1
|
Kolas V, Mathieu G, Wu YT, Chung BC. Evaluation of two gene ablation methods for the analysis of pregnenolone function in zebrafish embryonic development. Biochem Biophys Res Commun 2022; 636:84-88. [DOI: 10.1016/j.bbrc.2022.10.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/18/2022] [Indexed: 11/30/2022]
|
2
|
Tension of plus-end tracking protein Clip170 confers directionality and aggressiveness during breast cancer migration. Cell Death Dis 2022; 13:856. [PMID: 36209218 PMCID: PMC9547975 DOI: 10.1038/s41419-022-05306-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022]
Abstract
The microtubule (MT) plus-end binding protein Clip170 is associated closely with breast cancer invasion and migration. In this study, Clip170 tension observed by a newly designed cpstFRET tension probe was suggested to be positive related to breast cancer aggressiveness, which could be regulated by α-tubulin detyrosination-induced MT disassembly. Clip170 phosphorylation induced by Ribosomal protein S6 kinase (RSK) could also increase its tension and promote the conversion of a discrete comet-like Clip-170 distribution into a spotty pattern during cancer metastasis. Heightened Clip170 tension was correlated with the formation of cortactin-associated filopodia and lamellipodia, and then promoted invasion and metastasis both in vitro and in vivo. Meanwhile, Clip170 tension enhanced at the leading edge in directional migration, accompanying with IQGAP1 subcellular distribution variation. Our work indicates that the malignancy and directionality during breast cancer migration depend on the magnitude and polarization of Clip170 tension, and we suggest Clip170 tension as a new potential drug target for breast cancer therapy.
Collapse
|
3
|
Barbiero I, Zamberletti E, Tramarin M, Gabaglio M, Peroni D, De Rosa R, Baldin S, Bianchi M, Rubino T, Kilstrup-Nielsen C. Pregnenolone-methyl-ether enhances CLIP170 and microtubule functions improving spine maturation and hippocampal deficits related to CDKL5 deficiency. Hum Mol Genet 2022; 31:2738-2750. [DOI: 10.1093/hmg/ddac067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) cause CDKL5 deficiency disorder (CDD), a neurodevelopmental disease characterized by severe infantile seizures and intellectual disability. The absence of CDKL5 in mice causes defective spine maturation that can at least partially explain the cognitive impairment in CDKL5 patients and CDD mouse models. The molecular basis for such defect may depend on the capacity of CDKL5 to regulate microtubule (MT) dynamics through its association with the MT-plus end tracking protein CLIP170. Indeed, we here demonstrate that the absence of CDKL5 causes CLIP170 to be mainly in a closed inactive conformation that impedes its binding to MTs. Previously, the synthetic pregnenolone analogue, pregnenolone-methyl-ether (PME), was found to have a positive effect on CDKL5-related cellular and neuronal defects in vitro. Here we show that PME induces the open active conformation of CLIP170 and promotes the entry of MTs into dendritic spines in vitro. Furthermore, the administration of PME to symptomatic Cdkl5-knock-out mice improved hippocampal-dependent behavior and restored spine maturation and the localization of MT-related proteins in the synaptic compartment. The positive effect on cognitive deficits persisted for one week after treatment withdrawal. Altogether, our results suggest that CDKL5 regulates spine maturation and cognitive processes through its control of CLIP170 and MT dynamics, which may represent a novel target for the development of disease modifying therapies.
Collapse
Affiliation(s)
- Isabella Barbiero
- Dept. of Biotechnology and Life Sciences, (DBSV), Centre of NeuroScience, University of Insubria, Busto Arsizio, Italy
| | - Erica Zamberletti
- Dept. of Biotechnology and Life Sciences, (DBSV), Centre of NeuroScience, University of Insubria, Busto Arsizio, Italy
| | - Marco Tramarin
- Dept. of Biotechnology and Life Sciences, (DBSV), Centre of NeuroScience, University of Insubria, Busto Arsizio, Italy
| | - Marina Gabaglio
- Dept. of Biotechnology and Life Sciences, (DBSV), Centre of NeuroScience, University of Insubria, Busto Arsizio, Italy
| | - Diana Peroni
- Dept. of Biotechnology and Life Sciences, (DBSV), Centre of NeuroScience, University of Insubria, Busto Arsizio, Italy
| | - Roberta De Rosa
- Dept. of Biotechnology and Life Sciences, (DBSV), Centre of NeuroScience, University of Insubria, Busto Arsizio, Italy
| | - Serena Baldin
- Dept. of Biotechnology and Life Sciences, (DBSV), Centre of NeuroScience, University of Insubria, Busto Arsizio, Italy
| | - Massimiliano Bianchi
- Ulysses Neuroscience Ltd., Trinity College Dublin, Dublin, Ireland
- Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Tiziana Rubino
- Dept. of Biotechnology and Life Sciences, (DBSV), Centre of NeuroScience, University of Insubria, Busto Arsizio, Italy
| | - Charlotte Kilstrup-Nielsen
- Dept. of Biotechnology and Life Sciences, (DBSV), Centre of NeuroScience, University of Insubria, Busto Arsizio, Italy
| |
Collapse
|
4
|
Barbiero I, Bianchi M, Kilstrup‐Nielsen C. Therapeutic potential of pregnenolone and pregnenolone methyl ether on depressive and CDKL5 deficiency disorders: Focus on microtubule targeting. J Neuroendocrinol 2022; 34:e13033. [PMID: 34495563 PMCID: PMC9286658 DOI: 10.1111/jne.13033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/27/2021] [Accepted: 08/08/2021] [Indexed: 12/22/2022]
Abstract
Pregnenolone methyl-ether (PME) is a synthetic derivative of the endogenous neuroactive steroid pregnenolone (PREG), which is an important modulator of several brain functions. In addition to being the precursor of steroids, PREG acts directly on various targets including microtubules (MTs), the functioning of which is fundamental for the development and homeostasis of nervous system. The coordination of MT dynamics is supported by a plethora of MT-associated proteins (MAPs) and by a specific MT code that is defined by the post-translational modifications of tubulin. Defects associated with MAPs or tubulin post-translational modifications are linked to different neurological pathologies including mood and neurodevelopmental disorders. In this review, we describe the beneficial effect of PME in major depressive disorders (MDDs) and in CDKL5 deficiency disorder (CDD), two pathologies that are joint by defective MT dynamics. Growing evidence indeed suggests that PME, as well as PREG, is able to positively affect the MT-binding of MAP2 and the plus-end tracking protein CLIP170 that are both found to be deregulated in the above mentioned pathologies. Furthermore, PME influences the state of MT acetylation, the deregulation of which is often associated with neurological abnormalities including MDDs. By contrast to PREG, PME is not metabolised into other downstream molecules with specific biological properties, an aspect that makes this compound more suitable for therapeutic strategies. Thus, through the analysis of MDDs and CDD, this work focuses attention on the possible use of PME for neuronal pathologies associated with MT defects.
Collapse
Affiliation(s)
- Isabella Barbiero
- Department of Biotechnology and Life Sciences, (DBSV)Centre of NeuroScienceUniversity of InsubriaBusto ArsizioItaly
| | - Massimiliano Bianchi
- Ulysses Neuroscience Ltd.Trinity College DublinDublinIreland
- Institute of NeuroscienceTrinity College DublinDublinIreland
| | - Charlotte Kilstrup‐Nielsen
- Department of Biotechnology and Life Sciences, (DBSV)Centre of NeuroScienceUniversity of InsubriaBusto ArsizioItaly
| |
Collapse
|
5
|
Thakkar PV, Kita K, Castillo UD, Galletti G, Madhukar N, Navarro EV, Barasoain I, Goodson HV, Sackett D, Díaz JF, Lu Y, RoyChoudhury A, Molina H, Elemento O, Shah MA, Giannakakou P. CLIP-170S is a microtubule +TIP variant that confers resistance to taxanes by impairing drug-target engagement. Dev Cell 2021; 56:3264-3275.e7. [PMID: 34672971 PMCID: PMC8665049 DOI: 10.1016/j.devcel.2021.09.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 07/14/2021] [Accepted: 09/24/2021] [Indexed: 01/22/2023]
Abstract
Taxanes are widely used cancer chemotherapeutics. However, intrinsic resistance limits their efficacy without any actionable resistance mechanism. We have discovered a microtubule (MT) plus-end-binding CLIP-170 protein variant, hereafter CLIP-170S, which we found enriched in taxane-resistant cell lines and patient samples. CLIP-170S lacks the first Cap-Gly motif, forms longer comets, and impairs taxane access to its MT luminal binding site. CLIP-170S knockdown reversed taxane resistance in cells and xenografts, whereas its re-expression led to resistance, suggesting causation. Using a computational approach in conjunction with the connectivity map, we unexpectedly discovered that Imatinib was predicted to reverse CLIP-170S-mediated taxane resistance. Indeed, Imatinib treatment selectively depleted CLIP-170S, thus completely reversing taxane resistance. Other RTK inhibitors also depleted CLIP-170S, suggesting a class effect. Herein, we identify CLIP-170S as a clinically prevalent variant that confers taxane resistance, whereas the discovery of Imatinib as a CLIP-170S inhibitor provides novel therapeutic opportunities for future trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Isabel Barasoain
- Centro de Investigaciones Biológicas Margarita Salas, Madrid, Spain
| | | | - Dan Sackett
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20892, USA
| | | | - Yao Lu
- Division of Biostatistics and Epidemiology, Department of Healthcare Policy & Research, Weill Cornell Medicine, New York, NY 10065, USA
| | - Arindam RoyChoudhury
- Division of Biostatistics and Epidemiology, Department of Population Health Sciences, Weill Cornell Medicine, New York, NY 10065, USA
| | - Henrik Molina
- Proteomics Resource Center, the Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | | | | |
Collapse
|
6
|
Henrie H, Bakhos-Douaihy D, Cantaloube I, Pilon A, Talantikite M, Stoppin-Mellet V, Baillet A, Poüs C, Benoit B. Stress-induced phosphorylation of CLIP-170 by JNK promotes microtubule rescue. J Cell Biol 2021; 219:151834. [PMID: 32491151 PMCID: PMC7337496 DOI: 10.1083/jcb.201909093] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/17/2020] [Accepted: 04/20/2020] [Indexed: 01/01/2023] Open
Abstract
The stress-induced c-Jun N-terminal kinase (JNK) controls microtubule dynamics by enhancing both microtubule growth and rescues. Here, we show that upon cell stress, JNK directly phosphorylates the microtubule rescue factor CLIP-170 in its microtubule-binding domain to increase its rescue-promoting activity. Phosphomimetic versions of CLIP-170 enhance its ability to promote rescue events in vitro and in cells. Furthermore, while phosphomimetic mutations do not alter CLIP-170’s capability to form comets at growing microtubule ends, both phosphomimetic mutations and JNK activation increase the occurrence of CLIP-170 remnants on the microtubule lattice at the rear of comets. As the CLIP-170 remnants, which are potential sites of microtubule rescue, display a shorter lifetime when CLIP-170 is phosphorylated, we propose that instead of acting at the time of rescue occurrence, CLIP-170 would rather contribute in preparing the microtubule lattice for future rescues at these predetermined sites.
Collapse
Affiliation(s)
- Hélène Henrie
- Université Paris-Saclay, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1193, Châtenay-Malabry, France
| | - Dalal Bakhos-Douaihy
- Université Paris-Saclay, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1193, Châtenay-Malabry, France
| | - Isabelle Cantaloube
- Université Paris-Saclay, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1193, Châtenay-Malabry, France
| | - Antoine Pilon
- Université Paris-Saclay, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1193, Châtenay-Malabry, France.,Département de Biochimie, Hormonologie et Suivi Thérapeutique, Département Médico-Universitaire BioGeM, Assistance Publique - Hôpitaux de Paris Sorbonne Université, Paris, France
| | - Maya Talantikite
- Université Paris-Saclay, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1193, Châtenay-Malabry, France
| | - Virginie Stoppin-Mellet
- Grenoble Institut des Neurosciences, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1216, Université Grenoble Alpes, Grenoble, France
| | - Anita Baillet
- Université Paris-Saclay, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1193, Châtenay-Malabry, France
| | - Christian Poüs
- Université Paris-Saclay, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1193, Châtenay-Malabry, France.,Biochimie-Hormonologie, Assistance Publique - Hôpitaux de Paris Université Paris-Saclay, Clamart, France
| | - Béatrice Benoit
- Université Paris-Saclay, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1193, Châtenay-Malabry, France
| |
Collapse
|
7
|
Barbiero I, Peroni D, Siniscalchi P, Rusconi L, Tramarin M, De Rosa R, Motta P, Bianchi M, Kilstrup-Nielsen C. Pregnenolone and pregnenolone-methyl-ether rescue neuronal defects caused by dysfunctional CLIP170 in a neuronal model of CDKL5 Deficiency Disorder. Neuropharmacology 2020; 164:107897. [DOI: 10.1016/j.neuropharm.2019.107897] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/20/2019] [Accepted: 11/30/2019] [Indexed: 02/06/2023]
|
8
|
Parker SS, Krantz J, Kwak EA, Barker NK, Deer CG, Lee NY, Mouneimne G, Langlais PR. Insulin Induces Microtubule Stabilization and Regulates the Microtubule Plus-end Tracking Protein Network in Adipocytes. Mol Cell Proteomics 2019; 18:1363-1381. [PMID: 31018989 PMCID: PMC6601206 DOI: 10.1074/mcp.ra119.001450] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Indexed: 12/21/2022] Open
Abstract
Insulin-stimulated glucose uptake is known to involve microtubules, although the function of microtubules and the microtubule-regulating proteins involved in insulin action are poorly understood. CLASP2, a plus-end tracking microtubule-associated protein (+TIP) that controls microtubule dynamics, was recently implicated as the first +TIP associated with insulin-regulated glucose uptake. Here, using protein-specific targeted quantitative phosphoproteomics within 3T3-L1 adipocytes, we discovered that insulin regulates phosphorylation of the CLASP2 network members G2L1, MARK2, CLIP2, AGAP3, and CKAP5 as well as EB1, revealing the existence of a previously unknown microtubule-associated protein system that responds to insulin. To further investigate, G2L1 interactome studies within 3T3-L1 adipocytes revealed that G2L1 coimmunoprecipitates CLASP2 and CLIP2 as well as the master integrators of +TIP assembly, the end binding (EB) proteins. Live-cell total internal reflection fluorescence microscopy in adipocytes revealed G2L1 and CLASP2 colocalize on microtubule plus-ends. We found that although insulin increases the number of CLASP2-containing plus-ends, insulin treatment simultaneously decreases CLASP2-containing plus-end velocity. In addition, we discovered that insulin stimulates redistribution of CLASP2 and G2L1 from exclusive plus-end tracking to "trailing" behind the growing tip of the microtubule. Insulin treatment increases α-tubulin Lysine 40 acetylation, a mechanism that was observed to be regulated by a counterbalance between GSK3 and mTOR, and led to microtubule stabilization. Our studies introduce insulin-stimulated microtubule stabilization and plus-end trailing of +TIPs as new modes of insulin action and reveal the likelihood that a network of microtubule-associated proteins synergize to coordinate insulin-regulated microtubule dynamics.
Collapse
Affiliation(s)
- Sara S Parker
- From the ‡Department of Cellular & Molecular Medicine
| | - James Krantz
- §Department of Medicine, Division of Endocrinology
| | | | | | - Chris G Deer
- University of Arizona Research Computing, University of Arizona, Tucson, Arizona 85721
| | - Nam Y Lee
- ¶Department of Pharmacology,; ‖Department of Chemistry & Biochemistry, University of Arizona College of Medicine, Tucson, Arizona 85721
| | | | | |
Collapse
|
9
|
Chen Y, Wang P, Slep KC. Mapping multivalency in the CLIP-170-EB1 microtubule plus-end complex. J Biol Chem 2018; 294:918-931. [PMID: 30455356 DOI: 10.1074/jbc.ra118.006125] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/09/2018] [Indexed: 11/06/2022] Open
Abstract
Cytoplasmic linker protein 170 (CLIP-170) is a microtubule plus-end factor that links vesicles to microtubules and recruits the dynein-dynactin complex to microtubule plus ends. CLIP-170 plus-end localization is end binding 1 (EB1)-dependent. CLIP-170 contains two N-terminal cytoskeleton-associated protein glycine-rich (CAP-Gly) domains flanked by serine-rich regions. The CAP-Gly domains are known EB1-binding domains, and the serine-rich regions have also been implicated in CLIP-170's microtubule plus-end localization mechanism. However, the determinants in these serine-rich regions have not been identified. Here we elucidated multiple EB1-binding modules in the CLIP-170 N-terminal region. Using isothermal titration calorimetry and size-exclusion chromatography, we mapped and biophysically characterized these EB1-binding modules, including the two CAP-Gly domains, a bridging SXIP motif, and a unique array of divergent SXIP-like motifs located N-terminally to the first CAP-Gly domain. We found that, unlike the EB1-binding mode of the CAP-Gly domain in the dynactin-associated protein p150Glued, which dually engages the EB1 C-terminal EEY motif as well as the EB homology domain and sterically occludes SXIP motif binding, the CLIP-170 CAP-Gly domains engage only the EEY motif, enabling the flanking SXIP and SXIP-like motifs to bind the EB homology domain. These multivalent EB1-binding modules provided avidity to the CLIP-170-EB1 interaction, likely clarifying why CLIP-170 preferentially binds EB1 rather than the α-tubulin C-terminal EEY motif. Our finding that CLIP-170 has multiple non-CAP-Gly EB1-binding modules may explain why autoinhibition of CLIP-170 GAP-Gly domains does not fully abrogate its microtubule plus-end localization. This work expands our understanding of EB1-binding motifs and their multivalent networks.
Collapse
Affiliation(s)
- Yaodong Chen
- From the Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China.,the Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, and
| | - Ping Wang
- the Department of Neurology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Kevin C Slep
- the Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, and
| |
Collapse
|
10
|
Gireesh KK, Shine A, Lakshmi RB, Vijayan V, Manna TK. GTP-binding facilitates EB1 recruitment onto microtubules by relieving its auto-inhibition. Sci Rep 2018; 8:9792. [PMID: 29955158 PMCID: PMC6023887 DOI: 10.1038/s41598-018-28056-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 06/14/2018] [Indexed: 12/23/2022] Open
Abstract
Microtubule plus end-binding protein, EB1 is a key regulator of microtubule dynamics. Auto-inhibitory interaction in EB1 has previously been shown to inhibit its ability to bind to microtubules and regulate microtubule dynamics. However, the factors that promote its microtubule regulatory activity by over-coming the auto-inhibition are less known. Here, we show that GTP plays a critical role in promoting the microtubule-targeting activity of EB1 by suppressing its auto-inhibition. Our biophysical data demonstrate that GTP binds to EB1 at a distinct site in its conserved N-terminal domain. Detailed analyses reveal that GTP-binding suppresses the intra-molecular inhibitory interaction between the globular N-terminus and the C-terminal coiled-coil domain. We further show that mutation of the GTP-binding site residues in N-terminus weakens the affinity for GTP, but also for the C-terminus, indicating overlapping binding sites. Confocal imaging and biochemical analysis reveal that EB1 localization on the microtubules is significantly increased upon mutations of the GTP-binding site residues. The results demonstrate a unique role of GTP in facilitating EB1 interaction with the microtubules by relieving its intra-molecular inhibition. They also implicate that GTP-binding may regulate the functions of EB1 on the cellular microtubules.
Collapse
Affiliation(s)
- K K Gireesh
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, CET Campus, Thiruvananthapuram, 695016, Kerala, India
| | - A Shine
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, CET Campus, Thiruvananthapuram, 695016, Kerala, India
| | - R Bhagya Lakshmi
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, CET Campus, Thiruvananthapuram, 695016, Kerala, India
| | - Vinesh Vijayan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, CET Campus, Thiruvananthapuram, 695016, Kerala, India.
| | - Tapas K Manna
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, CET Campus, Thiruvananthapuram, 695016, Kerala, India.
| |
Collapse
|
11
|
Nirschl JJ, Ghiretti AE, Holzbaur ELF. The impact of cytoskeletal organization on the local regulation of neuronal transport. Nat Rev Neurosci 2017; 18:585-597. [PMID: 28855741 DOI: 10.1038/nrn.2017.100] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neurons are akin to modern cities in that both are dependent on robust transport mechanisms. Like the best mass transit systems, trafficking in neurons must be tailored to respond to local requirements. Neurons depend on both high-speed, long-distance transport and localized dynamics to correctly deliver cargoes and to tune synaptic responses. Here, we focus on the mechanisms that provide localized regulation of the transport machinery, including the cytoskeleton and molecular motors, to yield compartment-specific trafficking in the axon initial segment, axon terminal, dendrites and spines. The synthesis of these mechanisms provides a sophisticated and responsive transit system for the cell.
Collapse
Affiliation(s)
- Jeffrey J Nirschl
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 638A Clinical Research Building, 415 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Amy E Ghiretti
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 638A Clinical Research Building, 415 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Erika L F Holzbaur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 638A Clinical Research Building, 415 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
12
|
Liu JJ. Regulation of dynein-dynactin-driven vesicular transport. Traffic 2017; 18:336-347. [PMID: 28248450 DOI: 10.1111/tra.12475] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/22/2017] [Accepted: 02/22/2017] [Indexed: 01/01/2023]
Abstract
Most of the long-range intracellular movements of vesicles, organelles and other cargoes are driven by microtubule (MT)-based molecular motors. Cytoplasmic dynein, a multisubunit protein complex, with the aid of dynactin, drives transport of a wide variety of cargoes towards the minus end of MTs. In this article, I review our current understanding of the mechanisms underlying spatiotemporal regulation of dynein-dynactin-driven vesicular transport with a special emphasis on the many steps of directional movement along MT tracks. These include the recruitment of dynein to MT plus ends, the activation and processivity of dynein, and cargo recognition and release by the motor complex at the target membrane. Furthermore, I summarize the most recent findings about the fine control mechanisms for intracellular transport via the interaction between the dynein-dynactin motor complex and its vesicular cargoes.
Collapse
Affiliation(s)
- Jia-Jia Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Andrieux A, Aubry L, Boscheron C. CAP-Gly proteins contribute to microtubule-dependent trafficking via interactions with the C-terminal aromatic residue of α-tubulin. Small GTPases 2017; 10:138-145. [PMID: 28103137 PMCID: PMC6380331 DOI: 10.1080/21541248.2016.1277002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
In mammals, the C-terminal tyrosine residue of α-tubulin is subjected to removal/re-addition cycles resulting in tyrosinated microtubules and detyrosinated Glu-microtubules. CLIP170 and its yeast ortholog (Bik1) interact weakly with Glu-microtubules. Recently, we described a Microtubule- Rho1- and Bik1-dependent mechanism involved in Snc1 routing. Here, we further show a contribution of the yeast p150Glued ortholog (Nip100) in Snc1 trafficking. Both CLIP170 and p150Glued are CAP-Gly-containing proteins that belong to the microtubule +end-tracking protein family (known as +Tips). We discuss the +Tips-dependent role of microtubules in trafficking, the role of CAP-Gly proteins as possible molecular links between microtubules and vesicles, as well as the contribution of the Rho1-GTPase to the regulation of the +Tips repertoire and the partners associated with microtubules.
Collapse
Affiliation(s)
- Annie Andrieux
- a Université Grenoble Alpes , Grenoble , France.,b Inserm , U1216 , Grenoble , France.,c CEA, BIG , Grenoble , France
| | - Laurence Aubry
- a Université Grenoble Alpes , Grenoble , France.,c CEA, BIG , Grenoble , France.,d Inserm , U1038 , Grenoble , France
| | - Cécile Boscheron
- a Université Grenoble Alpes , Grenoble , France.,b Inserm , U1216 , Grenoble , France.,c CEA, BIG , Grenoble , France
| |
Collapse
|
14
|
Boscheron C, Caudron F, Loeillet S, Peloso C, Mugnier M, Kurzawa L, Nicolas A, Denarier E, Aubry L, Andrieux A. A role for the yeast CLIP170 ortholog, the plus-end-tracking protein Bik1, and the Rho1 GTPase in Snc1 trafficking. J Cell Sci 2016; 129:3332-41. [PMID: 27466378 PMCID: PMC5047699 DOI: 10.1242/jcs.190330] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/19/2016] [Indexed: 02/04/2023] Open
Abstract
The diversity of microtubule functions is dependent on the status of tubulin C-termini. To address the physiological role of the C-terminal aromatic residue of α-tubulin, a tub1-Glu yeast strain expressing an α-tubulin devoid of its C-terminal amino acid was used to perform a genome-wide-lethality screen. The identified synthetic lethal genes suggested links with endocytosis and related processes. In the tub1-Glu strain, the routing of the v-SNARE Snc1 was strongly impaired, with a loss of its polarized distribution in the bud, and Abp1, an actin patch or endocytic marker, developed comet-tail structures. Snc1 trafficking required dynamic microtubules but not dynein and kinesin motors. Interestingly, deletion of the microtubule plus-end-tracking protein Bik1 (a CLIP170 ortholog), which is preferentially recruited to the C-terminal residue of α-tubulin, similarly resulted in Snc1 trafficking defects. Finally, constitutively active Rho1 rescued both Bik1 localization at the microtubule plus-ends in tub1-Glu strain and a correct Snc1 trafficking in a Bik1-dependent manner. Our results provide the first evidence for a role of microtubule plus-ends in membrane cargo trafficking in yeast, through Rho1- and Bik1-dependent mechanisms, and highlight the importance of the C-terminal α-tubulin amino acid in this process.
Collapse
Affiliation(s)
- Cécile Boscheron
- Univ. Grenoble Alpes, Grenoble F-38000, France Inserm, U1216, Grenoble F-38000, France CEA, BIG, Grenoble F-38000, France
| | - Fabrice Caudron
- Univ. Grenoble Alpes, Grenoble F-38000, France Inserm, U1216, Grenoble F-38000, France CEA, BIG, Grenoble F-38000, France Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Sophie Loeillet
- Institut Curie, Recombinaison et Instabilité Génétique, CNRS UMR3244, Université Pierre et Marie Curie, Paris Cedex 75048, France
| | - Charlotte Peloso
- Univ. Grenoble Alpes, Grenoble F-38000, France Inserm, U1216, Grenoble F-38000, France CEA, BIG, Grenoble F-38000, France
| | - Marine Mugnier
- Univ. Grenoble Alpes, Grenoble F-38000, France Inserm, U1216, Grenoble F-38000, France CEA, BIG, Grenoble F-38000, France
| | | | - Alain Nicolas
- Institut Curie, Recombinaison et Instabilité Génétique, CNRS UMR3244, Université Pierre et Marie Curie, Paris Cedex 75048, France
| | - Eric Denarier
- Univ. Grenoble Alpes, Grenoble F-38000, France Inserm, U1216, Grenoble F-38000, France CEA, BIG, Grenoble F-38000, France
| | - Laurence Aubry
- Univ. Grenoble Alpes, Grenoble F-38000, France CEA, BIG, Grenoble F-38000, France Inserm, U1038, Grenoble F-38000, France
| | - Annie Andrieux
- Univ. Grenoble Alpes, Grenoble F-38000, France Inserm, U1216, Grenoble F-38000, France CEA, BIG, Grenoble F-38000, France
| |
Collapse
|
15
|
Yamashita N, Kuruvilla R. Neurotrophin signaling endosomes: biogenesis, regulation, and functions. Curr Opin Neurobiol 2016; 39:139-45. [PMID: 27327126 DOI: 10.1016/j.conb.2016.06.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/05/2016] [Indexed: 11/29/2022]
Abstract
In the nervous system, communication between neurons and their post-synaptic target cells is critical for the formation, refinement and maintenance of functional neuronal connections. Diffusible signals secreted by target tissues, exemplified by the family of neurotrophins, impinge on nerve terminals to influence diverse developmental events including neuronal survival and axonal growth. Key mechanisms of action of target-derived neurotrophins include the cell biological processes of endocytosis and retrograde trafficking of their Trk receptors from growth cones to cell bodies. In this review, we summarize the molecular mechanisms underlying this endosome-mediated signaling, focusing on the instructive role of neurotrophin signaling itself in directing its own trafficking. Recent studies have linked impaired neurotrophin trafficking to neurodevelopmental disorders, highlighting the relevance of neurotrophin endosomes in human health.
Collapse
Affiliation(s)
- Naoya Yamashita
- Department of Biology, Johns Hopkins University, 3400N. Charles St, 224 Mudd Hall, Baltimore, MD 21218, USA
| | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, 3400N. Charles St, 224 Mudd Hall, Baltimore, MD 21218, USA.
| |
Collapse
|
16
|
Nirschl JJ, Magiera MM, Lazarus JE, Janke C, Holzbaur ELF. α-Tubulin Tyrosination and CLIP-170 Phosphorylation Regulate the Initiation of Dynein-Driven Transport in Neurons. Cell Rep 2016; 14:2637-52. [PMID: 26972003 PMCID: PMC4819336 DOI: 10.1016/j.celrep.2016.02.046] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/08/2016] [Accepted: 02/05/2016] [Indexed: 11/18/2022] Open
Abstract
Motor-cargo recruitment to microtubules is often the rate-limiting step of intracellular transport, and defects in this recruitment can cause neurodegenerative disease. Here, we use in vitro reconstitution assays with single-molecule resolution, live-cell transport assays in primary neurons, computational image analysis, and computer simulations to investigate the factors regulating retrograde transport initiation in the distal axon. We find that phosphorylation of the cytoskeletal-organelle linker protein CLIP-170 and post-translational modifications of the microtubule track combine to precisely control the initiation of retrograde transport. Computer simulations of organelle dynamics in the distal axon indicate that while CLIP-170 primarily regulates the time to microtubule encounter, the tyrosination state of the microtubule lattice regulates the likelihood of binding. These mechanisms interact to control transport initiation in the axon in a manner sensitive to the specialized cytoskeletal architecture of the neuron.
Collapse
Affiliation(s)
- Jeffrey J Nirschl
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maria M Magiera
- Institut Curie, PSL Research University, CNRS UMR3348, 91405 Orsay, France; Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, 91405 Orsay, France
| | - Jacob E Lazarus
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Carsten Janke
- Institut Curie, PSL Research University, CNRS UMR3348, 91405 Orsay, France; Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, 91405 Orsay, France
| | - Erika L F Holzbaur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
17
|
Jovasevic V, Naghavi MH, Walsh D. Microtubule plus end-associated CLIP-170 initiates HSV-1 retrograde transport in primary human cells. J Cell Biol 2016; 211:323-37. [PMID: 26504169 PMCID: PMC4621836 DOI: 10.1083/jcb.201505123] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Herpes simplex virus particles that enter the cell do not randomly associate with microtubule filaments, but require plus end–binding proteins EB1, CLIP-170, and dynactin to initiate retrograde transport to the nucleus. Dynamic microtubules (MTs) continuously explore the intracellular environment and, through specialized plus end–tracking proteins (+TIPs), engage a variety of targets. However, the nature of cargoes that require +TIP-mediated capture for their movement on MTs remains poorly understood. Using RNA interference and dominant-negative approaches, combined with live cell imaging, we show that herpes simplex virus particles that have entered primary human cells exploit a +TIP complex comprising end-binding protein 1 (EB1), cytoplasmic linker protein 170 (CLIP-170), and dynactin-1 (DCTN1) to initiate retrograde transport. Depletion of these +TIPs completely blocked post-entry long-range transport of virus particles and suppressed infection ∼5,000-fold, whereas transferrin uptake, early endosome organization, and dynein-dependent movement of lysosomes and mitochondria remained unaffected. These findings provide the first insights into the earliest stages of viral engagement of MTs through specific +TIPs, akin to receptors, with therapeutic implications, and identify herpesvirus particles as one of a very limited number of cargoes absolutely dependent on CLIP-170–mediated capture to initiate transport in primary human cells.
Collapse
Affiliation(s)
- Vladimir Jovasevic
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Mojgan H Naghavi
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Derek Walsh
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 Department of Microbiology, School of Medicine, New York University, New York, NY 10016
| |
Collapse
|
18
|
Beaven R, Dzhindzhev NS, Qu Y, Hahn I, Dajas-Bailador F, Ohkura H, Prokop A. Drosophila CLIP-190 and mammalian CLIP-170 display reduced microtubule plus end association in the nervous system. Mol Biol Cell 2015; 26:1491-508. [PMID: 25694447 PMCID: PMC4395129 DOI: 10.1091/mbc.e14-06-1083] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 01/05/2015] [Accepted: 02/10/2015] [Indexed: 11/11/2022] Open
Abstract
Axons act like cables, electrically wiring the nervous system. Polar bundles of microtubules (MTs) form their backbones and drive their growth. Plus end-tracking proteins (+TIPs) regulate MT growth dynamics and directionality at their plus ends. However, current knowledge about +TIP functions, mostly derived from work in vitro and in nonneuronal cells, may not necessarily apply to the very different context of axonal MTs. For example, the CLIP family of +TIPs are known MT polymerization promoters in nonneuronal cells. However, we show here that neither Drosophila CLIP-190 nor mammalian CLIP-170 is a prominent MT plus end tracker in neurons, which we propose is due to low plus end affinity of the CAP-Gly domain-containing N-terminus and intramolecular inhibition through the C-terminus. Instead, both CLIP-190 and CLIP-170 form F-actin-dependent patches in growth cones, mediated by binding of the coiled-coil domain to myosin-VI. Because our loss-of-function analyses in vivo and in culture failed to reveal axonal roles for CLIP-190, even in double-mutant combinations with four other +TIPs, we propose that CLIP-190 and -170 are not essential axon extension regulators. Our findings demonstrate that +TIP functions known from nonneuronal cells do not necessarily apply to the regulation of the very distinct MT networks in axons.
Collapse
Affiliation(s)
- Robin Beaven
- Faculty of Life Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Nikola S Dzhindzhev
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Yue Qu
- Faculty of Life Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Ines Hahn
- Faculty of Life Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom
| | | | - Hiroyuki Ohkura
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Andreas Prokop
- Faculty of Life Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
19
|
Kedashiro S, Pastuhov SI, Nishioka T, Watanabe T, Kaibuchi K, Matsumoto K, Hanafusa H. LRRK1-phosphorylated CLIP-170 regulates EGFR trafficking by recruiting p150Glued to microtubule plus ends. J Cell Sci 2014; 128:385-96. [PMID: 25413345 DOI: 10.1242/jcs.161547] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The binding of ligand to epidermal growth factor receptor (EGFR) causes the receptor to become activated and stimulates the endocytosis of EGFR. Early endosomes containing activated EGFR migrate along microtubules as they mature into late endosomes. We have recently shown that LRRK1, which is related to the familial Parkinsonism gene product Park8 (also known as LRRK2), regulates this EGFR transport in a manner dependent on LRRK1 kinase activity. However, the downstream targets of LRRK1 that might modulate this transport function have not been identified. Here, we identify CLIP-170 (also known as CLIP1), a microtubule plus-end protein, as a substrate of LRRK1. LRRK1 phosphorylates CLIP-170 at Thr1384, located in its C-terminal zinc knuckle motif, and this promotes the association of CLIP-170 with dynein-dynactin complexes. We find that LRRK1-mediated phosphorylation of CLIP-170 causes the accumulation of p150(Glued) (also known as DCTN1) a subunit of dynactin, at microtubule plus ends, thereby facilitating the migration of EGFR-containing endosomes. Thus, our findings provide new mechanistic insights into the dynein-driven transport of EGFR.
Collapse
Affiliation(s)
- Shin Kedashiro
- Division of Biological Science, Graduate school of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Strahil Iv Pastuhov
- Division of Biological Science, Graduate school of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Tomoki Nishioka
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, Showa-ku, Nagoya, 466-8550, Japan
| | - Takashi Watanabe
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, Showa-ku, Nagoya, 466-8550, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, Showa-ku, Nagoya, 466-8550, Japan
| | - Kunihiro Matsumoto
- Division of Biological Science, Graduate school of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Hiroshi Hanafusa
- Division of Biological Science, Graduate school of Science, Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
20
|
Ferreira JG, Pereira AL, Maiato H. Microtubule plus-end tracking proteins and their roles in cell division. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 309:59-140. [PMID: 24529722 DOI: 10.1016/b978-0-12-800255-1.00002-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Microtubules are cellular components that are required for a variety of essential processes such as cell motility, mitosis, and intracellular transport. This is possible because of the inherent dynamic properties of microtubules. Many of these properties are tightly regulated by a number of microtubule plus-end-binding proteins or +TIPs. These proteins recognize the distal end of microtubules and are thus in the right context to control microtubule dynamics. In this review, we address how microtubule dynamics are regulated by different +TIP families, focusing on how functionally diverse +TIPs spatially and temporally regulate microtubule dynamics during animal cell division.
Collapse
Affiliation(s)
- Jorge G Ferreira
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal; Cell Division Unit, Department of Experimental Biology, University of Porto, Porto, Portugal
| | - Ana L Pereira
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Helder Maiato
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal; Cell Division Unit, Department of Experimental Biology, University of Porto, Porto, Portugal.
| |
Collapse
|
21
|
Duellberg C, Trokter M, Jha R, Sen I, Steinmetz MO, Surrey T. Reconstitution of a hierarchical +TIP interaction network controlling microtubule end tracking of dynein. Nat Cell Biol 2014; 16:804-11. [PMID: 24997520 DOI: 10.1038/ncb2999] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 05/29/2014] [Indexed: 11/08/2022]
Abstract
Growing microtubule end regions recruit a variety of proteins collectively termed +TIPs, which confer local functions to the microtubule cytoskeleton. +TIPs form dynamic interaction networks whose behaviour depends on a number of potentially competitive and hierarchical interaction modes. The rules that determine which of the various +TIPs are recruited to the limited number of available binding sites at microtubule ends remain poorly understood. Here we examined how the human dynein complex, the main minus-end-directed motor and an important +TIP (refs , , ), is targeted to growing microtubule ends in the presence of different +TIP competitors. Using a total internal reflection fluorescence microscopy-based reconstitution assay, we found that a hierarchical recruitment mode targets the large dynactin subunit p150Glued to growing microtubule ends via EB1 and CLIP-170 in the presence of competing SxIP-motif-containing peptides. We further show that the human dynein complex is targeted to growing microtubule ends through an interaction of the tail domain of dynein with p150Glued. Our results highlight how the connectivity and hierarchy within dynamic +TIP networks are orchestrated.
Collapse
Affiliation(s)
- Christian Duellberg
- 1] London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3LY, UK [2] European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Martina Trokter
- 1] London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3LY, UK [2] European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany [3]
| | - Rupam Jha
- London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Indrani Sen
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Thomas Surrey
- 1] London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3LY, UK [2] European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| |
Collapse
|
22
|
Homolya L, Fu D, Sengupta P, Jarnik M, Gillet JP, Vitale-Cross L, Gutkind JS, Lippincott-Schwartz J, Arias IM. LKB1/AMPK and PKA control ABCB11 trafficking and polarization in hepatocytes. PLoS One 2014; 9:e91921. [PMID: 24643070 PMCID: PMC3958433 DOI: 10.1371/journal.pone.0091921] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 02/16/2014] [Indexed: 11/19/2022] Open
Abstract
Polarization of hepatocytes is manifested by bile canalicular network formation and activation of LKB1 and AMPK, which control cellular energy metabolism. The bile acid, taurocholate, also regulates development of the canalicular network through activation of AMPK. In the present study, we used collagen sandwich hepatocyte cultures from control and liver-specific LKB1 knockout mice to examine the role of LKB1 in trafficking of ABCB11, the canalicular bile acid transporter. In polarized hepatocytes, ABCB11 traffics from Golgi to the apical plasma membrane and endogenously cycles through the rab 11a-myosin Vb recycling endosomal system. LKB1 knockout mice were jaundiced, lost weight and manifested impaired bile canalicular formation and intracellular trafficking of ABCB11, and died within three weeks. Using live cell imaging, fluorescence recovery after photobleaching (FRAP), particle tracking, and biochemistry, we found that LKB1 activity is required for microtubule-dependent trafficking of ABCB11 to the canalicular membrane. In control hepatocytes, ABCB11 trafficking was accelerated by taurocholate and cAMP; however, in LKB1 knockout hepatocytes, ABCB11 trafficking to the apical membrane was greatly reduced and restored only by cAMP, but not taurocholate. cAMP acted through a PKA-mediated pathway which did not activate AMPK. Our studies establish a regulatory role for LKB1 in ABCB11 trafficking to the canalicular membrane, hepatocyte polarization, and canalicular network formation.
Collapse
Affiliation(s)
- László Homolya
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- Laboratory of Molecular Cell Biology, Institute of Molecular Pharmacology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- * E-mail:
| | - Dong Fu
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- Faculty of Pharmacy, The University of Sydney, Sydney, Australia
| | - Prabuddha Sengupta
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michal Jarnik
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jean-Pierre Gillet
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Laboratory of Molecular Cancer Biology, Molecular Physiology Research Unit – URPhyM, Namur Research Institute for Life Sciences (NARILIS), Faculty of Medicine, University of Namur, Belgium University of Namur, Belgium
| | - Lynn Vitale-Cross
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - J. Silvio Gutkind
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jennifer Lippincott-Schwartz
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Irwin M. Arias
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
23
|
Kakeno M, Matsuzawa K, Matsui T, Akita H, Sugiyama I, Ishidate F, Nakano A, Takashima S, Goto H, Inagaki M, Kaibuchi K, Watanabe T. Plk1 phosphorylates CLIP-170 and regulates its binding to microtubules for chromosome alignment. Cell Struct Funct 2014; 39:45-59. [PMID: 24451569 DOI: 10.1247/csf.14001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
The microtubule (MT) cytoskeleton is essential for cellular morphogenesis, cell migration, and cell division. MT organization is primarily mediated by a variety of MT-associated proteins. Among these proteins, plus-end-tracking proteins (+TIPs) are evolutionarily conserved factors that selectively accumulate at growing MT plus ends. Cytoplasmic linker protein (CLIP)-170 is a +TIP that associates with diverse proteins to determine the behavior of MT ends and their linkage to intracellular structures, including mitotic chromosomes. However, how CLIP-170 activity is spatially and temporally controlled is largely unknown. Here, we show that phosphorylation at Ser312 in the third serine-rich region of CLIP-170 is increased during mitosis. Polo-like kinase 1 (Plk1) is responsible for this phosphorylation during the mitotic phase of dividing cells. In vitro analysis using a purified CLIP-170 N-terminal fragment showed that phosphorylation by Plk1 diminishes CLIP-170 binding to the MT ends and lattice without affecting binding to EB3. Furthermore, we demonstrate that during mitosis, stable kinetochore/MT attachment and subsequent chromosome alignment require CLIP-170 and a proper phosphorylation/dephosphorylation cycle at Ser312. We propose that CLIP-170 phosphorylation by Plk1 regulates proper chromosome alignment by modulating the interaction between CLIP-170 and MTs in mitotic cells and that CLIP-170 activity is stringently controlled by its phosphorylation state, which depends on the cellular context.
Collapse
Affiliation(s)
- Mai Kakeno
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Weng JH, Liang MR, Chen CH, Tong SK, Huang TC, Lee SP, Chen YR, Chen CT, Chung BC. Pregnenolone activates CLIP-170 to promote microtubule growth and cell migration. Nat Chem Biol 2013; 9:636-42. [PMID: 23955365 DOI: 10.1038/nchembio.1321] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/24/2013] [Indexed: 01/09/2023]
Abstract
Pregnenolone (P5) is a neurosteroid that improves memory and neurological recovery. It is also required for zebrafish embryonic development. However, its mode of action is unclear. Here we show that P5 promotes cell migration and microtubule polymerization by binding a microtubule plus end-tracking protein, cytoplasmic linker protein 1 (CLIP-170). We captured CLIP-170 from zebrafish embryonic extract using a P5 photoaffinity probe conjugated to diaminobenzophenone. P5 interacted with CLIP-170 at its coiled-coil domain and changed it into an extended conformation. This increased CLIP-170 interaction with microtubules, dynactin subunit p150(Glued) and LIS1; it also promoted CLIP-170-dependent microtubule polymerization. CLIP-170 was essential for P5 to promote microtubule abundance and zebrafish epiboly cell migration during embryogenesis, and overexpression of the P5-binding region of CLIP-170 delayed this migration. P5 also sustained migration directionality of cultured mammalian cells. Our results show that P5 activates CLIP-170 to promote microtubule polymerization and cell migration.
Collapse
Affiliation(s)
- Jui-Hsia Weng
- 1] Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan. [2] Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ruiz-Saenz A, van Haren J, Sayas CL, Rangel L, Demmers J, Millán J, Alonso MA, Galjart N, Correas I. Protein 4.1R binds to CLASP2 and regulates dynamics, organization and attachment of microtubules to the cell cortex. J Cell Sci 2013; 126:4589-601. [PMID: 23943871 DOI: 10.1242/jcs.120840] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The microtubule (MT) cytoskeleton is essential for many cellular processes, including cell polarity and migration. Cortical platforms, formed by a subset of MT plus-end-tracking proteins, such as CLASP2, and non-MT binding proteins such as LL5β, attach distal ends of MTs to the cell cortex. However, the mechanisms involved in organizing these platforms have not yet been described in detail. Here we show that 4.1R, a FERM-domain-containing protein, interacts and colocalizes with cortical CLASP2 and is required for the correct number and dynamics of CLASP2 cortical platforms. Protein 4.1R also controls binding of CLASP2 to MTs at the cell edge by locally altering GSK3 activity. Furthermore, in 4.1R-knockdown cells MT plus-ends were maintained for longer in the vicinity of cell edges, but instead of being tethered to the cell cortex, MTs continued to grow, bending at cell margins and losing their radial distribution. Our results suggest a previously unidentified role for the scaffolding protein 4.1R in locally controlling CLASP2 behavior, CLASP2 cortical platform turnover and GSK3 activity, enabling correct MT organization and dynamics essential for cell polarity.
Collapse
Affiliation(s)
- Ana Ruiz-Saenz
- Centro de Biología Molecular Severo Ochoa and Departamento de Biología Molecular, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC and UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Huang YA, Kao JW, Tseng DTH, Chen WS, Chiang MH, Hwang E. Microtubule-associated type II protein kinase A is important for neurite elongation. PLoS One 2013; 8:e73890. [PMID: 23967353 PMCID: PMC3742546 DOI: 10.1371/journal.pone.0073890] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/23/2013] [Indexed: 11/20/2022] Open
Abstract
Neuritogenesis is a process through which neurons generate their widespread axon and dendrites. The microtubule cytoskeleton plays crucial roles throughout neuritogenesis. Our previous study indicated that the amount of type II protein kinase A (PKA) on microtubules significantly increased upon neuronal differentiation and neuritogenesis. While the overall pool of PKA has been shown to participate in various neuronal processes, the function of microtubule-associated PKA during neuritogenesis remains largely unknown. First, we showed that PKA localized to microtubule-based region in different neurons. Since PKA is essential for various cellular functions, globally inhibiting PKA activity will causes a wide variety of phenotypes in neurons. To examine the function of microtubule-associated PKA without changing the total PKA level, we utilized the neuron-specific PKA anchoring protein MAP2. Overexpressing the dominant negative MAP2 construct that binds to type II PKA but cannot bind to the microtubule cytoskeleton in dissociated hippocampal neurons removed PKA from microtubules and resulted in compromised neurite elongation. In addition, we demonstrated that the association of PKA with microtubules can also enhance cell protrusion using the non-neuronal P19 cells. Overexpressing a MAP2 deletion construct which does not target PKA to the microtubule cytoskeleton caused non-neuronal cells to generate shorter cell protrusions than control cells overexpressing wild-type MAP2 that anchors PKA to microtubules. Finally, we demonstrated that the ability of microtubule-associated PKA to promote protrusion elongation was independent of MAP2 phosphorylation. This suggests other proteins in close proximity to the microtubule cytoskeleton are involved in this process.
Collapse
Affiliation(s)
- Yung-An Huang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Jun-Wei Kao
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Dion Tzu-Huan Tseng
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Wen-Shin Chen
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Center for Bioinformatics Research, National Chiao Tung University, Hsinchu, Taiwan
| | - Ming-Han Chiang
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Eric Hwang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan
- Center for Bioinformatics Research, National Chiao Tung University, Hsinchu, Taiwan
- * E-mail:
| |
Collapse
|
27
|
Moughamian AJ, Osborn GE, Lazarus JE, Maday S, Holzbaur ELF. Ordered recruitment of dynactin to the microtubule plus-end is required for efficient initiation of retrograde axonal transport. J Neurosci 2013; 33:13190-203. [PMID: 23926272 PMCID: PMC3735891 DOI: 10.1523/jneurosci.0935-13.2013] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/06/2013] [Accepted: 06/11/2013] [Indexed: 12/18/2022] Open
Abstract
Long-range retrograde axonal transport in neurons is driven exclusively by the microtubule motor cytoplasmic dynein. The efficient initiation of dynein-mediated transport from the distal axon is critical for normal neuronal function, and neurodegenerative disease-associated mutations have been shown to specifically disrupt this process. Here, we examine the role of dynamic microtubules and microtubule plus-end binding proteins (+TIPs) in the initiation of dynein-mediated retrograde axonal transport using live-cell imaging of cargo motility in primary mouse dorsal root ganglion neurons. We show that end-binding (EB)-positive dynamic microtubules are enriched in the distal axon. The +TIPs EB1, EB3, and cytoplasmic linker protein-170 (CLIP-170) interact with these dynamic microtubules, recruiting the dynein activator dynactin in an ordered pathway, leading to the initiation of retrograde transport by the motor dynein. Once transport has initiated, however, neither the EBs nor CLIP-170 are required to maintain transport flux along the mid-axon. In contrast, the +TIP Lis1 activates transport through a distinct mechanism and is required to maintain processive organelle transport along both the distal and mid-axon. Further, we show that the EB/CLIP-170/dynactin-dependent mechanism is required for the efficient initiation of transport from the distal axon for multiple distinct cargos, including mitochondria, Rab5-positive early endosomes, late endosomes/lysosomes, and TrkA-, TrkB-, and APP-positive organelles. Our observations indicate that there is an essential role for +TIPs in the regulation of retrograde transport initiation in the neuron.
Collapse
Affiliation(s)
- Armen J Moughamian
- Department of Physiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104-6085, USA
| | | | | | | | | |
Collapse
|
28
|
Applewhite DA, Grode KD, Duncan MC, Rogers SL. The actin-microtubule cross-linking activity of Drosophila Short stop is regulated by intramolecular inhibition. Mol Biol Cell 2013; 24:2885-93. [PMID: 23885120 PMCID: PMC3771950 DOI: 10.1091/mbc.e12-11-0798] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The authors investigated the regulation of the Drosophila actin-microtubule cross-linker Short stop (Shot) and found that Shot undergoes an intramolecular conformational change that regulates its cross-linking activity. This intramolecular interaction depends on Shot's NH2-terminal actin-binding domain and EF-hand-GAS2 domain. Actin and microtubule dynamics must be precisely coordinated during cell migration, mitosis, and morphogenesis—much of this coordination is mediated by proteins that physically bridge the two cytoskeletal networks. We have investigated the regulation of the Drosophila actin-microtubule cross-linker Short stop (Shot), a member of the spectraplakin family. Our data suggest that Shot's cytoskeletal cross-linking activity is regulated by an intramolecular inhibitory mechanism. In its inactive conformation, Shot adopts a “closed” conformation through interactions between its NH2-terminal actin-binding domain and COOH-terminal EF-hand-GAS2 domain. This inactive conformation is targeted to the growing microtubule plus end by EB1. On activation, Shot binds along the microtubule through its COOH-terminal GAS2 domain and binds to actin with its NH2-terminal tandem CH domains. We propose that this mechanism allows Shot to rapidly cross-link dynamic microtubules in response to localized activating signals at the cell cortex.
Collapse
Affiliation(s)
- Derek A Applewhite
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280 Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280 Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280 Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | | | | | | |
Collapse
|
29
|
Duellberg C, Fourniol FJ, Maurer SP, Roostalu J, Surrey T. End-binding proteins and Ase1/PRC1 define local functionality of structurally distinct parts of the microtubule cytoskeleton. Trends Cell Biol 2013; 23:54-63. [PMID: 23103209 DOI: 10.1016/j.tcb.2012.10.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/25/2012] [Accepted: 10/02/2012] [Indexed: 12/27/2022]
Abstract
The microtubule cytoskeleton is crucial for the intracellular organization of eukaryotic cells. It is a dynamic scaffold that has to perform a variety of very different functions. This multitasking is achieved through the activity of numerous microtubule-associated proteins. Two prominent classes of proteins are central to the selective recognition of distinct transiently existing structural features of the microtubule cytoskeleton. They define local functionality through tightly regulated protein recruitment. Here we summarize the recent developments in elucidating the molecular mechanism underlying the action of microtubule end-binding proteins (EBs) and antiparallel microtubule crosslinkers of the Ase1/PRC1 family that represent the core of these two recruitment modules. Despite their fundamentally different activities, these conserved families share several common features.
Collapse
Affiliation(s)
- Christian Duellberg
- London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | | | | | | | | |
Collapse
|
30
|
Komarova YA, Huang F, Geyer M, Daneshjou N, Garcia A, Idalino L, Kreutz B, Mehta D, Malik AB. VE-cadherin signaling induces EB3 phosphorylation to suppress microtubule growth and assemble adherens junctions. Mol Cell 2012; 48:914-25. [PMID: 23159740 DOI: 10.1016/j.molcel.2012.10.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 07/23/2012] [Accepted: 10/09/2012] [Indexed: 11/28/2022]
Abstract
Vascular endothelial (VE)-cadherin homophilic adhesion controls endothelial barrier permeability through assembly of adherens junctions (AJs). We observed that loss of VE-cadherin-mediated adhesion induced the activation of Src and phospholipase C (PLC)γ2, which mediated Ca(2+) release from endoplasmic reticulum (ER) stores, resulting in activation of calcineurin (CaN), a Ca(2+)-dependent phosphatase. Downregulation of CaN activity induced phosphorylation of serine 162 in end binding (EB) protein 3. This phospho-switch was required to destabilize the EB3 dimer, suppress microtubule (MT) growth, and assemble AJs. The phospho-defective S162A EB3 mutant, in contrast, induced MT growth in confluent endothelial monolayers and disassembled AJs. Thus, VE-cadherin outside-in signaling regulates cytosolic Ca(2+) homeostasis and EB3 phosphorylation, which are required for assembly of AJs. These results identify a pivotal function of VE-cadherin homophilic interaction in modulating endothelial barrier through the tuning of MT dynamics.
Collapse
Affiliation(s)
- Yulia A Komarova
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Nakano A, Takashima S. LKB1 and AMP-activated protein kinase: regulators of cell polarity. Genes Cells 2012; 17:737-47. [PMID: 22892070 PMCID: PMC3533759 DOI: 10.1111/j.1365-2443.2012.01629.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 06/25/2012] [Indexed: 12/25/2022]
Abstract
Adenosine monophosphate-activated protein kinase (AMPK), a metabolic protein kinase, and its upstream kinase LKB1 play crucial roles in the establishment and maintenance of cell polarity. Although the shapes of polarized cells display extraordinary diversity, the key molecules involved in cell polarity are relatively well conserved. Here, we review the mechanisms and factors responsible for organizing cell polarity and the role of LKB1 and AMPK in cell polarity.
Collapse
Affiliation(s)
- Atsushi Nakano
- Department of Molecular Cardiology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.
| | | |
Collapse
|
32
|
Calligaris D, Manatschal C, Marcellin M, Villard C, Monsarrat B, Burlet-Schiltz O, Steinmetz MO, Braguer D, Lafitte D, Verdier-Pinard P. Tyrosine-dependent capture of CAP-Gly domain-containing proteins in complex mixture by EB1 C-terminal peptidic probes. J Proteomics 2012; 75:3605-16. [PMID: 22543185 DOI: 10.1016/j.jprot.2012.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/26/2012] [Accepted: 04/04/2012] [Indexed: 11/25/2022]
Abstract
Microtubule dynamics is regulated by an array of microtubule associated proteins of which the microtubule plus-end tracking proteins (+TIPs) are prominent examples. +TIPs form dynamic interaction networks at growing microtubule ends in an EB1-dependent manner. The interaction between the C-terminal domain of EB1 and the CAP-Gly domains of the +TIP CLIP-170 depends on the last tyrosine residue of EB1. In the present study, we generated peptidic probes corresponding to the C-terminal tail of EB1 to affinity-capture binding partners from cell lysates. Using an MS-based approach, we showed that the last 15 amino-acid residues of EB1, either free or immobilized on beads, bound recombinant CAP-Gly domains of CLIP-170. We further demonstrate that this binding was prevented when the C-terminal tyrosine of EB1 was absent in the peptidic probes. Western blotting in combination with a label-free quantitative proteomic analysis revealed that the peptidic probe harboring the C-terminal tyrosine of EB1 effectively pulled-down proteins with CAP-Gly domains from endothelial cell extracts. Additional proteins known to interact directly or indirectly with EB1 and the microtubule cytoskeleton were also identified. Our peptidic probes represent valuable tools to detect changes induced in EB1-dependent +TIP networks by external cues such as growth factors and small molecules.
Collapse
Affiliation(s)
- David Calligaris
- Inserm UMR 911, Centre de Recherche en Oncologie biologique et en Oncopharmacologie 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
de Forges H, Bouissou A, Perez F. Interplay between microtubule dynamics and intracellular organization. Int J Biochem Cell Biol 2011; 44:266-74. [PMID: 22108200 DOI: 10.1016/j.biocel.2011.11.009] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 11/04/2011] [Accepted: 11/08/2011] [Indexed: 12/11/2022]
Abstract
Microtubules are hollow tubes essential for many cellular functions such as cell polarization and migration, intracellular trafficking and cell division. They are polarized polymers composed of α and β tubulin that are, in most cells, nucleated at the centrosome at the center of the cell. Microtubule plus-ends are oriented towards the periphery of the cell and explore the cytoplasm in a very dynamic manner. Microtubule alternate between phases of growth and shrinkage in a manner described as dynamic instability. Their dynamics is highly regulated by multiple factors: tubulin post-translational modifications such as detyrosination or acetylation, and microtubule-associated proteins, among them the plus-tip tracking proteins. This regulation is necessary for microtubule functions in the cell. In this review, we will focus on the role of microtubules in intracellular organization. After an overview of the mechanisms responsible for the regulation of microtubule dynamics, the major roles of microtubules dynamics in organelle positioning and organization in interphase cells will be discussed. Conversely, the role of certain organelles, like the nucleus and the Golgi apparatus as microtubule organizing centers will be reviewed. We will then consider the role of microtubules in the establishment and maintenance of cell polarity using few examples of cell polarization: epithelial cells, neurons and migrating cells. In these cells, the microtubule network is reorganized and undergoes specific and local regulation events; microtubules also participate in the intracellular reorganization of different organelles to ensure proper cell differentiation.
Collapse
|
34
|
Wojcechowskyj JA, Lee JY, Seeholzer SH, Doms RW. Quantitative phosphoproteomics of CXCL12 (SDF-1) signaling. PLoS One 2011; 6:e24918. [PMID: 21949786 PMCID: PMC3176801 DOI: 10.1371/journal.pone.0024918] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 08/19/2011] [Indexed: 11/18/2022] Open
Abstract
CXCL12 (SDF-1) is a chemokine that binds to and signals through the seven transmembrane receptor CXCR4. The CXCL12/CXCR4 signaling axis has been implicated in both cancer metastases and human immunodeficiency virus type 1 (HIV-1) infection and a more complete understanding of CXCL12/CXCR4 signaling pathways may support efforts to develop therapeutics for these diseases. Mass spectrometry-based phosphoproteomics has emerged as an important tool in studying signaling networks in an unbiased fashion. We employed stable isotope labeling with amino acids in cell culture (SILAC) quantitative phosphoproteomics to examine the CXCL12/CXCR4 signaling axis in the human lymphoblastic CEM cell line. We quantified 4,074 unique SILAC pairs from 1,673 proteins and 89 phosphopeptides were deemed CXCL12-responsive in biological replicates. Several well established CXCL12-responsive phosphosites such as AKT (pS473) and ERK2 (pY204) were confirmed in our study. We also validated two novel CXCL12-responsive phosphosites, stathmin (pS16) and AKT1S1 (pT246) by Western blot. Pathway analysis and comparisons with other phosphoproteomic datasets revealed that genes from CXCL12-responsive phosphosites are enriched for cellular pathways such as T cell activation, epidermal growth factor and mammalian target of rapamycin (mTOR) signaling, pathways which have previously been linked to CXCL12/CXCR4 signaling. Several of the novel CXCL12-responsive phosphoproteins from our study have also been implicated with cellular migration and HIV-1 infection, thus providing an attractive list of potential targets for the development of cancer metastasis and HIV-1 therapeutics and for furthering our understanding of chemokine signaling regulation by reversible phosphorylation.
Collapse
Affiliation(s)
- Jason A. Wojcechowskyj
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jessica Y. Lee
- Protein and Proteomics Core, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
| | - Steven H. Seeholzer
- Protein and Proteomics Core, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
| | - Robert W. Doms
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
35
|
Lomakin AJ, Kraikivski P, Semenova I, Ikeda K, Zaliapin I, Tirnauer JS, Akhmanova A, Rodionov V. Stimulation of the CLIP-170--dependent capture of membrane organelles by microtubules through fine tuning of microtubule assembly dynamics. Mol Biol Cell 2011; 22:4029-37. [PMID: 21880898 PMCID: PMC3204065 DOI: 10.1091/mbc.e11-03-0260] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cytoplasmic microtubules (MTs) continuously grow and shorten at their free plus ends, a behavior that allows them to capture membrane organelles destined for MT minus end-directed transport. In Xenopus melanophores, the capture of pigment granules (melanosomes) involves the +TIP CLIP-170, which is enriched at growing MT plus ends. Here we used Xenopus melanophores to test whether signals that stimulate minus end MT transport also enhance CLIP-170-dependent binding of melanosomes to MT tips. We found that these signals significantly (>twofold) increased the number of growing MT plus ends and their density at the cell periphery, thereby enhancing the likelihood of interaction with dispersed melanosomes. Computational simulations showed that local and global increases in the density of CLIP-170-decorated MT plus ends could reduce the half-time of melanosome aggregation by ~50%. We conclude that pigment granule aggregation signals in melanophores stimulate MT minus end-directed transport by the increasing number of growing MT plus ends decorated with CLIP-170 and redistributing these ends to more efficiently capture melanosomes throughout the cytoplasm.
Collapse
Affiliation(s)
- Alexis J Lomakin
- RD Berlin Center for Cell Analysis and Modeling and Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Gouveia SM, Akhmanova A. Cell and Molecular Biology of Microtubule Plus End Tracking Proteins. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 285:1-74. [DOI: 10.1016/b978-0-12-381047-2.00001-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|