1
|
Domenech-Bendaña A, Salazar N, Locascio A, Ponce-Mora A, Gimeno-Mallench L, Bejarano E. Targeting Connexins Biology as Therapeutic Strategies Against Retinal Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1468:485-489. [PMID: 39930242 DOI: 10.1007/978-3-031-76550-6_79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Gap junctions are intercellular channels formed by structural elements called connexins. These intercellular channels play a key role in retinal homeostasis by enabling the exchange of metabolites between neighbouring cells. Several connexins are expressed in different retinal cells, suggesting that the permeability properties of the channels and their physiological relevance could be cell-type dependent. Many studies have revealed that dysfunctional gap junction activity contributes to the development and worsening of retinal diseases. Unravelling the complexity of the retinal connexins' biology is essential to designing effective therapeutic strategies. For instance, new drugs or connexin mimetic peptides that selectively modulate connexin isoforms in each cell type are currently explored as therapeutic options for retinal diseases. To date, Cx43 mimetic peptides have been tested for the treatment of different retinal pathologies.
Collapse
Affiliation(s)
- Alicia Domenech-Bendaña
- School of Health Sciences and Veterinary School, Universidad CEU Cardenal Herrera, CEU Universities, Moncada, Valencia, Spain
| | - Nicolle Salazar
- School of Health Sciences and Veterinary School, Universidad CEU Cardenal Herrera, CEU Universities, Moncada, Valencia, Spain
| | - Antonella Locascio
- School of Health Sciences and Veterinary School, Universidad CEU Cardenal Herrera, CEU Universities, Moncada, Valencia, Spain
| | - Alejandro Ponce-Mora
- School of Health Sciences and Veterinary School, Universidad CEU Cardenal Herrera, CEU Universities, Moncada, Valencia, Spain
| | - Lucía Gimeno-Mallench
- School of Health Sciences and Veterinary School, Universidad CEU Cardenal Herrera, CEU Universities, Moncada, Valencia, Spain
| | - Eloy Bejarano
- School of Health Sciences and Veterinary School, Universidad CEU Cardenal Herrera, CEU Universities, Moncada, Valencia, Spain.
| |
Collapse
|
2
|
Domingues N, Ribeiro-Rodrigues T, Girão H. Should it stay or should it go: gap junction protein GJA1/Cx43 conveys damaged lysosomes to the cell periphery to potentiate exocytosis. Autophagy 2024; 20:2816-2818. [PMID: 39394955 PMCID: PMC11587831 DOI: 10.1080/15548627.2024.2408711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/14/2024] Open
Abstract
GJA1/Cx43 (gap junction protein alpha 1) has long been associated with gap junctions-mediated communication between adjacent cells. However, recent data have defied this concept, with studies implicating GJA1 in other biological processes, such as macroautophagy/autophagy regulation, mitochondrial activity and extracellular vesicles biology. In our recent study we unveiled an additional role played by GJA1 in lysosomal trafficking. We demonstrate that GJA1 promotes the exocytosis of damaged lysosomes, through a mechanism that relies on ACTR2/ARP2-ACTR3/ARP3-dependent actin remodeling. Our findings ascribe to GJA1 an important role during pathogen infection and lysosomal storage disorders, favoring the release of dysfunctional lysosomes.
Collapse
Affiliation(s)
- Neuza Domingues
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University Coimbra, Coimbra, Portugal
- Faculty of Medicine, University Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University Coimbra, Coimbra, Portugal
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
| | - Teresa Ribeiro-Rodrigues
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University Coimbra, Coimbra, Portugal
- Faculty of Medicine, University Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University Coimbra, Coimbra, Portugal
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal
| | - Henrique Girão
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University Coimbra, Coimbra, Portugal
- Faculty of Medicine, University Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University Coimbra, Coimbra, Portugal
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal
| |
Collapse
|
3
|
Maroli G, Schänzer A, Günther S, Garcia-Gonzalez C, Rupp S, Schlierbach H, Chen Y, Graumann J, Wietelmann A, Kim J, Braun T. Inhibition of autophagy prevents cardiac dysfunction at early stages of cardiomyopathy in Bag3-deficient hearts. J Mol Cell Cardiol 2024; 193:53-66. [PMID: 38838815 DOI: 10.1016/j.yjmcc.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
The HSP70 co-chaperone BAG3 targets unfolded proteins to degradation via chaperone assisted selective autophagy (CASA), thereby playing pivotal roles in the proteostasis of adult cardiomyocytes (CMs). However, the complex functions of BAG3 for regulating autophagy in cardiac disease are not completely understood. Here, we demonstrate that conditional inactivation of Bag3 in murine CMs leads to age-dependent dysregulation of autophagy, associated with progressive cardiomyopathy. Surprisingly, Bag3-deficient CMs show increased canonical and non-canonical autophagic flux in the juvenile period when first signs of cardiac dysfunction appear, but reduced autophagy during later stages of the disease. Juvenile Bag3-deficient CMs are characterized by decreased levels of soluble proteins involved in synchronous contraction of the heart, including the gap junction protein Connexin 43 (CX43). Reiterative administration of chloroquine (CQ), an inhibitor of canonical and non-canonical autophagy, but not inactivation of Atg5, restores normal concentrations of soluble cardiac proteins in juvenile Bag3-deficient CMs without an increase of detergent-insoluble proteins, leading to complete recovery of early-stage cardiac dysfunction in Bag3-deficient mice. We conclude that loss of Bag3 in CMs leads to age-dependent differences in autophagy and cardiac dysfunction. Increased non-canonical autophagic flux in the juvenile period removes soluble proteins involved in cardiac contraction, leading to early-stage cardiomyopathy, which is prevented by reiterative CQ treatment.
Collapse
Affiliation(s)
- Giovanni Maroli
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany.; Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany..
| | - Anne Schänzer
- Institute of Neuropathology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Stefan Günther
- Max Planck Institute for Heart and Lung Research, Bioinformatics and deep sequencing platform, Ludwigstr. 43., 61231 Bad Nauheim, Germany
| | - Claudia Garcia-Gonzalez
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany.; Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Spain
| | - Stefan Rupp
- Department of Pediatric Cardiology and Congenital Heart Disease, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Hannah Schlierbach
- Institute of Neuropathology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Yanpu Chen
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Johannes Graumann
- Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany.; The German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main
| | - Astrid Wietelmann
- Magnetic Resonance Imaging Group, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Johnny Kim
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany.; The German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main..
| |
Collapse
|
4
|
Totland MZ, Knudsen LM, Rasmussen NL, Omori Y, Sørensen V, Elster VCW, Stenersen JM, Larsen M, Jensen CL, Zickfeldt Lade AA, Bruusgaard E, Basing S, Kryeziu K, Brech A, Aasen T, Lothe RA, Leithe E. The E3 ubiquitin ligase ITCH negatively regulates intercellular communication via gap junctions by targeting connexin43 for lysosomal degradation. Cell Mol Life Sci 2024; 81:171. [PMID: 38597989 PMCID: PMC11006747 DOI: 10.1007/s00018-024-05165-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 04/11/2024]
Abstract
Intercellular communication via gap junctions has a fundamental role in regulating cell growth and tissue homeostasis, and its dysregulation may be involved in cancer development and radio- and chemotherapy resistance. Connexin43 (Cx43) is the most ubiquitously expressed gap junction channel protein in human tissues. Emerging evidence indicates that dysregulation of the sorting of Cx43 to lysosomes is important in mediating the loss of Cx43-based gap junctions in cancer cells. However, the molecular basis underlying this process is currently poorly understood. Here, we identified the E3 ubiquitin ligase ITCH as a novel regulator of intercellular communication via gap junctions. We demonstrate that ITCH promotes loss of gap junctions in cervical cancer cells, which is associated with increased degradation of Cx43 in lysosomes. The data further indicate that ITCH interacts with and regulates Cx43 ubiquitination and that the ITCH-induced loss of Cx43-based gap junctions requires its catalytic HECT (homologous to E6-AP C-terminus) domain. The data also suggest that the ability of ITCH to efficiently promote loss of Cx43-based gap junctions and degradation of Cx43 depends on a functional PY (PPXY) motif in the C-terminal tail of Cx43. Together, these data provide new insights into the molecular basis underlying the degradation of Cx43 and have implications for the understanding of how intercellular communication via gap junctions is lost during cancer development.
Collapse
Affiliation(s)
- Max Zachrisson Totland
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, NO-0424, Norway
| | - Lars Mørland Knudsen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, NO-0424, Norway
| | - Nikoline Lander Rasmussen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, NO-0424, Norway
- Centre for Molecular Medicine Norway, Faculty of Medicine, Oslo, Norway
| | - Yasufumi Omori
- Department of Molecular and Tumour Pathology, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Vigdis Sørensen
- Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital, Oslo, NO-0424, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, 0379, Norway
| | - Vilde C Wivestad Elster
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, NO-0424, Norway
| | - Jakob Mørkved Stenersen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, NO-0424, Norway
| | - Mathias Larsen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, NO-0424, Norway
| | - Caroline Lunder Jensen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, NO-0424, Norway
| | - Anna A Zickfeldt Lade
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, NO-0424, Norway
| | - Emilie Bruusgaard
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, NO-0424, Norway
| | - Sebastian Basing
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, NO-0424, Norway
| | - Kushtrim Kryeziu
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, NO-0424, Norway
| | - Andreas Brech
- Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital, Oslo, NO-0424, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, 0379, Norway
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, Oslo, 0316, Norway
| | - Trond Aasen
- Patologia Molecular Translacional, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, Barcelona, 08035, Spain
| | - Ragnhild A Lothe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, NO-0424, Norway
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, Oslo, 0316, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, 0317, Norway
| | - Edward Leithe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, NO-0424, Norway
| |
Collapse
|
5
|
Giansanti M, Theinert T, Boeing SK, Haas D, Schlegel PG, Vacca P, Nazio F, Caruana I. Exploiting autophagy balance in T and NK cells as a new strategy to implement adoptive cell therapies. Mol Cancer 2023; 22:201. [PMID: 38071322 PMCID: PMC10709869 DOI: 10.1186/s12943-023-01893-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
Autophagy is an essential cellular homeostasis pathway initiated by multiple stimuli ranging from nutrient deprivation to viral infection, playing a key role in human health and disease. At present, a growing number of evidence suggests a role of autophagy as a primitive innate immune form of defense for eukaryotic cells, interacting with components of innate immune signaling pathways and regulating thymic selection, antigen presentation, cytokine production and T/NK cell homeostasis. In cancer, autophagy is intimately involved in the immunological control of tumor progression and response to therapy. However, very little is known about the role and impact of autophagy in T and NK cells, the main players in the active fight against infections and tumors. Important questions are emerging: what role does autophagy play on T/NK cells? Could its modulation lead to any advantages? Could specific targeting of autophagy on tumor cells (blocking) and T/NK cells (activation) be a new intervention strategy? In this review, we debate preclinical studies that have identified autophagy as a key regulator of immune responses by modulating the functions of different immune cells and discuss the redundancy or diversity among the subpopulations of both T and NK cells in physiologic context and in cancer.
Collapse
Affiliation(s)
- Manuela Giansanti
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children's Hospital (IRCCS), Rome, Italy
| | - Tobias Theinert
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Sarah Katharina Boeing
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Dorothee Haas
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Paul-Gerhardt Schlegel
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Paola Vacca
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children's Hospital (IRCCS), Rome, Italy
| | - Francesca Nazio
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children's Hospital (IRCCS), Rome, Italy.
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Ignazio Caruana
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Würzburg, 97080, Würzburg, Germany.
| |
Collapse
|
6
|
Totland MZ, Omori Y, Sørensen V, Kryeziu K, Aasen T, Brech A, Leithe E. Endocytic trafficking of connexins in cancer pathogenesis. Biochim Biophys Acta Mol Basis Dis 2023:166812. [PMID: 37454772 DOI: 10.1016/j.bbadis.2023.166812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Gap junctions are specialized regions of the plasma membrane containing clusters of channels that provide for the diffusion of ions and small molecules between adjacent cells. A fundamental role of gap junctions is to coordinate the functions of cells in tissues. Cancer pathogenesis is usually associated with loss of intercellular communication mediated by gap junctions, which may affect tumor growth and the response to radio- and chemotherapy. Gap junction channels consist of integral membrane proteins termed connexins. In addition to their canonical roles in cell-cell communication, connexins modulate a range of signal transduction pathways via interactions with proteins such as β-catenin, c-Src, and PTEN. Consequently, connexins can regulate cellular processes such as cell growth, migration, and differentiation through both channel-dependent and independent mechanisms. Gap junctions are dynamic plasma membrane entities, and by modulating the rate at which connexins undergo endocytosis and sorting to lysosomes for degradation, cells rapidly adjust the level of gap junctions in response to alterations in the intracellular or extracellular milieu. Current experimental evidence indicates that aberrant trafficking of connexins in the endocytic system is intrinsically involved in mediating the loss of gap junctions during carcinogenesis. This review highlights the role played by the endocytic system in controlling connexin degradation, and consequently gap junction levels, and discusses how dysregulation of these processes contributes to the loss of gap junctions during cancer development. We also discuss the therapeutic implications of aberrant endocytic trafficking of connexins in cancer cells.
Collapse
Affiliation(s)
| | - Yasufumi Omori
- Department of Molecular and Tumour Pathology, Akita University Graduate School of Medicine, Akita, Japan
| | | | | | - Trond Aasen
- Patologia Molecular Translacional, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron, Barcelona, Spain
| | - Andreas Brech
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway; Section for Physiology and Cell Biology, Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | | |
Collapse
|
7
|
Basu I, Li H, Trease AJ, Sorgen PL. Regulation of Cx43 Gap Junction Intercellular Communication by Bruton's Tyrosine Kinase and Interleukin-2-Inducible T-Cell Kinase. Biomolecules 2023; 13:biom13040660. [PMID: 37189407 DOI: 10.3390/biom13040660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
T and B cell receptor signaling involves the activation of Akt, MAPKs, and PKC as well as an increase in intracellular Ca2+ and calmodulin activation. While these coordinate the rapid turnover of gap junctions, also implicated in this process is Src, which is not activated as part of T and B cell receptor signaling. An in vitro kinase screen identified that Bruton's tyrosine kinase (BTK) and interleukin-2-inducible T-cell kinase (ITK) phosphorylate Cx43. Mass spectroscopy revealed that BTK and ITK phosphorylate Cx43 residues Y247, Y265, and Y313, which are identical to the residues phosphorylated by Src. Overexpression of BTK or ITK in the HEK-293T cells led to increased Cx43 tyrosine phosphorylation as well as decreased gap junction intercellular communication (GJIC) and Cx43 membrane localization. In the lymphocytes, activation of the B cell receptor (Daudi cells) or T cell receptor (Jurkat cells) increased the BTK and ITK activity, respectively. While this led to increased tyrosine phosphorylation of Cx43 and decreased GJIC, the cellular localization of Cx43 changed little. We have previously identified that Pyk2 and Tyk2 also phosphorylate Cx43 at residues Y247, Y265, and Y313 with a similar cellular fate to that of Src. With phosphorylation critical to Cx43 assembly and turnover, and kinase expression varying between different cell types, there would be a need for different kinases to achieve the same regulation of Cx43. The work presented herein suggests that in the immune system, ITK and BTK have the capacity for the tyrosine phosphorylation of Cx43 to alter the gap junction function in a similar manner as Pyk2, Tyk2, and Src.
Collapse
Affiliation(s)
- Ishika Basu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hanjun Li
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Andrew J Trease
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Paul L Sorgen
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
8
|
Zhou M, Zheng M, Zhou X, Tian S, Yang X, Ning Y, Li Y, Zhang S. The roles of connexins and gap junctions in the progression of cancer. Cell Commun Signal 2023; 21:8. [PMID: 36639804 PMCID: PMC9837928 DOI: 10.1186/s12964-022-01009-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/03/2022] [Indexed: 01/15/2023] Open
Abstract
Gap junctions (GJs), which are composed of connexins (Cxs), provide channels for direct information exchange between cells. Cx expression has a strong spatial specificity; however, its influence on cell behavior and information exchange between cells cannot be ignored. A variety of factors in organisms can modulate Cxs and subsequently trigger a series of responses that have important effects on cellular behavior. The expression and function of Cxs and the number and function of GJs are in dynamic change. Cxs have been characterized as tumor suppressors in the past, but recent studies have highlighted the critical roles of Cxs and GJs in cancer pathogenesis. The complex mechanism underlying Cx and GJ involvement in cancer development is a major obstacle to the evolution of therapy targeting Cxs. In this paper, we review the post-translational modifications of Cxs, the interactions of Cxs with several chaperone proteins, and the effects of Cxs and GJs on cancer. Video Abstract.
Collapse
Affiliation(s)
- Mingming Zhou
- Graduate School, Tianjin Medical University, Tianjin, 300070 People’s Republic of China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin, 300121 People’s Republic of China
| | - Xinyue Zhou
- Graduate School, Tianjin Medical University, Tianjin, 300070 People’s Republic of China
| | - Shifeng Tian
- Graduate School, Tianjin Medical University, Tianjin, 300070 People’s Republic of China
| | - Xiaohui Yang
- Nankai University School of Medicine, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Yidi Ning
- Nankai University School of Medicine, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Yuwei Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121 People’s Republic of China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin, 300121 People’s Republic of China
| |
Collapse
|
9
|
Ponce-Mora A, Yuste A, Perini-Villanueva G, Miranda M, Bejarano E. Connexins Biology in the Pathophysiology of Retinal Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:229-234. [PMID: 37440038 DOI: 10.1007/978-3-031-27681-1_33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Connexins (Cx) are a family of transmembrane proteins that form gap junction intercellular channels that connect neighboring cells. These channels allow the passage of ions and other biomolecules smaller than 1 kDa, thereby synchronizing the cells both electrically and metabolically. Cxs are expressed in all retinal cell types and the diversity of Cx isoforms involved in the assembly of the channels provides a functional syncytium required for visual transduction. In this chapter, we summarize the status of current knowledge regarding Cx biology in retinal tissues and discuss how Cx dysfunction is associated with retinal disease pathophysiology. Although the contribution of Cx deficiency to retinal degeneration is not well understood, recent findings present Cx as a potential therapeutic target. Therefore, we will briefly discuss pharmacological approaches and gene therapies that are being explored to modulate Cx function and fight sight-threatening eye diseases.
Collapse
Affiliation(s)
- Alejandro Ponce-Mora
- School of Health Sciences and Veterinary School, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | - Andrea Yuste
- School of Health Sciences and Veterinary School, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | - Giuliana Perini-Villanueva
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - María Miranda
- School of Health Sciences and Veterinary School, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | - Eloy Bejarano
- School of Health Sciences and Veterinary School, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain.
| |
Collapse
|
10
|
Morishita H, Komatsu M. Role of autophagy in liver diseases. CURRENT OPINION IN PHYSIOLOGY 2022. [DOI: 10.1016/j.cophys.2022.100594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Khezri R, Rusten TE. Autophagy power expands: fuse those cells! EMBO J 2022; 41:e111424. [PMID: 35561082 PMCID: PMC9194791 DOI: 10.15252/embj.2022111424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/02/2022] [Indexed: 11/09/2022] Open
Abstract
The lysosomal degradation pathway of autophagy depends on a set of evolutionarily conserved autophagy-related molecules (ATGs) bestowed with the power to direct membrane trafficking and biology. In this issue of EMBO Journal, Kakanj P et al reveal a surprising role for the autophagy machinery in cell fusion (Kakanj et al, 2022). Autophagy is physiologically required for cell syncytium formation through dismantling the lateral plasma membrane during wound healing, and unchecked autophagy can drive cell fusion in epithelial tissues without compromising epithelial integrity.
Collapse
Affiliation(s)
- Rojyar Khezri
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Tor Erik Rusten
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
12
|
Wei X, Chang ACH, Chang H, Xu S, Xue Y, Zhang Y, Lei M, Chang ACY, Zhang Q. Hypoglycemia-Exacerbated Mitochondrial Connexin 43 Accumulation Aggravates Cardiac Dysfunction in Diabetic Cardiomyopathy. Front Cardiovasc Med 2022; 9:800185. [PMID: 35369285 PMCID: PMC8967291 DOI: 10.3389/fcvm.2022.800185] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/10/2022] [Indexed: 11/29/2022] Open
Abstract
Background Diabetic cardiomyopathy (DCM) is a complex multifaceted disease responsible for elevated heart failure (HF) morbidity and mortality in patients with diabetes mellitus (DM). Patients with DCM exhibit subclinical diastolic dysfunction, progression toward systolic impairment, and abnormal electrophysiology. Hypoglycemia events that occur spontaneously or due to excess insulin administration threaten the lives of patients with DM—with the increased risk of sudden death. However, the molecular underpinnings of this fatal disease remain to be elucidated. Methods and Results Here, we used the established streptozotocin-induced DCM murine model to investigate how hypoglycemia aggravates DCM progression. We confirmed connexin 43 (Cx43) dissociation from cell–cell interaction and accumulation at mitochondrial inner membrane both in the cardiomyocytes of patients with DM and DCM murine. Here, we observed that cardiac diastolic function, induced by chronic hyperglycemia, was further aggravated upon hypoglycemia challenge. Similar contractile defects were recapitulated using neonatal mouse ventricular myocytes (NMVMs) under glucose fluctuation challenges. Using immunoprecipitation mass spectrometry, we identified and validated that hypoglycemia challenge activates the mitogen-activated protein kinase kinase (MAPK kinase) (MEK)/extracellular regulated protein kinase (ERK) and inhibits phosphoinositide 3-kinase (PI3K)/Akt pathways, which results in Cx43 phosphorylation by Src protein and translocation to mitochondria in cardiomyocytes. To determine causality, we overexpressed a mitochondrial targeting Cx43 (mtCx43) using adeno-associated virus serotype 2 (AAV2)/9. At normal blood glucose levels, mtCx43 overexpression recapitulated cardiac diastolic dysfunction as well as aberrant electrophysiology in vivo. Our findings give support for therapeutic targeting of MEK/ERK/Src and PI3K/Akt/Src pathways to prevent mtCx43-driven DCM. Conclusion DCM presents compensatory adaptation of mild mtCx43 accumulation, yet acute hypoglycemia challenges result in further accumulation of mtCx43 through the MEK/ERK/Src and PI3K/Akt/Src pathways. We provide evidence that Cx43 mislocalization is present in hearts of patients with DM hearts, STZ-induced DCM murine model, and glucose fluctuation challenged NMVMs. Mechanistically, we demonstrated that mtCx43 is responsible for inducing aberrant contraction and disrupts electrophysiology in cardiomyocytes and our results support targeting of mtCx43 in treating DCM.
Collapse
Affiliation(s)
- Xing Wei
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Andrew Chia Hao Chang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haishuang Chang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan Xu
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yilin Xue
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanxin Zhang
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Lei
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Alex Chia Yu Chang
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Alex Chia Yu Chang
| | - Qingyong Zhang
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Qingyong Zhang
| |
Collapse
|
13
|
Gómez O, Perini-Villanueva G, Yuste A, Rodríguez-Navarro JA, Poch E, Bejarano E. Autophagy and Glycative Stress: A Bittersweet Relationship in Neurodegeneration. Front Cell Dev Biol 2022; 9:790479. [PMID: 35004686 PMCID: PMC8733682 DOI: 10.3389/fcell.2021.790479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/06/2021] [Indexed: 12/27/2022] Open
Abstract
Autophagy is a fine-tuned proteolytic pathway that moves dysfunctional/aged cellular components into the lysosomal compartment for degradation. Over the last 3 decades, global research has provided evidence for the protective role of autophagy in different brain cell components. Autophagic capacities decline with age, which contributes to the accumulation of obsolete/damaged organelles and proteins and, ultimately, leads to cellular aging in brain tissues. It is thus well-accepted that autophagy plays an essential role in brain homeostasis, and malfunction of this catabolic system is associated with major neurodegenerative disorders. Autophagy function can be modulated by different types of stress, including glycative stress. Glycative stress is defined as a cellular status with abnormal and accelerated accumulation of advanced glycation end products (AGEs). It occurs in hyperglycemic states, both through the consumption of high-sugar diets or under metabolic conditions such as diabetes. In recent years, glycative stress has gained attention for its adverse impact on brain pathology. This is because glycative stress stimulates insoluble, proteinaceous aggregation that is linked to the malfunction of different neuropathological proteins. Despite the emergence of new literature suggesting that autophagy plays a major role in fighting glycation-derived damage by removing cytosolic AGEs, excessive glycative stress might also negatively impact autophagic function. In this mini-review, we provide insight on the status of present knowledge regarding the role of autophagy in brain physiology and pathophysiology, with an emphasis on the cytoprotective role of autophagic function to ameliorate the adverse effects of glycation-derived damage in neurons, glia, and neuron-glia interactions.
Collapse
Affiliation(s)
- Olga Gómez
- School of Health Sciences and Veterinary School, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | - Giuliana Perini-Villanueva
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, United States
| | - Andrea Yuste
- School of Health Sciences and Veterinary School, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | | | - Enric Poch
- School of Health Sciences and Veterinary School, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | - Eloy Bejarano
- School of Health Sciences and Veterinary School, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| |
Collapse
|
14
|
Kaushik S, Tasset I, Arias E, Pampliega O, Wong E, Martinez-Vicente M, Cuervo AM. Autophagy and the hallmarks of aging. Ageing Res Rev 2021; 72:101468. [PMID: 34563704 DOI: 10.1016/j.arr.2021.101468] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/12/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022]
Abstract
Autophagy, an essential cellular process that mediates degradation of proteins and organelles in lysosomes, has been tightly linked to cellular quality control for its role as part of the proteostasis network. The current interest in identifying the cellular and molecular determinants of aging, has highlighted the important contribution of malfunctioning of autophagy with age to the loss of proteostasis that characterizes all old organisms. However, the diversity of cellular functions of the different types of autophagy and the often reciprocal interactions of autophagy with other determinants of aging, is placing autophagy at the center of the aging process. In this work, we summarize evidence for the contribution of autophagy to health- and lifespan and provide examples of the bidirectional interplay between autophagic pathways and several of the so-called hallmarks of aging. This central role of autophagy in aging, and the dependence on autophagy of many geroprotective interventions, has motivated a search for direct modulators of autophagy that could be used to slow aging and extend healthspan. Here, we review some of those ongoing therapeutic efforts and comment on the potential of targeting autophagy in aging.
Collapse
|
15
|
Reglero-Real N, Pérez-Gutiérrez L, Yoshimura A, Rolas L, Garrido-Mesa J, Barkaway A, Pickworth C, Saleeb RS, Gonzalez-Nuñez M, Austin-Williams SN, Cooper D, Vázquez-Martínez L, Fu T, De Rossi G, Golding M, Voisin MB, Boulanger CM, Kubota Y, Muller WA, Tooze SA, Nightingale TD, Collinson L, Perretti M, Aksoy E, Nourshargh S. Autophagy modulates endothelial junctions to restrain neutrophil diapedesis during inflammation. Immunity 2021; 54:1989-2004.e9. [PMID: 34363750 PMCID: PMC8459396 DOI: 10.1016/j.immuni.2021.07.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 05/13/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023]
Abstract
The migration of neutrophils from the blood circulation to sites of infection or injury is a key immune response and requires the breaching of endothelial cells (ECs) that line the inner aspect of blood vessels. Unregulated neutrophil transendothelial cell migration (TEM) is pathogenic, but the molecular basis of its physiological termination remains unknown. Here, we demonstrated that ECs of venules in inflamed tissues exhibited a robust autophagic response that was aligned temporally with the peak of neutrophil trafficking and was strictly localized to EC contacts. Genetic ablation of EC autophagy led to excessive neutrophil TEM and uncontrolled leukocyte migration in murine inflammatory models, while pharmacological induction of autophagy suppressed neutrophil infiltration into tissues. Mechanistically, autophagy regulated the remodeling of EC junctions and expression of key EC adhesion molecules, facilitating their intracellular trafficking and degradation. Collectively, we have identified autophagy as a modulator of EC leukocyte trafficking machinery aimed at terminating physiological inflammation.
Collapse
Affiliation(s)
- Natalia Reglero-Real
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Lorena Pérez-Gutiérrez
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Azumi Yoshimura
- Electron Microscopy Science Technology Platform, Francis Crick Institute, London NW1 1AT, UK
| | - Loïc Rolas
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - José Garrido-Mesa
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Anna Barkaway
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Catherine Pickworth
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Rebeca S Saleeb
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Maria Gonzalez-Nuñez
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Shani N Austin-Williams
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Dianne Cooper
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London EC1M 6BQ, UK
| | - Laura Vázquez-Martínez
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Tao Fu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Giulia De Rossi
- Department of Cell Biology, Institute of Ophthalmology, University College London, London EC1V9EL, UK
| | - Matthew Golding
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Mathieu-Benoit Voisin
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | | | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Tokyo 113-0022, Japan
| | - William A Muller
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Sharon A Tooze
- Molecular Cell Biology of Autophagy Laboratory, Francis Crick Institute, London NW1 1AT, UK
| | - Thomas D Nightingale
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Lucy Collinson
- Electron Microscopy Science Technology Platform, Francis Crick Institute, London NW1 1AT, UK
| | - Mauro Perretti
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London EC1M 6BQ, UK
| | - Ezra Aksoy
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Sussan Nourshargh
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London EC1M 6BQ, UK.
| |
Collapse
|
16
|
Griffin JD, Bejarano E, Wang XD, Greenberg AS. Integrated Action of Autophagy and Adipose Tissue Triglyceride Lipase Ameliorates Diet-Induced Hepatic Steatosis in Liver-Specific PLIN2 Knockout Mice. Cells 2021; 10:cells10051016. [PMID: 33923083 PMCID: PMC8145136 DOI: 10.3390/cells10051016] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 01/22/2023] Open
Abstract
An imbalance in the storage and breakdown of hepatic lipid droplet (LD) triglyceride (TAG) leads to hepatic steatosis, a defining feature of non-alcoholic fatty liver disease (NAFLD). The two primary cellular pathways regulating hepatic TAG catabolism are lipolysis, initiated by adipose triglyceride lipase (ATGL), and lipophagy. Each of these processes requires access to the LD surface to initiate LD TAG catabolism. Ablation of perilipin 2 (PLIN2), the most abundant lipid droplet-associated protein in steatotic liver, protects mice from diet-induced NAFLD. However, the mechanisms underlaying this protection are unclear. We tested the contributions of ATGL and lipophagy mediated lipolysis to reduced hepatic TAG in mice with liver-specific PLIN2 deficiency (PLIN2LKO) fed a Western-type diet for 12 weeks. We observed enhanced autophagy in the absence of PLIN2, as determined by ex vivo p62 flux, as well as increased p62- and LC3-positive autophagic vesicles in PLIN2LKO livers and isolated primary hepatocytes. Increased levels of autophagy correlated with significant increases in cellular fatty acid (FA) oxidation in PLIN2LKO hepatocytes. We observed that inhibition of either autophagy or ATGL blunted the increased FA oxidation in PLIN2LKO hepatocytes. Additionally, combined inhibition of ATGL and autophagy reduced FA oxidation to the same extent as treatment with either inhibitor alone. In sum, these studies show that protection against NAFLD in the absence of hepatic PLIN2 is driven by the integrated actions of both ATGL and lipophagy.
Collapse
Affiliation(s)
- John D. Griffin
- Obesity and Metabolism Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA;
| | - Eloy Bejarano
- Laboratory for Nutrition and Vision Research, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA;
- School of Health Sciences, Universidad CEU Cardenal Herrera, 46001 Valencia, Spain
| | - Xiang-Dong Wang
- Laboratory for Nutrition and Cancer Biology, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA;
| | - Andrew S. Greenberg
- Obesity and Metabolism Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA;
- Correspondence:
| |
Collapse
|
17
|
Connexins in the Heart: Regulation, Function and Involvement in Cardiac Disease. Int J Mol Sci 2021; 22:ijms22094413. [PMID: 33922534 PMCID: PMC8122935 DOI: 10.3390/ijms22094413] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 12/20/2022] Open
Abstract
Connexins are a family of transmembrane proteins that play a key role in cardiac physiology. Gap junctional channels put into contact the cytoplasms of connected cardiomyocytes, allowing the existence of electrical coupling. However, in addition to this fundamental role, connexins are also involved in cardiomyocyte death and survival. Thus, chemical coupling through gap junctions plays a key role in the spreading of injury between connected cells. Moreover, in addition to their involvement in cell-to-cell communication, mounting evidence indicates that connexins have additional gap junction-independent functions. Opening of unopposed hemichannels, located at the lateral surface of cardiomyocytes, may compromise cell homeostasis and may be involved in ischemia/reperfusion injury. In addition, connexins located at non-canonical cell structures, including mitochondria and the nucleus, have been demonstrated to be involved in cardioprotection and in regulation of cell growth and differentiation. In this review, we will provide, first, an overview on connexin biology, including their synthesis and degradation, their regulation and their interactions. Then, we will conduct an in-depth examination of the role of connexins in cardiac pathophysiology, including new findings regarding their involvement in myocardial ischemia/reperfusion injury, cardiac fibrosis, gene transcription or signaling regulation.
Collapse
|
18
|
Norris RP, Terasaki M. Gap junction internalization and processing in vivo: a 3D immuno-electron microscopy study. J Cell Sci 2021; 134:jcs252726. [PMID: 33277382 DOI: 10.1242/jcs.252726] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/26/2020] [Indexed: 12/15/2022] Open
Abstract
Gap junctions have well-established roles in cell-cell communication by way of forming permeable intercellular channels. Less is understood about their internalization, which forms double membrane vesicles containing cytosol and membranes from another cell called connexosomes or annular gap junctions. Here, we systematically investigated the fate of connexosomes in intact ovarian follicles. High-pressure frozen, serial-sectioned tissue was immunogold labeled for connexin 43 (Cx43, also known as GJA1). Within a volume corresponding to ∼35 cells, every labeled structure was categorized and had its surface area measured. Measurements support the concept that multiple connexosomes form from larger invaginated gap junctions. Subsequently, the inner and outer membranes separate, Cx43 immunogenicity is lost from the outer membrane, and the inner membrane appears to undergo fission. One pathway for processing involves lysosomes, based on localization of cathepsin B to some processed connexosomes. In summary, this study demonstrates new technology for high-resolution analyses of gap junction processing.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Rachael P Norris
- Department of Cell Biology, UConn Health, 263 Farmington Ave, Farmington, CT 06030, USA
| | - Mark Terasaki
- Department of Cell Biology, UConn Health, 263 Farmington Ave, Farmington, CT 06030, USA
| |
Collapse
|
19
|
Hill CN, Hernández-Cáceres MP, Asencio C, Torres B, Solis B, Owen GI. Deciphering the Role of the Coagulation Cascade and Autophagy in Cancer-Related Thrombosis and Metastasis. Front Oncol 2020; 10:605314. [PMID: 33365273 PMCID: PMC7750537 DOI: 10.3389/fonc.2020.605314] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/29/2020] [Indexed: 01/10/2023] Open
Abstract
Thrombotic complications are the second leading cause of death among oncology patients worldwide. Enhanced thrombogenesis has multiple origins and may result from a deregulation of megakaryocyte platelet production in the bone marrow, the synthesis of coagulation factors in the liver, and coagulation factor signaling upon cancer and the tumor microenvironment (TME). While a hypercoagulable state has been attributed to factors such as thrombocytosis, enhanced platelet aggregation and Tissue Factor (TF) expression on cancer cells, further reports have suggested that coagulation factors can enhance metastasis through increased endothelial-cancer cell adhesion and enhanced endothelial cell activation. Autophagy is highly associated with cancer survival as a double-edged sword, as can both inhibit and promote cancer progression. In this review, we shall dissect the crosstalk between the coagulation cascade and autophagic pathway and its possible role in metastasis and cancer-associated thrombosis formation. The signaling of the coagulation cascade through the autophagic pathway within the hematopoietic stem cells, the endothelial cell and the cancer cell are discussed. Relevant to the coagulation cascade, we also examine the role of autophagy-related pathways in cancer treatment. In this review, we aim to bring to light possible new areas of cancer investigation and elucidate strategies for future therapeutic intervention.
Collapse
Affiliation(s)
- Charlotte Nicole Hill
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | | | - Catalina Asencio
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Begoña Torres
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Benjamin Solis
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gareth I Owen
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
20
|
Wilfling F, Lee CW, Erdmann PS, Zheng Y, Sherpa D, Jentsch S, Pfander B, Schulman BA, Baumeister W. A Selective Autophagy Pathway for Phase-Separated Endocytic Protein Deposits. Mol Cell 2020; 80:764-778.e7. [PMID: 33207182 PMCID: PMC7721475 DOI: 10.1016/j.molcel.2020.10.030] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/20/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022]
Abstract
Autophagy eliminates cytoplasmic content selected by autophagy receptors, which link cargo to the membrane-bound autophagosomal ubiquitin-like protein Atg8/LC3. Here, we report a selective autophagy pathway for protein condensates formed by endocytic proteins in yeast. In this pathway, the endocytic protein Ede1 functions as a selective autophagy receptor. Distinct domains within Ede1 bind Atg8 and mediate phase separation into condensates. Both properties are necessary for an Ede1-dependent autophagy pathway for endocytic proteins, which differs from regular endocytosis and does not involve other known selective autophagy receptors but requires the core autophagy machinery. Cryo-electron tomography of Ede1-containing condensates, at the plasma membrane and in autophagic bodies, shows a phase-separated compartment at the beginning and end of the Ede1-mediated selective autophagy route. Our data suggest a model for autophagic degradation of macromolecular protein complexes by the action of intrinsic autophagy receptors.
Collapse
Affiliation(s)
- Florian Wilfling
- Molecular Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Molecular Machines and Signaling, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
| | - Chia-Wei Lee
- Molecular Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Philipp S Erdmann
- Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
| | - Yumei Zheng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA; Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Dawafuti Sherpa
- Molecular Machines and Signaling, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Stefan Jentsch
- Molecular Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Boris Pfander
- DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Brenda A Schulman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA; Molecular Machines and Signaling, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Wolfgang Baumeister
- Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
| |
Collapse
|
21
|
Martins-Marques T, Ribeiro-Rodrigues T, de Jager SC, Zuzarte M, Ferreira C, Cruz P, Reis L, Baptista R, Gonçalves L, Sluijter JP, Girao H. Myocardial infarction affects Cx43 content of extracellular vesicles secreted by cardiomyocytes. Life Sci Alliance 2020; 3:e202000821. [PMID: 33097557 PMCID: PMC7652393 DOI: 10.26508/lsa.202000821] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
Ischemic heart disease has been associated with an impairment on intercellular communication mediated by both gap junctions and extracellular vesicles. We have previously shown that connexin 43 (Cx43), the main ventricular gap junction protein, assembles into channels at the extracellular vesicle surface, mediating the release of vesicle content into target cells. Here, using a comprehensive strategy that included cell-based approaches, animal models and human patients, we demonstrate that myocardial ischemia impairs the secretion of Cx43 into circulating, intracardiac and cardiomyocyte-derived vesicles. In addition, we show that ubiquitin signals Cx43 release in basal conditions but appears to be dispensable during ischemia, suggesting an interplay between ischemia-induced Cx43 degradation and secretion. Overall, this study constitutes a step forward for the characterization of the signals and molecular players underlying vesicle protein sorting, with strong implications on long-range intercellular communication, paving the way towards the development of innovative diagnostic and therapeutic strategies for cardiovascular disorders.
Collapse
Affiliation(s)
- Tania Martins-Marques
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Teresa Ribeiro-Rodrigues
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Saskia C de Jager
- Laboratory of Experimental Cardiology, University Medical Center Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Monica Zuzarte
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Cátia Ferreira
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
- Cardiology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Pedro Cruz
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Liliana Reis
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
- Cardiology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Rui Baptista
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
- Cardiology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Cardiology Department, Centro Hospitalar Entre Douro e Vouga, Santa Maria da Feira, Portugal
| | - Lino Gonçalves
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
- Cardiology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Joost Pg Sluijter
- Laboratory of Experimental Cardiology, University Medical Center Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Henrique Girao
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| |
Collapse
|
22
|
Aragonès G, Dasuri K, Olukorede O, Francisco SG, Renneburg C, Kumsta C, Hansen M, Kageyama S, Komatsu M, Rowan S, Volkin J, Workman M, Yang W, Daza P, Ruano D, Dominguez‐Martín H, Rodríguez‐Navarro JA, Du X, Brownlee MA, Bejarano E, Taylor A. Autophagic receptor p62 protects against glycation-derived toxicity and enhances viability. Aging Cell 2020; 19:e13257. [PMID: 33146912 PMCID: PMC7681057 DOI: 10.1111/acel.13257] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/24/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
Diabetes and metabolic syndrome are associated with the typical American high glycemia diet and result in accumulation of high levels of advanced glycation end products (AGEs), particularly upon aging. AGEs form when sugars or their metabolites react with proteins. Associated with a myriad of age-related diseases, AGEs accumulate in many tissues and are cytotoxic. To date, efforts to limit glycation pharmacologically have failed in human trials. Thus, it is crucial to identify systems that remove AGEs, but such research is scanty. Here, we determined if and how AGEs might be cleared by autophagy. Our in vivo mouse and C. elegans models, in which we altered proteolysis or glycative burden, as well as experiments in five types of cells, revealed more than six criteria indicating that p62-dependent autophagy is a conserved pathway that plays a critical role in the removal of AGEs. Activation of autophagic removal of AGEs requires p62, and blocking this pathway results in accumulation of AGEs and compromised viability. Deficiency of p62 accelerates accumulation of AGEs in soluble and insoluble fractions. p62 itself is subject to glycative inactivation and accumulates as high mass species. Accumulation of p62 in retinal pigment epithelium is reversed by switching to a lower glycemia diet. Since diminution of glycative damage is associated with reduced risk for age-related diseases, including age-related macular degeneration, cardiovascular disease, diabetes, Alzheimer's, and Parkinson's, discovery of methods to limit AGEs or enhance p62-dependent autophagy offers novel potential therapeutic targets to treat AGEs-related pathologies.
Collapse
Affiliation(s)
- Gemma Aragonès
- Laboratory for Nutrition and Vision Research USDA Human Nutrition Research Center on AgingTufts University Boston MA USA
| | - Kalavathi Dasuri
- Laboratory for Nutrition and Vision Research USDA Human Nutrition Research Center on AgingTufts University Boston MA USA
| | - Opeoluwa Olukorede
- Laboratory for Nutrition and Vision Research USDA Human Nutrition Research Center on AgingTufts University Boston MA USA
| | - Sarah G. Francisco
- Laboratory for Nutrition and Vision Research USDA Human Nutrition Research Center on AgingTufts University Boston MA USA
| | - Carol Renneburg
- Laboratory for Nutrition and Vision Research USDA Human Nutrition Research Center on AgingTufts University Boston MA USA
| | - Caroline Kumsta
- Sanford Burnham Prebys Medical Discovery Institute La Jolla CA USA
| | - Malene Hansen
- Sanford Burnham Prebys Medical Discovery Institute La Jolla CA USA
| | - Shun Kageyama
- Department of Physiology Juntendo University School of Medicine Bunkyo Japan
| | - Masaaki Komatsu
- Department of Physiology Juntendo University School of Medicine Bunkyo Japan
| | - Sheldon Rowan
- Laboratory for Nutrition and Vision Research USDA Human Nutrition Research Center on AgingTufts University Boston MA USA
| | - Jonathan Volkin
- Laboratory for Nutrition and Vision Research USDA Human Nutrition Research Center on AgingTufts University Boston MA USA
| | - Michael Workman
- Laboratory for Nutrition and Vision Research USDA Human Nutrition Research Center on AgingTufts University Boston MA USA
| | - Wenxin Yang
- Laboratory for Nutrition and Vision Research USDA Human Nutrition Research Center on AgingTufts University Boston MA USA
| | - Paula Daza
- Departamento Biología Celular. Facultad de Biología Universidad de Sevilla Sevilla Spain
| | - Diego Ruano
- Departamento de Bioquímica y Biología Molecular. Facultad de Farmacia Universidad de Sevilla Sevilla Spain
- Instituto de Biomedicina de Sevilla (IBiSHospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla Sevilla Spain
| | - Helena Dominguez‐Martín
- Departamento de Bioquímica y Biología Molecular. Facultad de Farmacia Universidad de Sevilla Sevilla Spain
- Instituto de Biomedicina de Sevilla (IBiSHospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla Sevilla Spain
| | - José Antonio Rodríguez‐Navarro
- Servicio de Neurobiología Departamento de Investigación Hospital Ramón y CajalInstituto Ramón y Cajal de Investigaciones SanitariasCarretera de Colmenar Madrid Spain
| | - Xue‐Liang Du
- Albert Einstein College of Medicine Bronx NY USA
| | | | - Eloy Bejarano
- Laboratory for Nutrition and Vision Research USDA Human Nutrition Research Center on AgingTufts University Boston MA USA
- School of Health Sciences Universidad CEU Cardenal Herrera Valencia Spain
| | - Allen Taylor
- Laboratory for Nutrition and Vision Research USDA Human Nutrition Research Center on AgingTufts University Boston MA USA
| |
Collapse
|
23
|
Yu H, Cao X, Li W, Liu P, Zhao Y, Song L, Chen J, Chen B, Yu W, Xu Y. Targeting connexin 43 provides anti-inflammatory effects after intracerebral hemorrhage injury by regulating YAP signaling. J Neuroinflammation 2020; 17:322. [PMID: 33115476 PMCID: PMC7594305 DOI: 10.1186/s12974-020-01978-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/01/2020] [Indexed: 12/17/2022] Open
Abstract
Background In the central nervous system (CNS), connexin 43 (Cx43) is mainly expressed in astrocytes and regulates astrocytic network homeostasis. Similar to Cx43 overexpression, abnormal excessive opening of Cx43 hemichannels (Cx43Hcs) on reactive astrocytes aggravates the inflammatory response and cell death in CNS pathologies. However, the role of excessive Cx43Hc opening in intracerebral hemorrhage (ICH) injury is not clear. Methods Hemin stimulation in primary cells and collagenase IV injection in C57BL/6J (B6) mice were used as ICH models in vitro and in vivo. After ICH injury, the Cx43 mimetic peptide Gap19 was used for treatment. Ethidium bromide (EtBr) uptake assays were used to measure the opening of Cx43Hcs. Western blotting and immunofluorescence were used to measure protein expression. qRT-PCR and ELISA were used to determine the levels of cytokines. Coimmunoprecipitation (Co-IP) and the Duolink in situ proximity ligation assay (PLA) were applied to measure the association between proteins. Results In this study, Cx43 expression upregulation and excessive Cx43Hc opening was observed in mice after ICH injury. Delayed treatment with Gap19 significantly alleviated hematoma volume and neurological deficits after ICH injury. In addition, Gap19 decreased inflammatory cytokine levels in the tissue surrounding the hematoma and decreased reactive astrogliosis after ICH injury in vitro and in vivo. Intriguingly, Cx43 transcriptional activity and expression in astrocytes were significantly increased after hemin stimulation in culture. However, Gap19 treatment downregulated astrocytic Cx43 expression through the ubiquitin-proteasome pathway without affecting Cx43 transcription. Additionally, our data showed that Gap19 increased Yes-associated protein (YAP) nuclear translocation. This subsequently upregulated SOCS1 and SOCS3 expression and then inhibited the TLR4-NFκB and JAK2-STAT3 pathways in hemin-stimulated astrocytes. Finally, the YAP inhibitor, verteporfin (VP), reversed the anti-inflammatory effect of Gap19 in vitro and almost completely blocked its protective effects in vivo after ICH injury. Conclusions This study provides new insight into potential treatment strategies for ICH injury involving astroglial Cx43 and Cx43Hcs. Suppression of abnormal astroglial Cx43 expression and Cx43Hc opening by Gap19 has anti-inflammatory and neuroprotective effects after ICH injury.
Collapse
Affiliation(s)
- Hailong Yu
- Affiliated of Drum Tower Hospital, Medical school of Nanjing University, Nanjing, Jiangsu, People's Republic of China.,Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, People's Republic of China.,Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, People's Republic of China
| | - Xiang Cao
- Affiliated of Drum Tower Hospital, Medical school of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Wei Li
- Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, People's Republic of China.,Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Pinyi Liu
- Affiliated of Drum Tower Hospital, Medical school of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Yuanyuan Zhao
- Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, People's Republic of China.,Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Lilong Song
- Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, People's Republic of China.,Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Jian Chen
- Affiliated of Drum Tower Hospital, Medical school of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Beilei Chen
- Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, People's Republic of China.,Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, People's Republic of China.,Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Wenkui Yu
- Affiliated of Drum Tower Hospital, Medical school of Nanjing University, Nanjing, Jiangsu, People's Republic of China.
| | - Yun Xu
- Affiliated of Drum Tower Hospital, Medical school of Nanjing University, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
24
|
Maulik M, Vasan L, Bose A, Dutta Chowdhury S, Sengupta N, Das Sarma J. Amyloid-β regulates gap junction protein connexin 43 trafficking in cultured primary astrocytes. J Biol Chem 2020; 295:15097-15111. [PMID: 32868453 DOI: 10.1074/jbc.ra120.013705] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/06/2020] [Indexed: 11/06/2022] Open
Abstract
Altered expression and function of astroglial gap junction protein connexin 43 (Cx43) has increasingly been associated to neurotoxicity in Alzheimer disease (AD). Although earlier studies have examined the effect of increased β-amyloid (Aβ) on Cx43 expression and function leading to neuronal damage, underlying mechanisms by which Aβ modulates Cx43 in astrocytes remain elusive. Here, using mouse primary astrocyte cultures, we have examined the cellular processes by which Aβ can alter Cx43 gap junctions. We show that Aβ25-35 impairs functional gap junction coupling yet increases hemichannel activity. Interestingly, Aβ25-35 increased the intracellular pool of Cx43 with a parallel decrease in gap junction assembly at the surface. Intracellular Cx43 was found to be partly retained in the endoplasmic reticulum-associated cell compartments. However, forward trafficking of the newly synthesized Cx43 that already reached the Golgi was not affected in Aβ25-35-exposed astrocytes. Supporting this, treatment with 4-phenylbutyrate, a well-known chemical chaperone that improves trafficking of several transmembrane proteins, restored Aβ-induced impaired gap junction coupling between astrocytes. We further show that interruption of Cx43 endocytosis in Aβ25-35-exposed astrocytes resulted in their retention at the cell surface in the form of functional gap junctions indicating that Aβ25-35 causes rapid internalization of Cx43 gap junctions. Additionally, in silico molecular docking suggests that Aβ can bind favorably to Cx43. Our study thus provides novel insights into the cellular mechanisms by which Aβ modulates Cx43 function in astrocytes, the basic understanding of which is vital for the development of alternative therapeutic strategy targeting connexin channels in AD.
Collapse
Affiliation(s)
- Mahua Maulik
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India.
| | - Lakshmy Vasan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Abhishek Bose
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Saikat Dutta Chowdhury
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Neelanjana Sengupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| |
Collapse
|
25
|
Wang X, Feng L, Xin M, Hao Y, Wang X, Shang P, Zhao M, Hou S, Zhang Y, Xiao Y, Ma D, Feng J. Mechanisms underlying astrocytic connexin-43 autophagy degradation during cerebral ischemia injury and the effect on neuroinflammation and cell apoptosis. Biomed Pharmacother 2020; 127:110125. [PMID: 32361163 DOI: 10.1016/j.biopha.2020.110125] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/18/2020] [Accepted: 03/27/2020] [Indexed: 12/26/2022] Open
Abstract
Connexin-43 (Cx43) is the most abundant gap junction protein in the nervous system. It enables cell communication and has important physiological roles including ion transport and substrate exchange, all of which have been implicated in cerebral ischemia injury. Our previous in vitro and in vivo studies have demonstrated that Cx43 is internalized and degraded during ischemia stress. However, the significance of ischemia-induced degradation of Cx43 remains unclear. Herein, we demonstrated that Cx43 degradation during ischemia injury is mediated by selective autophagy; additionally, we identified two related autophagy receptors-OPTN and NDP52. Cx43 degradation during ischemia requires its phosphorylation and ubiquitination, which are mediated by PKC, Src kinases, and ubiquitin kinase PINK1. Using point mutagenesis, we identified three phosphorylation sites underlying Cx43 autophagy degradation under ischemic stress. Cx43 degradation inhibition promoted the transition of astrocytes from a pro-inflammatory to an anti-inflammatory status, based on the levels of IL-10 and TNF in ischemia. Knockdown or accelerated degradation of Cx43 protected astrocytes from apoptosis under ischemic stress. These findings elucidate the underlying mechanism of astrocytic Cx43 autophagic degradation during ischemia. The study has identified potentially novel therapeutic strategies against ischemic stroke and evidence of crosstalk between autophagic degradation of Cx43, astrocytic apoptosis, and neuroinflammation.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, China
| | - Liangshu Feng
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, China
| | - Meiying Xin
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yulei Hao
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, China
| | - Xu Wang
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, China
| | - Pei Shang
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, China
| | - Mingming Zhao
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, China
| | - Shuai Hou
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yunhai Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No. 88 Keling Street, Suzhou 215163, China
| | - Yun Xiao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No. 88 Keling Street, Suzhou 215163, China
| | - Di Ma
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Jiachun Feng
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
26
|
Catarino S, Ribeiro-Rodrigues TM, Sá Ferreira R, Ramalho J, Abert C, Martens S, Girão H. A Conserved LIR Motif in Connexins Mediates Ubiquitin-Independent Binding to LC3/GABARAP Proteins. Cells 2020; 9:E902. [PMID: 32272685 PMCID: PMC7226732 DOI: 10.3390/cells9040902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/20/2020] [Accepted: 04/03/2020] [Indexed: 01/05/2023] Open
Abstract
Gap junctions (GJ) are specialized cell-cell contacts formed by connexins (Cxs), which provide direct communication between adjacent cells. Cx43 ubiquitination has been suggested to induce the internalization of GJs, as well as the recruitment of the autophagy receptor p62 to mediate binding to LC3B and degradation by macroautophagy. In this report, we describe a functional LC3 interacting region (LIR), present in the amino terminal of most Cx protein family members, which can mediate the autophagy degradation of Cx43 without the need of ubiquitin. Mutation of the LIR motif on Cx37, Cx43, Cx46 and Cx50 impairs interaction with LC3B and GABARAP without compromising protein ubiquitination. Through in vitro protein-protein interaction assays, we demonstrate that this LIR motif is required for the binding of Cx43 to LC3B and GABARAP. Overall, our findings describe an alternative mechanism whereby Cxs interact with LC3/GABARAP proteins, envisioning a new model for the autophagy degradation of connexins.
Collapse
Affiliation(s)
- Steve Catarino
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.C.); (T.M.R.-R.); (R.S.F.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Teresa M Ribeiro-Rodrigues
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.C.); (T.M.R.-R.); (R.S.F.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Rita Sá Ferreira
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.C.); (T.M.R.-R.); (R.S.F.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - José Ramalho
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal;
| | - Christine Abert
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, 1030 Vienna, Austria; (C.A.); (S.M.)
| | - Sascha Martens
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, 1030 Vienna, Austria; (C.A.); (S.M.)
| | - Henrique Girão
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.C.); (T.M.R.-R.); (R.S.F.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
27
|
Georgila K, Gounis M, Havaki S, Gorgoulis VG, Eliopoulos AG. mTORC1-dependent protein synthesis and autophagy uncouple in the regulation of Apolipoprotein A-I expression. Metabolism 2020; 105:154186. [PMID: 32084429 DOI: 10.1016/j.metabol.2020.154186] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/10/2020] [Accepted: 02/16/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Apolipoprotein A-I (ApoA-I) is involved in reverse cholesterol transport as a major component of HDL, but also conveys anti-thrombotic, anti-oxidative, anti-inflammatory and immune-regulatory properties that are pertinent to its protective roles in cardiovascular, inflammatory and malignant pathologies. Despite the pleiotropy in ApoA-I functions, the regulation of intracellular ApoA-I levels remains poorly explored. METHODS HepG2 hepatoma cells and primary mouse hepatocytes were used as in vitro models to study the impact of genetic and chemical inhibitors of autophagy and the proteasome on ApoA-I by immunoblot, immunofluorescence and electron microscopy. Different growth conditions were implemented in conjunction with mTORC inhibitors to model the influence of nutrient scarcity versus sufficiency on ApoA-I regulation. Hepatic ApoA-I expression was also evaluated in high fat diet-fed mice displaying blockade in autophagy. RESULTS Under nutrient-rich conditions, basal ApoA-I levels in liver cells are sustained by the balancing act of autophagy and of mTORC1-dependent de novo protein synthesis. ApoA-I proteolysis occurs through a canonical autophagic pathway involving Beclin1 and ULK1 and the receptor protein p62/SQSTM1 that targets ApoA-I to autophagosomes. However, upon aminoacid insufficiency, suppression of ApoA-I synthesis prevails, rendering mTORC1 inactivation dispensable for autophagy-mediated ApoA-I proteolysis. CONCLUSION These data underscore the major contribution of post-transcriptional mechanisms to ApoA-I levels which differentially involve mTORC1-dependent signaling to protein synthesis and autophagy, depending on nutrient availability. Given the established role of ApoA-I in HDL-mediated reverse cholesterol transport, this mode of ApoA-I regulation may reflect a hepatocellular response to the organismal requirement for maintenance of cholesterol and lipid reserves under conditions of nutrient scarcity.
Collapse
Affiliation(s)
- Konstantina Georgila
- Laboratory of Molecular and Cellular Biology, University of Crete Medical School, Heraklion, Crete, Greece; Department of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Michalis Gounis
- Laboratory of Molecular and Cellular Biology, University of Crete Medical School, Heraklion, Crete, Greece
| | - Sophia Havaki
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece; Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Aristides G Eliopoulos
- Department of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece.
| |
Collapse
|
28
|
Sinha G, Ferrer AI, Moore CA, Naaldijk Y, Rameshwar P. Gap Junctions and Breast Cancer Dormancy. Trends Cancer 2020; 6:348-357. [PMID: 32209448 DOI: 10.1016/j.trecan.2020.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/21/2022]
Abstract
Breast cancer (BC) relapse, despite clinical advancement, remains one of the biggest issues in the field. Intercellular communication, specifically via connexin (Cx)-mediated gap junctions (GJs), play a key role in the long-term survival of these, treatment-resistant breast cancer stem cells (CSCs), allowing for relapse. Both basic and clinical evidence reveal dual roles for GJs, in tumor suppression, generally referred to as dormancy, and progression and metastasis. GJ intercellular communication (GJIC) can be mediated by multiple types of Cxs, depending on the organ to which the BC cells metastasize. This review expands on the differential expression of Cx-mediated GJIC between CSCs and niche cells within a given microenvironment.
Collapse
Affiliation(s)
- Garima Sinha
- Rutgers School of Graduate Studies at New Jersey Medical School, Newark, NJ, USA; Department of Medicine - Hematology/Oncology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Alejandra I Ferrer
- Rutgers School of Graduate Studies at New Jersey Medical School, Newark, NJ, USA; Department of Medicine - Hematology/Oncology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Caitlyn A Moore
- Rutgers School of Graduate Studies at New Jersey Medical School, Newark, NJ, USA; Department of Medicine - Hematology/Oncology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Yahaira Naaldijk
- Rutgers School of Graduate Studies at New Jersey Medical School, Newark, NJ, USA
| | - Pranela Rameshwar
- Department of Medicine - Hematology/Oncology, Rutgers New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
29
|
Totland MZ, Rasmussen NL, Knudsen LM, Leithe E. Regulation of gap junction intercellular communication by connexin ubiquitination: physiological and pathophysiological implications. Cell Mol Life Sci 2020; 77:573-591. [PMID: 31501970 PMCID: PMC7040059 DOI: 10.1007/s00018-019-03285-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/10/2019] [Accepted: 08/16/2019] [Indexed: 12/15/2022]
Abstract
Gap junctions consist of arrays of intercellular channels that enable adjacent cells to communicate both electrically and metabolically. Gap junctions have a wide diversity of physiological functions, playing critical roles in both excitable and non-excitable tissues. Gap junction channels are formed by integral membrane proteins called connexins. Inherited or acquired alterations in connexins are associated with numerous diseases, including heart failure, neuropathologies, deafness, skin disorders, cataracts and cancer. Gap junctions are highly dynamic structures and by modulating the turnover rate of connexins, cells can rapidly alter the number of gap junction channels at the plasma membrane in response to extracellular or intracellular cues. Increasing evidence suggests that ubiquitination has important roles in the regulation of endoplasmic reticulum-associated degradation of connexins as well as in the modulation of gap junction endocytosis and post-endocytic sorting of connexins to lysosomes. In recent years, researchers have also started to provide insights into the physiological roles of connexin ubiquitination in specific tissue types. This review provides an overview of the advances made in understanding the roles of connexin ubiquitination in the regulation of gap junction intercellular communication and discusses the emerging physiological and pathophysiological implications of these processes.
Collapse
Affiliation(s)
- Max Zachrisson Totland
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, 0424, Oslo, Norway
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Nikoline Lander Rasmussen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, 0424, Oslo, Norway
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
- Department of Medical Biology, University of Tromsø, Tromsø, Norway
| | - Lars Mørland Knudsen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, 0424, Oslo, Norway
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Edward Leithe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, 0424, Oslo, Norway.
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
30
|
Huang BR, Tsai CH, Chen CC, Way TD, Kao JY, Liu YS, Lin HY, Lai SW, Lu DY. Curcumin Promotes Connexin 43 Degradation and Temozolomide-Induced Apoptosis in Glioblastoma Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:657-674. [PMID: 30974966 DOI: 10.1142/s0192415x19500344] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glioblastoma (GBM) is the most commonly occurring tumor in the cerebral hemispheres. Currently, temozolomide (TMZ), an alkylating agent that induces DNA strand breaks, is considered the frontline chemotherapeutic agent for GBM. Despite its frontline status, GBM patients commonly exhibit resistance to TMZ treatment. We have recently established and characterized TMZ-resistant human glioma cells. The aim of this study is to investigate whether curcumin modulates cell apoptosis through the alternation of the connexin 43 (Cx43) protein level in TMZ-resistant GBM. Overexpression of Cx43, but not ATP-binding cassette transporters (ABC transporters), was observed (approximately 2.2-fold) in TMZ-resistant GBM cells compared to the Cx43 levels in parental GBM cells. Furthermore, at a concentration of 10 μ M, curcumin significantly reduced Cx43 protein expression by about 40%. In addition, curcumin did not affect the expression of other connexins like Cx26 or epithelial-to-mesenchymal transition (EMT) proteins such as β -catenin or α E-catenin. Curcumin treatment led to an increase in TMZ-induced cell apoptosis from 4% to 8%. Importantly, it did not affect the mRNA expression level of Cx43. Concomitant treatment with the translation inhibitor cycloheximide (CHX) exerted additional effects on Cx43 degradation. Treatment with the autophagy inhibitor 3-MA (methyladenine) did not affect the curcumin-induced Cx43 degradation. Interestingly, treatment with the proteasome inhibitor MG132 (carbobenzoxy-Leu-Leu-leucinal) significantly negated the curcumin-induced Cx43 degradation, which suggests that curcumin-induced Cx43 degradation occurs through the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Bor-Ren Huang
- * Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan.,¶ Department of Neurosurgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan.,∥ School of Medicine, Tzu Chi University, Taichung, Taiwan
| | - Chon-Haw Tsai
- ** Department of Neurology, China Medical University Hospital, Taichung, Taiwan
| | - Chun-Chuan Chen
- †† Institute of Biochemistry, College of Life Science, National Chung Hsing University, Taichung, Taiwan
| | - Tzong-Der Way
- † Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
| | - Jung-Yie Kao
- †† Institute of Biochemistry, College of Life Science, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Shu Liu
- ‡ Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Hsiao-Yun Lin
- ‡ Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Sheng-Wei Lai
- § Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Dah-Yuu Lu
- ‡ Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.,‡‡ Department of Photonics and Communication Engineering, Asia University, Taichung, Taiwan
| |
Collapse
|
31
|
Kubincová P, Sychrová E, Raška J, Basu A, Yawer A, Dydowiczová A, Babica P, Sovadinová I. Polycyclic Aromatic Hydrocarbons and Endocrine Disruption: Role of Testicular Gap Junctional Intercellular Communication and Connexins. Toxicol Sci 2019; 169:70-83. [DOI: 10.1093/toxsci/kfz023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract
Ambient air pollution and smoking are well-documented risk factors for male infertility. Prevalent air pollutants and cigarette smoke components, polycyclic aromatic hydrocarbons (PAHs), are environmental and occupational toxicants that act as chemicals disrupting endocrine regulation and reproductive potential in males. Testicular gap junctional intercellular communication (GJIC) is critical for normal development and function of testicular tissue, thus we assessed GJIC as a process potentially targeted by PAHs in testes. Lower MW PAHs with a bay or bay-like region rapidly dysregulated GJIC in Leydig TM3 cells by relocalization of major testicular gap junctional protein connexin 43 (Cx43) from plasma membrane to cytoplasm. This was associated with colocalization between Cx43 and ubiquitin in intracellular compartments, but without any effect on Cx43 degradation rate or steady-state Cx43 mRNA levels. A longer exposure to active PAHs decreased steady-state levels of full-length Cx43 protein and its 2 N-truncated isoforms. Inhibition of GJIC by PAHs, similarly to a prototypic GJIC-inhibitor TPA, was mediated via the MAP kinase-Erk1/2 and PKC pathways. Polycyclic aromatic hydrocarbon-induced GJIC dysregulation in testes was cell-type-specific because neither PAH dysregulated GJIC in Sertoli TM4 cells, despite PAHs were rapidly taken up by both Leydig TM3 as well as Sertoli TM4 cells. Because TPA effectively dysregulated GJIC in both testicular cell types, a unique regulator of GJIC targeted by PAHs might exist in Leydig TM3 cells. Our results indicate that PAHs could be a potential etiological agent contributing to reproductive dysfunctions in males through an impairment of testicular GJIC and junctional and/or nonjunctional functions of Cx43.
Collapse
Affiliation(s)
- Petra Kubincová
- Masaryk University, Faculty of Science, RECETOX, Brno, Czech Republic
| | - Eliška Sychrová
- Masaryk University, Faculty of Science, RECETOX, Brno, Czech Republic
| | - Jan Raška
- Masaryk University, Faculty of Science, RECETOX, Brno, Czech Republic
| | - Amrita Basu
- Masaryk University, Faculty of Science, RECETOX, Brno, Czech Republic
| | - Affiefa Yawer
- Masaryk University, Faculty of Science, RECETOX, Brno, Czech Republic
| | - Aneta Dydowiczová
- Masaryk University, Faculty of Science, RECETOX, Brno, Czech Republic
| | - Pavel Babica
- Masaryk University, Faculty of Science, RECETOX, Brno, Czech Republic
| | - Iva Sovadinová
- Masaryk University, Faculty of Science, RECETOX, Brno, Czech Republic
| |
Collapse
|
32
|
Bell CL, Shakespeare TI, Smith AR, Murray SA. Visualization of Annular Gap Junction Vesicle Processing: The Interplay Between Annular Gap Junctions and Mitochondria. Int J Mol Sci 2018; 20:ijms20010044. [PMID: 30583492 PMCID: PMC6337258 DOI: 10.3390/ijms20010044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/15/2018] [Accepted: 12/20/2018] [Indexed: 11/16/2022] Open
Abstract
It is becoming clear that in addition to gap junctions playing a role in cell⁻cell communication, gap junction proteins (connexins) located in cytoplasmic compartments may have other important functions. Mitochondrial connexin 43 (Cx43) is increased after ischemic preconditioning and has been suggested to play a protective role in the heart. How Cx43 traffics to the mitochondria and the interactions of mitochondria with other Cx43-containing structures are unclear. In this study, immunocytochemical, super-resolution, and transmission electron microscopy were used to detect cytoplasmic Cx43-containing structures and to demonstrate their interactions with other cytoplasmic organelles. The most prominent cytoplasmic Cx43-containing structures-annular gap junctions-were demonstrated to form intimate associations with lysosomes as well as with mitochondria. Surprisingly, the frequency of associations between mitochondria and annular gap junctions was greater than that between lysosomes and annular gap junctions. The benefits of annular gap junction/mitochondrial associations are not known. However, it is tempting to suggest, among other possibilities, that the contact between annular gap junction vesicles and mitochondria facilitates Cx43 delivery to the mitochondria. Furthermore, it points to the need for investigating annular gap junctions as more than only vesicles destined for degradation.
Collapse
Affiliation(s)
- Cheryl L Bell
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | | - Amber R Smith
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Sandra A Murray
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
33
|
Alaei SR, Abrams CK, Bulinski JC, Hertzberg EL, Freidin MM. Acetylation of C-terminal lysines modulates protein turnover and stability of Connexin-32. BMC Cell Biol 2018; 19:22. [PMID: 30268116 PMCID: PMC6162937 DOI: 10.1186/s12860-018-0173-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 09/17/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The gap junction protein, Connexin32 (Cx32), is expressed in various tissues including liver, exocrine pancreas, gastrointestinal epithelium, and the glia of the central and peripheral nervous system. Gap junction-mediated cell-cell communication and channel-independent processes of Cx32 contribute to the regulation of physiological and cellular activities such as glial differentiation, survival, and proliferation; maintenance of the hepatic epithelium; and axonal myelination. Mutations in Cx32 cause X-linked Charcot-Marie-Tooth disease (CMT1X), an inherited peripheral neuropathy. Several CMT1X causing mutations are found in the cytoplasmic domains of Cx32, a region implicated in the regulation of gap junction assembly, turnover and function. Here we investigate the roles of acetylation and ubiquitination in the C-terminus on Cx32 protein function. Cx32 protein turnover, ubiquitination, and response to deacetylase inhibitors were determined for wild-type and C-terminus lysine mutants using transiently transfected Neuro2A (N2a) cells. RESULTS We report here that Cx32 is acetylated in transfected N2a cells and that inhibition of the histone deacetylase, HDAC6, results in an accumulation of Cx32. We identified five lysine acetylation targets in the C-terminus. Mutational analysis demonstrates that these lysines are involved in the regulation of Cx32 ubiquitination and turnover. While these lysines are not required for functional Cx32 mediated cell-cell communication, BrdU incorporation studies demonstrate that their relative acetylation state plays a channel-independent role in Cx32-mediated control of cell proliferation. CONCLUSION Taken together these results highlight the role of post translational modifications and lysines in the C-terminal tail of Cx32 in the fine-tuning of Cx32 protein stability and channel-independent functions.
Collapse
Affiliation(s)
- Sarah R. Alaei
- Department of Molecular Genetics & Microbiology, Stony Brook University, Stony Brook, NY 11794 USA
| | - Charles K. Abrams
- Department of Neurology & Rehabilitation, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - J. Chloë Bulinski
- Department of Cell & Molecular Biology, Columbia University, New York, NY 10032 USA
| | - Elliot L. Hertzberg
- Department of Cell & Molecular Biology, Columbia University, New York, NY 10032 USA
| | - Mona M. Freidin
- Department of Neurology & Rehabilitation, University of Illinois at Chicago, Chicago, IL 60612 USA
| |
Collapse
|
34
|
Yuan Y, Zhao J, Gong Y, Wang D, Wang X, Yun F, Liu Z, Zhang S, Li W, Zhao X, Sun L, Sheng L, Pan Z, Li Y. Autophagy exacerbates electrical remodeling in atrial fibrillation by ubiquitin-dependent degradation of L-type calcium channel. Cell Death Dis 2018; 9:873. [PMID: 30158642 PMCID: PMC6115437 DOI: 10.1038/s41419-018-0860-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/16/2018] [Accepted: 06/18/2018] [Indexed: 12/20/2022]
Abstract
Autophagy, a bidirectional degradative process extensively occurring in eukaryotes, has been revealed as a potential therapeutic target for several cardiovascular diseases. However, its role in atrial fibrillation (AF) remains largely unknown. This study aimed to determine the role of autophagy in atrial electrical remodeling under AF condition. Here, we reported that autophagic flux was markedly activated in atria of persistent AF patients and rabbit model of atrial rapid pacing (RAP). We also observed that the key autophagy-related gene7 (ATG7) significantly upregulated in AF patients as well as tachypacing rabbits. Moreover, lentivirus-mediated ATG7 knockdown and overexpression in rabbits were employed to clarify the effects of autophagy on atrial electrophysiology via intracardiac operation and patch-clamp experiments. Lentivirus-mediated ATG7 knockdown or autophagy inhibitor chloroquine (CQ) restored the shortened atrial effective refractory period (AERP) and alleviated the AF vulnerability caused by tachypacing in rabbits. Conversely, ATG7 overexpression significantly promoted the incidence and persistence of AF and decreased L-type calcium channel (Cav1.2 α-subunits), along with abbreviated action potential duration (APD) and diminished L-type calcium current (ICa,L). Furthermore, the co-localization and interaction of Cav1.2 with LC3B-positive autophagosomes enhanced when autophagy was activated in atrial myocytes. Tachypacing-induced autophagic degradation of Cav1.2 required ubiquitin signal through the recruitment of ubiquitin-binding proteins RFP2 and p62, which guided Cav1.2 to autophagosomes. These findings suggest that autophagy induces atrial electrical remodeling via ubiquitin-dependent selective degradation of Cav1.2 and provide a novel and promising strategy for preventing AF development.
Collapse
Affiliation(s)
- Yue Yuan
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, 150001, Harbin, China
| | - Jing Zhao
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, 150001, Harbin, China.,Key Laboratory of Cardiac Diseases and Heart Failure, Harbin Medical University, 150001, Harbin, China
| | - Yongtai Gong
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, 150001, Harbin, China
| | - Dingyu Wang
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, 150001, Harbin, China
| | - Xiaoyu Wang
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, 150001, Harbin, China
| | - Fengxiang Yun
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, 150001, Harbin, China
| | - Zhaorui Liu
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, 150001, Harbin, China
| | - Song Zhang
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, 150001, Harbin, China
| | - Wenpeng Li
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, 150001, Harbin, China
| | - Xinbo Zhao
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, 150001, Harbin, China
| | - Li Sun
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, 150001, Harbin, China
| | - Li Sheng
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, 150001, Harbin, China
| | - Zhenwei Pan
- Department of Pharmacology, Harbin Medical University, 150081, Harbin, China
| | - Yue Li
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, 150001, Harbin, China. .,Key Laboratory of Cardiac Diseases and Heart Failure, Harbin Medical University, 150001, Harbin, China. .,Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, 150081, Harbin, China.
| |
Collapse
|
35
|
Kells-Andrews RM, Margraf RA, Fisher CG, Falk MM. Connexin-43 K63-polyubiquitylation on lysines 264 and 303 regulates gap junction internalization. J Cell Sci 2018; 131:jcs.204321. [PMID: 30054380 DOI: 10.1242/jcs.204321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/22/2018] [Indexed: 12/20/2022] Open
Abstract
Gap junctions (GJs) assembled from connexin (Cx) proteins allow direct cell-cell communication. While phosphorylation is known to regulate multiple GJ functions, much less is known about the role of ubiquitin in these processes. Using ubiquitylation-type-specific antibodies and Cx43 lysine-to-arginine mutants we show that ∼8% of a GJ, localized in central plaque domains, is K63-polyubiquitylated on K264 and K303. Levels and localization of ubiquitylation correlated well with: (1) the short turnover rate of Cxs and GJs; (2) removal of older channels from the plaque center; and (3) the fact that not all Cxs in an internalizing GJ channel need to be ubiquitylated. Connexins mutated at these two sites assembled significantly larger GJs, exhibited much longer protein half-lives and were internalization impaired. Interestingly, these ubiquitin-deficient Cx43 mutants accumulated as hyper-phosphorylated polypeptides in the plasma membrane, suggesting that K63-polyubiquitylation is triggered by phosphorylation. Phospho-specific anti-Cx43 antibodies revealed that upregulated phosphorylation affected serines 368, 279/282 and 255, which are well-known regulatory PKC and MAPK sites. Together, these novel findings suggest that the internalizing portion of channels in a GJ is K63-polyubiquitylated, ubiquitylation is critical for GJ internalization and that phosphorylation induces Cx K63-polyubiquitylation.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Rachael M Kells-Andrews
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Iacocca Hall, Bethlehem, PA 18015, USA
| | - Rachel A Margraf
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Iacocca Hall, Bethlehem, PA 18015, USA
| | - Charles G Fisher
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Iacocca Hall, Bethlehem, PA 18015, USA
| | - Matthias M Falk
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Iacocca Hall, Bethlehem, PA 18015, USA
| |
Collapse
|
36
|
Shen G, Ren H, Shang Q, Qiu T, Yu X, Zhang Z, Huang J, Zhao W, Zhang Y, Liang D, Jiang X. Autophagy as a target for glucocorticoid-induced osteoporosis therapy. Cell Mol Life Sci 2018; 75:2683-2693. [PMID: 29427075 PMCID: PMC11105583 DOI: 10.1007/s00018-018-2776-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/25/2018] [Accepted: 02/06/2018] [Indexed: 02/07/2023]
Abstract
Autophagy takes part in regulating the eukaryotic cells function and the progression of numerous diseases, but its clinical utility has not been fully developed yet. Recently, mounting evidences highlight an important correlation between autophagy and bone homeostasis, mediated by osteoclasts, osteocytes, bone marrow mesenchymal stem cells, and osteoblasts, and autophagy plays a vital role in the pathogenesis of glucocorticoid-induced osteoporosis (GIOP). The combinations of autophagy activators/inhibitors with anti-GIOP first-line drugs or some new autophagy-based manipulators, such as regulation of B cell lymphoma 2 family proteins and caspase-dependent clearance of autophagy-related gene proteins, are likely to be the promising approaches for GIOP clinical treatments. In view of the important role of autophagy in the pathogenesis of GIOP, here we review the potential mechanisms about the impacts of autophagy in GIOP and its association with GIOP therapy.
Collapse
Affiliation(s)
- Gengyang Shen
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Hui Ren
- Department of Spinal Surgery, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Qi Shang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Ting Qiu
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xiang Yu
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhida Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jinjing Huang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Wenhua Zhao
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yuzhuo Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - De Liang
- Department of Spinal Surgery, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xiaobing Jiang
- Department of Spinal Surgery, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Laboratory Affiliated to National Key Discipline of Orthopaedic and Traumatology of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
37
|
Basheer WA, Shaw RM. Connexin 43 and CaV1.2 Ion Channel Trafficking in Healthy and Diseased Myocardium. Circ Arrhythm Electrophysiol 2018; 9:e001357. [PMID: 27266274 DOI: 10.1161/circep.115.001357] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 04/29/2016] [Indexed: 11/16/2022]
Affiliation(s)
- Wassim A Basheer
- From the Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA (W.A.B., R.M.S.); and Department of Medicine, University of California Los Angeles (R.M.S.)
| | - Robin M Shaw
- From the Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA (W.A.B., R.M.S.); and Department of Medicine, University of California Los Angeles (R.M.S.).
| |
Collapse
|
38
|
Liu C, Shen W, Yang C, Zeng L, Gao C. Knowns and unknowns of plasma membrane protein degradation in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 272:55-61. [PMID: 29807606 DOI: 10.1016/j.plantsci.2018.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/02/2018] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
Plasma membrane (PM) not only creates a physical barrier to enclose the intracellular compartments but also mediates the direct communication between plants and the ever-changing environment. A tight control of PM protein homeostasis by selective degradation is thus crucial for proper plant development and plant-environment interactions. Accumulated evidences have shown that a number of plant PM proteins undergo clathrin-dependent or membrane microdomain-associated endocytic routes to vacuole for degradation in a cargo-ubiquitination dependent or independent manner. Besides, several trans-acting determinants involved in the regulation of endocytosis, recycling and multivesicular body-mediated vacuolar sorting have been identified in plants. More interestingly, recent findings have uncovered the participation of selective autophagy in PM protein turnover in plants. Although great progresses have been made to identify the PM proteins that undergo dynamic changes in subcellular localizations and to explore the factors that control the membrane protein trafficking, several questions remain to be answered regarding the molecular mechanisms of PM protein degradation in plants. In this short review article, we briefly summarize recent progress in our understanding of the internalization, sorting and degradation of plant PM proteins. More specifically, we focus on discussing the elusive aspects underlying the pathways of PM protein degradation in plants.
Collapse
Affiliation(s)
- Chuanliang Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Wenjin Shen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Chao Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lizhang Zeng
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
39
|
Sorgen PL, Trease AJ, Spagnol G, Delmar M, Nielsen MS. Protein⁻Protein Interactions with Connexin 43: Regulation and Function. Int J Mol Sci 2018; 19:E1428. [PMID: 29748463 PMCID: PMC5983787 DOI: 10.3390/ijms19051428] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022] Open
Abstract
Connexins are integral membrane building blocks that form gap junctions, enabling direct cytoplasmic exchange of ions and low-molecular-mass metabolites between adjacent cells. In the heart, gap junctions mediate the propagation of cardiac action potentials and the maintenance of a regular beating rhythm. A number of connexin interacting proteins have been described and are known gap junction regulators either through direct effects (e.g., kinases) or the formation of larger multifunctional complexes (e.g., cytoskeleton scaffold proteins). Most connexin partners can be categorized as either proteins promoting coupling by stimulating forward trafficking and channel opening or inhibiting coupling by inducing channel closure, internalization, and degradation. While some interactions have only been implied through co-localization using immunohistochemistry, others have been confirmed by biophysical methods that allow detection of a direct interaction. Our understanding of these interactions is, by far, most well developed for connexin 43 (Cx43) and the scope of this review is to summarize our current knowledge of their functional and regulatory roles. The significance of these interactions is further exemplified by demonstrating their importance at the intercalated disc, a major hub for Cx43 regulation and Cx43 mediated effects.
Collapse
Affiliation(s)
- Paul L Sorgen
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Andrew J Trease
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Gaelle Spagnol
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Mario Delmar
- Leon H Charney Division of Cardiology, NYU School of Medicine, New York, NY 10016, USA.
| | - Morten S Nielsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
40
|
Aasen T, Johnstone S, Vidal-Brime L, Lynn KS, Koval M. Connexins: Synthesis, Post-Translational Modifications, and Trafficking in Health and Disease. Int J Mol Sci 2018; 19:ijms19051296. [PMID: 29701678 PMCID: PMC5983588 DOI: 10.3390/ijms19051296] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/20/2018] [Accepted: 04/21/2018] [Indexed: 02/06/2023] Open
Abstract
Connexins are tetraspan transmembrane proteins that form gap junctions and facilitate direct intercellular communication, a critical feature for the development, function, and homeostasis of tissues and organs. In addition, a growing number of gap junction-independent functions are being ascribed to these proteins. The connexin gene family is under extensive regulation at the transcriptional and post-transcriptional level, and undergoes numerous modifications at the protein level, including phosphorylation, which ultimately affects their trafficking, stability, and function. Here, we summarize these key regulatory events, with emphasis on how these affect connexin multifunctionality in health and disease.
Collapse
Affiliation(s)
- Trond Aasen
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Autonomous University of Barcelona, CIBERONC, 08035 Barcelona, Spain.
| | - Scott Johnstone
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VI 22908, USA.
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TT, UK.
| | - Laia Vidal-Brime
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Autonomous University of Barcelona, CIBERONC, 08035 Barcelona, Spain.
| | - K Sabrina Lynn
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
41
|
Sun J, Hu Q, Peng H, Peng C, Zhou L, Lu J, Huang C. The ubiquitin-specific protease USP8 deubiquitinates and stabilizes Cx43. J Biol Chem 2018; 293:8275-8284. [PMID: 29626091 DOI: 10.1074/jbc.ra117.001315] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/26/2018] [Indexed: 11/06/2022] Open
Abstract
Connexin-43 (Cx43, also known as GJA1) is the most ubiquitously expressed connexin isoform in mammalian tissues. It forms intercellular gap junction (GJ) channels, enabling adjacent cells to communicate both electrically and metabolically. Cx43 is a short-lived protein which can be quickly degraded by the ubiquitin-dependent proteasomal, endolysosomal, and autophagosomal pathways. Here, we report that the ubiquitin-specific peptidase 8 (USP8) interacts with and deubiquitinates Cx43. USP8 reduces both multiple monoubiquitination and polyubiquitination of Cx43 to prevent autophagy-mediated degradation. Consistently, knockdown of USP8 results in decreased Cx43 protein levels in cultured cells and suppresses intercellular communication, revealed by the dye transfer assay. In human breast cancer specimens, the expression levels of USP8 and Cx43 proteins are positively correlated. Taken together, these results identified USP8 as a crucial and bona fide deubiquitinating enzyme involved in autophagy-mediated degradation of Cx43.
Collapse
Affiliation(s)
- Jian Sun
- Department of Breast Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025
| | - Qianwen Hu
- Shanghai Institute of Immunology & Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hong Peng
- Shanghai Institute of Immunology & Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Cheng Peng
- Shanghai Institute of Immunology & Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Liheng Zhou
- Department of Breast Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025
| | - Jinsong Lu
- Department of Breast Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025.
| | - Chuanxin Huang
- Shanghai Institute of Immunology & Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
42
|
Ray A, Katoch P, Jain N, Mehta PP. Dileucine-like motifs in the C-terminal tail of connexin32 control its endocytosis and assembly into gap junctions. J Cell Sci 2018; 131:jcs207340. [PMID: 29361528 PMCID: PMC5897717 DOI: 10.1242/jcs.207340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 01/11/2018] [Indexed: 12/11/2022] Open
Abstract
Defects in assembly of gap junction-forming proteins, called connexins (Cxs), are observed in a variety of cancers. Connexin32 (Cx32; also known as GJB1) is expressed by the polarized cells in epithelia. We discovered two dileucine-based motifs, which govern the intracellular sorting and endocytosis of transmembrane proteins, in the C-terminal tail of Cx32 and explored their role in regulating its endocytosis and gap junction-forming abilities in pancreatic and prostate cancer cells. One motif, designated as LI, was located near the juxtamembrane domain, whereas the other, designated as LL, was located distally. We also discovered a non-canonical motif, designated as LR, in the C-terminal tail. Our results showed that rendering these motifs non-functional had no effect on the intracellular sorting of Cx32. However, rendering the LL or LR motif nonfunctional enhanced the formation of gap junctions by inhibiting Cx32 endocytosis by the clathrin-mediated pathway. Rendering the LI motif nonfunctional inhibited gap junction formation by augmenting the endocytosis of Cx32 via the LL and LR motifs. Our studies have defined distinct roles of these motifs in regulating the endocytosis of Cx32 and its gap junction-forming ability.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Anuttoma Ray
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Parul Katoch
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nimansha Jain
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Parmender P Mehta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
43
|
Molecular control of chaperone-mediated autophagy. Essays Biochem 2017; 61:663-674. [DOI: 10.1042/ebc20170057] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/23/2017] [Accepted: 11/01/2017] [Indexed: 01/26/2023]
Abstract
Chaperone-mediated autophagy (CMA) is a selective form of autophagy in which cytosolic proteins bearing a pentapeptide motif biochemically related to the KFERQ sequence, are recognized by the heat shock protein family A member 8 (HSPA8) chaperone, delivered to the lysomal membrane, and directly translocated across the lysosomal membrane by a protein complex containing lysosomal associated membrane protein 2a (Lamp2a). Since its discovery over two decades ago, the importance of this pathway in cell proteostasis has been made increasingly apparent. Deregulation of this pathway has been implicated in a variety of diseases and conditions, including lysosomal storage diseases, cancer, neurodegeneration and even aging. Here, we describe the main molecular features of the pathway, its regulation, cross-talk with other degradation pathways and importance in disease.
Collapse
|
44
|
Gao J, Cheng TS, Qin A, Pavlos NJ, Wang T, Song K, Wang Y, Chen L, Zhou L, Jiang Q, Takayanagi H, Yan S, Zheng M. Glucocorticoid impairs cell-cell communication by autophagy-mediated degradation of connexin 43 in osteocytes. Oncotarget 2017; 7:26966-78. [PMID: 27127181 PMCID: PMC5053625 DOI: 10.18632/oncotarget.9034] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/08/2016] [Indexed: 11/25/2022] Open
Abstract
Osteocytes comprising over 90% of the bone cell population are highly susceptible to the adverse effects of glucocorticoids (GC) administration. Here we observed that Dexamethasone (Dex) induces a robust cytoskeleton rearrangement and decreases Cx43 protein expression in osteocyte-like MLO-Y4 cells. Using a Dmp1Cre-mT/mG osteocyte ex vivo culture system, we found significant shortening of dendritic processes in primary osteocytes following Dex administration. Loss of dendritic processes is a consequence of reduced Cx43 connectivity upon Dex induced autophagy in both RFP-GFP-LC3B transfected MLO-Y4 cells and primary calvarial osteocytes from LC3GFP transgenic mice. Upon the induction of autophagy by Dex, Cx43 was internalized into autophagosome/autolysosomes and degraded by autophagy. The degradation was attenuated following lysosomal inhibition using chloroquine (CLQ) and suppression of autophagy by Atg5 silencing. Inhibition Akt-mTORC1 signaling by Dex induces autophagy subsequently resulting in Cx43 degradation.Activation of Akt phosphorylation by IGF-1 attenuated Dex induced autophagy and degradation of Cx43. Together, we demonstrated that GC impair osteocyte cell-cell connectivity via autophagy mediated degradation of Cx43 through inhibition of the Akt-mTORC1 signaling. This may account for the deleterious effect of GC-induced bone loss.
Collapse
Affiliation(s)
- Junjie Gao
- Centre for Orthopaedic Research, School of Surgery, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Tak Sum Cheng
- Centre for Orthopaedic Research, School of Surgery, The University of Western Australia, Nedlands, Western Australia, Australia
| | - An Qin
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nathan J Pavlos
- Centre for Orthopaedic Research, School of Surgery, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Tao Wang
- Centre for Orthopaedic Research, School of Surgery, The University of Western Australia, Nedlands, Western Australia, Australia.,Division of Orthopaedic Surgery, Department of Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Kai Song
- Centre for Orthopaedic Research, School of Surgery, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Yan Wang
- Key Laboratory of Combined Muti-Organ Transplantation, Ministry of Public Health, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Division of Hepatobiliary Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lianzhi Chen
- Centre for Orthopaedic Research, School of Surgery, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Lin Zhou
- Key Laboratory of Combined Muti-Organ Transplantation, Ministry of Public Health, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Division of Hepatobiliary Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstruction Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Hiroshi Takayanagi
- Centre for Orthopaedic Research, School of Surgery, The University of Western Australia, Nedlands, Western Australia, Australia.,Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sheng Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Combined Muti-Organ Transplantation, Ministry of Public Health, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Division of Hepatobiliary Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minghao Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Combined Muti-Organ Transplantation, Ministry of Public Health, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Division of Hepatobiliary Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Centre for Orthopaedic Research, School of Surgery, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
45
|
Tsai CF, Cheng YK, Lu DY, Wang SL, Chang CN, Chang PC, Yeh WL. Inhibition of estrogen receptor reduces connexin 43 expression in breast cancers. Toxicol Appl Pharmacol 2017; 338:182-190. [PMID: 29180066 DOI: 10.1016/j.taap.2017.11.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/15/2017] [Accepted: 11/23/2017] [Indexed: 10/18/2022]
Abstract
Connexins are widely supported as tumor suppressors due to their downregulation in cancers, nevertheless, more recent evidence suggests roles for connexins in facilitating tumor progression in later stages, including metastasis. One of the key factors regulating the expression, modification, stability, and localization of connexins is hormone receptors in hormone-dependent cancers. It is reasonable to consider that hormones/hormone receptors may modulate connexins expression and play critical roles in the cellular control of connexins during breast cancer progression. In estrogen receptor (ER)-positive breast cancers, tamoxifen and fulvestrant are widely used therapeutic agents and are considered to alter ER signaling. In this present study, we investigated the effects of fulvestrant and tamoxifen in Cx43 expression, and we also explored the role of Cx43 in ER-positive breast cancer migration and the relationship between Cx43 and ER. The involvement of estrogen/ER in Cx43 modulation was further verified by administering tyrosine kinase inhibitors and chemotherapeutic agents. We found that inhibition of ER promoted the binding of E3 ligase Nedd4 to Cx43, leading to Cx43 ubiquitination. Furthermore, inhibition of ER by fulvestrant and tamoxifen phosphorylated p38 MAPK, and inhibition of Rac, MKK3/6, and p38 reversed fulvestrant-reduced Cx43 expression. These findings suggest that Cx43 expression which may positively regulate cell migration is ER-dependent in ER-positive breast cancer cells.
Collapse
Affiliation(s)
- Cheng-Fang Tsai
- Department of Biotechnology, Asia University, No.500 Lioufeng Road, Taichung 41354, Taiwan.
| | - Yu-Kai Cheng
- Division of Neurosurgery, China Medical University Hospital, No.2 Yuh-Der Road, Taichung, Taiwan
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, China Medical University, No.91 Hsueh-Shih Road, Taichung 40402, Taiwan; Department of Photonics and Communication Engineering, Asia University, No.500 Lioufeng Road, Taichung 41354, Taiwan.
| | - Shu-Lin Wang
- Institute of New Drug Development, China Medical University, No.91 Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Chen-Ni Chang
- Department of Biological Science and Technology, China Medical University, No.91 Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Pei-Chun Chang
- Department of Bioinformatics and Medical Engineering, Asia University, No.500 Lioufeng Road, Taichung 41354, Taiwan.
| | - Wei-Lan Yeh
- Institute of New Drug Development, China Medical University, No.91 Hsueh-Shih Road, Taichung 40402, Taiwan.
| |
Collapse
|
46
|
Wang G, Bi Y, Liu X, Wei M, Zhang Q. Upregulation of connexin43 by glucose deprivation in H9c2 cells via the extracellular signal‑regulated kinase/mitogen‑activated protein kinase signaling pathway. Mol Med Rep 2017; 17:729-734. [PMID: 29115504 PMCID: PMC5780149 DOI: 10.3892/mmr.2017.7967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 01/16/2017] [Indexed: 12/23/2022] Open
Abstract
Cardiac connexin43 (Cx43) serves an essential role in maintaining the functional integrity of the heart. The present study investigated the effect of glucose deprivation (GD) on Cx43 protein expression levels in H9c2 cells, and demonstrated that following 2 h GD, Cx43 protein expression levels in H9c2 cells increased by ~68%. In addition, GD activated the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) signaling pathway, which regulated the expression levels of cardiac Cx43. A MAPK inhibitor and U0126, an ERK inhibitor, abolished the effects of GD on Cx43 expression levels. Under GD, the protein expression levels of Beclin-1, p62 and LC3 were augmented, and were decreased in the presence of ERK inhibitor or siRNA-ERK. In addition, H9c2 cells exposed to GD exhibited marked increase in LDH release and decreased MTT reduction activity, all of which were not significantly reversed by U0126 treatment. Therefore, the ERK/MAPK signaling pathway may be involved in elevating cardiac Cx43 expression levels under GD in H9c2 cells.
Collapse
Affiliation(s)
- Guangyu Wang
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Yaguang Bi
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Xiangdong Liu
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Meng Wei
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Qingyong Zhang
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| |
Collapse
|
47
|
Ribeiro-Rodrigues TM, Martins-Marques T, Morel S, Kwak BR, Girão H. Role of connexin 43 in different forms of intercellular communication - gap junctions, extracellular vesicles and tunnelling nanotubes. J Cell Sci 2017; 130:3619-3630. [PMID: 29025971 DOI: 10.1242/jcs.200667] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Communication is important to ensure the correct and efficient flow of information, which is required to sustain active social networks. A fine-tuned communication between cells is vital to maintain the homeostasis and function of multicellular or unicellular organisms in a community environment. Although there are different levels of complexity, intercellular communication, in prokaryotes to mammalians, can occur through secreted molecules (either soluble or encapsulated in vesicles), tubular structures connecting close cells or intercellular channels that link the cytoplasm of adjacent cells. In mammals, these different types of communication serve different purposes, may involve distinct factors and are mediated by extracellular vesicles, tunnelling nanotubes or gap junctions. Recent studies have shown that connexin 43 (Cx43, also known as GJA1), a transmembrane protein initially described as a gap junction protein, participates in all these forms of communication; this emphasizes the concept of adopting strategies to maximize the potential of available resources by reutilizing the same factor in different scenarios. In this Review, we provide an overview of the most recent advances regarding the role of Cx43 in intercellular communication mediated by extracellular vesicles, tunnelling nanotubes and gap junctions.
Collapse
Affiliation(s)
- Teresa M Ribeiro-Rodrigues
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal.,CNC.IBILI, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Tânia Martins-Marques
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal.,CNC.IBILI, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Sandrine Morel
- Dept. of Pathology and Immunology, and Dept. of Medical Specialties - Cardiology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Brenda R Kwak
- Dept. of Pathology and Immunology, and Dept. of Medical Specialties - Cardiology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Henrique Girão
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal .,CNC.IBILI, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
48
|
Leybaert L, Lampe PD, Dhein S, Kwak BR, Ferdinandy P, Beyer EC, Laird DW, Naus CC, Green CR, Schulz R. Connexins in Cardiovascular and Neurovascular Health and Disease: Pharmacological Implications. Pharmacol Rev 2017; 69:396-478. [PMID: 28931622 PMCID: PMC5612248 DOI: 10.1124/pr.115.012062] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Connexins are ubiquitous channel forming proteins that assemble as plasma membrane hemichannels and as intercellular gap junction channels that directly connect cells. In the heart, gap junction channels electrically connect myocytes and specialized conductive tissues to coordinate the atrial and ventricular contraction/relaxation cycles and pump function. In blood vessels, these channels facilitate long-distance endothelial cell communication, synchronize smooth muscle cell contraction, and support endothelial-smooth muscle cell communication. In the central nervous system they form cellular syncytia and coordinate neural function. Gap junction channels are normally open and hemichannels are normally closed, but pathologic conditions may restrict gap junction communication and promote hemichannel opening, thereby disturbing a delicate cellular communication balance. Until recently, most connexin-targeting agents exhibited little specificity and several off-target effects. Recent work with peptide-based approaches has demonstrated improved specificity and opened avenues for a more rational approach toward independently modulating the function of gap junctions and hemichannels. We here review the role of connexins and their channels in cardiovascular and neurovascular health and disease, focusing on crucial regulatory aspects and identification of potential targets to modify their function. We conclude that peptide-based investigations have raised several new opportunities for interfering with connexins and their channels that may soon allow preservation of gap junction communication, inhibition of hemichannel opening, and mitigation of inflammatory signaling.
Collapse
Affiliation(s)
- Luc Leybaert
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Paul D Lampe
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Stefan Dhein
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Brenda R Kwak
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Peter Ferdinandy
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Eric C Beyer
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Dale W Laird
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Christian C Naus
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Colin R Green
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Rainer Schulz
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| |
Collapse
|
49
|
Shen G, Ren H, Qiu T, Zhang Z, Zhao W, Yu X, Huang J, Tang J, Liang D, Yao Z, Yang Z, Jiang X. Mammalian target of rapamycin as a therapeutic target in osteoporosis. J Cell Physiol 2017; 233:3929-3944. [PMID: 28834576 DOI: 10.1002/jcp.26161] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/21/2017] [Indexed: 12/19/2022]
Abstract
The mechanistic target of rapamycin (mTOR) plays a key role in sensing and integrating large amounts of environmental cues to regulate organismal growth, homeostasis, and many major cellular processes. Recently, mounting evidences highlight its roles in regulating bone homeostasis, which sheds light on the pathogenesis of osteoporosis. The activation/inhibition of mTOR signaling is reported to positively/negatively regulate bone marrow mesenchymal stem cells (BMSCs)/osteoblasts-mediated bone formation, adipogenic differentiation, osteocytes homeostasis, and osteoclasts-mediated bone resorption, which result in the changes of bone homeostasis, thereby resulting in or protect against osteoporosis. Given the likely importance of mTOR signaling in the pathogenesis of osteoporosis, here we discuss the detailed mechanisms in mTOR machinery and its association with osteoporosis therapy.
Collapse
Affiliation(s)
- Gengyang Shen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui Ren
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ting Qiu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhida Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenhua Zhao
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiang Yu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinjing Huang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingjing Tang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - De Liang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhensong Yao
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhidong Yang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaobing Jiang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory Affiliated to National Key Discipline of Orthopaedic and Traumatology of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
50
|
Mesnil M, Aasen T, Boucher J, Chépied A, Cronier L, Defamie N, Kameritsch P, Laird DW, Lampe PD, Lathia JD, Leithe E, Mehta PP, Monvoisin A, Pogoda K, Sin WC, Tabernero A, Yamasaki H, Yeh ES, Dagli MLZ, Naus CC. An update on minding the gap in cancer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:237-243. [PMID: 28655619 DOI: 10.1016/j.bbamem.2017.06.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 01/08/2023]
Abstract
This article is a report of the "International Colloquium on Gap junctions: 50Years of Impact on Cancer" that was held 8-9 September 2016, at the Amphitheater "Pôle Biologie Santé" of the University of Poitiers (Poitiers, France). The colloquium was organized by M Mesnil (Université de Poitiers, Poitiers, France) and C Naus (University of British Columbia, Vancouver, Canada) to celebrate the 50th anniversary of the seminal work published in 1966 by Loewenstein and Kanno [Intercellular communication and the control of tissue growth: lack of communication between cancer cells, Nature, 116 (1966) 1248-1249] which initiated studies on the involvement of gap junctions in carcinogenesis. During the colloquium, 15 participants presented reviews or research updates in the field which are summarized below.
Collapse
Affiliation(s)
- Marc Mesnil
- STIM Laboratory ERL 7368 CNRS - Faculté des Sciences Fondamentales et Appliquées, Université de Poitiers, Poitiers 86073, cedex 09, France.
| | - Trond Aasen
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Autonomous University of Barcelona, CIBERONC, 08035 Barcelona, Spain
| | - Jonathan Boucher
- STIM Laboratory ERL 7368 CNRS - Faculté des Sciences Fondamentales et Appliquées, Université de Poitiers, Poitiers 86073, cedex 09, France
| | - Amandine Chépied
- STIM Laboratory ERL 7368 CNRS - Faculté des Sciences Fondamentales et Appliquées, Université de Poitiers, Poitiers 86073, cedex 09, France
| | - Laurent Cronier
- STIM Laboratory ERL 7368 CNRS - Faculté des Sciences Fondamentales et Appliquées, Université de Poitiers, Poitiers 86073, cedex 09, France
| | - Norah Defamie
- STIM Laboratory ERL 7368 CNRS - Faculté des Sciences Fondamentales et Appliquées, Université de Poitiers, Poitiers 86073, cedex 09, France
| | - Petra Kameritsch
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München and Munich University Hospital, München, Germany
| | - Dale W Laird
- Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario N6A 5C1, Canada
| | - Paul D Lampe
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Justin D Lathia
- Cleveland Clinic, Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Edward Leithe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, and Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, NO-0424 Oslo, Norway
| | - Parmender P Mehta
- Department of Biochemistry and Molecular Biology, University of Nebraska, Medical Center, Omaha, NE 68198, USA
| | - Arnaud Monvoisin
- STIM Laboratory ERL 7368 CNRS - Faculté des Sciences Fondamentales et Appliquées, Université de Poitiers, Poitiers 86073, cedex 09, France
| | - Kristin Pogoda
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München and Munich University Hospital, München, Germany
| | - Wun-Chey Sin
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Arantxa Tabernero
- Departamento de Bioquímica y Biología Molecular, Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Salamanca 37007, Spain
| | | | - Elizabeth S Yeh
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29412, USA
| | - Maria Lucia Zaidan Dagli
- Laboratory of Experimental and Comparative Oncology, School of Veterinary Medicine and Animal Science of the University of São Paulo, São Paulo, SP CEP 05508-900, Brazil
| | - Christian C Naus
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|