1
|
Ruehle MD, Li S, Agard DA, Pearson CG. Poc1 bridges basal body inner junctions to promote triplet microtubule integrity and connections. J Cell Biol 2024; 223:e202311104. [PMID: 38743010 PMCID: PMC11094743 DOI: 10.1083/jcb.202311104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/15/2024] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
Basal bodies (BBs) are conserved eukaryotic structures that organize cilia. They are comprised of nine, cylindrically arranged, triplet microtubules (TMTs) connected to each other by inter-TMT linkages which stabilize the structure. Poc1 is a conserved protein important for BB structural integrity in the face of ciliary forces transmitted to BBs. To understand how Poc1 confers BB stability, we identified the precise position of Poc1 in the Tetrahymena BB and the effect of Poc1 loss on BB structure. Poc1 binds at the TMT inner junctions, stabilizing TMTs directly. From this location, Poc1 also stabilizes inter-TMT linkages throughout the BB, including the cartwheel pinhead and the inner scaffold. The full localization of the inner scaffold protein Fam161A requires Poc1. As ciliary forces are increased, Fam161A is reduced, indicative of a force-dependent molecular remodeling of the inner scaffold. Thus, while not essential for BB assembly, Poc1 promotes BB interconnections that establish an architecture competent to resist ciliary forces.
Collapse
Affiliation(s)
- Marisa D. Ruehle
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sam Li
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - David A. Agard
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Institute for Advanced Biological Imaging, Redwood Shores, CA, USA
| | - Chad G. Pearson
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
2
|
Ruehle MD, Li S, Agard DA, Pearson CG. Poc1 is a basal body inner junction protein that promotes triplet microtubule integrity and interconnections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567593. [PMID: 38014135 PMCID: PMC10680851 DOI: 10.1101/2023.11.17.567593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Basal bodies (BBs) are conserved eukaryotic structures that organize motile and primary cilia. The BB is comprised of nine, cylindrically arranged, triplet microtubules (TMTs) that are connected to each other by inter-TMT linkages which maintain BB structure. During ciliary beating, forces transmitted to the BB must be resisted to prevent BB disassembly. Poc1 is a conserved BB protein important for BBs to resist ciliary forces. To understand how Poc1 confers BB stability, we identified the precise position of Poc1 binding in the Tetrahymena BB and the effect of Poc1 loss on BB structure. Poc1 binds at the TMT inner junctions, stabilizing TMTs directly. From this location, Poc1 also stabilizes inter-TMT linkages throughout the BB, including the cartwheel pinhead and the inner scaffold. Moreover, we identify a molecular response to ciliary forces via a molecular remodeling of the inner scaffold, as determined by differences in Fam161A localization. Thus, while not essential for BB assembly, Poc1 promotes BB interconnections that establish an architecture competent to resist ciliary forces.
Collapse
Affiliation(s)
- Marisa D. Ruehle
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sam Li
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - David A. Agard
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Institute for Advanced Biological Imaging, 3400 Bridge Parkway, Redwood Shores, CA, USA
| | - Chad G. Pearson
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
3
|
Valentine M, Yano J, Lodh S, Nabi A, Deng B, Van Houten J. Methods for Paramecium tetraurelia ciliary membrane protein identification and function. Methods Cell Biol 2023; 175:177-219. [PMID: 36967141 DOI: 10.1016/bs.mcb.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In this chapter we provide some tools to study the ciliary proteins that make it possible for Paramecium cells to swim by beating their cilia. These proteins include many ion channels, accessory proteins, peripheral proteins, structural proteins, rootlets of cilia, and enzymes. Some of these proteins are also found in the soma membrane, but their distinct and critical functions are in the cilia. Paramecium has 4000 or more cilia per cell, giving it an advantage for biochemical studies over cells that have one primarily cilium per cell. Nonetheless, a challenge for studies of many ciliary proteins in Paramecium is their low abundance. We discuss here several strategies to overcome this challenge and other challenges such as working with very large channel proteins. We also include for completeness other techniques that are critical to the study of swimming behavior, such as genetic crosses, recording of swimming patterns, electrical recordings, expression of very large channel proteins, RNA Interference, among others.
Collapse
Affiliation(s)
- Megan Valentine
- State University of New York, Plattsburgh, NY, United States
| | - Junji Yano
- University of Vermont, Burlington, VT, United States
| | - Sukanya Lodh
- Marquette University, Milwaukee, WI, United States
| | | | - Bin Deng
- Vermont Biomedical Research Network, University of Vermont, Burlington, VT, United States
| | | |
Collapse
|
4
|
Sullenberger C, Vasquez-Limeta A, Kong D, Loncarek J. With Age Comes Maturity: Biochemical and Structural Transformation of a Human Centriole in the Making. Cells 2020; 9:cells9061429. [PMID: 32526902 PMCID: PMC7349492 DOI: 10.3390/cells9061429] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/29/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
Centrioles are microtubule-based cellular structures present in most human cells that build centrosomes and cilia. Proliferating cells have only two centrosomes and this number is stringently maintained through the temporally and spatially controlled processes of centriole assembly and segregation. The assembly of new centrioles begins in early S phase and ends in the third G1 phase from their initiation. This lengthy process of centriole assembly from their initiation to their maturation is characterized by numerous structural and still poorly understood biochemical changes, which occur in synchrony with the progression of cells through three consecutive cell cycles. As a result, proliferating cells contain three structurally, biochemically, and functionally distinct types of centrioles: procentrioles, daughter centrioles, and mother centrioles. This age difference is critical for proper centrosome and cilia function. Here we discuss the centriole assembly process as it occurs in somatic cycling human cells with a focus on the structural, biochemical, and functional characteristics of centrioles of different ages.
Collapse
|
5
|
Junker AD, Soh AWJ, O'Toole ET, Meehl JB, Guha M, Winey M, Honts JE, Gaertig J, Pearson CG. Microtubule glycylation promotes attachment of basal bodies to the cell cortex. J Cell Sci 2019; 132:jcs.233726. [PMID: 31243050 DOI: 10.1242/jcs.233726] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/18/2019] [Indexed: 12/13/2022] Open
Abstract
Motile cilia generate directed hydrodynamic flow that is important for the motility of cells and extracellular fluids. To optimize directed hydrodynamic flow, motile cilia are organized and oriented into a polarized array. Basal bodies (BBs) nucleate and position motile cilia at the cell cortex. Cytoplasmic BB-associated microtubules are conserved structures that extend from BBs. By using the ciliate, Tetrahymena thermophila, combined with EM-tomography and light microscopy, we show that BB-appendage microtubules assemble coincidently with new BB assembly and that they are attached to the cell cortex. These BB-appendage microtubules are specifically marked by post translational modifications of tubulin, including glycylation. Mutations that prevent glycylation shorten BB-appendage microtubules and disrupt BB positioning and cortical attachment. Consistent with the attachment of BB-appendage microtubules to the cell cortex to position BBs, mutations that disrupt the cellular cortical cytoskeleton disrupt the cortical attachment and positioning of BBs. In summary, BB-appendage microtubules promote the organization of ciliary arrays through attachment to the cell cortex.
Collapse
Affiliation(s)
- Anthony D Junker
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Adam W J Soh
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Eileen T O'Toole
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80302, USA
| | - Janet B Meehl
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80302, USA
| | - Mayukh Guha
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Mark Winey
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Jerry E Honts
- Department of Biology, Drake University, 2507 University Avenue, Des Moines, IA 50311, USA
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Chad G Pearson
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
6
|
Abstract
The centriole organelle consists of microtubules (MTs) that exhibit a striking 9-fold radial symmetry. Centrioles play fundamental roles across eukaryotes, notably in cell signaling, motility and division. In this Cell Science at a Glance article and accompanying poster, we cover the cellular life cycle of this organelle - from assembly to disappearance - focusing on human centrioles. The journey begins at the end of mitosis when centriole pairs disengage and the newly formed centrioles mature to begin a new duplication cycle. Selection of a single site of procentriole emergence through focusing of polo-like kinase 4 (PLK4) and the resulting assembly of spindle assembly abnormal protein 6 (SAS-6) into a cartwheel element are evoked next. Subsequently, we cover the recruitment of peripheral components that include the pinhead structure, MTs and the MT-connecting A-C linker. The function of centrioles in recruiting pericentriolar material (PCM) and in forming the template of the axoneme are then introduced, followed by a mention of circumstances in which centrioles form de novo or are eliminated.
Collapse
Affiliation(s)
- Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| | - Georgios N Hatzopoulos
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Uytingco CR, Williams CL, Xie C, Shively DT, Green WW, Ukhanov K, Zhang L, Nishimura DY, Sheffield VC, Martens JR. BBS4 is required for intraflagellar transport coordination and basal body number in mammalian olfactory cilia. J Cell Sci 2019; 132:jcs222331. [PMID: 30665891 PMCID: PMC6432715 DOI: 10.1242/jcs.222331] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 01/11/2019] [Indexed: 12/16/2022] Open
Abstract
Bardet-Beidl syndrome (BBS) manifests from genetic mutations encoding for one or more BBS proteins. BBS4 loss impacts olfactory ciliation and odor detection, yet the cellular mechanisms remain unclear. Here, we report that Bbs4-/- mice exhibit shorter and fewer olfactory sensory neuron (OSN) cilia despite retaining odorant receptor localization. Within Bbs4-/- OSN cilia, we observed asynchronous rates of IFT-A/B particle movements, indicating miscoordination in IFT complex trafficking. Within the OSN dendritic knob, the basal bodies are dynamic, with incorporation of ectopically expressed centrin-2 and γ-tubulin occurring after nascent ciliogenesis. Importantly, BBS4 loss results in the reduction of basal body numbers separate from cilia loss. Adenoviral expression of BBS4 restored OSN cilia lengths and was sufficient to re-establish odor detection, but failed to rescue ciliary and basal body numbers. Our results yield a model for the plurality of BBS4 functions in OSNs that includes intraciliary and periciliary roles that can explain the loss of cilia and penetrance of ciliopathy phenotypes in olfactory neurons.
Collapse
Affiliation(s)
- Cedric R Uytingco
- Department of Pharmacology and Therapeutics, Gainesville, FL 32610, USA
- Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Corey L Williams
- Department of Pharmacology and Therapeutics, Gainesville, FL 32610, USA
- Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Chao Xie
- Department of Pharmacology and Therapeutics, Gainesville, FL 32610, USA
- Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Dana T Shively
- Department of Pharmacology and Therapeutics, Gainesville, FL 32610, USA
- Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Warren W Green
- Department of Pharmacology and Therapeutics, Gainesville, FL 32610, USA
- Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Kirill Ukhanov
- Department of Pharmacology and Therapeutics, Gainesville, FL 32610, USA
- Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Lian Zhang
- Department of Pharmacology and Therapeutics, Gainesville, FL 32610, USA
- Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | | - Val C Sheffield
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
- Howard Hughes Medical Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Jeffrey R Martens
- Department of Pharmacology and Therapeutics, Gainesville, FL 32610, USA
- Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|
8
|
Li S, Fernandez JJ, Marshall WF, Agard DA. Electron cryo-tomography provides insight into procentriole architecture and assembly mechanism. eLife 2019; 8:43434. [PMID: 30741631 PMCID: PMC6384029 DOI: 10.7554/elife.43434] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/10/2019] [Indexed: 01/03/2023] Open
Abstract
Centriole is an essential structure with multiple functions in cellular processes. Centriole biogenesis and homeostasis is tightly regulated. Using electron cryo-tomography (cryoET) we present the structure of procentrioles from Chlamydomonas reinhardtii. We identified a set of non-tubulin components attached to the triplet microtubule (MT), many are at the junctions of tubules likely to reinforce the triplet. We describe structure of the A-C linker that bridges neighboring triplets. The structure infers that POC1 is likely an integral component of A-C linker. Its conserved WD40 β-propeller domain provides attachment sites for other A-C linker components. The twist of A-C linker results in an iris diaphragm-like motion of the triplets in the longitudinal direction of procentriole. Finally, we identified two assembly intermediates at the growing ends of procentriole allowing us to propose a model for the procentriole assembly. Our results provide a comprehensive structural framework for understanding the molecular mechanisms underpinning procentriole biogenesis and assembly.
Collapse
Affiliation(s)
- Sam Li
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | | | - Wallace F Marshall
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - David A Agard
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
9
|
Grl1 Protein is a Candidate K Antigen in Tetrahymena thermophila. Protist 2018; 169:321-332. [PMID: 29803115 DOI: 10.1016/j.protis.2018.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/09/2018] [Accepted: 03/19/2018] [Indexed: 01/18/2023]
Abstract
In Tetrahymena, K antigens associate only with mature basal bodies and are expected to play important roles in the morphogenesis and function of the membrane skeleton around basal bodies, but these proteins have not been identified and their functions are unknown. Commercially available anti-human Rho GDP-dissociation inhibitor α (RhoGDIα) antibody (sc-33201) was accidentally found to show very similar immunofluorescence staining patterns to those of anti-K antigen antibodies, such as 424A8 and 10D12 mouse monoclonal antibodies, in Tetrahymena. A 40kDa protein recognized by this antibody was partially purified and identified as granule lattice protein 1 (Grl1p) by matrix-assisted laser desorption/ionization-tandem time-of-flight mass spectrometry. In immunoblotting experiments this antibody was suggested to recognize endogenous Grl1p. The three-dimensional structure of proGrl1p protein predicted by I-TASSER was similar to a spectrin family protein. Grl1 may be a K antigen and a spectrin-like protein in Tetrahymena.
Collapse
|
10
|
Loncarek J, Bettencourt-Dias M. Building the right centriole for each cell type. J Cell Biol 2017; 217:823-835. [PMID: 29284667 PMCID: PMC5839779 DOI: 10.1083/jcb.201704093] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/14/2017] [Accepted: 11/27/2017] [Indexed: 12/22/2022] Open
Abstract
Loncarek and Bettencourt-Dias review molecular mechanisms of centriole biogenesis amongst different organisms and cell types. The centriole is a multifunctional structure that organizes centrosomes and cilia and is important for cell signaling, cell cycle progression, polarity, and motility. Defects in centriole number and structure are associated with human diseases including cancer and ciliopathies. Discovery of the centriole dates back to the 19th century. However, recent advances in genetic and biochemical tools, development of high-resolution microscopy, and identification of centriole components have accelerated our understanding of its assembly, function, evolution, and its role in human disease. The centriole is an evolutionarily conserved structure built from highly conserved proteins and is present in all branches of the eukaryotic tree of life. However, centriole number, size, and organization varies among different organisms and even cell types within a single organism, reflecting its cell type–specialized functions. In this review, we provide an overview of our current understanding of centriole biogenesis and how variations around the same theme generate alternatives for centriole formation and function.
Collapse
Affiliation(s)
- Jadranka Loncarek
- Cell Cycle Regulation Lab, Gulbenkian Institute of Science, Oeiras, Portugal
| | - Mónica Bettencourt-Dias
- Laboratory of Protein Dynamics and Signaling, National Institutes of Health/Center for Cancer Research/National Cancer Institute-Frederick, Frederick, MD
| |
Collapse
|
11
|
Li X, Yang B, Wang L, Chen L, Luo X, Liu L. SPAG6 regulates cell apoptosis through the TRAIL signal pathway in myelodysplastic syndromes. Oncol Rep 2017; 37:2839-2846. [DOI: 10.3892/or.2017.5540] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 02/23/2017] [Indexed: 11/05/2022] Open
|
12
|
Abstract
Tetrahymena thermophila is a ciliate with hundreds of cilia primarily used for cellular motility. These cells propel themselves by generating hydrodynamic forces through coordinated ciliary beating. The coordination of cilia is ensured by the polarized organization of basal bodies (BBs), which exhibit remarkable structural and molecular conservation with BBs in other eukaryotes. During each cell cycle, massive BB assembly occurs and guarantees that future Tetrahymena cells gain a full complement of BBs and their associated cilia. BB duplication occurs next to existing BBs, and the predictable patterning of new BBs is facilitated by asymmetric BB accessory structures that are integrated with a membrane-associated cytoskeletal network. The large number of BBs combined with robust molecular genetics merits Tetrahymena as a unique model system to elucidate the fundamental events of BB assembly and organization.
Collapse
Affiliation(s)
- Brian A Bayless
- Department of Cell and Developmental Biology, University of Colorado-Anschutz Medical Campus, 2801 E. 17th Ave, Aurora, CO 80045-2537 USA
| | - Domenico F Galati
- Department of Cell and Developmental Biology, University of Colorado-Anschutz Medical Campus, 2801 E. 17th Ave, Aurora, CO 80045-2537 USA
| | - Chad G Pearson
- Department of Cell and Developmental Biology, University of Colorado-Anschutz Medical Campus, 2801 E. 17th Ave, Aurora, CO 80045-2537 USA
| |
Collapse
|
13
|
Galati DF, Abuin DS, Tauber GA, Pham AT, Pearson CG. Automated image analysis reveals the dynamic 3-dimensional organization of multi-ciliary arrays. Biol Open 2015; 5:20-31. [PMID: 26700722 PMCID: PMC4728305 DOI: 10.1242/bio.014951] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Multi-ciliated cells (MCCs) use polarized fields of undulating cilia (ciliary array) to produce fluid flow that is essential for many biological processes. Cilia are positioned by microtubule scaffolds called basal bodies (BBs) that are arranged within a spatially complex 3-dimensional geometry (3D). Here, we develop a robust and automated computational image analysis routine to quantify 3D BB organization in the ciliate, Tetrahymena thermophila. Using this routine, we generate the first morphologically constrained 3D reconstructions of Tetrahymena cells and elucidate rules that govern the kinetics of MCC organization. We demonstrate the interplay between BB duplication and cell size expansion through the cell cycle. In mutant cells, we identify a potential BB surveillance mechanism that balances large gaps in BB spacing by increasing the frequency of closely spaced BBs in other regions of the cell. Finally, by taking advantage of a mutant predisposed to BB disorganization, we locate the spatial domains that are most prone to disorganization by environmental stimuli. Collectively, our analyses reveal the importance of quantitative image analysis to understand the principles that guide the 3D organization of MCCs. Summary: We develop an automated computational image analysis routine to quantify basal body organization, which detects subtle spatial phenotypes resulting from environmental and genetic perturbations.
Collapse
Affiliation(s)
- Domenico F Galati
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, 2801 East 17th Ave, Aurora, CO 80045-2537, USA
| | - David S Abuin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, 2801 East 17th Ave, Aurora, CO 80045-2537, USA
| | - Gabriel A Tauber
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, 2801 East 17th Ave, Aurora, CO 80045-2537, USA
| | - Andrew T Pham
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, 2801 East 17th Ave, Aurora, CO 80045-2537, USA
| | - Chad G Pearson
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, 2801 East 17th Ave, Aurora, CO 80045-2537, USA
| |
Collapse
|
14
|
Abstract
Centrioles are among the largest protein-based structures found in most cell types, measuring approximately 250 nm in diameter and approximately 500 nm long in vertebrate cells. Here, we briefly review ultrastructural observations about centrioles and associated structures. At the core of most centrioles is a microtubule scaffold formed from a radial array of nine triplet microtubules. Beyond the microtubule triplets of the centriole, we discuss the critically important cartwheel structure and the more enigmatic luminal density, both found on the inside of the centriole. Finally, we discuss the connectors between centrioles, and the distal and subdistal appendages outside of the microtubule scaffold that reflect centriole age and impart special functions to the centriole. Most of the work we review has been done with electron microscopy or electron tomography of resin-embedded samples, but we also highlight recent work performed with cryoelectron microscopy, cryotomography and subvolume averaging. Significant opportunities remain in the description of centriolar structure, both in mapping of component proteins within the structure and in determining the effect of mutations on components that contribute to the structure and function of the centriole.
Collapse
Affiliation(s)
- Mark Winey
- Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Eileen O'Toole
- Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA The Boulder Laboratory for the 3D EM of Cells, Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA
| |
Collapse
|
15
|
Teves ME, Sears PR, Li W, Zhang Z, Tang W, van Reesema L, Costanzo RM, Davis CW, Knowles MR, Strauss JF, Zhang Z. Sperm-associated antigen 6 (SPAG6) deficiency and defects in ciliogenesis and cilia function: polarity, density, and beat. PLoS One 2014; 9:e107271. [PMID: 25333478 PMCID: PMC4204823 DOI: 10.1371/journal.pone.0107271] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 08/14/2014] [Indexed: 12/28/2022] Open
Abstract
SPAG6, an axoneme central apparatus protein, is essential for function of ependymal cell cilia and sperm flagella. A significant number of Spag6-deficient mice die with hydrocephalus, and surviving males are sterile because of sperm motility defects. In further exploring the ciliary dysfunction in Spag6-null mice, we discovered that cilia beat frequency was significantly reduced in tracheal epithelial cells, and that the beat was not synchronized. There was also a significant reduction in cilia density in both brain ependymal and trachea epithelial cells, and cilia arrays were disorganized. The orientation of basal feet, which determines the direction of axoneme orientation, was apparently random in Spag6-deficient mice, and there were reduced numbers of basal feet, consistent with reduced cilia density. The polarized epithelial cell morphology and distribution of intracellular mucin, α-tubulin, and the planar cell polarity protein, Vangl2, were lost in Spag6-deficient tracheal epithelial cells. Polarized epithelial cell morphology and polarized distribution of α-tubulin in tracheal epithelial cells was observed in one-week old wild-type mice, but not in the Spag6-deficient mice of the same age. Thus, the cilia and polarity defects appear prior to 7 days post-partum. These findings suggest that SPAG6 not only regulates cilia/flagellar motility, but that in its absence, ciliogenesis, axoneme orientation, and tracheal epithelial cell polarity are altered.
Collapse
Affiliation(s)
- Maria E. Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Patrick R. Sears
- Cystic Fibrosis Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Wei Li
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Zhengang Zhang
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Infectious Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Waixing Tang
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Lauren van Reesema
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Richard M. Costanzo
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - C. William Davis
- Department of Cell & Molecular Physiology of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Michael R. Knowles
- Department of Cell & Molecular Physiology of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Jerome F. Strauss
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Zhibing Zhang
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
16
|
Abstract
Centrioles and basal bodies (CBBs) are microtubule-rich cylindrical structures that nucleate and organize centrosomes and cilia, respectively. Despite their apparent ninefold rotational symmetry, the nine sets of triplet microtubules in CBBs possess asymmetries in their morphology and in the structures that associate with them. These asymmetries define the position of nascent CBB assembly, the orientation of ciliary beating, the orientation of spindle poles and the maintenance of cellular geometry. For some of these functions, the orientation of CBBs is first established during new CBB biogenesis when the daughter structure is positioned adjacent to the mother. The mother CBB organizes the surrounding environment that nascent CBBs are born into, thereby providing a nest for the new CBB to develop. Protists, including ciliates and algae, highlight the importance of this environment with the formation of asymmetrically placed scaffolds onto which new basal bodies assemble and are positioned. Recent studies illuminate the positioning of nascent centrioles relative to a modular pericentriolar material (PCM) environment and suggest that, like ciliates, centrosomes organize an immediate environment surrounding centrioles for their biogenesis and positioning. In this Commentary, I will explore the positioning of nascent CBB assembly as the first event in building cellular asymmetries and describe how the environment surrounding both basal bodies and centrioles may define asymmetric assembly.
Collapse
Affiliation(s)
- Chad G Pearson
- University of Colorado, Anschutz Medical Campus, Department of Cell and Developmental Biology, 12801 E. 17th Avenue, Room 12104, Aurora, CO 80045, USA
| |
Collapse
|
17
|
O'Toole ET, Dutcher SK. Site-specific basal body duplication in Chlamydomonas. Cytoskeleton (Hoboken) 2013; 71:108-18. [PMID: 24166861 DOI: 10.1002/cm.21155] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/16/2013] [Accepted: 10/22/2013] [Indexed: 11/12/2022]
Abstract
Correct centriole/basal body positioning is required for numerous biological processes, yet how the cell establishes this positioning is poorly understood. Analysis of centriolar/basal body duplication provides a key to understanding basal body positioning and function. Chlamydomonas basal bodies contain structural features that enable specific triplet microtubules to be specified. Electron tomography of cultures enriched in mitotic cells allowed us to follow basal body duplication and identify a specific triplet at which duplication occurs. Probasal bodies elongate in prophase, assemble transitional fibers (TF) and are segregated with a mature basal body near the poles of the mitotic spindle. A ring of nine-singlet microtubules is initiated at metaphase, orthogonal to triplet eight. At telophase/cytokinesis, triplet microtubule blades assemble first at the distal end, rather than at the proximal cartwheel. The cartwheel undergoes significant changes in length during duplication, which provides further support for its scaffolding role. The uni1-1 mutant contains short basal bodies with reduced or absent TF and defective transition zones, suggesting that the UNI1 gene product is important for coordinated probasal body elongation and maturation. We suggest that this site-specific basal body duplication ensures the correct positioning of the basal body to generate landmarks for intracellular patterning in the next generation.
Collapse
Affiliation(s)
- Eileen T O'Toole
- Department of Molecular, Cellular, and Developmental Biology, Boulder Laboratory for 3-D Electron Microscopy of Cells, University of Colorado, Boulder, Colorado
| | | |
Collapse
|
18
|
Ross I, Clarissa C, Giddings TH, Winey M. ε-tubulin is essential in Tetrahymena thermophila for the assembly and stability of basal bodies. J Cell Sci 2013; 126:3441-51. [PMID: 23704354 DOI: 10.1242/jcs.128694] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Basal bodies and centrioles are conserved microtubule-based organelles the improper assembly of which leads to a number of diseases, including ciliopathies and cancer. Tubulin family members are conserved components of these structures that are integral to their proper formation and function. We have identified the ε-tubulin gene in Tetrahymena thermophila and detected the protein, through fluorescence of a tagged allele, to basal bodies. Immunoelectron microscopy has shown that ε-tubulin localizes primarily to the core microtubule scaffold. A complete genomic knockout of ε-tubulin has revealed that it is an essential gene required for the assembly and maintenance of the triplet microtubule blades of basal bodies. We have conducted site-directed mutagenesis of the ε-tubulin gene and shown that residues within the nucleotide-binding domain, longitudinal interacting domains, and C-terminal tail are required for proper function. A single amino acid change of Thr150, a conserved residue in the nucleotide-binding domain, to Val is a conditional mutation that results in defects in the spatial and temporal assembly of basal bodies as well as their stability. We have genetically separated functions for the domains of ε-tubulin and identified a novel role for the nucleotide-binding domain in the regulation of basal body assembly and stability.
Collapse
Affiliation(s)
- Ian Ross
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado-Boulder, Boulder, CO 80309, USA
| | | | | | | |
Collapse
|
19
|
Stemm-Wolf AJ, Meehl JB, Winey M. Sfr13, a member of a large family of asymmetrically localized Sfi1-repeat proteins, is important for basal body separation and stability in Tetrahymena thermophila. J Cell Sci 2013; 126:1659-71. [PMID: 23426847 DOI: 10.1242/jcs.120238] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Directed fluid flow, which is achieved by the coordinated beating of motile cilia, is required for processes as diverse as cellular swimming, developmental patterning and mucus clearance. Cilia are nucleated, anchored and aligned at the plasma membrane by basal bodies, which are cylindrical microtubule-based structures with ninefold radial symmetry. In the unicellular ciliate Tetrahymena thermophila, two centrin family members associated with the basal body are important for both basal body organization and stabilization. We have identified a family of 13 proteins in Tetrahymena that contain centrin-binding repeats related to those identified in the Saccharomyces cerevisiae Sfi1 protein. We have named these proteins Sfr1-Sfr13 (for Sfi1-repeat). Nine of the Sfr proteins localize in unique polarized patterns surrounding the basal body, suggesting non-identical roles in basal body organization and association with basal body accessory structures. Furthermore, the Sfr proteins are found in distinct basal body populations in Tetrahymena cells, indicating that they are responsive to particular developmental programs. A complete genetic deletion of one of the family members, Sfr13, causes unstable basal bodies and defects in daughter basal body separation from the mother, phenotypes also observed with centrin disruption. It is likely that the other Sfr family members are involved in distinct centrin functions, providing specificity to the tasks that centrins perform at basal bodies.
Collapse
Affiliation(s)
- Alexander J Stemm-Wolf
- Department of Molecular, Cellular and Developmental Biology, University of Colorado - Boulder, Boulder, CO 80309, USA
| | | | | |
Collapse
|
20
|
Pastrana-Ríos B, Reyes M, De Orbeta J, Meza V, Narváez D, Gómez AM, Rodríguez Nassif A, Almodovar R, Díaz Casas A, Robles J, Ortiz AM, Irizarry L, Campbell M, Colón M. Relative stability of human centrins and its relationship to calcium binding. Biochemistry 2013; 52:1236-48. [PMID: 23346931 PMCID: PMC3597381 DOI: 10.1021/bi301417z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 01/20/2013] [Indexed: 11/28/2022]
Abstract
Centrins are calcium binding proteins that belong to the EF-hand superfamily with diverse biological functions. Herein we present the first systematic study that establishes the relative stability of related centrins via complementary biophysical techniques. Our results define the stepwise molecular behavior of human centrins by two-dimensional infrared (2D IR) correlation spectroscopy, the change in heat capacity and enthalpy of denaturation by differential scanning calorimetry, and the relative stability of the helical regions of centrins by circular dichroism. More importantly, 2D IR correlation spectroscopy provides unique information about the similarities and differences in dynamics between these related proteins. The thermally induced molecular behavior of human centrins can be used to predict biological target interactions that have a relative dependence on calcium affinity. This information is essential for understanding why certain isoforms may be used to rescue a phenotype and therefore also for explaining the different functions these proteins may have in vivo. Furthermore, this comparative approach can be applied to the study of recombinant therapeutic protein candidates for the treatment of disease states.
Collapse
Affiliation(s)
- Belinda Pastrana-Ríos
- Protein Research Center, University of Puerto Rico, Mayagüez Campus, Mayagüez, Puerto Rico 00681-9019, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ludueña RF. A Hypothesis on the Origin and Evolution of Tubulin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 302:41-185. [DOI: 10.1016/b978-0-12-407699-0.00002-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Bayless BA, Giddings TH, Winey M, Pearson CG. Bld10/Cep135 stabilizes basal bodies to resist cilia-generated forces. Mol Biol Cell 2012; 23:4820-32. [PMID: 23115304 PMCID: PMC3521689 DOI: 10.1091/mbc.e12-08-0577] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 10/18/2012] [Accepted: 10/23/2012] [Indexed: 12/03/2022] Open
Abstract
Basal bodies nucleate, anchor, and organize cilia. As the anchor for motile cilia, basal bodies must be resistant to the forces directed toward the cell as a consequence of ciliary beating. The molecules and generalized mechanisms that contribute to the maintenance of basal bodies remain to be discovered. Bld10/Cep135 is a basal body outer cartwheel domain protein that has established roles in the assembly of nascent basal bodies. We find that Bld10 protein first incorporates stably at basal bodies early during new assembly. Bld10 protein continues to accumulate at basal bodies after assembly, and we hypothesize that the full complement of Bld10 is required to stabilize basal bodies. We identify a novel mechanism for Bld10/Cep135 in basal body maintenance so that basal bodies can withstand the forces produced by motile cilia. Bld10 stabilizes basal bodies by promoting the stability of the A- and C-tubules of the basal body triplet microtubules and by properly positioning the triplet microtubule blades. The forces generated by ciliary beating promote basal body disassembly in bld10Δ cells. Thus Bld10/Cep135 acts to maintain the structural integrity of basal bodies against the forces of ciliary beating in addition to its separable role in basal body assembly.
Collapse
Affiliation(s)
- Brian A. Bayless
- Department of Cell and Developmental Biology, University of Colorado Denver–Anshutz Medical Campus, Aurora, CO 80045-2537
| | - Thomas H. Giddings
- Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309-0347
| | - Mark Winey
- Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309-0347
| | - Chad G. Pearson
- Department of Cell and Developmental Biology, University of Colorado Denver–Anshutz Medical Campus, Aurora, CO 80045-2537
| |
Collapse
|
23
|
Vonderfecht T, Cookson MW, Giddings TH, Clarissa C, Winey M. The two human centrin homologues have similar but distinct functions at Tetrahymena basal bodies. Mol Biol Cell 2012; 23:4766-77. [PMID: 23087207 PMCID: PMC3521684 DOI: 10.1091/mbc.e12-06-0454] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Centrins are a ubiquitous family of small Ca(2+)-binding proteins found at basal bodies that are placed into two groups based on sequence similarity to the human centrins 2 and 3. Analyses of basal body composition in different species suggest that they contain a centrin isoform from each group. We used the ciliate protist Tetrahymena thermophila to gain a better understanding of the functions of the two centrin groups and to determine their potential redundancy. We have previously shown that the Tetrahymena centrin 1 (Cen1), a human centrin 2 homologue, is required for proper basal body function. In this paper, we show that the Tetrahymena centrin 2 (Cen2), a human centrin 3 homologue, has functions similar to Cen1 in basal body orientation, maintenance, and separation. The two are, however, not redundant. A further examination of human centrin 3 homologues shows that they function in a manner distinct from human centrin 2 homologues. Our data suggest that basal bodies require a centrin from both groups in order to function correctly.
Collapse
Affiliation(s)
- Tyson Vonderfecht
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado-Boulder, Boulder, CO 80309, USA
| | | | | | | | | |
Collapse
|
24
|
|
25
|
Winey M, Stemm-Wolf AJ, Giddings TH, Pearson CG. Cytological analysis of Tetrahymena thermophila. Methods Cell Biol 2012; 109:357-78. [PMID: 22444152 DOI: 10.1016/b978-0-12-385967-9.00013-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Since their first detection in pond water, large ciliates such as Tetrahymena thermophila, have captivated school children and scientists alike with the elegance of their swimming and the beauty of their cortical organization. Indeed, cytology - simply looking at cells - is an important component of most areas of study in cell biology and is particularly intriguing in the large, complex Tetrahymena cell. Cytological analysis of Tetrahymena is critical for the study of the microtubule cytoskeleton, membrane trafficking, complex nuclear movements and interactions, and the cellular remodeling during conjugation, to name a few topics. We briefly review previously reported cytological techniques for both light and electron microscopy, and point the reader to resources to learn about those protocols. We go on to present new and emerging technologies for the study of these marvelous cells. These include the use of fluorescent-protein tagging to localize cellular components in live cells, as well as for tracking the dynamic behavior of proteins using pulse labeling and fluorescence recovery after photobleaching. For electron microscopy, cellular and antigenic preservation has been improved with the use of cryofixation and freeze-substitution. The technologies described here advance Tetrahymena cell biology to the cutting-edge of cytological analysis.
Collapse
Affiliation(s)
- Mark Winey
- MCD Biology, University of Colorado at Boulder, 347 UCB, Boulder, Colorado 80309-0347, USA
| | | | | | | |
Collapse
|
26
|
Wloga D, Frankel J. From Molecules to Morphology: Cellular Organization of Tetrahymena thermophila. Methods Cell Biol 2012; 109:83-140. [DOI: 10.1016/b978-0-12-385967-9.00005-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
27
|
Vonderfecht T, Stemm-Wolf AJ, Hendershott M, Giddings TH, Meehl JB, Winey M. The two domains of centrin have distinct basal body functions in Tetrahymena. Mol Biol Cell 2011; 22:2221-34. [PMID: 21562224 PMCID: PMC3128525 DOI: 10.1091/mbc.e11-02-0151] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 04/15/2011] [Accepted: 04/29/2011] [Indexed: 11/11/2022] Open
Abstract
The basal body is a microtubule-organizing center responsible for organizing the cilium, a structure important for cell locomotion and sensing of the surrounding environment. A widely conserved basal body component is the Ca(2+)-binding protein centrin. Analyses of centrin function suggest a role in basal body assembly and stability; however, its molecular mechanisms remain unclear. Here we describe a mutagenic strategy to study the function and essential nature of the various structural features of Cen1 in the ciliate Tetrahymena. We find that the two domains of Cen1 are both essential, and examination of strains containing mutant CEN1 alleles indicates that there are two predominant basal body phenotypes: misorientation of newly assembled basal bodies and stability defects. The results also show that the two domains of Cen1 are able to bind Ca(2+) and that perturbation of Ca(2+) binding affects Cen1 function. In all, the data suggest that the two domains of Cen1 have distinct functions.
Collapse
Affiliation(s)
- Tyson Vonderfecht
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado–Boulder, Boulder, CO 80309
| | - Alexander J. Stemm-Wolf
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado–Boulder, Boulder, CO 80309
| | | | - Thomas H. Giddings
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado–Boulder, Boulder, CO 80309
| | - Janet B. Meehl
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado–Boulder, Boulder, CO 80309
| | - Mark Winey
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado–Boulder, Boulder, CO 80309
| |
Collapse
|
28
|
Vincensini L, Blisnick T, Bastin P. [The importance of model organisms to study cilia and flagella biology]. Biol Aujourdhui 2011; 205:5-28. [PMID: 21501571 DOI: 10.1051/jbio/2011005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Indexed: 12/24/2022]
Abstract
Cilia and flagella are ubiquitous organelles that protrude from the surfaces of many cells, and whose architecture is highly conserved from protists to humans. These complex organelles, composed of over 500 proteins, can be either immotile or motile. They are involved in a myriad of biological processes, including sensing (non-motile cilia) and/or cell motility or movement of extracellular fluids (motile cilia). The ever-expanding list of human diseases linked to defective cilia illustrates the functional importance of cilia and flagella. These ciliopathies are characterised by an impressive diversity of symptoms and an often complex genetic etiology. A precise knowledge of cilia and flagella biology is thus critical to better understand these pathologies. However, multi-ciliated cells are terminally differentiated and difficult to manipulate, and a primary cilium is assembled only when the cell exits from the cell cycle. In this context the use of model organisms, that relies on the high degree of structural but also of molecular conservation of these organelles across evolution, is instrumental to decipher the many facets of cilia and flagella biology. In this review, we highlight the specific strengths of the main model organisms to investigate the molecular composition, mode of assembly, sensing and motility mechanisms and functions of cilia and flagella. Pioneering studies carried out in the green alga Chlamydomonas established the link between cilia and several genetic diseases. Moreover, multicellular organisms such as mouse, zebrafish, Xenopus, C. elegans or Drosophila, and protists like Paramecium, Tetrahymena and Trypanosoma or Leishmania each bring specific advantages to the study of cilium biology. For example, the function of genes involved in primary ciliary dyskinesia (due to defects in ciliary motility) can be efficiently assessed in trypanosomes.
Collapse
Affiliation(s)
- Laetitia Vincensini
- Unité de Biologie Cellulaire des Trypanosomes, Institut Pasteur et CNRS URA 2581, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | | | | |
Collapse
|
29
|
Rafelski SM, Keller LC, Alberts JB, Marshall WF. Apparent diffusive motion of centrin foci in living cells: implications for diffusion-based motion in centriole duplication. Phys Biol 2011; 8:026010. [PMID: 21378439 PMCID: PMC3132559 DOI: 10.1088/1478-3975/8/2/026010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The degree to which diffusion contributes to positioning cellular structures is an open question. Here we investigate the question of whether diffusive motion of centrin granules would allow them to interact with the mother centriole. The role of centrin granules in centriole duplication remains unclear, but some proposed functions of these granules, for example, in providing pre-assembled centriole subunits, or by acting as unstable 'pre-centrioles' that need to be captured by the mother centriole (La Terra et al 2005 J. Cell Biol. 168 713-22), require the centrin foci to reach the mother. To test whether diffusive motion could permit such interactions in the necessary time scale, we measured the motion of centrin-containing foci in living human U2OS cells. We found that these centrin foci display apparently diffusive undirected motion. Using the apparent diffusion constant obtained from these measurements, we calculated the time scale required for diffusion to capture by the mother centrioles and found that it would greatly exceed the time available in the cell cycle. We conclude that mechanisms invoking centrin foci capture by the mother, whether as a pre-centriole or as a source of components to support later assembly, would require a form of directed motility of centrin foci that has not yet been observed.
Collapse
Affiliation(s)
- Susanne M. Rafelski
- UCSF Dept. of Biochemistry and Biophysics GH-N372F Genentech Hall 600 16th St. San Francisco, CA 94158
- Center for Cell Dynamics, Friday Harbor Labs, University of Washington
| | - Lani C. Keller
- UCSF Dept. of Biochemistry and Biophysics GH-N372F Genentech Hall 600 16th St. San Francisco, CA 94158
| | | | - Wallace F. Marshall
- UCSF Dept. of Biochemistry and Biophysics GH-N372F Genentech Hall 600 16th St. San Francisco, CA 94158
| |
Collapse
|
30
|
Mahjoub MR, Xie Z, Stearns T. Cep120 is asymmetrically localized to the daughter centriole and is essential for centriole assembly. ACTA ACUST UNITED AC 2011; 191:331-46. [PMID: 20956381 PMCID: PMC2958470 DOI: 10.1083/jcb.201003009] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cep120, a protein involved in maintenance of neural progenitor cells, is required for centriole duplication in cycling cells and for centriole amplification in tracheal epithelial cells. Centrioles form the core of the centrosome in animal cells and function as basal bodies that nucleate and anchor cilia at the plasma membrane. In this paper, we report that Cep120 (Ccdc100), a protein previously shown to be involved in maintaining the neural progenitor pool in mouse brain, is associated with centriole structure and function. Cep120 is up-regulated sevenfold during differentiation of mouse tracheal epithelial cells (MTECs) and localizes to basal bodies. Cep120 localizes preferentially to the daughter centriole in cycling cells, and this asymmetry between mother and daughter centrioles is relieved coincident with new centriole assembly. Photobleaching recovery analysis identifies two pools of Cep120, differing in their halftime at the centriole. We find that Cep120 is required for centriole duplication in cycling cells, centriole amplification in MTECs, and centriole overduplication in S phase–arrested cells. We propose that Cep120 is required for centriole assembly and that the observed defect in neuronal migration might derive from a defect in this process.
Collapse
Affiliation(s)
- Moe R Mahjoub
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
31
|
Jerka-Dziadosz M, Gogendeau D, Klotz C, Cohen J, Beisson J, Koll F. Basal body duplication in Paramecium: the key role of Bld10 in assembly and stability of the cartwheel. Cytoskeleton (Hoboken) 2010; 67:161-71. [PMID: 20217679 DOI: 10.1002/cm.20433] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Basal bodies which nucleate cilia and flagella, and centrioles which organize centrosomes share the same architecture characterized by the ninefold symmetry of their microtubular shaft. Among the conserved proteins involved in the biogenesis of the canonical 9-triplet centriolar structures, Sas-6 and Bld10 proteins have been shown to play central roles in the early steps of assembly and in establishment/stabilization of the ninefold symmetry. Using fluorescent tagged proteins and RNAi to study the localization and function of these two proteins in Paramecium, we focused on the early effects of their depletion, the consequences of their overexpression and their functional interdependence. We find that both genes are essential and their depletion affects cartwheel assembly and hence basal body duplication. We also show that, contrary to Sas6p, Bld10p is not directly responsible for the establishment of the ninefold symmetry, but is required not only for new basal body assembly and stability but also for Sas6p maintenance at mature basal bodies. Finally, ultrastructural analysis of cells overexpressing either protein revealed two types of early assembly intermediates, hub-like structures and generative discs, suggesting a conserved scaffolding process.
Collapse
Affiliation(s)
- Maria Jerka-Dziadosz
- Department of Cell Biology, M. Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
32
|
Straschil U, Talman AM, Ferguson DJP, Bunting KA, Xu Z, Bailes E, Sinden RE, Holder AA, Smith EF, Coates JC, Rita Tewari. The Armadillo repeat protein PF16 is essential for flagellar structure and function in Plasmodium male gametes. PLoS One 2010; 5:e12901. [PMID: 20886115 PMCID: PMC2944832 DOI: 10.1371/journal.pone.0012901] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 08/20/2010] [Indexed: 12/30/2022] Open
Abstract
Malaria, caused by the apicomplexan parasite Plasmodium, threatens 40% of the world's population. Transmission between vertebrate and insect hosts depends on the sexual stages of the life-cycle. The male gamete of Plasmodium parasite is the only developmental stage that possesses a flagellum. Very little is known about the identity or function of proteins in the parasite's flagellar biology. Here, we characterise a Plasmodium PF16 homologue using reverse genetics in the mouse malaria parasite Plasmodium berghei. PF16 is a conserved Armadillo-repeat protein that regulates flagellar structure and motility in organisms as diverse as green algae and mice. We show that P. berghei PF16 is expressed in the male gamete flagellum, where it plays a crucial role maintaining the correct microtubule structure in the central apparatus of the axoneme as studied by electron microscopy. Disruption of the PF16 gene results in abnormal flagellar movement and reduced fertility, but does not lead to complete sterility, unlike pf16 mutations in other organisms. Using homology modelling, bioinformatics analysis and complementation studies in Chlamydomonas, we show that some regions of the PF16 protein are highly conserved across all eukaryotes, whereas other regions may have species-specific functions. PF16 is the first ARM-repeat protein characterised in the malaria parasite genus Plasmodium and this study opens up a novel model for analysis of Plasmodium flagellar biology that may provide unique insights into an ancient organelle and suggest novel intervention strategies to control the malaria parasite.
Collapse
Affiliation(s)
- Ursula Straschil
- Institute of Genetics, School of Biology, University of Nottingham, Nottingham, United Kingdom
- Division of Cell and Molecular Biology, Imperial College London, London, United Kingdom
| | - Arthur M. Talman
- Division of Cell and Molecular Biology, Imperial College London, London, United Kingdom
| | - David J. P. Ferguson
- Nuffield Department of Clinical Laboratory Science, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Karen A. Bunting
- Institute of Genetics, School of Biology, University of Nottingham, Nottingham, United Kingdom
| | - Zhengyao Xu
- Institute of Genetics, School of Biology, University of Nottingham, Nottingham, United Kingdom
| | - Elizabeth Bailes
- Institute of Genetics, School of Biology, University of Nottingham, Nottingham, United Kingdom
| | - Robert E. Sinden
- Division of Cell and Molecular Biology, Imperial College London, London, United Kingdom
| | - Anthony A. Holder
- Division of Parasitology, MRC National Institute for Medical Research, London, United Kingdom
| | - Elizabeth F. Smith
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Juliet C. Coates
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Rita Tewari
- Institute of Genetics, School of Biology, University of Nottingham, Nottingham, United Kingdom
- Division of Cell and Molecular Biology, Imperial College London, London, United Kingdom
| |
Collapse
|
33
|
Hergovich A, Kohler RS, Schmitz D, Vichalkovski A, Cornils H, Hemmings BA. The MST1 and hMOB1 tumor suppressors control human centrosome duplication by regulating NDR kinase phosphorylation. Curr Biol 2010; 19:1692-702. [PMID: 19836237 DOI: 10.1016/j.cub.2009.09.020] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 09/07/2009] [Accepted: 09/08/2009] [Indexed: 01/11/2023]
Abstract
BACKGROUND Human MST/hSAV/LATS/hMOB tumor suppressor cascades are regulators of cell death and proliferation; however, little is known about other functions of MST/hMOB signaling. Mob1p, one of two MOB proteins in yeast, appears to play a role in spindle pole body duplication (the equivalent of mammalian centrosome duplication). We therefore investigated the role of human MOB proteins in centrosome duplication. We also addressed the regulation of human centrosome duplication by mammalian serine/threonine Ste20-like (MST) kinases, considering that MOB proteins can function together with Ste20-like kinases in eukaryotes. RESULTS By studying the six human MOB proteins and five MST kinases, we found that MST1/hMOB1 signaling controls centrosome duplication. Overexpression of hMOB1 caused centrosome overduplication, whereas RNAi depletion of hMOB1 or MST1 impaired centriole duplication. Significantly, we delineated an hMOB1/MST1/NDR1 signaling pathway regulating centrosome duplication. More specifically, analysis of shRNA-resistant hMOB1 and NDR1 mutants revealed that a functional NDR/hMOB1 complex is critical for MST1 to phosphorylate NDR on the hydrophobic motif that in turn is required for human centrosome duplication. Furthermore, shRNA-resistant MST1 variants revealed that MST1 kinase activity is crucial for centrosome duplication whereas MST1 binding to the hSAV and RASSF1A tumor suppressor proteins is dispensable. Finally, by studying the PLK4/HsSAS-6/CP110 centriole assembly machinery, we also observed that normal daughter centriole formation depends on intact MST1/hMOB1/NDR signaling, although HsSAS-6 centriolar localization is not affected. CONCLUSIONS Our observations propose a novel pathway in control of human centriole duplication after recruitment of HsSAS-6 to centrioles.
Collapse
|
34
|
Pearson CG, Osborn DPS, Giddings TH, Beales PL, Winey M. Basal body stability and ciliogenesis requires the conserved component Poc1. ACTA ACUST UNITED AC 2010; 187:905-20. [PMID: 20008567 PMCID: PMC2806327 DOI: 10.1083/jcb.200908019] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Poc1 shores up basal bodies to support cilia formation in Tetrahymena thermophila, zebrafish, and humans; Poc1 depletion causes phenotypes commonly seen in ciliopathies. Centrioles are the foundation for centrosome and cilia formation. The biogenesis of centrioles is initiated by an assembly mechanism that first synthesizes the ninefold symmetrical cartwheel and subsequently leads to a stable cylindrical microtubule scaffold that is capable of withstanding microtubule-based forces generated by centrosomes and cilia. We report that the conserved WD40 repeat domain–containing cartwheel protein Poc1 is required for the structural maintenance of centrioles in Tetrahymena thermophila. Furthermore, human Poc1B is required for primary ciliogenesis, and in zebrafish, DrPoc1B knockdown causes ciliary defects and morphological phenotypes consistent with human ciliopathies. T.thermophila Poc1 exhibits a protein incorporation profile commonly associated with structural centriole components in which the majority of Poc1 is stably incorporated during new centriole assembly. A second dynamic population assembles throughout the cell cycle. Our experiments identify novel roles for Poc1 in centriole stability and ciliogenesis.
Collapse
Affiliation(s)
- Chad G Pearson
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA.
| | | | | | | | | |
Collapse
|
35
|
Giddings TH, Meehl JB, Pearson CG, Winey M. Electron Tomography and Immuno-labeling of Tetrahymena thermophila Basal Bodies. Methods Cell Biol 2010; 96:117-41. [DOI: 10.1016/s0091-679x(10)96006-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
36
|
Abstract
Cilia are microtubule-based structures that protrude from the cell surface and function as sensors for mechanical and chemical environmental cues that regulate cellular differentiation or division. In metazoans, ciliary signaling is important during organismal development and in the homeostasis controls of adult tissues, with receptors for the Hedgehog, platelet derived growth factor (PDGF), Wnt, and other signaling cascades arrayed and active along the ciliary membrane. In normal cells, cilia are dynamically regulated during cell cycle progression: present in G0 and G1 cells, and usually in S/G2 cells, but almost invariably resorbed before mitotic entry, to reappear post-cytokinesis. This periodic resorption and reassembly of cilia, specified by the intrinsic cell cycle the intrinsic cell cycle machinery, influences the susceptibility of cells to the influence of extrinsic signals with cilia-associated receptors. Pathogenic conditions of mammals associated with loss of or defects in ciliary integrity include a number of developmental disorders, cystic syndromes in adults, and some cancers. With the continuing expansion of the list of human diseases associated with ciliary abnormalities, the identification of the cellular mechanisms regulating ciliary growth and disassembly has become a topic of intense research interest. Although these mechanisms are far from being understood, a number of recent studies have begun to identify key regulatory factors that may begin to offer insight into disease pathogenesis and treatment. In this chapter we will discuss the current state of knowledge regarding cell cycle control of ciliary dynamics, and provide general methods that can be applied to investigate cell cycle-dependent ciliary growth and disassembly.
Collapse
Affiliation(s)
- Olga V. Plotnikova
- Program in Molecular and Translational Medicine, Fox Chase Cancer Center, Philadelphia, PA 19111
- Department of Molecular Biology and Medical Biotechnology, Russian State Medical University, Moscow, Russia
| | - Elena N. Pugacheva
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506
| | - Erica A. Golemis
- Program in Molecular and Translational Medicine, Fox Chase Cancer Center, Philadelphia, PA 19111
| |
Collapse
|
37
|
Abstract
Centrioles perform the dual functions of organizing both centrosomes and cilia. The biogenesis of nascent centrioles is an essential cellular event that is tightly coupled to the cell cycle so that each cell contains only two or four centrioles at any given point in the cell cycle. The assembly of centrioles and their analogs, basal bodies, is well characterized at the ultrastructural level whereby structural modules are built into a functional organelle. Genetic studies in model organisms combined with proteomic, bioinformatic and identifying ciliary disease gene orthologs have revealed a wealth of molecules requiring further analysis to determine their roles in centriole duplication, assembly and function. Nonetheless, at this stage, our understanding of how molecular components interact to build new centrioles and basal bodies is limited. The ciliates, Tetrahymena and Paramecium, historically have been the subject of cytological and genetic study of basal bodies. Recent advances in the ciliate genetic and molecular toolkit have placed these model organisms in a favorable position to study the molecular mechanisms of centriole and basal body assembly.
Collapse
Affiliation(s)
- Chad G Pearson
- Molecular, Cellular, and Developmental Biology, University of Colorado-Boulder, 347 UCB, Porter Biosciences, Boulder, CO 80309-0347, USA.
| | | |
Collapse
|
38
|
Culver BP, Meehl JB, Giddings TH, Winey M. The two SAS-6 homologs in Tetrahymena thermophila have distinct functions in basal body assembly. Mol Biol Cell 2009; 20:1865-77. [PMID: 19158390 DOI: 10.1091/mbc.e08-08-0838] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cilia and flagella are structurally and functionally conserved organelles present in basal as well as higher eukaryotes. The assembly of cilia requires a microtubule based scaffold called a basal body. The ninefold symmetry characteristic of basal bodies and the structurally similar centriole is organized around a hub and spoke structure termed the cartwheel. To date, SAS-6 is one of the two clearly conserved components of the cartwheel. In some organisms, overexpression of SAS-6 causes the formation of supernumerary centrioles. We questioned whether the centriole assembly initiation capacity of SAS-6 is separate from or directly related to its structural role at the cartwheel. To address this question we used Tetrahymena thermophila, which expresses two SAS-6 homologues, TtSAS6a and TtSAS6b. Cells lacking either TtSAS6a or TtSAS6b are defective in new basal body assembly. TtSas6a localizes to all basal bodies equally, whereas TtSas6b is enriched at unciliated and assembling basal bodies. Interestingly, overexpression of TtSAS6b but not TtSAS6a, led to the assembly of clusters of new basal bodies in abnormal locations. Our data suggest a model where TtSAS6a and TtSAS6b have diverged such that TtSAS6a acts as a structural component of basal bodies, whereas TtSAS6b influences the location of new basal body assembly.
Collapse
Affiliation(s)
- Brady P Culver
- Molecular, Cellular, and Developmental Biology, University of Colorado-Boulder, Boulder, CO 80309, USA
| | | | | | | |
Collapse
|