1
|
Müller J, Furlan M, Settele D, Grupp B, Johnsson N. Transient septin sumoylation steers a Fir1-Skt5 protein complex between the split septin ring. J Cell Biol 2024; 223:e202301027. [PMID: 37938157 PMCID: PMC10631487 DOI: 10.1083/jcb.202301027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 11/09/2023] Open
Abstract
Ubiquitylation and phosphorylation control composition and architecture of the cell separation machinery in yeast and other eukaryotes. The significance of septin sumoylation on cell separation remained an enigma. Septins form an hourglass structure at the bud neck of yeast cells that transforms into a split septin double ring during mitosis. We discovered that sumoylated septins recruit the cytokinesis checkpoint protein Fir1 to the peripheral side of the septin hourglass just before its transformation into the double-ring configuration. As this transition occurs, Fir1 is released from the septins and seamlessly relocates between the split septin rings through synchronized binding to the scaffold Spa2. Fir1 binds and carries the membrane-bound Skt5 on its route to the division plane where the Fir1-Skt5 complex serves as receptor for chitin synthase III.
Collapse
Affiliation(s)
- Judith Müller
- Department of Biology, Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany
| | - Monique Furlan
- Department of Biology, Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany
| | - David Settele
- Department of Biology, Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany
| | - Benjamin Grupp
- Department of Biology, Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany
| | - Nils Johnsson
- Department of Biology, Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany
| |
Collapse
|
2
|
Jiang C, Wang H, Liu M, Wang L, Yang R, Wang P, Lu Z, Zhou Y, Zheng Z, Zhao G. Identification of chitin synthase activator in Aspergillus niger and its application in citric acid fermentation. Appl Microbiol Biotechnol 2022; 106:6993-7011. [PMID: 36149454 DOI: 10.1007/s00253-022-12174-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/02/2022]
Abstract
The biosynthesis of citric acid (CA) using Aspergillus niger as a carrier is influenced by mycelium morphology, which is determined by the expression level of morphology-related genes. As a key component of the fungal cell wall, chitin content has an important effect on morphogenesis, and to investigate the effects of this on fermentation performance, we used RNA interference to knockdown chitin synthase C (CHSC) and chitin synthase activator (CHS3) to obtain the single-gene mutant strains A. niger chs3 and chsC and the double mutant A. niger chs3C. We found that the CA fermentation performance of the two single mutants was significantly better than that of the double mutant. The mutant A. niger chs3-4 exhibited CA production potential compared to that of the parent strain in scale-up fermentation; we determined certain characteristics of CA high-yielding strain fermentation pellets. In addition, when chsC alone was silenced, there was very little change in chs3 mRNA levels, whereas those of chsC were significantly reduced when only chs3 was silenced. As this may be because of a synergistic effect between chsC and chs3, and we speculated that the latent activation target of CHS3 is CHSC, our results confirmed this hypothesis. This study is the first application of a separation and combination silence strategy of chitin synthase and chitin synthase activator in the morphology of A. niger CA fermentation. Furthermore, it provides new insights into the method for the morphological study of A. niger fermentation and the interaction of homologous genes. KEY POINTS: • The function of chitin synthase C (chsC) and chitin synthase activator (chs3) is tightly interrelated. • Mycelial morphology was optimized by knockdown of CHS3, resulting in the overproduction of citric acid. • The separation and combination silence strategies are promising tools for the interaction of homologous housekeeping genes.
Collapse
Affiliation(s)
- Chunxu Jiang
- Hefei Institutes of Physical Science, Comprehensive Laboratory Building, Chinese Academy of Sciences, 350 Shushanhu Road, P.O. Box 1138, Hefei Anhui, 230031, People's Republic of China.,University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Han Wang
- Hefei Institutes of Physical Science, Comprehensive Laboratory Building, Chinese Academy of Sciences, 350 Shushanhu Road, P.O. Box 1138, Hefei Anhui, 230031, People's Republic of China.
| | - Menghan Liu
- COFCO Biotechnology Co, Ltd. No. 1, Zhongliang Avenue, Bengbu Anhui, 233010, People's Republic of China
| | - Li Wang
- Hefei Institutes of Physical Science, Comprehensive Laboratory Building, Chinese Academy of Sciences, 350 Shushanhu Road, P.O. Box 1138, Hefei Anhui, 230031, People's Republic of China
| | - Ruwen Yang
- COFCO Biotechnology Co, Ltd. No. 1, Zhongliang Avenue, Bengbu Anhui, 233010, People's Republic of China
| | - Peng Wang
- Hefei Institutes of Physical Science, Comprehensive Laboratory Building, Chinese Academy of Sciences, 350 Shushanhu Road, P.O. Box 1138, Hefei Anhui, 230031, People's Republic of China
| | - Zongmei Lu
- COFCO Biotechnology Co, Ltd. No. 1, Zhongliang Avenue, Bengbu Anhui, 233010, People's Republic of China
| | - Yong Zhou
- COFCO Biotechnology Co, Ltd. No. 1, Zhongliang Avenue, Bengbu Anhui, 233010, People's Republic of China.
| | - Zhiming Zheng
- Hefei Institutes of Physical Science, Comprehensive Laboratory Building, Chinese Academy of Sciences, 350 Shushanhu Road, P.O. Box 1138, Hefei Anhui, 230031, People's Republic of China.
| | - Genhai Zhao
- Hefei Institutes of Physical Science, Comprehensive Laboratory Building, Chinese Academy of Sciences, 350 Shushanhu Road, P.O. Box 1138, Hefei Anhui, 230031, People's Republic of China.
| |
Collapse
|
3
|
Zhu W, Duan Y, Chen J, Merzendorfer H, Zou X, Yang Q. SERCA interacts with chitin synthase and participates in cuticular chitin biogenesis in Drosophila. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 145:103783. [PMID: 35525402 DOI: 10.1016/j.ibmb.2022.103783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/30/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
The biogenesis of chitin, a major structural polysaccharide found in the cuticle and peritrophic matrix, is crucial for insect growth and development. Chitin synthase, a membrane-integral β-glycosyltransferase, has been identified as the core of the chitin biogenesis machinery. However, a yet unknown number of auxiliary proteins appear to assist in chitin biosynthesis, whose precise function remains elusive. Here, we identified a sarco/endoplasmic reticulum Ca2+-ATPase (SERCA), in the fruit fly Drosophila melanogaster, as a chitin biogenesis-associated protein. The physical interaction between DmSERCA and epidermal chitin synthase (Krotzkopf verkehrt, Kkv) was demonstrated and analyzed using split-ubiquitin membrane yeast two-hybrid, bimolecular fluorescent complementation, pull-down, and immunoprecipitation assays. The interaction involves N-terminal regions (aa 48-81 and aa 247-33) and C-terminal regions (aa 743-783 and aa 824-859) of DmSERCA and two N-terminal regions (aa 121-179 and aa 369-539) of Kkv, all of which are predicted be transmembrane helices. While tissue-specific knock-down of DmSERCA in the epidermis caused larval and pupal lethality, the knock-down of DmSERCA in wings resulted in smaller and crinkled wings, a significant decrease in chitin deposition, and the loss of chitin lamellar structure. Although DmSERCA is well-known for its role in muscular contraction, this study reveals a novel role in chitin synthesis, contributing to our knowledge on the machinery of chitin biogenesis.
Collapse
Affiliation(s)
- Weixing Zhu
- School of Bioengineering, Dalian University of Technology, No. 2, Linggong Road, Dalian, 116024, China
| | - Yanwei Duan
- School of Bioengineering, Dalian University of Technology, No. 2, Linggong Road, Dalian, 116024, China
| | - Jiqiang Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Beijing, 100193, China
| | - Hans Merzendorfer
- Institute of Biology, University of Siegen, Adolf-Reichwein-Strasse 2, Siegen, 57068, Germany
| | - Xu Zou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Beijing, 100193, China
| | - Qing Yang
- School of Bioengineering, Dalian University of Technology, No. 2, Linggong Road, Dalian, 116024, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Beijing, 100193, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, No 7 Pengfei Road, Shenzhen, 518120, China.
| |
Collapse
|
4
|
Kong II, Turner TL, Kim H, Kim SR, Jin YS. Phenotypic evaluation and characterization of 21 industrial Saccharomyces cerevisiae yeast strains. FEMS Yeast Res 2019; 18:4794945. [PMID: 29325040 DOI: 10.1093/femsyr/foy001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 01/08/2018] [Indexed: 12/18/2022] Open
Abstract
Microorganisms have been studied and used extensively to produce value-added fuels and chemicals. Yeasts, specifically Saccharomyces cerevisiae, receive industrial attention because of their well-known ability to ferment glucose and produce ethanol. Thousands of natural or genetically modified S. cerevisiae have been found in industrial environments for various purposes. These industrial strains are isolated from industrial fermentation sites, and they are considered as potential host strains for superior fermentation processes. In many cases, industrial yeast strains have higher thermotolerance, increased resistances towards fermentation inhibitors and increased glucose fermentation rates under anaerobic conditions when compared with laboratory yeast strains. Despite the advantages of industrial strains, they are often not well characterized. Through screening and phenotypic characterization of commercially available industrial yeast strains, industrial fermentation processes requiring specific environmental conditions may be able to select an ideal starting yeast strain to be further engineered. Here, we have characterized and compared 21 industrial S. cerevisiae strains under multiple conditions, including their tolerance to varying pH conditions, resistance to fermentation inhibitors, sporulation efficiency and ability to ferment lignocellulosic sugars. These data may be useful for the selection of a parental strain for specific biotechnological applications of engineered yeast.
Collapse
Affiliation(s)
- In Iok Kong
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Timothy Lee Turner
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Heejin Kim
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Soo Rin Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Korea
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
5
|
Goblirsch BR, Arachea BT, Councell DJ, Wiener MC. Phosphoramidon inhibits the integral membrane protein zinc metalloprotease ZMPSTE24. Acta Crystallogr D Struct Biol 2018; 74:739-747. [PMID: 30082509 PMCID: PMC6079626 DOI: 10.1107/s2059798318003431] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/27/2018] [Indexed: 11/10/2022] Open
Abstract
The integral membrane protein zinc metalloprotease ZMPSTE24 possesses a completely novel structure, comprising seven long kinked transmembrane helices that encircle a voluminous 14 000 Å3 cavity within the membrane. Functionally conserved soluble zinc metalloprotease residues are contained within this cavity. As part of an effort to understand the structural and functional relationships between ZMPSTE24 and soluble zinc metalloproteases, the inhibition of ZMPSTE24 by phosphoramidon [N-(α-rhamnopyranosyl-oxyhydroxyphosphinyl)-Leu-Trp], a transition-state analog and competitive inhibitor of multiple soluble zinc metalloproteases, especially gluzincins, has been characterized functionally and structurally. The functional results, the determination of preliminary IC50 values by the use of an intramolecular quenched-fluorescence fluorogenic peptide assay, indicate that phosphoramidon inhibits ZMPSTE24 in a manner consistent with competitive inhibition. The structural results, a 3.85 Å resolution X-ray crystal structure of a ZMPSTE24-phosphoramidon complex, indicate that the overall binding mode observed between phosphoramidon and soluble gluzincins is conserved. Based on the structural data, a significantly lower potency than that observed for soluble gluzincins such as thermolysin and neprilysin is predicted. These results strongly suggest a close relationship between soluble gluzincins and the integral membrane protein zinc metalloprotease ZMPSTE24.
Collapse
Affiliation(s)
- Brandon R. Goblirsch
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908-0886, USA
| | - Buenafe T. Arachea
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908-0886, USA
| | - Daniel J. Councell
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908-0886, USA
| | - Michael C. Wiener
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908-0886, USA
| |
Collapse
|
6
|
Gohlke S, Heine D, Schmitz HP, Merzendorfer H. Septin-associated protein kinase Gin4 affects localization and phosphorylation of Chs4, the regulatory subunit of the Baker's yeast chitin synthase III complex. Fungal Genet Biol 2018; 117:11-20. [PMID: 29763674 DOI: 10.1016/j.fgb.2018.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/24/2018] [Accepted: 05/11/2018] [Indexed: 11/30/2022]
Abstract
Chitin is mainly formed by the chitin synthase III complex (CSIII) in yeast cells. This complex is considered to be composed of the catalytic subunit Chs3 and the regulatory subunit Chs4, both of which are phosphoproteins and transported to the plasma membrane by different trafficking routes. During cytokinesis, Chs3 associates with Chs4 and other proteins at the septin ring, which results in an active CSIII complex. In this study, we focused on the role of Chs4 as a regulatory subunit of the CSIII complex. We analyzed the dynamic localization and interaction of Chs3 and Chs4 during cell division, and found that both proteins transiently co-localize and physically interact only during bud formation and later in a period during septum formation and cytokinesis. To identify unknown binding partners of Chs4, we conducted different screening approaches, which yielded several novel candidates of Chs4-binding proteins including the septin-associated kinase Gin4. Our further studies confirmed this interaction and provided first evidence that Chs4 phosphorylation is partially dependent on Gin4, which is required for proper localization of Chs4 at the bud neck.
Collapse
Affiliation(s)
- Simon Gohlke
- Department of Biology and Chemistry, University of Osnabrueck, 49068 Osnabrueck, Germany; Institute of Biology, University of Siegen, 57068 Siegen, Germany
| | - Daniela Heine
- Department of Biology and Chemistry, University of Osnabrueck, 49068 Osnabrueck, Germany
| | - Hans-Peter Schmitz
- Department of Biology and Chemistry, University of Osnabrueck, 49068 Osnabrueck, Germany
| | | |
Collapse
|
7
|
Al Abdallah Q, Martin-Vicente A, Souza ACO, Ge W, Fortwendel JR. C-terminus Proteolysis and Palmitoylation Cooperate for Optimal Plasma Membrane Localization of RasA in Aspergillus fumigatus. Front Microbiol 2018; 9:562. [PMID: 29632525 PMCID: PMC5879109 DOI: 10.3389/fmicb.2018.00562] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/12/2018] [Indexed: 11/22/2022] Open
Abstract
RasA is a major regulator of fungal morphogenesis and virulence in Aspergillus fumigatus. The proper localization of RasA to the plasma membrane is essential for the formation of invasive hyphae during infection. In yeast, the localization of Ras2p to the plasma membrane is orchestrated by several post-translational modifications (PTM) at the C-terminal CAAX box that are thought to occur in sequential order. These PTMs include: (1) CAAX motif farnesylation by the farnesyltransferase complex composed of Ram1p and Ram2p; (2) proteolysis of the -AAX residues by Rce1p or Ste24p; (3) methylation of the remaining prenylated cysteine residue by Ste14p, and; (4) palmitoylation at a single conserved cysteine residue mediated by the Erf2p/Erf4p palmitoyltransferase. We previously reported that homologs of each RasA PTM enzyme are conserved in A. fumigatus. Additionally, we delineated a major role for protein farnesylation in A. fumigatus growth and virulence. In this work, we characterize the post-prenylation processing enzymes of RasA in A. fumigatus. The genes encoding the RasA post-prenylation enzymes were first deleted and examined for their roles in growth and regulation of RasA. Only when strains lacked cppB, the A. fumigatus homologue of yeast RCE1, there was a significant reduction in fungal growth and conidial germination. In addition, cppB-deletion mutants displayed hypersensitivity to the cell wall-perturbing agents Calcofluor White and Congo Red and the cell wall biosynthesis inhibitor Caspofungin. In contrast to the previously published data in yeast, the deletion of post-prenylation modifying enzymes did not alter the plasma membrane localization or activation of RasA. To delineate the molecular mechanisms underlying these differences, we investigated the interplay between dual-palmitoylation of the RasA hypervariable region and CAAX proteolysis for stabilization of RasA at the plasma membrane. Our data indicate that, in the absence of proper CAAX proteolysis, RasA accumulation at the plasma membrane is stabilized by dual palmitoyl groups on the dual cysteine residues. Therefore, we conclude CAAX proteolysis and dual-palmitoylation of the hypervariable region is important for maintaining a stable attachment association of RasA with the plasma membrane to support optimal fungal growth and development.
Collapse
Affiliation(s)
- Qusai Al Abdallah
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Adela Martin-Vicente
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Ana Camila Oliveira Souza
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Wenbo Ge
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Jarrod R Fortwendel
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
8
|
Rico-Ramírez AM, Roberson RW, Riquelme M. Imaging the secretory compartments involved in the intracellular traffic of CHS-4, a class IV chitin synthase, in Neurospora crassa. Fungal Genet Biol 2018; 117:30-42. [PMID: 29601947 DOI: 10.1016/j.fgb.2018.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/25/2018] [Accepted: 03/26/2018] [Indexed: 12/16/2022]
Abstract
In Neurospora crassa hyphae the localization of all seven chitin synthases (CHSs) at the Spitzenkörper (SPK) and at developing septa has been well analyzed. Hitherto, the mechanisms of CHSs traffic and sorting from synthesis to delivery sites remain largely unexplored. In Saccharomyces cerevisiae exit of Chs3p from the endoplasmic reticulum (ER) requires chaperone Chs7p. Here, we analyzed the role of CSE-7, N. crassa Chs7p orthologue, in the biogenesis of CHS-4 (orthologue of Chs3p). In a N. crassa Δcse-7 mutant, CHS-4-GFP no longer accumulated at the SPK and septa. Instead, fluorescence was retained in hyphal subapical regions in an extensive network of elongated cisternae (NEC) referred to previously as tubular vacuoles. In a complemented strain expressing a copy of cse-7 the localization of CHS-4-GFP at the SPK and septa was restored, providing evidence that CSE-7 is necessary for the localization of CHS-4 at hyphal tips and septa. CSE-7 was revealed at delimited regions of the ER at the immediacies of nuclei, at the NEC, and remarkably also at septa and the SPK. The organization of the NEC was dependent on the cytoskeleton. SEC-63, an extensively used ER marker, and NCA-1, a SERCA-type ATPase previously localized at the nuclear envelope, were used as markers to discern the nature of the membranes containing CSE-7. Both SEC-63 and NCA-1 were found at the nuclear envelope, but also at regions of the NEC. However, at the NEC only NCA-1 co-localized extensively with CSE-7. Observations by transmission electron microscopy revealed abundant rough ER sheets and distinct electron translucent smooth flattened cisternae, which could correspond collectively to the NEC, thorough the subapical cytoplasm. This study identifies CSE-7 as the putative ER receptor for its cognate cargo, the polytopic membrane protein CHS-4, and elucidates the complexity of the ER system in filamentous fungi.
Collapse
Affiliation(s)
- Adriana M Rico-Ramírez
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, BC 22860, Mexico
| | | | - Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, BC 22860, Mexico.
| |
Collapse
|
9
|
Gohlke S, Muthukrishnan S, Merzendorfer H. In Vitro and In Vivo Studies on the Structural Organization of Chs3 from Saccharomyces cerevisiae. Int J Mol Sci 2017; 18:E702. [PMID: 28346351 PMCID: PMC5412288 DOI: 10.3390/ijms18040702] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/14/2017] [Accepted: 03/22/2017] [Indexed: 12/18/2022] Open
Abstract
Chitin biosynthesis in yeast is accomplished by three chitin synthases (Chs) termed Chs1, Chs2 and Chs3, of which the latter accounts for most of the chitin deposited within the cell wall. While the overall structures of Chs1 and Chs2 are similar to those of other chitin synthases from fungi and arthropods, Chs3 lacks some of the C-terminal transmembrane helices raising questions regarding its structure and topology. To fill this gap of knowledge, we performed bioinformatic analyses and protease protection assays that revealed significant information about the catalytic domain, the chitin-translocating channel and the interfacial helices in between. In particular, we identified an amphipathic, crescent-shaped α-helix attached to the inner side of the membrane that presumably controls the channel entrance and a finger helix pushing the polymer into the channel. Evidence has accumulated in the past years that chitin synthases form oligomeric complexes, which may be necessary for the formation of chitin nanofibrils. However, the functional significance for living yeast cells has remained elusive. To test Chs3 oligomerization in vivo, we used bimolecular fluorescence complementation. We detected oligomeric complexes at the bud neck, the lateral plasma membrane, and in membranes of Golgi vesicles, and analyzed their transport route using various trafficking mutants.
Collapse
Affiliation(s)
- Simon Gohlke
- Department of Biology and Chemistry, University of Osnabrück, 49068 Osnabrück, Germany.
- Institute of Biology, University of Siegen, 57068 Siegen, Germany.
| | - Subbaratnam Muthukrishnan
- Department of Biochemistry & Molecular Biophysics, Kansas-State University, Manhattan 66506, KS, USA.
| | - Hans Merzendorfer
- Department of Biology and Chemistry, University of Osnabrück, 49068 Osnabrück, Germany.
- Institute of Biology, University of Siegen, 57068 Siegen, Germany.
| |
Collapse
|
10
|
Metabolic engineering of a haploid strain derived from a triploid industrial yeast for producing cellulosic ethanol. Metab Eng 2017; 40:176-185. [DOI: 10.1016/j.ymben.2017.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/06/2017] [Accepted: 02/14/2017] [Indexed: 12/25/2022]
|
11
|
Singh S, Vijaya Prabhu S, Suryanarayanan V, Bhardwaj R, Singh SK, Dubey VK. Molecular docking and structure-based virtual screening studies of potential drug target, CAAX prenyl proteases, of Leishmania donovani. J Biomol Struct Dyn 2016; 34:2367-86. [PMID: 26551589 DOI: 10.1080/07391102.2015.1116411] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Targeting CAAX prenyl proteases of Leishmania donovani can be a good approach towards developing a drug molecule against Leishmaniasis. We have modeled the structure of CAAX prenyl protease I and II of L. donovani, using homology modeling approach. The structures were further validated using Ramachandran plot and ProSA. Active site prediction has shown difference in the amino acid residues present at the active site of CAAX prenyl protease I and CAAX prenyl protease II. The electrostatic potential surface of the CAAX prenyl protease I and II has revealed that CAAX prenyl protease I has more electropositive and electronegative potentials as compared CAAX prenyl protease II suggesting significant difference in their activity. Molecular docking with known bisubstrate analog inhibitors of protein farnesyl transferase and peptidyl (acyloxy) methyl ketones reveals significant binding of these molecules with CAAX prenyl protease I, but comparatively less binding with CAAX prenyl protease II. New and potent inhibitors were also found using structure-based virtual screening. The best docked compounds obtained from virtual screening were subjected to induced fit docking to get best docked configurations. Prediction of drug-like characteristics has revealed that the best docked compounds are in line with Lipinski's rule. Moreover, best docked protein-ligand complexes of CAAX prenyl protease I and II are found to be stable throughout 20 ns simulation. Overall, the study has identified potent drug molecules targeting CAAX prenyl protease I and II of L. donovani whose drug candidature can be verified further using biochemical and cellular studies.
Collapse
Affiliation(s)
- Shalini Singh
- a Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Guwahati , Assam 781039 , India
| | - Sitrarasu Vijaya Prabhu
- b Computer Aided Drug Designing and Molecular Modeling Laboratory, Department of Bioinformatics , Alagappa University , Karaikudi , Tamil Nadu 630004 , India
| | - Venkatesan Suryanarayanan
- b Computer Aided Drug Designing and Molecular Modeling Laboratory, Department of Bioinformatics , Alagappa University , Karaikudi , Tamil Nadu 630004 , India
| | - Ruchika Bhardwaj
- a Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Guwahati , Assam 781039 , India
| | - Sanjeev Kumar Singh
- b Computer Aided Drug Designing and Molecular Modeling Laboratory, Department of Bioinformatics , Alagappa University , Karaikudi , Tamil Nadu 630004 , India
| | - Vikash Kumar Dubey
- a Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Guwahati , Assam 781039 , India
| |
Collapse
|
12
|
Nakjang S, Williams TA, Heinz E, Watson AK, Foster PG, Sendra KM, Heaps SE, Hirt RP, Martin Embley T. Reduction and expansion in microsporidian genome evolution: new insights from comparative genomics. Genome Biol Evol 2014; 5:2285-303. [PMID: 24259309 PMCID: PMC3879972 DOI: 10.1093/gbe/evt184] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Microsporidia are an abundant group of obligate intracellular parasites of other eukaryotes, including immunocompromised humans, but the molecular basis of their intracellular lifestyle and pathobiology are poorly understood. New genomes from a taxonomically broad range of microsporidians, complemented by published expression data, provide an opportunity for comparative analyses to identify conserved and lineage-specific patterns of microsporidian genome evolution that have underpinned this success. In this study, we infer that a dramatic bottleneck in the last common microsporidian ancestor (LCMA) left a small conserved core of genes that was subsequently embellished by gene family expansion driven by gene acquisition in different lineages. Novel expressed protein families represent a substantial fraction of sequenced microsporidian genomes and are significantly enriched for signals consistent with secretion or membrane location. Further evidence of selection is inferred from the gain and reciprocal loss of functional domains between paralogous genes, for example, affecting transport proteins. Gene expansions among transporter families preferentially affect those that are located on the plasma membrane of model organisms, consistent with recruitment to plug conserved gaps in microsporidian biosynthesis and metabolism. Core microsporidian genes shared with other eukaryotes are enriched in orthologs that, in yeast, are highly expressed, highly connected, and often essential, consistent with strong negative selection against further reduction of the conserved gene set since the LCMA. Our study reveals that microsporidian genome evolution is a highly dynamic process that has balanced constraint, reductive evolution, and genome expansion during adaptation to an extraordinarily successful obligate intracellular lifestyle.
Collapse
Affiliation(s)
- Sirintra Nakjang
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Demaeght P, Osborne EJ, Odman-Naresh J, Grbić M, Nauen R, Merzendorfer H, Clark RM, Van Leeuwen T. High resolution genetic mapping uncovers chitin synthase-1 as the target-site of the structurally diverse mite growth inhibitors clofentezine, hexythiazox and etoxazole in Tetranychus urticae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 51:52-61. [PMID: 24859419 PMCID: PMC4124130 DOI: 10.1016/j.ibmb.2014.05.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/09/2014] [Accepted: 05/10/2014] [Indexed: 05/09/2023]
Abstract
The acaricides clofentezine, hexythiazox and etoxazole are commonly referred to as 'mite growth inhibitors', and clofentezine and hexythiazox have been used successfully for the integrated control of plant mite pests for decades. Although they are still important today, their mode of action has remained elusive. Recently, a mutation in chitin synthase 1 (CHS1) was linked to etoxazole resistance. In this study, we identified and investigated a Tetranychus urticae strain (HexR) harboring recessive, monogenic resistance to each of hexythiazox, clofentezine, and etoxazole. To elucidate if there is a common genetic basis for the observed cross-resistance, we adapted a previously developed bulk segregant analysis method to map with high resolution a single, shared resistance locus for all three compounds. This finding indicates that the underlying molecular basis for resistance to all three compounds is identical. This locus is centered on the CHS1 gene, and as supported by additional genetic and biochemical studies, a non-synonymous variant (I1017F) in CHS1 associates with resistance to each of the tested acaricides in HexR. Our findings thus demonstrate a shared molecular mode of action for the chemically diverse mite growth inhibitors clofentezine, hexythiazox and etoxazole as inhibitors of an essential, non-catalytic activity of CHS1. Given the previously documented cross-resistance between clofentezine, hexythiazox and the benzyolphenylurea (BPU) compounds flufenoxuron and cycloxuron, CHS1 should be also considered as a potential target-site of insecticidal BPUs.
Collapse
Affiliation(s)
- Peter Demaeght
- Department of Crop Protection, Faculty of Bioscience Engineering, Coupure Links 653, Ghent University, B-9000 Ghent, Belgium
| | - Edward J Osborne
- Department of Biology, University of Utah, Salt Lake City, 257 South 1400 East, Utah 84112, USA
| | - Jothini Odman-Naresh
- Department of Biology/Chemistry, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
| | - Miodrag Grbić
- Department of Biology, The University of Western Ontario, 1151 Richmond St., London N6A 5B7, Canada; Instituto de Ciencias de la Vid y el Vino, 26006 Logroño, Spain
| | - Ralf Nauen
- R&D, Pest Control Biology, Bayer CropScience, Alfred Nobel Str. 50, D-40789 Monheim, Germany
| | - Hans Merzendorfer
- Department of Biology/Chemistry, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
| | - Richard M Clark
- Department of Biology, University of Utah, Salt Lake City, 257 South 1400 East, Utah 84112, USA; Center for Cell and Genome Science, University of Utah, Salt Lake City, 257 South 1400 East, Utah 84112, USA
| | - Thomas Van Leeuwen
- Department of Crop Protection, Faculty of Bioscience Engineering, Coupure Links 653, Ghent University, B-9000 Ghent, Belgium; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Sacristan C, Manzano-Lopez J, Reyes A, Spang A, Muñiz M, Roncero C. Oligomerization of the chitin synthase Chs3 is monitored at the Golgi and affects its endocytic recycling. Mol Microbiol 2013; 90:252-66. [DOI: 10.1111/mmi.12360] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Carlos Sacristan
- Instituto de Biología Funcional y Genómica and Departamento de Microbiología y Genética; CSIC/Universidad de Salamanca; Salamanca; Spain
| | | | - Abigail Reyes
- Instituto de Biología Funcional y Genómica and Departamento de Microbiología y Genética; CSIC/Universidad de Salamanca; Salamanca; Spain
| | - Anne Spang
- Biozentrum, Growth & Development; University of Basel; Basel; Switzerland
| | - Manuel Muñiz
- Departamento de Biología Celular; Universidad de Sevilla; Sevilla; Spain
| | - Cesar Roncero
- Instituto de Biología Funcional y Genómica and Departamento de Microbiología y Genética; CSIC/Universidad de Salamanca; Salamanca; Spain
| |
Collapse
|
15
|
Orlean P. Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall. Genetics 2012; 192:775-818. [PMID: 23135325 PMCID: PMC3522159 DOI: 10.1534/genetics.112.144485] [Citation(s) in RCA: 323] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 08/06/2012] [Indexed: 01/02/2023] Open
Abstract
The wall gives a Saccharomyces cerevisiae cell its osmotic integrity; defines cell shape during budding growth, mating, sporulation, and pseudohypha formation; and presents adhesive glycoproteins to other yeast cells. The wall consists of β1,3- and β1,6-glucans, a small amount of chitin, and many different proteins that may bear N- and O-linked glycans and a glycolipid anchor. These components become cross-linked in various ways to form higher-order complexes. Wall composition and degree of cross-linking vary during growth and development and change in response to cell wall stress. This article reviews wall biogenesis in vegetative cells, covering the structure of wall components and how they are cross-linked; the biosynthesis of N- and O-linked glycans, glycosylphosphatidylinositol membrane anchors, β1,3- and β1,6-linked glucans, and chitin; the reactions that cross-link wall components; and the possible functions of enzymatic and nonenzymatic cell wall proteins.
Collapse
Affiliation(s)
- Peter Orlean
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
16
|
Rockenbauch U, Ritz AM, Sacristan C, Roncero C, Spang A. The complex interactions of Chs5p, the ChAPs, and the cargo Chs3p. Mol Biol Cell 2012; 23:4402-15. [PMID: 23015758 PMCID: PMC3496614 DOI: 10.1091/mbc.e11-12-1015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The exomer complex, consisting of ChAPs and Chs5p, exports specialized cargoes from the TGN. ChAPs bind to Chs5p through TPR repeats, whereas cargo specificity of the ChAPs is outside these interaction modules. Chs3p and Chs6p may require a complex interaction to form a complex. The exomer complex is a putative vesicle coat required for the direct transport of a subset of cargoes from the trans-Golgi network (TGN) to the plasma membrane. Exomer comprises Chs5p and the ChAPs family of proteins (Chs6p, Bud7p, Bch1p, and Bch2p), which are believed to act as cargo receptors. In particular, Chs6p is required for the transport of the chitin synthase Chs3p to the bud neck. However, how the ChAPs associate with Chs5p and recognize cargo is not well understood. Using domain-switch chimeras of Chs6p and Bch2p, we show that four tetratricopeptide repeats (TPRs) are involved in interaction with Chs5p. Because these roles are conserved among the ChAPs, the TPRs are interchangeable among different ChAP proteins. In contrast, the N-terminal and the central parts of the ChAPs contribute to cargo specificity. Although the entire N-terminal domain of Chs6p is required for Chs3p export at all cell cycle stages, the central part seems to predominantly favor Chs3p export in small-budded cells. The cargo Chs3p probably also uses a complex motif for the interaction with Chs6, as the C-terminus of Chs3p interacts with Chs6p and is necessary, but not sufficient, for TGN export.
Collapse
|
17
|
Merzendorfer H, Kim HS, Chaudhari SS, Kumari M, Specht CA, Butcher S, Brown SJ, Manak JR, Beeman RW, Kramer KJ, Muthukrishnan S. Genomic and proteomic studies on the effects of the insect growth regulator diflubenzuron in the model beetle species Tribolium castaneum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:264-76. [PMID: 22212827 PMCID: PMC5066571 DOI: 10.1016/j.ibmb.2011.12.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/05/2011] [Accepted: 12/09/2011] [Indexed: 05/04/2023]
Abstract
Several benzoylphenyl urea-derived insecticides such as diflubenzuron (DFB, Dimilin) are in wide use to control various insect pests. Although this class of compounds is known to disrupt molting and to affect chitin content, their precise mode of action is still not understood. To gain a broader insight into the mechanism underlying the insecticidal effects of benzoylphenyl urea compounds, we conducted a comprehensive study with the model beetle species and stored product pest Tribolium castaneum (red flour beetle) utilizing genomic and proteomic approaches. DFB was added to a wheat flour-based diet at various concentrations and fed to larvae and adults. We observed abortive molting, hatching defects and reduced chitin amounts in the larval cuticle, the peritrophic matrix and eggs. Electron microscopic examination of the larval cuticle revealed major structural changes and a loss of lamellate structure of the procuticle. We used a genomic tiling array for determining relative expression levels of about 11,000 genes predicted by the GLEAN algorithm. About 6% of all predicted genes were more than 2-fold up- or down-regulated in response to DFB treatment. Genes encoding enzymes involved in chitin metabolism were unexpectedly unaffected, but many genes encoding cuticle proteins were affected. In addition, several genes presumably involved in detoxification pathways were up-regulated. Comparative 2D gel electrophoresis of proteins extracted from the midgut revealed 388 protein spots, of which 7% were significantly affected in their levels by DFB treatment as determined by laser densitometry. Mass spectrometric identification revealed that UDP-N-acetylglucosamine pyrophosphorylase and glutathione synthetase were up-regulated. In summary, the red flour beetle turned out to be a good model organism for investigating the global effects of bioactive materials such as insect growth regulators and other insecticides. The results of this study recapitulate all of the different DFB-induced symptoms in a single model insect, which have been previously found in several different insect species, and further illustrate that DFB treatment causes a wide range of effects at the molecular level.
Collapse
Affiliation(s)
- Hans Merzendorfer
- Department of Biology, University of Osnabrück, 49069 Osnabrück, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
The cellular basis of chitin synthesis in fungi and insects: common principles and differences. Eur J Cell Biol 2011; 90:759-69. [PMID: 21700357 DOI: 10.1016/j.ejcb.2011.04.014] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Chitin is a polymer of N-acetylglucosamine, which assembles into microfibrils of about 20 sugar chains. These microfibrils serve as a structural component of natural biocomposites found in cell walls and specialized extracellular matrices such as cuticles and peritrophic membranes. Chitin synthesis is performed by a wide range of organisms including fungi and insects. The underlying biosynthetic machinery is highly conserved and involves several enzymes, of which the chitin synthase is the key enzyme. This membrane integral glycosyltransferase catalyzes the polymerization reaction. Most of what we know about chitin synthesis derives from studies of fungal and insect systems. In this review, common principles and differences will be worked out at the levels of gene organization, enzymatic properties, cellular localization and regulation.
Collapse
|