1
|
Li X, Liu Q, Wang L, Bu T, Yang X, Gao S, Yun D, Sun F. PPM1G dephosphorylates α-catenin to maintain the integrity of adherens junctions and regulates apoptosis in Sertoli cells. Mol Cell Endocrinol 2025; 600:112493. [PMID: 39952314 DOI: 10.1016/j.mce.2025.112493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Protein phosphatase, Mg2+/Mn2+ dependent, 1G (PPM1G) regulates protein function via dephosphorylation. PPM1G participates in the assembly of adherens junctions by dephosphorylating α-catenin. Here, we demonstrated through siRNA transfection and intratesticular injection that PPM1G is critical for maintaining blood-testis barrier function and regulating Sertoli cell apoptosis. We observed that upon knocking down Ppm1g in rat testes, the function of the blood testis barrier was compromised, and the localization of α-catenin and β-catenin became aberrant. Further investigation in rat Sertoli cells revealed that after Ppm1g knockdown, the level of phosphorylated α-catenin increased, and it failed to properly aggregate at the cell membrane; instead, it was mislocalized to the cytoplasm. The actin to which catenin is attached also exhibited a disordered arrangement in the absence of PPM1G. Additionally, through RNA sequencing and bioinformatics analysis, we identified genes associated with Sertoli cell dysfunction induced by Ppm1g knockdown and identified a set of genes involved in regulating intercellular junctions. Subsequent validation revealed that after Ppm1g knockdown, the expression of the junction-related protein JAM2 was reduced, and Sertoli cells underwent apoptosis. Overall, we identified a gene, Ppm1g, which may be involved in maintaining the normal function of the blood-testis barrier and influencing the survival of Sertoli cells by regulating apoptotic pathways.
Collapse
Affiliation(s)
- Xinyao Li
- Department of General Surgery, Gongli Hospital of Shanghai Pudong New Area, Shanghai, 200135, China
| | - Qian Liu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Lingling Wang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Tiao Bu
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, 57 South Renming Avenue, Xiashan District, Zhanjiang City, 524000, Guandong Province, China
| | - Xiwen Yang
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, 750004, China
| | - Sheng Gao
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Damin Yun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Fei Sun
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, 750004, China; Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China.
| |
Collapse
|
2
|
Peña-Corona SI, Vargas-Estrada D, Juárez-Rodríguez I, Retana-Márquez S, Mendoza-Rodríguez CA. Bisphenols as promoters of the dysregulation of cellular junction proteins of the blood-testis barrier in experimental animals: A systematic review of the literature. J Biochem Mol Toxicol 2023; 37:e23416. [PMID: 37352109 DOI: 10.1002/jbt.23416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 04/03/2023] [Accepted: 06/08/2023] [Indexed: 06/25/2023]
Abstract
Daily, people are exposed to chemicals and environmental compounds such as bisphenols (BPs). These substances are present in more than 80% of human fluids. Human exposure to BPs is associated with male reproductive health disorders. Some of the main targets of BPs are intercellular junction proteins of the blood-testis barrier (BTB) in Sertoli cells because BPs alter the expression or induce aberrant localization of these proteins. In this systematic review, we explore the effects of BP exposure on the expression of BTB junction proteins and the characteristics of in vivo studies to identify potential gaps and priorities for future research. To this end, we conducted a systematic review of articles. Thirteen studies met our inclusion criteria. In most studies, animals treated with bisphenol-A (BPA) showed decreased occludin expression at all tested doses. However, bisphenol-AF treatment did not alter occludin expression. Cx43, ZO-1, β-catenin, nectin-3, cortactin, paladin, and claudin-11 expression also decreased in some tested doses of BP, while N-cadherin and FAK expression increased. BP treatment did not alter the expression of α and γ catenin, E-cadherin, JAM-A, and Arp 3. However, the expression of all these proteins was altered when BPA was administered to neonatal rodents in microgram doses. The results show significant heterogeneity between studies. Thus, it is necessary to perform more research to characterize the changes in BTB protein expression induced by BPs in animals to highlight future research directions that can inform the evaluation of risk of toxicity in humans.
Collapse
Affiliation(s)
- Sheila I Peña-Corona
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Dinorah Vargas-Estrada
- Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ivan Juárez-Rodríguez
- Departamento de Medicina Preventiva y Salud Pública, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Socorro Retana-Márquez
- Departamento Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | | |
Collapse
|
3
|
Yu S, He J, Xie K. Zonula Occludens Proteins Signaling in Inflammation and Tumorigenesis. Int J Biol Sci 2023; 19:3804-3815. [PMID: 37564207 PMCID: PMC10411466 DOI: 10.7150/ijbs.85765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Tight junction (TJ) is the barrier of epithelial and endothelial cells to maintain paracellular substrate transport and cell polarity. As one of the TJ cytoplasmic adaptor proteins adjacent to cell membrane, zonula occludens (ZO) proteins are responsible for connecting transmembrane TJ proteins and cytoplasmic cytoskeleton, providing a binding platform for transmembrane TJ proteins to maintain the barrier function. In addition to the basic structural function, ZO proteins play important roles in signal regulation such as cell proliferation and motility, the latter including cell migration, invasion and metastasis, to influence embryonic development, tissue homeostasis, damage repair, inflammation, tumorigenesis, and cancer progression. In this review, we will focus on the signal regulating function of ZO proteins in inflammation and tumorigenesis, and discuss the limitations of previous research and future challenges in ZO protein research.
Collapse
Affiliation(s)
- Sen Yu
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, China
| | - Jie He
- The Second Affiliated Hospital and Guangzhou First People's Hospital, South China University of Technology School of Medicine, Guangdong, China
| | - Keping Xie
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, China
- The Second Affiliated Hospital and Guangzhou First People's Hospital, South China University of Technology School of Medicine, Guangdong, China
| |
Collapse
|
4
|
Schmidt A, Finegan T, Häring M, Kong D, Fletcher AG, Alam Z, Grosshans J, Wolf F, Peifer M. Polychaetoid/ZO-1 strengthens cell junctions under tension while localizing differently than core adherens junction proteins. Mol Biol Cell 2023; 34:ar81. [PMID: 37163320 PMCID: PMC10398881 DOI: 10.1091/mbc.e23-03-0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/11/2023] Open
Abstract
During embryonic development, dramatic cell shape changes and movements reshape the embryonic body plan. These require robust but dynamic linkage between the cell-cell adherens junctions and the force-generating actomyosin cytoskeleton. Our view of this linkage has evolved, and we now realize linkage is mediated by mechanosensitive multiprotein complexes assembled via multivalent connections. Here we combine genetic, cell biological, and modeling approaches to define the mechanism of action and functions of an important player, Drosophila polychaetoid, homologue of mammalian ZO-1. Our data reveal that Pyd reinforces cell junctions under elevated tension, and facilitates cell rearrangements. Pyd is important to maintain junctional contractility and in its absence cell rearrangements stall. We next use structured illumination microscopy to define the molecular architecture of cell-cell junctions during these events. The cadherin-catenin complex and Cno both localize to puncta along the junctional membrane, but are differentially enriched in different puncta. Pyd, in contrast, exhibits a distinct localization to strands that extend out from the region occupied by core junction proteins. We then discuss the implications for the protein network at the junction-cytoskeletal interface, suggesting different proteins localize and function in distinct ways, perhaps in distinct subcomplexes, but combine to produce robust connections.
Collapse
Affiliation(s)
- Anja Schmidt
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Tara Finegan
- Department of Biology, University of Rochester, Rochester, New York 14627-0211
| | - Matthias Häring
- Göttingen Campus Institute for Dynamics of Biological Networks, Georg August University, 37075 Göttingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
- Institute for Dynamics of Complex Systems, Georg August University, 37077 Göttingen, Germany
| | - Deqing Kong
- Department of Biology, Philipps University, 35043 Marburg, Germany
| | - Alexander G Fletcher
- School of Mathematics and Statistics and Bateson Centre, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Zuhayr Alam
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Jörg Grosshans
- Department of Biology, Philipps University, 35043 Marburg, Germany
| | - Fred Wolf
- Göttingen Campus Institute for Dynamics of Biological Networks, Georg August University, 37075 Göttingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
- Institute for Dynamics of Complex Systems, Georg August University, 37077 Göttingen, Germany
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| |
Collapse
|
5
|
Schmidt A, Finegan T, Häring M, Kong D, Fletcher AG, Alam Z, Grosshans J, Wolf F, Peifer M. Polychaetoid/ZO-1 strengthens cell junctions under tension while localizing differently than core adherens junction proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530634. [PMID: 36909597 PMCID: PMC10002719 DOI: 10.1101/2023.03.01.530634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
During embryonic development dramatic cell shape changes and movements re-shape the embryonic body plan. These require robust but dynamic linkage between the cell-cell adherens junctions and the force-generating actomyosin cytoskeleton. Our view of this linkage has evolved, and we now realize linkage is mediated by a mechanosensitive multiprotein complex assembled via multivalent connections. Here we combine genetic, cell biological and modeling approaches to define the mechanism of action and functions of an important player, Drosophila Polychaetoid, homolog of mammalian ZO-1. Our data reveal that Pyd reinforces cell junctions under elevated tension, and facilitates cell rearrangements. Pyd is important to maintain junctional contractility and in its absence cell rearrangements stall. We next use structured illumination microscopy to define the molecular architecture of cell-cell junctions during these events. The cadherin-catenin complex and Cno both localize to puncta along the junctional membrane, but are differentially enriched in different puncta. Pyd, in contrast, exhibits a distinct localization to strands that extend out from the region occupied by core junction proteins. We then discuss the implications for the protein network at the junction-cytoskeletal interface, suggesting different proteins localize and function in distinct ways but combine to produce robust connections.
Collapse
Affiliation(s)
- Anja Schmidt
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Tara Finegan
- Department of Biology, University of Rochester, Rochester, New York, USA 14627-0211
| | - Matthias Häring
- Göttingen Campus Institute for Dynamics of Biological Networks, Georg August University, Hermann Rein Str. 3, 37075 Göttingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Hermann Rein St. 3, 37075 Göttingen, German
- Institute for Dynamics of Complex Systems, Georg August University, Friedrich Hund Pl. 1, 37077 Göttingen, Germany
| | - Deqing Kong
- Department of Biology, Philipps University, Karl-von-Frisch-Straße 8, 35043 Marburg, Germany
| | - Alexander G Fletcher
- School of Mathematics and Statistics & Bateson Centre, University of Sheffield, Sheffield, UK
| | - Zuhayr Alam
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Jörg Grosshans
- Department of Biology, Philipps University, Karl-von-Frisch-Straße 8, 35043 Marburg, Germany
| | - Fred Wolf
- Göttingen Campus Institute for Dynamics of Biological Networks, Georg August University, Hermann Rein Str. 3, 37075 Göttingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Hermann Rein St. 3, 37075 Göttingen, German
- Institute for Dynamics of Complex Systems, Georg August University, Friedrich Hund Pl. 1, 37077 Göttingen, Germany
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| |
Collapse
|
6
|
Elmas MA, Ozakpinar OB, Kolgazi M, Sener G, Arbak S, Ercan F. Exercise improves testicular morphology and oxidative stress parameters in rats with testicular damage induced by a high-fat diet. Andrologia 2022; 54:e14600. [PMID: 36146902 DOI: 10.1111/and.14600] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/27/2022] Open
Abstract
Obesity and male infertility are problems that affect population. Exercise is a nonpharmacological way to reduce the negative health effects of obesity. The purpose of this study was to examine the effects of exercise on hormone levels, blood-testis barrier, and inflammatory and oxidative biomarkers in rats that became obese due to a high-fat diet (HFD). Male rats received a standard diet (STD group) or a HFD (HFD group) for 18 weeks. During the final 6 weeks of the experiment, swimming exercises (1 h/5 days/week) were given to half of these animals (STD + EXC and HFD + EXC groups). Finally, blood and testicular tissues were analysed by biochemical and histological methods. Body weight, leptin, malondialdehyde, interleukin-6, TNF-alpha and myeloperoxidase levels, apoptotic cells and DNA fragmentation were increased, and testis weight, insulin, FSH, LH, testosterone, glutathione and superoxide dysmutase levels, proliferative cells, ZO-1, occludin, and gap junction protein Cx43 immunoreactivity were decreased in the HFD group. All these hormonal, morphological, oxidative and inflammatory biomarkers were enhanced in the HFD + EXC group. It is thought that exercise protected testicular cytotoxicity by regulating hormonal and oxidant/antioxidant balances and testicular function, inhibiting inflammation and apoptosis, as well as preserving blood-testis barrier.
Collapse
Affiliation(s)
- Merve Acikel Elmas
- Department of Histology and Embryology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | | | - Meltem Kolgazi
- Department of Physiology, Acibadem University School of Medicine, Istanbul, Turkey
| | - Goksel Sener
- Fenerbahçe University, Vocational School of Health Service, Istanbul, Turkey
| | - Serap Arbak
- Department of Histology and Embryology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Feriha Ercan
- Department of Histology and Embryology, Marmara University School of Medicine, Istanbul, Turkey
| |
Collapse
|
7
|
Transcriptomic Analysis of Testicular Gene Expression in a Dog Model of Experimentally Induced Cryptorchidism. Cells 2022; 11:cells11162476. [PMID: 36010553 PMCID: PMC9406621 DOI: 10.3390/cells11162476] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
Cryptorchidism, a condition in which testes fail to descend from the abdomen into the scrotum, is a risk factor for infertility and germ cell cancer. Normally, tight junctions between adjacent Sertoli cells in the testes form a blood–testes barrier that regulates spermatogenesis; however, the effect of cryptorchidism on tight junctions is not well-understood. We established a model of heat-induced testicular damage in dogs using surgical cryptorchidism. We sequenced RNA to investigate whether certain transcripts are expressed at higher rates in heat-damaged versus normally descended testes. Claudins, cell adhesion molecules, were relatively highly expressed in cryptorchid testes: claudins 2, 3, 5, 11, and 18 were significantly increased in cryptorchid testes and reduced by orchiopexy. SOX9-positive Sertoli cells were present in the seminiferous tubules in both cryptorchid and control testes. Using real-time PCR and Western blot analysis to compare Sertoli cells cultured at 34 °C and 37 °C, we found that Sertoli cell claudins 2, 3, 5, 11, and 18 were significantly increased at 37 °C; however, accumulation was higher in the G0/G1 phase in Sertoli cells cultured at 34 °C. These results indicate that testicular hyperthermia caused by cryptorchidism affects claudin expression, regulated germ cell death, and the proliferation of Sertoli cells.
Collapse
|
8
|
Ram AK, Vairappan B. Role of zonula occludens in gastrointestinal and liver cancers. World J Clin Cases 2022; 10:3647-3661. [PMID: 35647143 PMCID: PMC9100728 DOI: 10.12998/wjcc.v10.i12.3647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/08/2021] [Accepted: 03/04/2022] [Indexed: 02/06/2023] Open
Abstract
A growing body of evidence suggests that tight junction (TJ) proteins play a crucial role in the pathogenesis of various diseases, including gastrointestinal (GI) cancer and hepatocellular carcinoma (HCC). TJ proteins primarily maintain the epithelial and endothelial cells intact together through integral proteins however, recent reports suggest that they also regulate gene expression necessary for cell proliferation, angiogenesis, and metastasis through adapter proteins such as zonula occludens (ZO). ZO proteins are membrane-associated cytosolic scaffolding proteins that modulate cell proliferation by interacting with several transcription factors. Reduced ZO proteins in GI cancer and HCC are correlated with tumor development and poor prognosis. Pubmed has searched for using the keyword ZO and gastric cancer, ZO and cancer, and ZO and HCC for the last ten years to date. This review summarized the role of ZO proteins in cell proliferation and their expression in GI cancer and HCC. Furthermore, therapeutic interventions targeting ZO in GI and liver cancers are reviewed.
Collapse
Affiliation(s)
- Amit Kumar Ram
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry 605006, India
| | - Balasubramaniyan Vairappan
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry 605006, India
| |
Collapse
|
9
|
González-González L, Gallego-Gutiérrez H, Martin-Tapia D, Avelino-Cruz JE, Hernández-Guzmán C, Rangel-Guerrero SI, Alvarez-Salas LM, Garay E, Chávez-Munguía B, Gutiérrez-Ruiz MC, Hernández-Melchor D, López-Bayghen E, González-Mariscal L. ZO-2 favors Hippo signaling, and its re-expression in the steatotic liver by AMPK restores junctional sealing. Tissue Barriers 2021; 10:1994351. [PMID: 34689705 DOI: 10.1080/21688370.2021.1994351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
ZO-2 is a peripheral tight junction (TJ) protein whose silencing in renal epithelia induces cell hypertrophy. Here, we found that in ZO-2 KD MDCK cells, in compensatory renal hypertrophy triggered in rats by a unilateral nephrectomy and in liver steatosis of obese Zucker (OZ) rats, ZO-2 silencing is accompanied by the diminished activity of LATS, a kinase of the Hippo pathway, and the nuclear concentration of YAP, the final effector of this signaling route. ZO-2 appears to function as a scaffold for the Hippo pathway as it associates to LATS1. ZO-2 silencing in hypertrophic tissue is due to a diminished abundance of ZO-2 mRNA, and the Sp1 transcription factor is critical for ZO-2 transcription in renal cells. Treatment of OZ rats with metformin, an activator of AMPK that blocks JNK activity, augments ZO-2 and claudin-1 expression in the liver, reduces the paracellular permeability of hepatocytes, and serum bile acid content. Our results suggest that ZO-2 silencing is a common feature of hypertrophy, and that ZO-2 is a positive regulator of the Hippo pathway that regulates cell size. Moreover, our observations highlight the importance of AMPK, JNK, and ZO-2 as therapeutic targets for blood-bile barrier dysfunction.
Collapse
Affiliation(s)
- Laura González-González
- Department of Physiology, Biophysics, and Neurosciences, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Helios Gallego-Gutiérrez
- Department of Physiology, Biophysics, and Neurosciences, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Dolores Martin-Tapia
- Department of Physiology, Biophysics, and Neurosciences, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - José Everardo Avelino-Cruz
- Laboratory of Molecular Cardiology, Institute of Physiology, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Christian Hernández-Guzmán
- Department of Physiology, Biophysics, and Neurosciences, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Sergio Israel Rangel-Guerrero
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Luis Marat Alvarez-Salas
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Erika Garay
- Department of Physiology, Biophysics, and Neurosciences, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Bibiana Chávez-Munguía
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - María Concepción Gutiérrez-Ruiz
- Department of Health Sciences, Autonomous Metropolitan University- Iztapalapa (UAM-I), Mexico City, Mexico; Laboratory of Experimental Medicine, Unit of Translational Medicine, Institute of Biomedical Research, Unam, National Institute of Cardiology "Ignacio Chávez", Mexico City, Mexico
| | | | - Esther López-Bayghen
- Department of Toxicology, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Lorenza González-Mariscal
- Department of Physiology, Biophysics, and Neurosciences, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| |
Collapse
|
10
|
Karakaya FB, Yavuz M, Sirvanci S. Histological analysis of the effects of thymoquinone on testicular damage in pentylenetetrazole-induced temporal lobe epilepsy model. Andrologia 2021; 53:e14130. [PMID: 34414592 DOI: 10.1111/and.14130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 11/28/2022] Open
Abstract
In this study, it was aimed to investigate possible ameliorating effects of thymoquinone on testicular damage in an epilepsy model. Adult male Wistar rats were divided into 4 groups. The animals in sham-operated groups were given saline or thymoquinone (s.c.); and the animals in pentylenetetrazole (PTZ) group were applied PTZ. The animals in PTZ+thymoquinone group were given thymoquinone (i.p) for 6 days after applying PTZ. Hematoxylin-eosin, periodic acid-Schiff and TUNEL staining and PCNA, StAR, inhibin β-B immunohistochemistry and ZO-1 immunofluorescence methods were applied. Staining intensity and cell numbers were determined. Degeneration of seminiferous tubules was observed in PTZ group. Most of the tubules showed normal morphology in the PTZ+thymoquinone group. Apoptotic cell index was found to be increased and proliferative index decreased in PTZ group. Thymoquinone administration decreased apoptotic index and increased proliferation index. In PTZ group, ZO-1, StAR and inhibin β-B immunohistochemical staining intensity was observed to be decreased and after thymoquinone application, ZO-1 was increased. StAR and inhibin β-B-positive cell numbers were decreased in PTZ group and increased in the PTZ +thymoquinone group. In this study, it was observed that PTZ-induced epileptic seizures caused testicular damage in the rat and thymoquinone ameliorated these effects.
Collapse
Affiliation(s)
- Fatma Bedia Karakaya
- Department of Histology and Embryology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Melis Yavuz
- Department of Medical Pharmacology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Serap Sirvanci
- Department of Histology and Embryology, School of Medicine, Marmara University, Istanbul, Turkey
| |
Collapse
|
11
|
Nani JP, Peñagaricano F. Whole-genome homozygosity mapping reveals candidate regions affecting bull fertility in US Holstein cattle. BMC Genomics 2020; 21:338. [PMID: 32366228 PMCID: PMC7199307 DOI: 10.1186/s12864-020-6758-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/27/2020] [Indexed: 01/10/2023] Open
Abstract
Background Achieving rapid genetic progress while maintaining adequate genetic diversity is one of the main challenges facing the dairy industry. The increase in inbreeding can be used to monitor the loss of genetic diversity. Inbreeding tends to increase the proportion of homozygous loci, some of which cause homozygosity of recessive alleles that results in reduced performance. This phenomenon is known as inbreeding depression and tends to be most prominent on fitness-related traits, such as male fertility. Traditionally, inbreeding has been monitored using pedigree information, or more recently, genomic data. Alternatively, it can be quantified using runs of homozygosity (ROH), i.e., contiguous lengths of homozygous genotypes observed in an individual’s chromosome. Results The objective of this study was to evaluate the association between ROH and sire conception rate. ROH were evaluated using 268 k genetic markers in 11,790 US Holstein bulls. Interestingly, either the sum, mean, or maximum length of ROH were negatively associated with bull fertility. The association analysis between ROH and sire fertility was performed comparing 300 high-fertility vs. 300 low-fertility bulls. Both the average and sum of ROH length were higher in the low-fertility group. The enrichment of ROH regions in bulls with low fertility was assessed using a Fisher’s exact test. Nine regions were significantly enriched in low-fertility compared to high-fertility bulls. Notably, these regions harbor genes that are closely related to sperm biology and male fertility, including genes exclusively or highly expressed in testis. Conclusions The results of this study can help not only to manage inbreeding in genomic selection programs by designing custom mating schemes, but also to better understand the mechanisms underlying male fertility in dairy cattle.
Collapse
Affiliation(s)
- Juan Pablo Nani
- Department of Animal Sciences, University of Florida, 2250 Shealy Drive, Gainesville, FL, 32611, USA.,Estación Experimental Agropecuaria Rafaela, Instituto Nacional de Tecnología Agropecuaria, 22-2300, Rafaela, SF, Argentina
| | - Francisco Peñagaricano
- Department of Animal Sciences, University of Florida, 2250 Shealy Drive, Gainesville, FL, 32611, USA. .,University of Florida Genetics Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
12
|
Urióstegui-Acosta M, Tello-Mora P, Solís-Heredia MDJ, Ortega-Olvera JM, Piña-Guzmán B, Martín-Tapia D, González-Mariscal L, Quintanilla-Vega B. Methyl parathion causes genetic damage in sperm and disrupts the permeability of the blood-testis barrier by an oxidant mechanism in mice. Toxicology 2020; 438:152463. [PMID: 32294493 DOI: 10.1016/j.tox.2020.152463] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/02/2020] [Accepted: 04/05/2020] [Indexed: 12/12/2022]
Abstract
Methyl parathion (Me-Pa) is an extremely toxic organophosphorus pesticide still used in developing countries. It has been associated with decreased sperm function and fertility and with oxidative and DNA damage. The blood-testis barrier (BTB) is a structure formed by tight junction (TJ) proteins in Sertoli cells and has a critical role in spermatogenesis. We assessed the effect of repeated doses of Me-Pa (3-12 mg/kg/day for 5 days, i.p.) on sperm quality, lipid oxidation, DNA integrity, and BTB permeability in adult male mice and explored oxidation as a mechanism of toxicity. Me-Pa caused dose-dependent effects on sperm quality, lipoperoxidation, and DNA integrity. Testis histology results showed the disruption of spermatogenesis progression and atrophy of seminiferous tubules. The pesticide opened the BTB, as evidenced by the presence of a biotin tracer in the adluminal compartment of the seminiferous tubules. This effect was not observed after 45 days of exposure when a spermatogenic cycle had completed. The coadministration of the antioxidant α-tocopherol (50 mg/kg/day for 5 days, oral) prevented the effects of Me-Pa on sperm quality, DNA and the BTB, indicating the importance of oxidative stress in the damage generated by Me-Pa. As evidenced by immunochemistry, no changes were found in the localization of the TJ proteins of the BTB, although oxidation (carbonylation) of total proteins in testis homogenates was detected. Our results show that Me-Pa disturbs the BTB and that oxidation is involved in the observed toxic effects on sperm cells.
Collapse
Affiliation(s)
| | - Pamela Tello-Mora
- Toxicology Department, Cinvestav, Ave. IPN 2508, Colonia Zacatenco, Mexico City, 07360, Mexico
| | | | - José Mario Ortega-Olvera
- Physiology, Biophysics and Neurosciences Department, Cinvestav, Ave. IPN 2508, Colonia Zacatenco, Mexico City, 07360, Mexico
| | - Belem Piña-Guzmán
- National Polytechnic Institute, UPIBI, Ave. Acueducto s/n, Barrio La Laguna, Colonia Ticomán, 07340, Mexico City, Mexico
| | - Dolores Martín-Tapia
- Physiology, Biophysics and Neurosciences Department, Cinvestav, Ave. IPN 2508, Colonia Zacatenco, Mexico City, 07360, Mexico
| | - Lorenza González-Mariscal
- Physiology, Biophysics and Neurosciences Department, Cinvestav, Ave. IPN 2508, Colonia Zacatenco, Mexico City, 07360, Mexico
| | | |
Collapse
|
13
|
González-Mariscal L, Miranda J, Gallego-Gutiérrez H, Cano-Cortina M, Amaya E. Relationship between apical junction proteins, gene expression and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183278. [PMID: 32240623 DOI: 10.1016/j.bbamem.2020.183278] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/09/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022]
Abstract
The apical junctional complex (AJC) is a cell-cell adhesion system present at the upper portion of the lateral membrane of epithelial cells integrated by the tight junction (TJ) and the adherens junction (AJ). This complex is crucial to initiate and stabilize cell-cell adhesion, to regulate the paracellular transit of ions and molecules and to maintain cell polarity. Moreover, we now consider the AJC as a hub of signal transduction that regulates cell-cell adhesion, gene transcription and cell proliferation and differentiation. The molecular components of the AJC are multiple and diverse and depending on the cellular context some of the proteins in this complex act as tumor suppressors or as promoters of cell transformation, migration and metastasis outgrowth. Here, we describe these new roles played by TJ and AJ proteins and their potential use in cancer diagnostics and as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Lorenza González-Mariscal
- Department of Physiology, Biophysics and Neuroscience, Center of Research and Advanced Studies (Cinvestav), Mexico City, Mexico.
| | - Jael Miranda
- Department of Physiology, Biophysics and Neuroscience, Center of Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Helios Gallego-Gutiérrez
- Department of Physiology, Biophysics and Neuroscience, Center of Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Misael Cano-Cortina
- Department of Physiology, Biophysics and Neuroscience, Center of Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Elida Amaya
- Department of Physiology, Biophysics and Neuroscience, Center of Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| |
Collapse
|
14
|
Sproll P, Eid W, Biason-Lauber A. CBX2-dependent transcriptional landscape: implications for human sex development and its defects. Sci Rep 2019; 9:16552. [PMID: 31719618 PMCID: PMC6851130 DOI: 10.1038/s41598-019-53006-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 10/21/2019] [Indexed: 12/27/2022] Open
Abstract
Sex development, a complex and indispensable process in all vertebrates, has still not been completely elucidated, although new genes involved in sex development are constantly being discovered and characterized. Chromobox Homolog 2 (CBX2) is one of these new additions and has been identified through a 46,XY girl with double heterozygous variants on CBX2.1, causing Differences of Sex Development (DSD). The mutated CBX2.1 failed to adequately regulate downstream targets important for sex development in humans, specifically steroidogenic factor 1 (NR5A1/SF1). To better place CBX2.1 in the human sex developmental cascade, we performed siRNA and CBX2.1 overexpression experiments and created a complete CRISPR/Cas9-CBX2 knockout in Sertoli-like cells. Furthermore, we deployed Next Generation Sequencing techniques, RNA-Sequencing and DamID-Sequencing, to identify new potential CBX2.1 downstream genes. The combination of these two next generation techniques enabled us to identify genes that are both bound and regulated by CBX2.1. This allowed us not only to expand our current knowledge about the influence of CBX2.1 in human sex development, but also to advance our insight in the mechanisms governing one of the most important decisions during embryonal development, the commitment to either female or male gonads.
Collapse
Affiliation(s)
- Patrick Sproll
- Division of Endocrinology, Section of Medicine, University of Fribourg, Fribourg, 1700, Switzerland
| | - Wassim Eid
- Division of Endocrinology, Section of Medicine, University of Fribourg, Fribourg, 1700, Switzerland.,Department of Biochemistry, Medical Research Institute, University of Alexandria, Alexandria, 21526, Egypt
| | - Anna Biason-Lauber
- Division of Endocrinology, Section of Medicine, University of Fribourg, Fribourg, 1700, Switzerland.
| |
Collapse
|
15
|
Netherton J, Ogle R, Hetherington L, Velkov T, Rose R, Baker M. DNA variants are an unlikely explanation for the changing quality of spermatozoa within the same individual. HUM FERTIL 2019; 24:376-388. [PMID: 31642381 DOI: 10.1080/14647273.2019.1679397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
It has recently been suggested that the human sperm genome is highly unstable, which may be a reasonable explanation as to why men, even fertile men, produce defective spermatozoa. Furthermore, an unstable genome may also explain why the semen profile of the same man changes from one ejaculate to the next. As such, we took multiple ejaculates (between 3 and 6) from 7 individuals over a 6-month period and isolated sperm through density gradients. We then compared the DNA of: (i) good and poor-quality spermatozoa within the same ejaculate; and (ii) from multiple ejaculates from the same individual. Our results suggest that on a global level, DNA present within spermatozoa is actually quite stable and similar between both good and poor sperm. This is important information for the assisted reproductive community when it comes to sperm selection.
Collapse
Affiliation(s)
- Jacob Netherton
- Department of Environmental and Life Sciences, University of Newcastle , Callaghan , New South Wales , Australia
| | - Rachel Ogle
- Department of Environmental and Life Sciences, University of Newcastle , Callaghan , New South Wales , Australia
| | - Louise Hetherington
- Department of Environmental and Life Sciences, University of Newcastle , Callaghan , New South Wales , Australia
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne , Victoria , Australia
| | - Ryan Rose
- Fertility SA, St. Andrews Hospital , Adelaide , South Australia , Australia.,Adelaide Health and Medical Sciences, Robinson Research Institute, The University of Adelaide , Adelaide , South Australia , Australia
| | - Mark Baker
- Department of Environmental and Life Sciences, University of Newcastle , Callaghan , New South Wales , Australia
| |
Collapse
|
16
|
Domínguez‐Salazar E, Hurtado‐Alvarado G, Medina‐Flores F, Dorantes J, González‐Flores O, Contis‐Montes de Oca A, Velázquez‐Moctezuma J, Gómez‐González B. Chronic sleep loss disrupts blood–testis and blood–epididymis barriers, and reduces male fertility. J Sleep Res 2019; 29:e12907. [DOI: 10.1111/jsr.12907] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Emilio Domínguez‐Salazar
- Department of Biology of Reproduction Area of Neurosciences CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa Mexico City Mexico
| | - Gabriela Hurtado‐Alvarado
- Department of Biology of Reproduction Area of Neurosciences CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa Mexico City Mexico
| | - Fernanda Medina‐Flores
- Department of Biology of Reproduction Area of Neurosciences CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa Mexico City Mexico
| | - Javik Dorantes
- Department of Biology of Reproduction Area of Neurosciences CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa Mexico City Mexico
| | - Oscar González‐Flores
- Universidad Autónoma de Tlaxcala‐Centro de Investigación en Reproducción Animal (CIRA‐CINVESTAV) Mexico City Mexico
| | - Arturo Contis‐Montes de Oca
- Optometría Facultad de Estudios Superiores (FES) Iztacala Universidad Nacional Autónoma de México (UNAM) Mexico City Mexico
| | - Javier Velázquez‐Moctezuma
- Department of Biology of Reproduction Area of Neurosciences CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa Mexico City Mexico
| | - Beatriz Gómez‐González
- Department of Biology of Reproduction Area of Neurosciences CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa Mexico City Mexico
| |
Collapse
|
17
|
Miranda J, Martín-Tapia D, Valdespino-Vázquez Y, Alarcón L, Espejel-Nuñez A, Guzmán-Huerta M, Muñoz-Medina JE, Shibayama M, Chávez-Munguía B, Estrada-Gutiérrez G, Lievano S, Ludert JE, González-Mariscal L. Syncytiotrophoblast of Placentae from Women with Zika Virus Infection Has Altered Tight Junction Protein Expression and Increased Paracellular Permeability. Cells 2019; 8:cells8101174. [PMID: 31569528 PMCID: PMC6829373 DOI: 10.3390/cells8101174] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/17/2019] [Accepted: 09/26/2019] [Indexed: 12/27/2022] Open
Abstract
The cytotrophoblast of human placenta transitions into an outer multinucleated syncytiotrophoblast (STB) layer that covers chorionic villi which are in contact with maternal blood in the intervillous space. During pregnancy, the Zika virus (ZIKV) poses a serious prenatal threat. STB cells are resistant to ZIKV infections, yet placental cells within the mesenchyme of chorionic villi are targets of ZIKV infection. We seek to determine whether ZIKV can open the paracellular pathway of STB cells. This route is regulated by tight junctions (TJs) which are present in the uppermost portion of the lateral membranes of STB cells. We analyzed the paracellular permeability and expression of E-cadherin, occludin, JAMs -B and -C, claudins -1, -3, -4, -5 and -7, and ZO-1, and ZO-2 in the STB of placentae from ZIKV-infected and non-infected women. In ZIKV-infected placentae, the pattern of expression of TJ proteins was preserved, but the amount of claudin-4 diminished. Placentae from ZIKV-infected women were permeable to ruthenium red, and had chorionic villi with a higher mean diameter and Hofbauer hyperplasia. Finally, ZIKV added to the basolateral surface of a trophoblast cell line reduced the transepithelial electrical resistance. These results suggest that ZIKV can open the paracellular pathway of STB cells.
Collapse
Affiliation(s)
- Jael Miranda
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico.
| | - Dolores Martín-Tapia
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico.
| | - Yolotzin Valdespino-Vázquez
- Research Division, Instituto Nacional de Perinatología (INPer) Isidro Espinosa de los Reyes, Mexico City 11000, Mexico.
| | - Lourdes Alarcón
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico.
| | - Aurora Espejel-Nuñez
- Research Division, Instituto Nacional de Perinatología (INPer) Isidro Espinosa de los Reyes, Mexico City 11000, Mexico.
| | - Mario Guzmán-Huerta
- Research Division, Instituto Nacional de Perinatología (INPer) Isidro Espinosa de los Reyes, Mexico City 11000, Mexico.
| | - José Esteban Muñoz-Medina
- Laboratorio Central de Epidemiología, Instituto Mexicano del Seguro Social, Ciudad de México 02990, Mexico.
| | - Mineko Shibayama
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico.
| | - Bibiana Chávez-Munguía
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico.
| | - Guadalupe Estrada-Gutiérrez
- Research Division, Instituto Nacional de Perinatología (INPer) Isidro Espinosa de los Reyes, Mexico City 11000, Mexico.
| | - Samuel Lievano
- Quality division, Obstetrics and Gynecology Hospital No. 4, Mexican Institute of Social Security (IMSS), Mexico City 01090, Mexico.
| | - Juan Ernesto Ludert
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico.
| | - Lorenza González-Mariscal
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico.
| |
Collapse
|
18
|
ZO-2 Is a Master Regulator of Gene Expression, Cell Proliferation, Cytoarchitecture, and Cell Size. Int J Mol Sci 2019; 20:ijms20174128. [PMID: 31450555 PMCID: PMC6747478 DOI: 10.3390/ijms20174128] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/08/2019] [Accepted: 08/10/2019] [Indexed: 12/13/2022] Open
Abstract
ZO-2 is a cytoplasmic protein of tight junctions (TJs). Here, we describe ZO-2 involvement in the formation of the apical junctional complex during early development and in TJ biogenesis in epithelial cultured cells. ZO-2 acts as a scaffold for the polymerization of claudins at TJs and plays a unique role in the blood–testis barrier, as well as at TJs of the human liver and the inner ear. ZO-2 movement between the cytoplasm and nucleus is regulated by nuclear localization and exportation signals and post-translation modifications, while ZO-2 arrival at the cell border is triggered by activation of calcium sensing receptors and corresponding downstream signaling. Depending on its location, ZO-2 associates with junctional proteins and the actomyosin cytoskeleton or a variety of nuclear proteins, playing a role as a transcriptional repressor that leads to inhibition of cell proliferation and transformation. ZO-2 regulates cell architecture through modulation of Rho proteins and its absence induces hypertrophy due to inactivation of the Hippo pathway and activation of mTOR and S6K. The interaction of ZO-2 with viral oncoproteins and kinases and its silencing in diverse carcinomas reinforce the view of ZO-2 as a tumor regulator protein.
Collapse
|
19
|
Rodríguez-Escamilla JC, Medina-Reyes EI, Rodríguez-Ibarra C, Déciga-Alcaraz A, Flores-Flores JO, Ganem-Rondero A, Rodríguez-Sosa M, Terrazas LI, Delgado-Buenrostro NL, Chirino YI. Food-grade titanium dioxide (E171) by solid or liquid matrix administration induces inflammation, germ cells sloughing in seminiferous tubules and blood-testis barrier disruption in mice. J Appl Toxicol 2019; 39:1586-1605. [DOI: 10.1002/jat.3842] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/13/2019] [Accepted: 06/19/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Juan Carlos Rodríguez-Escamilla
- Unidad de Biomedicina. Facultad de Estudios Superiores; Universidad Nacional Autónoma de México; Tlalnepantla Estado de México México
| | - Estefany I. Medina-Reyes
- Unidad de Biomedicina. Facultad de Estudios Superiores; Universidad Nacional Autónoma de México; Tlalnepantla Estado de México México
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México; Estado de México Mexico
| | - Carolina Rodríguez-Ibarra
- Unidad de Biomedicina. Facultad de Estudios Superiores; Universidad Nacional Autónoma de México; Tlalnepantla Estado de México México
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México; Estado de México Mexico
| | - Alejandro Déciga-Alcaraz
- Unidad de Biomedicina. Facultad de Estudios Superiores; Universidad Nacional Autónoma de México; Tlalnepantla Estado de México México
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México; Estado de México Mexico
| | - José O. Flores-Flores
- Instituto de Ciencias Aplicadas y Tecnología; Universidad Nacional Autónoma de México, Ciudad Universitaria; Ciudad de México
| | - Adriana Ganem-Rondero
- División de Estudios de Posgrado (Tecnología Farmacéutica); Universidad Nacional Autónoma de México; Estado de México Mexico
| | - Miriam Rodríguez-Sosa
- Unidad de Biomedicina. Facultad de Estudios Superiores; Universidad Nacional Autónoma de México; Tlalnepantla Estado de México México
| | - Luis I. Terrazas
- Unidad de Biomedicina. Facultad de Estudios Superiores; Universidad Nacional Autónoma de México; Tlalnepantla Estado de México México
| | - Norma L. Delgado-Buenrostro
- Unidad de Biomedicina. Facultad de Estudios Superiores; Universidad Nacional Autónoma de México; Tlalnepantla Estado de México México
| | - Yolanda I. Chirino
- Unidad de Biomedicina. Facultad de Estudios Superiores; Universidad Nacional Autónoma de México; Tlalnepantla Estado de México México
| |
Collapse
|
20
|
Dubey P, Kapoor T, Gupta S, Shirolikar S, Ray K. Atypical septate junctions maintain the somatic enclosure around maturing spermatids and prevent premature sperm release in Drosophila testis. Biol Open 2019; 8:bio.036939. [PMID: 30635267 PMCID: PMC6398457 DOI: 10.1242/bio.036939] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Tight junctions prevent paracellular flow and maintain cell polarity in an epithelium. These junctions are also required for maintaining the blood-testis barrier, which is essential for sperm differentiation. Septate junctions in insects are orthologous to the tight junctions. In Drosophila testis, major septate junction components co-localize at the interface of germline and somatic cells initially, and then condense between the two somatic cells in a cyst after germline meiosis. Their localization is extensively remodeled in subsequent stages. We find that characteristic septate junctions are formed between the somatic cyst cells at the elongated spermatid stage. Consistent with previous reports, knockdown of essential junctional components – Discs-large-1 and Neurexin-IV – during the early stages disrupted sperm differentiation beyond the spermatocyte stage. Knockdown of these proteins during the final stages of spermatid maturation caused premature release of spermatids inside the testes, resulting in partial loss of male fertility. These results indicate the importance of maintaining the integrity of the somatic enclosure during spermatid coiling and release in Drosophila testis. It also highlights the functional similarity with the tight junction proteins during mammalian spermatogenesis. This article has an associated First Person interview with the first author of the paper. Summary: Septate junctions seal the somatic enclosure around maturing spermatids in Drosophila testis. The junction integrity, maintained by Dlg1 and NrxIV, is essential for keeping the somatic enclosure intact until the mature spermatids are released.
Collapse
Affiliation(s)
- Pankaj Dubey
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Tushna Kapoor
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Samir Gupta
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Seema Shirolikar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Krishanu Ray
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| |
Collapse
|
21
|
Shi J, Barakat M, Chen D, Chen L. Bicellular Tight Junctions and Wound Healing. Int J Mol Sci 2018; 19:ijms19123862. [PMID: 30518037 PMCID: PMC6321209 DOI: 10.3390/ijms19123862] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 12/15/2022] Open
Abstract
Bicellular tight junctions (TJs) are intercellular junctions comprised of a variety of transmembrane proteins including occludin, claudins, and junctional adhesion molecules (JAMs) as well as intracellular scaffold proteins such as zonula occludens (ZOs). TJs are functional, intercellular structures that form a barrier between adjacent cells, which constantly seals and unseals to control the paracellular passage of molecules. They are primarily present in the epithelial and endothelial cells of all tissues and organs. In addition to their well-recognized roles in maintaining cell polarity and barrier functions, TJs are important regulators of signal transduction, which modulates cell proliferation, migration, and differentiation, as well as some components of the immune response and homeostasis. A vast breadth of research data is available on TJs, but little has been done to decipher their specific roles in wound healing, despite their primary distribution in epithelial and endothelial cells, which are essential contributors to the wound healing process. Some data exists to indicate that a better understanding of the functions and significance of TJs in healing wounds may prove crucial for future improvements in wound healing research and therapy. Specifically, recent studies demonstrate that occludin and claudin-1, which are two TJ component proteins, are present in migrating epithelial cells at the wound edge but are absent in chronic wounds. This indicates that functional TJs may be critical for effective wound healing. A tremendous amount of work is needed to investigate their roles in barrier function, re-epithelialization, angiogenesis, scar formation, and in the interactions between epithelial cells, endothelial cells, and immune cells both in the acute wound healing process and in non-healing wounds. A more thorough understanding of TJs in wound healing may shed new light on potential research targets and reveal novel strategies to enhance tissue regeneration and improve wound repair.
Collapse
Affiliation(s)
- Junhe Shi
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, 801 S. Paulina Street, Chicago, IL 60612, USA.
| | - May Barakat
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, 801 S. Paulina Street, Chicago, IL 60612, USA.
| | - Dandan Chen
- Colgate-Palmolive Company, Piscataway, NJ 08855, USA.
| | - Lin Chen
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, 801 S. Paulina Street, Chicago, IL 60612, USA.
| |
Collapse
|
22
|
Ortega-Olvera JM, Winkler R, Quintanilla-Vega B, Shibayama M, Chávez-Munguía B, Martín-Tapia D, Alarcón L, González-Mariscal L. The organophosphate pesticide methamidophos opens the blood-testis barrier and covalently binds to ZO-2 in mice. Toxicol Appl Pharmacol 2018; 360:257-272. [PMID: 30291936 DOI: 10.1016/j.taap.2018.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 09/21/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022]
Abstract
Methamidophos (MET) is an organophosphate (OP) pesticide widely used in agriculture in developing countries. MET causes adverse effects in male reproductive function in humans and experimental animals, but the underlying mechanisms remain largely unknown. We explored the effect of MET on mice testes (5 mg/kg/day/4 days), finding that this pesticide opens the blood-testis barrier and perturbs spermatogenesis, generating the appearance of immature germ cells in the epididymis. In the seminiferous tubules, MET treatment changed the level of expression or modified the stage-specific localization of tight junction (TJ) proteins ZO-1, ZO-2, occludin, and claudin-3. In contrast, claudin-11 was barely altered. MET also modified the shape of claudin-11, and ZO-2 at the cell border, from a zigzag to a more linear pattern. In addition, MET diminished the expression of ZO-2 in spermatids present in seminiferous tubules, induced the phosphorylation of ZO-2 and occludin in testes and reduced the interaction between these proteins assessed by co-immunoprecipitation. MET formed covalent bonds with ZO-2 in serine, tyrosine and lysine residues. The covalent modifications formed on ZO-2 at putative phosphorylation sites might interfere with ZO-2 interaction with regulatory molecules and other TJ proteins. MET bonds formed at ZO-2 ubiquitination sites likely interfere with ZO-2 degradation and TJ sealing, based on results obtained in cultured epithelial cells transfected with ZO-2 mutated at a MET target lysine residue. Our results shed light on MET male reproductive toxicity and are important to improve regulations regarding the use of OP pesticides and to protect the health of agricultural workers.
Collapse
Affiliation(s)
| | - Robert Winkler
- Department of Biotechnology and Biochemistry, Cinvestav, Irapuato 36824, Mexico; Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | | | - Mineko Shibayama
- Department of Infectomics and Molecular Pathogenesis, Cinvestav, Mexico City 07360, Mexico
| | - Bibiana Chávez-Munguía
- Department of Infectomics and Molecular Pathogenesis, Cinvestav, Mexico City 07360, Mexico
| | - Dolores Martín-Tapia
- Department of Physiology, Biophysics and Neuroscience, Cinvestav, Mexico City 07360, Mexico
| | - Lourdes Alarcón
- Department of Physiology, Biophysics and Neuroscience, Cinvestav, Mexico City 07360, Mexico
| | | |
Collapse
|
23
|
Itoh M, Nakadate K, Matsusaka T, Hunziker W, Sugimoto H. Effects of the differential expression of ZO-1 and ZO-2 on podocyte structure and function. Genes Cells 2018; 23:546-556. [DOI: 10.1111/gtc.12598] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 04/27/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Masahiko Itoh
- Department of Biochemistry; School of Medicine; Dokkyo Medical University; Mibu-machi Japan
| | - Kazuhiko Nakadate
- Department of Basic Biology, Educational and Research Center for Pharmacy; Meiji Pharmaceutical University; Tokyo Japan
| | - Taiji Matsusaka
- Department of Molecular Life Sciences; Tokai University School of Medicine; Isehara Japan
| | - Walter Hunziker
- Epithelial Cell Biology Laboratory; Institute of Molecular and Cell Biology (IMCB); Singapore Singapore
| | - Hiroyuki Sugimoto
- Department of Biochemistry; School of Medicine; Dokkyo Medical University; Mibu-machi Japan
| |
Collapse
|
24
|
Sonar SA, Lal G. Blood–brain barrier and its function during inflammation and autoimmunity. J Leukoc Biol 2018. [DOI: 10.1002/jlb.1ru1117-428r order by 8029-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Abstract
The blood–brain barrier (BBB) is an important physiologic barrier that separates CNS from soluble inflammatory mediators and effector immune cells from peripheral circulation. The optimum function of the BBB is necessary for the homeostasis, maintenance, and proper neuronal function. The clinical and experimental findings have shown that BBB dysfunction is an early hallmark of various neurologic disorders ranging from inflammatory autoimmune, neurodegenerative, and traumatic diseases to neuroinvasive infections. Significant progress has been made in the understanding of the regulation of BBB function under homeostatic and neuroinflammatory conditions. Several neurologic disease-modifying drugs have shown to improve the BBB function. However, they have a broad-acting immunomodulatory function and can increase the risk of life-threatening infections. The recent development of in vitro multicomponent 3-dimensional BBB models coupled with fluidics chamber as well as a cell-type specific reporter and knockout mice gave a new boost to our understanding of the dynamics of the BBB. In the review, we discuss the current understanding of BBB composition and recent findings that illustrate the critical regulatory elements of the BBB function under physiologic and inflammatory conditions, and also suggested the strategies to control BBB structure and function.
Collapse
|
25
|
Sonar SA, Lal G. Blood–brain barrier and its function during inflammation and autoimmunity. J Leukoc Biol 2018. [DOI: 10.1002/jlb.1ru1117-428r order by 8029-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Abstract
The blood–brain barrier (BBB) is an important physiologic barrier that separates CNS from soluble inflammatory mediators and effector immune cells from peripheral circulation. The optimum function of the BBB is necessary for the homeostasis, maintenance, and proper neuronal function. The clinical and experimental findings have shown that BBB dysfunction is an early hallmark of various neurologic disorders ranging from inflammatory autoimmune, neurodegenerative, and traumatic diseases to neuroinvasive infections. Significant progress has been made in the understanding of the regulation of BBB function under homeostatic and neuroinflammatory conditions. Several neurologic disease-modifying drugs have shown to improve the BBB function. However, they have a broad-acting immunomodulatory function and can increase the risk of life-threatening infections. The recent development of in vitro multicomponent 3-dimensional BBB models coupled with fluidics chamber as well as a cell-type specific reporter and knockout mice gave a new boost to our understanding of the dynamics of the BBB. In the review, we discuss the current understanding of BBB composition and recent findings that illustrate the critical regulatory elements of the BBB function under physiologic and inflammatory conditions, and also suggested the strategies to control BBB structure and function.
Collapse
|
26
|
Sonar SA, Lal G. Blood–brain barrier and its function during inflammation and autoimmunity. J Leukoc Biol 2018. [DOI: 10.1002/jlb.1ru1117-428r order by 1-- gadu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Abstract
The blood–brain barrier (BBB) is an important physiologic barrier that separates CNS from soluble inflammatory mediators and effector immune cells from peripheral circulation. The optimum function of the BBB is necessary for the homeostasis, maintenance, and proper neuronal function. The clinical and experimental findings have shown that BBB dysfunction is an early hallmark of various neurologic disorders ranging from inflammatory autoimmune, neurodegenerative, and traumatic diseases to neuroinvasive infections. Significant progress has been made in the understanding of the regulation of BBB function under homeostatic and neuroinflammatory conditions. Several neurologic disease-modifying drugs have shown to improve the BBB function. However, they have a broad-acting immunomodulatory function and can increase the risk of life-threatening infections. The recent development of in vitro multicomponent 3-dimensional BBB models coupled with fluidics chamber as well as a cell-type specific reporter and knockout mice gave a new boost to our understanding of the dynamics of the BBB. In the review, we discuss the current understanding of BBB composition and recent findings that illustrate the critical regulatory elements of the BBB function under physiologic and inflammatory conditions, and also suggested the strategies to control BBB structure and function.
Collapse
|
27
|
Sonar SA, Lal G. Blood–brain barrier and its function during inflammation and autoimmunity. J Leukoc Biol 2018. [DOI: 10.1002/jlb.1ru1117-428r and 1880=1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Abstract
The blood–brain barrier (BBB) is an important physiologic barrier that separates CNS from soluble inflammatory mediators and effector immune cells from peripheral circulation. The optimum function of the BBB is necessary for the homeostasis, maintenance, and proper neuronal function. The clinical and experimental findings have shown that BBB dysfunction is an early hallmark of various neurologic disorders ranging from inflammatory autoimmune, neurodegenerative, and traumatic diseases to neuroinvasive infections. Significant progress has been made in the understanding of the regulation of BBB function under homeostatic and neuroinflammatory conditions. Several neurologic disease-modifying drugs have shown to improve the BBB function. However, they have a broad-acting immunomodulatory function and can increase the risk of life-threatening infections. The recent development of in vitro multicomponent 3-dimensional BBB models coupled with fluidics chamber as well as a cell-type specific reporter and knockout mice gave a new boost to our understanding of the dynamics of the BBB. In the review, we discuss the current understanding of BBB composition and recent findings that illustrate the critical regulatory elements of the BBB function under physiologic and inflammatory conditions, and also suggested the strategies to control BBB structure and function.
Collapse
|
28
|
Sonar SA, Lal G. Blood–brain barrier and its function during inflammation and autoimmunity. J Leukoc Biol 2018. [DOI: 10.1002/jlb.1ru1117-428r order by 1-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Abstract
The blood–brain barrier (BBB) is an important physiologic barrier that separates CNS from soluble inflammatory mediators and effector immune cells from peripheral circulation. The optimum function of the BBB is necessary for the homeostasis, maintenance, and proper neuronal function. The clinical and experimental findings have shown that BBB dysfunction is an early hallmark of various neurologic disorders ranging from inflammatory autoimmune, neurodegenerative, and traumatic diseases to neuroinvasive infections. Significant progress has been made in the understanding of the regulation of BBB function under homeostatic and neuroinflammatory conditions. Several neurologic disease-modifying drugs have shown to improve the BBB function. However, they have a broad-acting immunomodulatory function and can increase the risk of life-threatening infections. The recent development of in vitro multicomponent 3-dimensional BBB models coupled with fluidics chamber as well as a cell-type specific reporter and knockout mice gave a new boost to our understanding of the dynamics of the BBB. In the review, we discuss the current understanding of BBB composition and recent findings that illustrate the critical regulatory elements of the BBB function under physiologic and inflammatory conditions, and also suggested the strategies to control BBB structure and function.
Collapse
|
29
|
Sonar SA, Lal G. Blood–brain barrier and its function during inflammation and autoimmunity. J Leukoc Biol 2018. [DOI: 10.1002/jlb.1ru1117-428r order by 8029-- awyx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Abstract
The blood–brain barrier (BBB) is an important physiologic barrier that separates CNS from soluble inflammatory mediators and effector immune cells from peripheral circulation. The optimum function of the BBB is necessary for the homeostasis, maintenance, and proper neuronal function. The clinical and experimental findings have shown that BBB dysfunction is an early hallmark of various neurologic disorders ranging from inflammatory autoimmune, neurodegenerative, and traumatic diseases to neuroinvasive infections. Significant progress has been made in the understanding of the regulation of BBB function under homeostatic and neuroinflammatory conditions. Several neurologic disease-modifying drugs have shown to improve the BBB function. However, they have a broad-acting immunomodulatory function and can increase the risk of life-threatening infections. The recent development of in vitro multicomponent 3-dimensional BBB models coupled with fluidics chamber as well as a cell-type specific reporter and knockout mice gave a new boost to our understanding of the dynamics of the BBB. In the review, we discuss the current understanding of BBB composition and recent findings that illustrate the critical regulatory elements of the BBB function under physiologic and inflammatory conditions, and also suggested the strategies to control BBB structure and function.
Collapse
|
30
|
Sonar SA, Lal G. Blood–brain barrier and its function during inflammation and autoimmunity. J Leukoc Biol 2018. [DOI: 10.1002/jlb.1ru1117-428r order by 1-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Abstract
The blood–brain barrier (BBB) is an important physiologic barrier that separates CNS from soluble inflammatory mediators and effector immune cells from peripheral circulation. The optimum function of the BBB is necessary for the homeostasis, maintenance, and proper neuronal function. The clinical and experimental findings have shown that BBB dysfunction is an early hallmark of various neurologic disorders ranging from inflammatory autoimmune, neurodegenerative, and traumatic diseases to neuroinvasive infections. Significant progress has been made in the understanding of the regulation of BBB function under homeostatic and neuroinflammatory conditions. Several neurologic disease-modifying drugs have shown to improve the BBB function. However, they have a broad-acting immunomodulatory function and can increase the risk of life-threatening infections. The recent development of in vitro multicomponent 3-dimensional BBB models coupled with fluidics chamber as well as a cell-type specific reporter and knockout mice gave a new boost to our understanding of the dynamics of the BBB. In the review, we discuss the current understanding of BBB composition and recent findings that illustrate the critical regulatory elements of the BBB function under physiologic and inflammatory conditions, and also suggested the strategies to control BBB structure and function.
Collapse
|
31
|
Sonar SA, Lal G. Blood-brain barrier and its function during inflammation and autoimmunity. J Leukoc Biol 2018; 103:839-853. [PMID: 29431873 DOI: 10.1002/jlb.1ru1117-428r] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/09/2018] [Accepted: 01/09/2018] [Indexed: 12/16/2022] Open
Abstract
The blood-brain barrier (BBB) is an important physiologic barrier that separates CNS from soluble inflammatory mediators and effector immune cells from peripheral circulation. The optimum function of the BBB is necessary for the homeostasis, maintenance, and proper neuronal function. The clinical and experimental findings have shown that BBB dysfunction is an early hallmark of various neurologic disorders ranging from inflammatory autoimmune, neurodegenerative, and traumatic diseases to neuroinvasive infections. Significant progress has been made in the understanding of the regulation of BBB function under homeostatic and neuroinflammatory conditions. Several neurologic disease-modifying drugs have shown to improve the BBB function. However, they have a broad-acting immunomodulatory function and can increase the risk of life-threatening infections. The recent development of in vitro multicomponent 3-dimensional BBB models coupled with fluidics chamber as well as a cell-type specific reporter and knockout mice gave a new boost to our understanding of the dynamics of the BBB. In the review, we discuss the current understanding of BBB composition and recent findings that illustrate the critical regulatory elements of the BBB function under physiologic and inflammatory conditions, and also suggested the strategies to control BBB structure and function.
Collapse
|
32
|
Chen HY, Chen CJ, Chen WC, Wang SJ, Chen YH. A promising protein responsible for overactive bladder in ovariectomized mice. Taiwan J Obstet Gynecol 2017; 56:196-203. [PMID: 28420508 DOI: 10.1016/j.tjog.2016.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2016] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE Ovariectomy (OVX) in mice is a model mimicking a neuro-electronic proof of an overactive bladder in postmenopausal women. Overactive bladder (OAB) was recently found to be due to an altered gap junction protein in a rat model. Thus, this study was conducted to evaluate changes in cell junction protein expression and composition in the bladder of OVX mice. MATERIALS AND METHODS Thirty-six virgin female mice were randomized into three groups: mice with a sham operation only (control), OVX mice without estradiol (E2) replacement, and OVX mice with E2 replacement (OVX + E2). Cystometry assessment was conducted and cell junction-associated protein zonula occludens-2 (ZO-2) expression was measured after 8 weeks. Voiding interval values (time between voids) were assessed in mice under anesthesia. After measurements, the bladders were removed for proteomic analysis using the label-free quantitative proteomics and liquid chromatography-mass spectrometry technology. Lastly, immunohistochemistry (IHC) and Western blot were used to confirm the location and level, respectively, of ZO-2 expression. RESULTS We identified 73 differentially expressed proteins in the bladder of OVX mice. The OVX mice showed significantly lower voiding interval values. Voiding interval values were significantly higher in the OVX + E2 group than in the OVX group. Urothelial thicknesses in the bladder were also significantly lower in the OVX group than in the control group. E2 replacement reversed the urothelium layers. Additionally, the expression of ZO-2, a tight junction protein, was the most affected by OVX treatment. IHC and Western blot confirmed the downregulation of ZO-2 in the bladder of OVX mice. Expression of ZO-2 protein was significantly increased in OVX + E2 group compared with OVX group. CONCLUSION This exploratory study estimated changes in protein expression and composition in the bladder of OVX mice. These changes may be associated with the molecular mechanisms of OAB.
Collapse
Affiliation(s)
- Huey-Yi Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, Proteomics Core Laboratory, Research Center for Chinese Medicine & Acupuncture, China Medical University, Taichung, Taiwan; Departments of Obstetrics and Gynecology, Medical Research, and Urology, Sex Hormone Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Chao-Jung Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, Proteomics Core Laboratory, Research Center for Chinese Medicine & Acupuncture, China Medical University, Taichung, Taiwan; Departments of Obstetrics and Gynecology, Medical Research, and Urology, Sex Hormone Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Chi Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, Proteomics Core Laboratory, Research Center for Chinese Medicine & Acupuncture, China Medical University, Taichung, Taiwan; Departments of Obstetrics and Gynecology, Medical Research, and Urology, Sex Hormone Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Shih-Jing Wang
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, Proteomics Core Laboratory, Research Center for Chinese Medicine & Acupuncture, China Medical University, Taichung, Taiwan
| | - Yung-Hsiang Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, Proteomics Core Laboratory, Research Center for Chinese Medicine & Acupuncture, China Medical University, Taichung, Taiwan; Departments of Obstetrics and Gynecology, Medical Research, and Urology, Sex Hormone Research Center, China Medical University Hospital, Taichung, Taiwan; Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan.
| |
Collapse
|
33
|
Pelz L, Purfürst B, Rathjen FG. The cell adhesion molecule BT-IgSF is essential for a functional blood-testis barrier and male fertility in mice. J Biol Chem 2017; 292:21490-21503. [PMID: 29123028 DOI: 10.1074/jbc.ra117.000113] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/07/2017] [Indexed: 12/14/2022] Open
Abstract
The Ig-like cell adhesion molecule (IgCAM) BT-IgSF (brain- and testis-specific Ig superfamily protein) plays a major role in male fertility in mice. However, the molecular mechanism by which BT-IgSF supports fertility is unclear. Here, we found that it is localized in Sertoli cells at the blood-testis barrier (BTB) and at the apical ectoplasmic specialization. The absence of BT-IgSF in Sertoli cells in both global and conditional mouse mutants (i.e. AMHCre and Rosa26CreERT2 lines) resulted in male infertility, atrophic testes with vacuolation, azoospermia, and spermatogenesis arrest. Although transcripts of junctional proteins such as connexin43, ZO-1, occludin, and claudin11 were up-regulated in the absence of BT-IgSF, the functional integrity of the BTB was impaired, as revealed by injection of a BTB-impermeable component into the testes under in vivo conditions. Disruption of the BTB coincided with mislocalization of connexin43, which was present throughout the seminiferous epithelium and not restricted to the BTB as in wild-type tissues, suggesting impaired cell-cell communication in the BT-IgSF-KO mice. Because EM images revealed a normal BTB structure between Sertoli cells in the BT-IgSF-KO mice, we conclude that infertility in these mice is most likely caused by a functionally impaired BTB. In summary, our results indicate that BT-IgSF is expressed at the BTB and is required for male fertility by supporting the functional integrity of the BTB.
Collapse
Affiliation(s)
| | - Bettina Purfürst
- the Core Facility for Electron Microscopy, Max Delbrück Center for Molecular Medicine, Helmholtz Association, D-13092 Berlin, Germany
| | | |
Collapse
|
34
|
Raya-Sandino A, Castillo-Kauil A, Domínguez-Calderón A, Alarcón L, Flores-Benitez D, Cuellar-Perez F, López-Bayghen B, Chávez-Munguía B, Vázquez-Prado J, González-Mariscal L. Zonula occludens-2 regulates Rho proteins activity and the development of epithelial cytoarchitecture and barrier function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1714-1733. [PMID: 28554775 DOI: 10.1016/j.bbamcr.2017.05.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 05/18/2017] [Accepted: 05/24/2017] [Indexed: 12/11/2022]
Abstract
Silencing Zonula occludens 2 (ZO-2), a tight junctions (TJ) scaffold protein, in epithelial cells (MDCK ZO-2 KD) triggers: 1) Decreased cell to substratum attachment, accompanied by reduced expression of claudin-7 and integrin β1, and increased vinculin recruitment to focal adhesions and stress fibers formation; 2) Lowered cell-cell aggregation and appearance of wider intercellular spaces; 3) Increased RhoA/ROCK activity, mediated by GEF-HI recruitment to cell borders by cingulin; 4) Increased Cdc42 activity, mitotic spindle disorientation and the appearance of cysts with multiple lumens; 5) Increased Rac and cofilin activity, multiple lamellipodia formation and random cell migration but increased wound closure; 6) Diminished cingulin phosphorylation and disappearance of planar network of microtubules at the TJ region; and 7) Increased transepithelial electrical resistance at steady state, coupled to an increased expression of ZO-1 and claudin-4 and a decreased expression of claudin-2 and paracingulin. Hence, ZO-2 is a crucial regulator of Rho proteins activity and the development of epithelial cytoarchitecture and barrier function.
Collapse
Affiliation(s)
- Arturo Raya-Sandino
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), México D.F. 07360, Mexico
| | - Alejandro Castillo-Kauil
- Department of Cell Biology, Center for Research and Advanced Studies (Cinvestav), México D.F. 07360, Mexico
| | - Alaide Domínguez-Calderón
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), México D.F. 07360, Mexico
| | - Lourdes Alarcón
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), México D.F. 07360, Mexico
| | - David Flores-Benitez
- Max-Planck-Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Francisco Cuellar-Perez
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), México D.F. 07360, Mexico
| | - Bruno López-Bayghen
- Department of Toxicology, Center for Research and Advanced Studies (Cinvestav), México D.F. 07360, Mexico
| | - Bibiana Chávez-Munguía
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (Cinvestav), México D.F. 07360, Mexico
| | - José Vázquez-Prado
- Department of Pharmacology, Center for Research and Advanced Studies (Cinvestav), México D.F. 07360, Mexico
| | - Lorenza González-Mariscal
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), México D.F. 07360, Mexico.
| |
Collapse
|
35
|
González-Mariscal L, Miranda J, Raya-Sandino A, Domínguez-Calderón A, Cuellar-Perez F. ZO-2, a tight junction protein involved in gene expression, proliferation, apoptosis, and cell size regulation. Ann N Y Acad Sci 2017; 1397:35-53. [PMID: 28415133 DOI: 10.1111/nyas.13334] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/10/2017] [Accepted: 02/21/2017] [Indexed: 02/07/2023]
Abstract
ZO-2 is a peripheral tight junction protein that belongs to the membrane-associated guanylate kinase protein family. Here, we explain the modular and supramodular organization of ZO-2 that allows it to interact with a wide variety of molecules, including cell-cell adhesion proteins, cytoskeletal components, and nuclear factors. We also describe how ZO proteins evolved through metazoan evolution and analyze the intracellular traffic of ZO-2, as well as the roles played by ZO-2 at the plasma membrane and nucleus that translate into the regulation of proliferation, cell size, and apoptosis. In addition, we focus on the impact of ZO-2 expression on male fertility and on maladies like cancer, cholestasis, and hearing loss.
Collapse
Affiliation(s)
- Lorenza González-Mariscal
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Jael Miranda
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Arturo Raya-Sandino
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Alaide Domínguez-Calderón
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Francisco Cuellar-Perez
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| |
Collapse
|
36
|
Abstract
Mucosal barriers separate self from non-self and are essential for life. These barriers, which are the first line of defense against external pathogens, are formed by epithelial cells and the substances they secrete. Rather than an absolute barrier, epithelia at mucosal surfaces must allow selective paracellular flux that discriminates between solutes and water while preventing the passage of bacteria and toxins. In vertebrates, tight junctions seal the paracellular space; flux across the tight junction can occur through two distinct routes that differ in selectivity, capacity, molecular composition and regulation. Dysregulation of either pathway can accompany disease. A third, tight-junction-independent route that reflects epithelial damage can also contribute to barrier loss during disease. In this Cell Science at a Glance article and accompanying poster, we present current knowledge on the molecular components and pathways that establish this selectively permeable barrier and the interactions that lead to barrier dysfunction during disease.
Collapse
Affiliation(s)
- Marion M France
- Department of Medicine (Gastroenterology, Hepatology, and Endoscopy), Brigham and Women's Hospital and Harvard Medical School, 20 Shattuck St, TH1428, Boston, MA 02115, USA
| | - Jerrold R Turner
- Department of Medicine (Gastroenterology, Hepatology, and Endoscopy), Brigham and Women's Hospital and Harvard Medical School, 20 Shattuck St, TH1428, Boston, MA 02115, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 20 Shattuck St, TH1428, Boston, MA 02115, USA
| |
Collapse
|
37
|
Wetzel F, Mittag S, Cano-Cortina M, Wagner T, Krämer OH, Niedenthal R, Gonzalez-Mariscal L, Huber O. SUMOylation regulates the intracellular fate of ZO-2. Cell Mol Life Sci 2017; 74:373-392. [PMID: 27604867 PMCID: PMC11107645 DOI: 10.1007/s00018-016-2352-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 08/03/2016] [Accepted: 08/29/2016] [Indexed: 01/21/2023]
Abstract
The zonula occludens (ZO)-2 protein links tight junctional transmembrane proteins to the actin cytoskeleton and associates with splicing and transcription factors in the nucleus. Multiple posttranslational modifications control the intracellular distribution of ZO-2. Here, we report that ZO-2 is a target of the SUMOylation machinery and provide evidence on how this modification may affect its cellular distribution and function. We show that ZO-2 associates with the E2 SUMO-conjugating enzyme Ubc9 and with SUMO-deconjugating proteases SENP1 and SENP3. In line with this, modification of ZO-2 by endogenous SUMO1 was detectable. Ubc9 fusion-directed SUMOylation confirmed SUMOylation of ZO-2 and was inhibited in the presence of SENP1 but not by an enzymatic-dead SENP1 protein. Moreover, lysine 730 in human ZO-2 was identified as a potential modification site. Mutation of this site to arginine resulted in prolonged nuclear localization of ZO-2 in nuclear recruitment assays. In contrast, a construct mimicking constitutive SUMOylation of ZO-2 (SUMO1ΔGG-ZO-2) was preferentially localized in the cytoplasm. Based on previous findings the differential localization of these ZO-2 constructs may affect glycogen-synthase-kinase-3β (GSK3β) activity and β-catenin/TCF-4-mediated transcription. In this context we observed that ZO-2 directly binds to GSK3β and SUMO1ΔGG-ZO-2 modulates its kinase activity. Moreover, we show that ZO-2 forms a complex with β-catenin. Wild-type ZO-2 and ZO-2-K730R inhibited transcriptional activity in reporter gene assays, whereas the cytosolic SUMO1ΔGG-ZO-2 did not. From these data we conclude that SUMOylation affects the intracellular localization of ZO-2 and its regulatory role on GSK3β and β-catenin signaling activity.
Collapse
Affiliation(s)
- Franziska Wetzel
- Institute of Biochemistry II, Jena University Hospital, Friedrich-Schiller-University Jena, Nonnenplan 2-4, 07743, Jena, Germany
- Institut für Ernährungswissenschaften, Abt. Humanernährung, Dornburger Str. 29, 07743, Jena, Germany
| | - Sonnhild Mittag
- Institute of Biochemistry II, Jena University Hospital, Friedrich-Schiller-University Jena, Nonnenplan 2-4, 07743, Jena, Germany
| | - Misael Cano-Cortina
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City, 07360, Mexico
| | - Tobias Wagner
- Institute of Biochemistry and Biophysics, Friedrich-Schiller-University Jena, CMB Center for Molecular Biomedicine, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center Mainz, 55131, Mainz, Germany
| | - Rainer Niedenthal
- Institute of Physiological Chemistry/Biochemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Lorenza Gonzalez-Mariscal
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City, 07360, Mexico
| | - Otmar Huber
- Institute of Biochemistry II, Jena University Hospital, Friedrich-Schiller-University Jena, Nonnenplan 2-4, 07743, Jena, Germany.
| |
Collapse
|
38
|
Gonzalez-Mariscal L, Miranda J, Ortega-Olvera JM, Gallego-Gutierrez H, Raya-Sandino A, Vargas-Sierra O. Zonula Occludens Proteins in Cancer. CURRENT PATHOBIOLOGY REPORTS 2016. [DOI: 10.1007/s40139-016-0109-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Gao Y, Xiao X, Lui WY, Lee WM, Mruk D, Cheng CY. Cell polarity proteins and spermatogenesis. Semin Cell Dev Biol 2016; 59:62-70. [PMID: 27292315 DOI: 10.1016/j.semcdb.2016.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 02/09/2023]
Abstract
When the cross-section of a seminiferous tubule from an adult rat testes is examined microscopically, Sertoli cells and germ cells in the seminiferous epithelium are notably polarized cells. For instance, Sertoli cell nuclei are found near the basement membrane. On the other hand, tight junction (TJ), basal ectoplasmic specialization (basal ES, a testis-specific actin-rich anchoring junction), gap junction (GJ) and desmosome that constitute the blood-testis barrier (BTB) are also located near the basement membrane. The BTB, in turn, divides the epithelium into the basal and the adluminal (apical) compartments. Within the epithelium, undifferentiated spermatogonia and preleptotene spermatocytes restrictively reside in the basal compartment whereas spermatocytes and post-meiotic spermatids reside in the adluminal compartment. Furthermore, the heads of elongating/elongated spermatids point toward the basement membrane with their elongating tails toward the tubule lumen. However, the involvement of polarity proteins in this unique cellular organization, in particular the underlying molecular mechanism(s) by which polarity proteins confer cellular polarity in the seminiferous epithelium is virtually unknown until recent years. Herein, we discuss latest findings regarding the role of different polarity protein complexes or modules and how these protein complexes are working in concert to modulate Sertoli cell and spermatid polarity. These findings also illustrate polarity proteins exert their effects through the actin-based cytoskeleton mediated by actin binding and regulatory proteins, which in turn modulate adhesion protein complexes at the cell-cell interface since TJ, basal ES and GJ utilize F-actin for attachment. We also propose a hypothetical model which illustrates the antagonistic effects of these polarity proteins. This in turn provides a unique mechanism to modulate junction remodeling in the testis to support germ cell transport across the epithelium in particular the BTB during the epithelial cycle of spermatogenesis.
Collapse
Affiliation(s)
- Ying Gao
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave., New York, NY 10065, United States
| | - Xiang Xiao
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave., New York, NY 10065, United States; Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Wing-Yee Lui
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Will M Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Dolores Mruk
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave., New York, NY 10065, United States
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave., New York, NY 10065, United States.
| |
Collapse
|
40
|
França LR, Hess RA, Dufour JM, Hofmann MC, Griswold MD. The Sertoli cell: one hundred fifty years of beauty and plasticity. Andrology 2016; 4:189-212. [PMID: 26846984 DOI: 10.1111/andr.12165] [Citation(s) in RCA: 277] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/30/2015] [Accepted: 01/04/2016] [Indexed: 12/18/2022]
Abstract
It has been one and a half centuries since Enrico Sertoli published the seminal discovery of the testicular 'nurse cell', not only a key cell in the testis, but indeed one of the most amazing cells in the vertebrate body. In this review, we begin by examining the three phases of morphological research that have occurred in the study of Sertoli cells, because microscopic anatomy was essentially the only scientific discipline available for about the first 75 years after the discovery. Biochemistry and molecular biology then changed all of biological sciences, including our understanding of the functions of Sertoli cells. Immunology and stem cell biology were not even topics of science in 1865, but they have now become major issues in our appreciation of Sertoli cell's role in spermatogenesis. We end with the universal importance and plasticity of function by comparing Sertoli cells in fish, amphibians, and mammals. In these various classes of vertebrates, Sertoli cells have quite different modes of proliferation and epithelial maintenance, cystic vs. tubular formation, yet accomplish essentially the same function but in strikingly different ways.
Collapse
Affiliation(s)
- L R França
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,National Institute for Amazonian Research (INPA), Manaus, Amazonas, Brazil
| | - R A Hess
- Reproductive Biology and Toxicology, Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, IL, USA
| | - J M Dufour
- Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - M C Hofmann
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M D Griswold
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| |
Collapse
|
41
|
AKAP9, a Regulator of Microtubule Dynamics, Contributes to Blood-Testis Barrier Function. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 186:270-84. [PMID: 26687990 DOI: 10.1016/j.ajpath.2015.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/02/2015] [Accepted: 10/13/2015] [Indexed: 01/23/2023]
Abstract
The blood-testis barrier (BTB), formed between adjacent Sertoli cells, undergoes extensive remodeling to facilitate the transport of preleptotene spermatocytes across the barrier from the basal to apical compartments of the seminiferous tubules for further development and maturation into spermatozoa. The actin cytoskeleton serves unique structural and supporting roles in this process, but little is known about the role of microtubules and their regulators during BTB restructuring. The large isoform of the cAMP-responsive scaffold protein AKAP9 regulates microtubule dynamics and nucleation at the Golgi. We found that conditional deletion of Akap9 in mice after the initial formation of the BTB at puberty leads to infertility. Akap9 deletion results in marked alterations in the organization of microtubules in Sertoli cells and a loss of barrier integrity despite a relatively intact, albeit more apically localized F-actin and BTB tight junctional proteins. These changes are accompanied by a loss of haploid spermatids due to impeded meiosis. The barrier, however, progressively reseals in older Akap9 null mice, which correlates with a reduction in germ cell apoptosis and a greater incidence of meiosis. However, spermiogenesis remains defective, suggesting additional roles for AKAP9 in this process. Together, our data suggest that AKAP9 and, by inference, the regulation of the microtubule network are critical for BTB function and subsequent germ cell development during spermatogenesis.
Collapse
|
42
|
Gerber J, Heinrich J, Brehm R. Blood-testis barrier and Sertoli cell function: lessons from SCCx43KO mice. Reproduction 2015; 151:R15-27. [PMID: 26556893 DOI: 10.1530/rep-15-0366] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/10/2015] [Indexed: 01/23/2023]
Abstract
The gap junction protein connexin43 (CX43) plays a vital role in mammalian spermatogenesis by allowing for direct cytoplasmic communication between neighbouring testicular cells. In addition, different publications suggest that CX43 in Sertoli cells (SC) might be important for blood-testis barrier (BTB) formation and BTB homeostasis. Thus, through the use of the Cre-LoxP recombination system, a transgenic mouse line was developed in which only SC are deficient of the gap junction protein, alpha 1 (Gja1) gene. Gja1 codes for the protein CX43. This transgenic mouse line has been commonly defined as the SC specific CX43 knockout (SCCx43KO) mouse line. Within the seminiferous tubule, SC aid in spermatogenesis by nurturing germ cells and help them to proliferate and mature. Owing to the absence of CX43 within the SC, homozygous KO mice are infertile, have reduced testis size, and mainly exhibit spermatogenesis arrest at the level of spermatogonia, seminiferous tubules containing only SC (SC-only syndrome) and intratubular SC-clusters. Although the SC specific KO of CX43 does not seem to have an adverse effect on BTB integrity, CX43 influences BTB composition as the expression pattern of different BTB proteins (like OCCLUDIN, β-CATENIN, N-CADHERIN, and CLAUDIN11) is altered in mutant males. The supposed roles of CX43 in dynamic BTB regulation, BTB assembly and/or disassembly and its possible interaction with other junctional proteins composing this unique barrier are discussed. Data collectively indicate that CX43 might represent an important regulator of dynamic BTB formation, composition and function.
Collapse
Affiliation(s)
- Jonathan Gerber
- Institute of AnatomyUniversity of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Julia Heinrich
- Institute of AnatomyUniversity of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Ralph Brehm
- Institute of AnatomyUniversity of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| |
Collapse
|
43
|
Mruk DD, Cheng CY. The Mammalian Blood-Testis Barrier: Its Biology and Regulation. Endocr Rev 2015; 36:564-91. [PMID: 26357922 PMCID: PMC4591527 DOI: 10.1210/er.2014-1101] [Citation(s) in RCA: 442] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 09/03/2015] [Indexed: 12/31/2022]
Abstract
Spermatogenesis is the cellular process by which spermatogonia develop into mature spermatids within seminiferous tubules, the functional unit of the mammalian testis, under the structural and nutritional support of Sertoli cells and the precise regulation of endocrine factors. As germ cells develop, they traverse the seminiferous epithelium, a process that involves restructuring of Sertoli-germ cell junctions, as well as Sertoli-Sertoli cell junctions at the blood-testis barrier. The blood-testis barrier, one of the tightest tissue barriers in the mammalian body, divides the seminiferous epithelium into 2 compartments, basal and adluminal. The blood-testis barrier is different from most other tissue barriers in that it is not only comprised of tight junctions. Instead, tight junctions coexist and cofunction with ectoplasmic specializations, desmosomes, and gap junctions to create a unique microenvironment for the completion of meiosis and the subsequent development of spermatids into spermatozoa via spermiogenesis. Studies from the past decade or so have identified the key structural, scaffolding, and signaling proteins of the blood-testis barrier. More recent studies have defined the regulatory mechanisms that underlie blood-testis barrier function. We review here the biology and regulation of the mammalian blood-testis barrier and highlight research areas that should be expanded in future studies.
Collapse
Affiliation(s)
- Dolores D Mruk
- Center for Biomedical Research, Population Council, New York, New York 10065
| | - C Yan Cheng
- Center for Biomedical Research, Population Council, New York, New York 10065
| |
Collapse
|
44
|
Jiang XH, Bukhari I, Zheng W, Yin S, Wang Z, Cooke HJ, Shi QH. Blood-testis barrier and spermatogenesis: lessons from genetically-modified mice. Asian J Androl 2015; 16:572-80. [PMID: 24713828 PMCID: PMC4104086 DOI: 10.4103/1008-682x.125401] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The blood-testis barrier (BTB) is found between adjacent Sertoli cells in the testis where it creates a unique microenvironment for the development and maturation of meiotic and postmeiotic germ cells in seminiferous tubes. It is a compound proteinous structure, composed of several types of cell junctions including tight junctions (TJs), adhesion junctions and gap junctions (GJs). Some of the junctional proteins function as structural proteins of BTB and some have regulatory roles. The deletion or functional silencing of genes encoding these proteins may disrupt the BTB, which may cause immunological or other damages to meiotic and postmeiotic cells and ultimately lead to spermatogenic arrest and infertility. In this review, we will summarize the findings on the BTB structure and function from genetically-modified mouse models and discuss the future perspectives.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qing-Hua Shi
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China; Institute of Physics, Chinese Academy of Sciences, Hefei, China,
| |
Collapse
|
45
|
Nistal M, Paniagua R, González-Peramato P, Reyes-Múgica M. Perspectives in pediatric pathology, chapter 4. Pubertal and adult testis. Pediatr Dev Pathol 2015; 18:187-202. [PMID: 25993606 DOI: 10.2350/12-11-1271-pb.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Manuel Nistal
- Department of Pathology, Hospital La Paz, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo #2, Madrid 28029, Spain
| | - Ricardo Paniagua
- Department of Cell Biology, Universidad de Alcala, Madrid, Spain
| | - Pilar González-Peramato
- Department of Pathology, Hospital La Paz, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo #2, Madrid 28029, Spain
| | - Miguel Reyes-Múgica
- Department of Pathology, Children's Hospital of Pittsburgh of UPMC, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| |
Collapse
|
46
|
Al-Asmakh M, Stukenborg JB, Reda A, Anuar F, Strand ML, Hedin L, Pettersson S, Söder O. The gut microbiota and developmental programming of the testis in mice. PLoS One 2014; 9:e103809. [PMID: 25118984 PMCID: PMC4132106 DOI: 10.1371/journal.pone.0103809] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 07/03/2014] [Indexed: 01/15/2023] Open
Abstract
Nutrients and environmental chemicals, including endocrine disruptors, have been incriminated in the current increase in male reproductive dysfunction, but the underlying mechanisms remain unknown. The gastrointestinal tract represents the largest surface area exposed to our environment and thereby plays a key role in connection with exposure of internal organs to exogenous factors. In this context the gut microbiome (all bacteria and their metabolites) have been shown to be important contributors to body physiology including metabolism, cognitive functions and immunity. Pivotal to male reproduction is a proper development of the testis, including the formation of the blood-testis barrier (BTB) that encapsulates and protects germ cells from stress induced environmental cues, e.g. pathogenic organisms and xenobiotics. Here we used specific pathogen free (SPF) mice and germ-free (GF) mice to explore whether gut microbiota and/or their metabolites can influence testis development and regulation of BTB. Lumen formation in the seminiferous tubules, which coincides with the development of the BTB was delayed in the testes of GF mice at 16 days postpartum. In addition, perfusion experiments (Evans blue) demonstrated increased BTB permeability in these same mice. Reduced expressions of occludin, ZO-2 and E-cadherin in GF testis suggested that the microbiota modulated BTB permeability by regulation of cell-cell adhesion. Interestingly, exposure of GF mice to Clostridium Tyrobutyricum (CBUT), which secrete high levels of butyrate, restored the integrity of the BTB and normalized the levels of cell adhesion proteins. Moreover, the GF mice exhibited lower serum levels of gonadotropins (LH and FSH) than the SPF group. In addition, the intratesticular content of testosterone was lower in GF compared to SPF or CBUT animals. Thus, the gut microbiome can modulate the permeability of the BTB and might play a role in the regulation of endocrine functions of the testis.
Collapse
Affiliation(s)
- Maha Al-Asmakh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Biomedical Science, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Jan-Bernd Stukenborg
- Department of Women's and Children's Health, Paediatric Endocrinology Unit, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Ahmed Reda
- Department of Women's and Children's Health, Paediatric Endocrinology Unit, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Farhana Anuar
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mona-Lisa Strand
- Department of Women's and Children's Health, Paediatric Endocrinology Unit, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Lars Hedin
- Sidra Medical and Research Center, Division of Clinical Epidemiology, Doha, Qatar
| | - Sven Pettersson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- LKC School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Olle Söder
- Department of Women's and Children's Health, Paediatric Endocrinology Unit, Karolinska Institutet and University Hospital, Stockholm, Sweden
| |
Collapse
|
47
|
Rezaee F, Georas SN. Breaking barriers. New insights into airway epithelial barrier function in health and disease. Am J Respir Cell Mol Biol 2014; 50:857-69. [PMID: 24467704 DOI: 10.1165/rcmb.2013-0541rt] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Epithelial permeability is a hallmark of mucosal inflammation, but the molecular mechanisms involved remain poorly understood. A key component of the epithelial barrier is the apical junctional complex that forms between neighboring cells. Apical junctional complexes are made of tight junctions and adherens junctions and link to the cellular cytoskeleton via numerous adaptor proteins. Although the existence of tight and adherens junctions between epithelial cells has long been recognized, in recent years there have been significant advances in our understanding of the molecular regulation of junctional complex assembly and disassembly. Here we review the current thinking about the structure and function of the apical junctional complex in airway epithelial cells, emphasizing the translational aspects of relevance to cystic fibrosis and asthma. Most work to date has been conducted using cell culture models, but technical advancements in imaging techniques suggest that we are on the verge of important new breakthroughs in this area in physiological models of airway diseases.
Collapse
Affiliation(s)
- Fariba Rezaee
- 1 Division of Pediatric Pulmonary Medicine, Department of Pediatrics, and
| | | |
Collapse
|
48
|
Wang J, Xia Y, Wang G, Zhou T, Guo Y, Zhang C, An X, Sun Y, Guo X, Zhou Z, Sha J. In-depth proteomic analysis of whole testis tissue from the adult rhesus macaque. Proteomics 2014; 14:1393-1402. [PMID: 24610633 DOI: 10.1002/pmic.201300149] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 01/22/2014] [Accepted: 03/03/2014] [Indexed: 02/06/2023]
Abstract
The rhesus macaque is similar to humans both anatomically and physiologically as a primate, and has therefore been used extensively in medical and biological research, including reproductive physiology. Despite sequencing of the macaque genome, limited postgenomic studies have been performed to date. In studies aimed at characterizing spermatogenesis, we successfully identified 9078 macaque testis proteins corresponding to 8662 genes, using advanced MS and an optimized proteomics platform, indicative of complex protein compositions during macaque spermatogenesis. Immunohistochemistry analysis further revealed the presence of proteins from different types of testicular cells, including Sertoli cells, Leydig cells, and various stages of germ cells. Our data provide expression evidence at protein level of 3010 protein-coding genes in 8662 identified testis genes for the first time. We further identified 421 homologous genes from the proteome already known to be essential for male infertility in mouse. Comparative analysis of the proteome showed high similarity with the published human testis proteome, implying that macaque and human may use similar proteins to regulate spermatogenesis. Our in-depth analysis of macaque spermatogenesis provides a rich resource for further studies, and supports the utility of macaque as a suitable model for the study of human reproduction.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, P. R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Chakraborty P, William Buaas F, Sharma M, Smith BE, Greenlee AR, Eacker SM, Braun RE. Androgen-dependent sertoli cell tight junction remodeling is mediated by multiple tight junction components. Mol Endocrinol 2014; 28:1055-72. [PMID: 24825397 DOI: 10.1210/me.2013-1134] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sertoli cell tight junctions (SCTJs) of the seminiferous epithelium create a specialized microenvironment in the testis to aid differentiation of spermatocytes and spermatids from spermatogonial stem cells. SCTJs must be chronically broken and rebuilt with high fidelity to allow the transmigration of preleptotene spermatocytes from the basal to adluminal epithelial compartment. Impairment of androgen signaling in Sertoli cells perturbs SCTJ remodeling. Claudin (CLDN) 3, a tight junction component under androgen regulation, localizes to newly forming SCTJs and is absent in Sertoli cell androgen receptor knockout (SCARKO) mice. We show here that Cldn3-null mice do not phenocopy SCARKO mice: Cldn3(-/-) mice are fertile, show uninterrupted spermatogenesis, and exhibit fully functional SCTJs based on imaging and small molecule tracer analyses, suggesting that other androgen-regulated genes must contribute to the SCARKO phenotype. To further investigate the SCTJ phenotype observed in SCARKO mutants, we generated a new SCARKO model and extensively analyzed the expression of other tight junction components. In addition to Cldn3, we identified altered expression of several other SCTJ molecules, including down-regulation of Cldn13 and a noncanonical tight junction protein 2 isoform (Tjp2iso3). Chromatin immunoprecipitation was used to demonstrate direct androgen receptor binding to regions of these target genes. Furthermore, we demonstrated that CLDN13 is a constituent of SCTJs and that TJP2iso3 colocalizes with tricellulin, a constituent of tricellular junctions, underscoring the importance of androgen signaling in the regulation of both bicellular and tricellular Sertoli cell tight junctions.
Collapse
Affiliation(s)
- Papia Chakraborty
- The Jackson Laboratory (P.C., F.W.B., M.S., B.E.S., A.R.G., R.E.B.), Bar Harbor, Maine 04609; and Department of Neurology (S.M.E.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | | | | | | | | | | |
Collapse
|
50
|
Hervé JC, Derangeon M, Sarrouilhe D, Bourmeyster N. Influence of the scaffolding protein Zonula Occludens (ZOs) on membrane channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:595-604. [DOI: 10.1016/j.bbamem.2013.07.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/02/2013] [Accepted: 07/04/2013] [Indexed: 01/20/2023]
|