Wrana
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada
| | - Sharon Y R Dent
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA.
| |
Collapse
|
46
|
Bharathy N, Suriyamurthy S, Rao VK, Ow JR, Lim HJ, Chakraborty P, Vasudevan M, Dhamne CA, Chang KTE, Min VLK, Kundu TK, Taneja R. P/CAF mediates PAX3-FOXO1-dependent oncogenesis in alveolar rhabdomyosarcoma. J Pathol 2016; 240:269-281. [PMID: 27453350 DOI: 10.1002/path.4773] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/19/2016] [Accepted: 07/21/2016] [Indexed: 12/29/2022]
Abstract
Alveolar rhabdomyosarcoma (ARMS) is an aggressive paediatric cancer of skeletal muscle with poor prognosis. A PAX3-FOXO1 fusion protein acts as a driver of malignancy in ARMS by disrupting tightly coupled but mutually exclusive pathways of proliferation and differentiation. While PAX3-FOXO1 is an attractive therapeutic target, no current treatments are designed to block its oncogenic activity. The present work shows that the histone acetyltransferase P/CAF (KAT2B) is overexpressed in primary tumours from ARMS patients. Interestingly, in fusion-positive ARMS cell lines, P/CAF acetylates and stabilizes PAX3-FOXO1 rather than MyoD, a master regulator of muscle differentiation. Silencing P/CAF, or pharmacological inhibition of its acetyltransferase activity, down-regulates PAX3-FOXO1 levels concomitant with reduced proliferation and tumour burden in xenograft mouse models. Our studies identify a P/CAF-PAX3-FOXO1 signalling node that promotes oncogenesis and may contribute to MyoD dysfunction in ARMS. This work exemplifies the therapeutic potential of targeting chromatin-modifying enzymes to inhibit fusion oncoproteins that are a frequent event in sarcomas. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Narendra Bharathy
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sudha Suriyamurthy
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Vinay Kumar Rao
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jin Rong Ow
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Huey Jin Lim
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Payal Chakraborty
- Bionivid Technology Pvt Ltd, 401-4 AB Cross, 1st Main, Kasturi Nagar, Bangalore, India
| | - Madavan Vasudevan
- Bionivid Technology Pvt Ltd, 401-4 AB Cross, 1st Main, Kasturi Nagar, Bangalore, India
| | | | | | - Victor Lee Kwan Min
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tapas K Kundu
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Reshma Taneja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
47
|
Por ED, Greene WA, Burke TA, Wang HC. Trichostatin A Inhibits Retinal Pigmented Epithelium Activation in an In Vitro Model of Proliferative Vitreoretinopathy. J Ocul Pharmacol Ther 2016; 32:415-24. [PMID: 27494828 PMCID: PMC5011631 DOI: 10.1089/jop.2016.0038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Purpose: Proliferative vitreoretinopathy (PVR) is a blinding disorder that develops after a retinal tear or detachment. Activation of the retinal pigmented epithelium (RPE) is implicated in PVR; however, the mechanisms leading to enhanced RPE proliferation, migration, and contraction remain largely unknown. This study utilized an in vitro model of PVR to investigate the role of acetylation in RPE activation and its contribution to the progression of this disease. Methods: ARPE-19 cells, primary cultures of porcine RPE, and induced pluripotent stem cell-derived RPE (iPS-RPE) were utilized for cellular and molecular analyses. Cells treated with transforming growth factor beta 2 (TGFβ2; 10 ng/mL) alone or in the presence of the broad-spectrum histone deacetylase (HDAC) inhibitor, trichostatin A (TSA; 0.1 μM), were assessed for contraction and migration through collagen contraction and scratch assays, respectively. Western blotting and immunofluorescence analysis were performed to assess α-smooth muscle actin (α-SMA) and β-catenin expression after TGFβ2 treatment alone or in combination with TSA. Results: TGFβ2 significantly increased RPE cell contraction in collagen matrix and this effect was inhibited in the presence of TSA (0.1 μM). In agreement with these data, immunofluorescence analysis of TSA-treated iPS-RPE wounded monolayers revealed decreased α-SMA as compared with control. Scratch assays to assess wound healing revealed TSA inhibited TGFβ2-mediated iPS-RPE cell migration. Conclusions: Our findings indicate a role of acetylation in RPE activation. Specifically, the HDAC inhibitor TSA decreased RPE cell proliferation and TGFβ2-mediated cell contraction and migration. Further investigation of pharmacological compounds that modulate acetylation may hold promise as therapeutic agents for PVR.
Collapse
Affiliation(s)
- Elaine D Por
- Ocular Trauma, U.S. Army Institute of Surgical Research , JBSA-Fort Sam Houston, Texas
| | - Whitney A Greene
- Ocular Trauma, U.S. Army Institute of Surgical Research , JBSA-Fort Sam Houston, Texas
| | - Teresa A Burke
- Ocular Trauma, U.S. Army Institute of Surgical Research , JBSA-Fort Sam Houston, Texas
| | - Heuy-Ching Wang
- Ocular Trauma, U.S. Army Institute of Surgical Research , JBSA-Fort Sam Houston, Texas
| |
Collapse
|
48
|
Zhou Y, Wu C, Sheng Q, Jiang C, Chen Q, Lv Z, Yao J, Nie Z. Lysine acetylation stabilizes SP2 protein in the silkworm Bombyx mori. JOURNAL OF INSECT PHYSIOLOGY 2016; 91-92:56-62. [PMID: 27374983 DOI: 10.1016/j.jinsphys.2016.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 06/24/2016] [Accepted: 06/29/2016] [Indexed: 06/06/2023]
Abstract
Lysine acetylation (Kac) is a vital post-translational modification that plays an important role in many cellular processes in organisms. In the present study, the nutrient storage proteins in hemolymph were first found to be highly acetylated-particularly SP2 protein, which contains 20 potential Kac sites. Further results confirmed that lysine acetylation could stabilize and up-regulate the protein level of anti-apoptosis protein SP2, thereby improving the survival of H2O2-treated BmN cells and suppressing the apoptosis induced by H2O2. The potential mechanism involved in the inhibition of ubiquitin-mediated proteasomal degradation by crosstalk between lysine acetylation and ubiquitination. Our results showed that the increase in the acetylation level by TSA could decrease the ubiquitination and improve the protein level of SP2, indicating that lysine acetylation could influence the SP2 protein level through competition between ubiquitination and the suppression of ubiquitin-mediated proteasomal degradation, thereby stabilizing the protein. SP2 is a major nutrient storage protein from hemolymph for amino acid storage and utilization. The crosstalk between lysine acetylation and ubiquitination of SP2 might imply an important role of lysine acetylation for nutrient storage and utilization in silkworm.
Collapse
Affiliation(s)
- Yong Zhou
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chengcheng Wu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qing Sheng
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Caiying Jiang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qin Chen
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhengbing Lv
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Juming Yao
- College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zuoming Nie
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China; College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
49
|
IL-6/STAT3 axis initiated CAFs via up-regulating TIMP-1 which was attenuated by acetylation of STAT3 induced by PCAF in HCC microenvironment. Cell Signal 2016; 28:1314-1324. [PMID: 27297362 DOI: 10.1016/j.cellsig.2016.06.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 05/30/2016] [Accepted: 06/09/2016] [Indexed: 12/21/2022]
Abstract
Aberrant tumor microenvironment is involved closely in tumor initiation and progression, in which cancer associated fibroblasts (CAFs) play a pivotal role. Both IL-6/STAT3 signaling and TIMP-1 have been found to modulate the crosstalk between tumor cells and CAFs in tumor microenvironment, however, the underlying mechanism remains unclear. Here, we showed that IL-6/STAT3 signaling was activated aberrantly in HCC tissues and correlated with poor post-surgical outcome. The in vitro experiments confirmed that activation of IL-6/STAT3 pathway enhanced TIMP-1 expression directly via phosphorylated STATs (p-STAT3)-binding with TIMP-1 promoter in Huh7 cells. Furthermore, activation of IL-6/STAT3 pathway in HCC cells was shown to induce the transformation from normal liver fibroblasts (LFs) to CAFs via up-regulating TIMP-1 expression. Co-culture with CAFs promoted the growth of Huh7 cells both in vitro and in vivo. Finally, by co-Immunoprecipitation and immunoblotting assessments, PCAF, a well-known acetyltransferase, was revealed to acetylate cytoplasmic STAT3 protein directly and regulate TIMP-1 expression negatively in Huh7 cells. In summary, this investigation indicated that there was a positive IL-6/TIMP-1 feedback loop controlling the crosstalk between HCC cells and its neighbouring fibroblasts. The data here also identified that PCAF repressed TIMP-1 expression via acetylation of STAT3. In conclusion, this investigation demonstrated that CAFs promoted HCC growth via IL-6/STAT3/AKT pathway and TIMP-1 over-expression driven by IL-6/STAT3 pathway in HCC cells brought in more CAFs through activating LFs. Finally, PCAF could block this positive feedback by acetylating STAT3 in HCC cells.
Collapse
|
50
|
Jin T. Current Understanding on Role of the Wnt Signaling Pathway Effector TCF7L2 in Glucose Homeostasis. Endocr Rev 2016; 37:254-77. [PMID: 27159876 DOI: 10.1210/er.2015-1146] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The role of the Wnt signaling pathway in metabolic homeostasis has drawn our intensive attention, especially after the genome-wide association study discovery that certain polymorphisms of its key effector TCF7L2 are strongly associated with the susceptibility to type 2 diabetes. For a decade, great efforts have been made in determining the function of TCF7L2 in various metabolic organs, which have generated both considerable achievements and disputes. In this review, I will briefly introduce the canonical Wnt signaling pathway, focusing on its effector β-catenin/TCF, including emphasizing the bidirectional feature of TCFs and β-catenin post-translational modifications. I will then summarize the observations on the association between TCF7L2 polymorphisms and type 2 diabetes risk. The main content, however, is on the intensive functional exploration of the metabolic role of TCF7L2, including the disputes generated on determining its role in the pancreas and liver with various transgenic mouse lines. Finally, I will discuss those achievements and disputes and present my future perspectives.
Collapse
Affiliation(s)
- Tianru Jin
- Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
| |
Collapse
|