1
|
Li DC, Hinton EA, Guo J, Knight KA, Sequeira MK, Wynne ME, Dighe NM, Gourley SL. Social experience in adolescence shapes prefrontal cortex structure and function in adulthood. Mol Psychiatry 2024; 29:2787-2798. [PMID: 38580810 PMCID: PMC11567502 DOI: 10.1038/s41380-024-02540-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/07/2024]
Abstract
During adolescence, the prefrontal cortex (PFC) undergoes dramatic reorganization. PFC development is profoundly influenced by the social environment, disruptions to which may prime the emergence of psychopathology across the lifespan. We investigated the neurobehavioral consequences of isolation experienced in adolescence in mice, and in particular, the long-term consequences that were detectable even despite normalization of the social milieu. Isolation produced biases toward habit-like behavior at the expense of flexible goal seeking, plus anhedonic-like reward deficits. Behavioral phenomena were accompanied by neuronal dendritic spine over-abundance and hyper-excitability in the ventromedial PFC (vmPFC), which was necessary for the expression of isolation-induced habits and sufficient to trigger behavioral inflexibility in socially reared controls. Isolation activated cytoskeletal regulatory pathways otherwise suppressed during adolescence, such that repression of constituent elements prevented long-term isolation-induced neurosequelae. Altogether, our findings unveil an adolescent critical period and multi-model mechanism by which social experiences facilitate prefrontal cortical maturation.
Collapse
Affiliation(s)
- Dan C Li
- Medical Scientist Training Program, Emory University School of Medicine, Atlanta, GA, USA.
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA.
| | - Elizabeth A Hinton
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Jidong Guo
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Psychiatry and Behavioral sciences, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Michelle K Sequeira
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Meghan E Wynne
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Niharika M Dighe
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Shannon L Gourley
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA.
- Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Psychiatry and Behavioral sciences, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
2
|
Smirnova EV, Rakitina TV, Ziganshin RH, Saratov GA, Arapidi GP, Belogurov AA, Kudriaeva AA. Identification of Myelin Basic Protein Proximity Interactome Using TurboID Labeling Proteomics. Cells 2023; 12:cells12060944. [PMID: 36980286 PMCID: PMC10047773 DOI: 10.3390/cells12060944] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Myelin basic protein (MBP) is one of the key structural elements of the myelin sheath and has autoantigenic properties in multiple sclerosis (MS). Its intracellular interaction network is still partially deconvoluted due to the unfolded structure, abnormally basic charge, and specific cellular localization. Here we used the fusion protein of MBP with TurboID, an engineered biotin ligase that uses ATP to convert biotin to reactive biotin-AMP that covalently attaches to nearby proteins, to determine MBP interactome. Despite evident benefits, the proximity labeling proteomics technique generates high background noise, especially in the case of proteins tending to semi-specific interactions. In order to recognize unique MBP partners, we additionally mapped protein interaction networks for deaminated MBP variant and cyclin-dependent kinase inhibitor 1 (p21), mimicking MBP in terms of natively unfolded state, size and basic amino acid clusters. We found that in the plasma membrane region, MBP is colocalized with adhesion proteins occludin and myelin protein zero-like protein 1, solute carrier family transporters ZIP6 and SNAT1, Eph receptors ligand Ephrin-B1, and structural components of the vesicle transport machinery-synaptosomal-associated protein 23 (SNAP23), vesicle-associated membrane protein 3 (VAMP3), protein transport protein hSec23B and cytoplasmic dynein 1 heavy chain 1. We also detected that MBP potentially interacts with proteins involved in Fe2+ and lipid metabolism, namely, ganglioside GM2 activator protein, long-chain-fatty-acid-CoA ligase 4 (ACSL4), NADH-cytochrome b5 reductase 1 (CYB5R1) and metalloreductase STEAP3. Assuming the emerging role of ferroptosis and vesicle cargo docking in the development of autoimmune neurodegeneration, MBP may recruit and regulate the activity of these processes, thus, having a more inclusive role in the integrity of the myelin sheath.
Collapse
Affiliation(s)
- Evgeniya V Smirnova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Tatiana V Rakitina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Rustam H Ziganshin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - George A Saratov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Russia
| | - Georgij P Arapidi
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Russia
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Alexey A Belogurov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Department of Biological Chemistry, Evdokimov Moscow State University of Medicine and Dentistry, Ministry of Health of Russian Federation, 127473 Moscow, Russia
| | - Anna A Kudriaeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
3
|
Zou Y, Zhang X, Liang J, Peng L, Qin J, Zhou F, Liu T, Dai L. Mucin 1 aggravates synovitis and joint damage of rheumatoid arthritis by regulating inflammation and aggression of fibroblast-like synoviocytes. Bone Joint Res 2022; 11:639-651. [PMID: 36048147 PMCID: PMC9533250 DOI: 10.1302/2046-3758.119.bjr-2021-0398.r2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Aims To explore the synovial expression of mucin 1 (MUC1) and its role in rheumatoid arthritis (RA), as well as the possible downstream mechanisms. Methods Patients with qualified synovium samples were recruited from a RA cohort. Synovium from patients diagnosed as non-inflammatory orthopaedic arthropathies was obtained as control. The expression and localization of MUC1 in synovium and fibroblast-like synoviocytes were assessed by immunohistochemistry and immunofluorescence. Small interfering RNA and MUC1 inhibitor GO-203 were adopted for inhibition of MUC1. Lysophosphatidic acid (LPA) was used as an activator of Rho-associated pathway. Expression of inflammatory cytokines, cell migration, and invasion were evaluated using quantitative real-time polymerase chain reaction (PCR) and Transwell chamber assay. Results A total of 63 RA patients and ten controls were included. Expression of MUC1 was observed in both the synovial lining and sublining layer. The percentage of MUC1+ cells in the lining layer of synovium was significantly higher in RA than that in control, and positively correlated to joint destruction scores of RA. Meanwhile, MUC1+ cells in the sublining layer were positively correlated to the Krenn subscore of inflammatory infiltration. Knockdown of MUC1, rather than GO-203 treatment, ameliorated the expression of proinflammatory cytokines, cell migration, and invasion of rheumatoid synoviocytes. Knockdown of MUC1 decreased expression of RhoA, Cdc42, and Rac1. Treatment with LPA compromised the inhibition of migration and invasion, but not inflammation, of synoviocytes by MUC1 knockdown. Conclusion Upregulated MUC1 promotes the aggression of rheumatoid synoviocytes via Rho guanosine triphosphatases (GTPases), thereby facilitating synovitis and joint destruction during the pathological process of RA. Cite this article: Bone Joint Res 2022;11(9):639–651.
Collapse
Affiliation(s)
- Yaoyao Zou
- Department of Rheumatology, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Xuepei Zhang
- Department of Rheumatology, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Jinjian Liang
- Department of Rheumatology, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Liqin Peng
- Department of Rheumatology, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Jiale Qin
- Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Feng Zhou
- Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Ting Liu
- Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Lie Dai
- Department of Rheumatology, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| |
Collapse
|
4
|
Xia N, Yang N, Shan Q, Wang Z, Liu X, Chen Y, Lu J, Huang W, Wang Z. HNRNPC regulates RhoA to induce DNA damage repair and cancer-associated fibroblast activation causing radiation resistance in pancreatic cancer. J Cell Mol Med 2022; 26:2322-2336. [PMID: 35277915 PMCID: PMC8995438 DOI: 10.1111/jcmm.17254] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/29/2022] [Accepted: 02/17/2022] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most lethal types of cancer due to its asymptomatic nature in the early stages and consequent late diagnosis. Its mortality rate remains high despite advances in treatment strategies, which include a combination of surgical resection and adjuvant therapy. Although these approaches may have a positive effect on prognosis, the development of chemo- and radioresistance still poses a significant challenge for successful PC treatment. Heterogeneous nuclear ribonucleoprotein C1/C2 (HNRNPC) and RhoA have been implicated in the regulation of tumour cell proliferation and chemo- and radioresistance. Our study aims to investigate the mechanism for HNRNPC regulation of PC radiation resistance via the RhoA pathway. We found that HNRNPC and RhoA mRNA and protein expression levels were significantly higher in PC tissues compared to adjacent non-tumour tissue. Furthermore, high HNRNPC expression was associated with poor patient prognosis. Using HNRNPC overexpression and siRNA interference, we demonstrated that HNRNPC overexpression promoted radiation resistance in PC cells, while HNRNPC knockdown increased radiosensitivity. However, silencing of RhoA expression was shown to attenuate radiation resistance caused by HNRNPC overexpression. Next, we identified RhoA as a downstream target of HNRNPC and showed that inhibition of the RhoA/ROCK2-YAP/TAZ pathway led to a reduction in DNA damage repair and radiation resistance. Finally, using both in vitro assays and an in vivo subcutaneous tumour xenograft model, we demonstrated that RhoA inhibition can hinder the activity of cancer-related fibroblasts and weaken PC radiation resistance. Our study describes a role for HNRNPC and the RhoA/ROCK2-YAP/TAZ signalling pathways in mediating radiation resistance and provides a potential therapeutic target for improving the treatment of PC.
Collapse
Affiliation(s)
- Ning Xia
- Department of RadiologyRuijin Hospital Luwan BranchShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Nannan Yang
- Department of RadiologyRuijin Hospital Luwan BranchShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qungang Shan
- Department of Interventional RadiologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ziyin Wang
- Department of Interventional RadiologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaoyu Liu
- Department of Interventional RadiologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yingjie Chen
- Department of Interventional RadiologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jian Lu
- Department of RadiologyRuijin Hospital Luwan BranchShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wei Huang
- Department of Interventional RadiologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhongmin Wang
- Department of RadiologyRuijin Hospital Luwan BranchShanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Interventional RadiologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
5
|
Duman JG, Blanco FA, Cronkite CA, Ru Q, Erikson KC, Mulherkar S, Saifullah AB, Firozi K, Tolias KF. Rac-maninoff and Rho-vel: The symphony of Rho-GTPase signaling at excitatory synapses. Small GTPases 2022; 13:14-47. [PMID: 33955328 PMCID: PMC9707551 DOI: 10.1080/21541248.2021.1885264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 01/15/2023] Open
Abstract
Synaptic connections between neurons are essential for every facet of human cognition and are thus regulated with extreme precision. Rho-family GTPases, molecular switches that cycle between an active GTP-bound state and an inactive GDP-bound state, comprise a critical feature of synaptic regulation. Rho-GTPases are exquisitely controlled by an extensive suite of activators (GEFs) and inhibitors (GAPs and GDIs) and interact with many different signalling pathways to fulfill their roles in orchestrating the development, maintenance, and plasticity of excitatory synapses of the central nervous system. Among the mechanisms that control Rho-GTPase activity and signalling are cell surface receptors, GEF/GAP complexes that tightly regulate single Rho-GTPase dynamics, GEF/GAP and GEF/GEF functional complexes that coordinate multiple Rho-family GTPase activities, effector positive feedback loops, and mutual antagonism of opposing Rho-GTPase pathways. These complex regulatory mechanisms are employed by the cells of the nervous system in almost every step of development, and prominently figure into the processes of synaptic plasticity that underlie learning and memory. Finally, misregulation of Rho-GTPases plays critical roles in responses to neuronal injury, such as traumatic brain injury and neuropathic pain, and in neurodevelopmental and neurodegenerative disorders, including intellectual disability, autism spectrum disorder, schizophrenia, and Alzheimer's Disease. Thus, decoding the mechanisms of Rho-GTPase regulation and function at excitatory synapses has great potential for combatting many of the biggest current challenges in mental health.
Collapse
Affiliation(s)
- Joseph G. Duman
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Francisco A. Blanco
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Integrative Molecular and Biomedical Science Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Christopher A. Cronkite
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Qin Ru
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Kelly C. Erikson
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Shalaka Mulherkar
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Ali Bin Saifullah
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Karen Firozi
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Kimberley F. Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
6
|
Nawalpuri B, Sharma A, Chattarji S, Muddashetty RS. Distinct temporal expression of the GW182 paralog TNRC6A in neurons regulates dendritic arborization. J Cell Sci 2021; 134:271120. [PMID: 34328181 DOI: 10.1242/jcs.258465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/19/2021] [Indexed: 01/11/2023] Open
Abstract
Precise development of the dendritic architecture is a critical determinant of mature neuronal circuitry. MicroRNA (miRNA)-mediated regulation of protein synthesis plays a crucial role in dendritic morphogenesis, but the role of miRNA-induced silencing complex (miRISC) protein components in this process is less studied. Here, we show an important role of a key miRISC protein, the GW182 paralog TNRC6A, in the regulation of dendritic growth. We identified a distinct brain region-specific spatiotemporal expression pattern of GW182 during rat postnatal development. We found that the window of peak GW182 expression coincides with the period of extensive dendritic growth, both in the hippocampus and cerebellum. Perturbation of GW182 function during a specific temporal window resulted in reduced dendritic growth of cultured hippocampal neurons. Mechanistically, we show that GW182 modulates dendritic growth by regulating global somatodendritic translation and actin cytoskeletal dynamics of developing neurons. Furthermore, we found that GW182 affects dendritic architecture by regulating the expression of actin modulator LIMK1. Taken together, our data reveal a previously undescribed neurodevelopmental expression pattern of GW182 and its role in dendritic morphogenesis, which involves both translational control and actin cytoskeletal rearrangement. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Bharti Nawalpuri
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (InStem), Bangalore 560065, India.,School of Chemical and Biotechnology, Shanmugha Arts, Science, and Technology and Research Academy (SASTRA) University, Thanjavur 613401, India.,Centre for Brain Research, Indian Institute of Science, Bangalore 560012, India
| | - Arpita Sharma
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (InStem), Bangalore 560065, India
| | - Sumantra Chattarji
- National Centre for Biological Sciences, Bangalore 560065, India.,Simons Initiative for the Developing Brain and Centre for Discovery Brain Sciences, University of Edinburgh EH8 9XD, Edinburgh, UK
| | - Ravi S Muddashetty
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (InStem), Bangalore 560065, India.,Centre for Brain Research, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
7
|
RNA-binding protein syncrip regulates starvation-induced hyperactivity in adult Drosophila. PLoS Genet 2021; 17:e1009396. [PMID: 33617535 PMCID: PMC7932510 DOI: 10.1371/journal.pgen.1009396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/04/2021] [Accepted: 02/03/2021] [Indexed: 11/28/2022] Open
Abstract
How to respond to starvation determines fitness. One prominent behavioral response is increased locomotor activities upon starvation, also known as Starvation-Induced Hyperactivity (SIH). SIH is paradoxical as it promotes food seeking but also increases energy expenditure. Despite its importance in fitness, the genetic contributions to SIH as a behavioral trait remains unexplored. Here, we examined SIH in the Drosophila melanogaster Genetic Reference Panel (DGRP) and performed genome-wide association studies. We identified 23 significant loci, corresponding to 14 genes, significantly associated with SIH in adult Drosophila. Gene enrichment analyses indicated that genes encoding ion channels and mRNA binding proteins (RBPs) were most enriched in SIH. We are especially interested in RBPs because they provide a potential mechanism to quickly change protein expression in response to environmental challenges. Using RNA interference, we validated the role of syp in regulating SIH. syp encodes Syncrip (Syp), an RBP. While ubiquitous knockdown of syp led to semi-lethality in adult flies, adult flies with neuron-specific syp knockdown were viable and exhibited decreased SIH. Using the Temporal and Regional Gene Expression Targeting (TARGET) system, we further confirmed the role of Syp in adult neurons in regulating SIH. To determine how syp is regulated by starvation, we performed RNA-seq using the heads of flies maintained under either food or starvation conditions. RNA-seq analyses revealed that syp was alternatively spliced under starvation while its expression level was unchanged. We further generated an alternatively-spliced-exon-specific knockout (KO) line and found that KO flies showed reduced SIH. Together, this study demonstrates a significant genetic contribution to SIH as a behavioral trait, identifies syp as a SIH gene, and highlights the significance of RBPs and post-transcriptional processes in the brain in regulating behavioral responses to starvation. Animals living in the wild often face periods of starvation. How to physiologically and behaviorally respond to starvation is essential for survival. One behavioral response is Starvation-Induced Hyperactivity (SIH). We used the Drosophila melanogaster Genetic Reference Panel, derived from a wild population, to study the genetic basis of SIH. Our results show that there is a significant genetic contribution to SIH in this population, and that genes encoding RNA binding proteins (RBPs) are especially important. Using RNA interference and the TARGET system, we confirmed the role of an RBP Syp in adult neurons in SIH. Using RNA-seq and Western blotting, we found that syp was alternatively spliced under starvation while its expression level was unchanged. Further studies from syp exon-specific knockout flies showed that alternative splicing involving two exons in syp was important for SIH. Together, this study identifies syp as a SIH gene and highlights an essential role of post-transcriptional modification in regulating this behavior.
Collapse
|
8
|
Khudayberdiev S, Soutschek M, Ammann I, Heinze A, Rust MB, Baumeister S, Schratt G. The cytoplasmic SYNCRIP mRNA interactome of mammalian neurons. RNA Biol 2020; 18:1252-1264. [PMID: 33030396 DOI: 10.1080/15476286.2020.1830553] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
SYNCRIP, a member of the cellular heterogeneous nuclear ribonucleoprotein (hnRNP) family of RNA binding proteins, regulates various aspects of neuronal development and plasticity. Although SYNCRIP has been identified as a component of cytoplasmic RNA granules in dendrites of mammalian neurons, only little is known about the specific SYNCRIP target mRNAs that mediate its effect on neuronal morphogenesis and function. Here, we present a comprehensive characterization of the cytoplasmic SYNCRIP mRNA interactome using iCLIP in primary rat cortical neurons. We identify hundreds of bona fide SYNCRIP target mRNAs, many of which encode for proteins involved in neurogenesis, neuronal migration and neurite outgrowth. From our analysis, the stabilization of mRNAs encoding for components of the microtubule network, such as doublecortin (Dcx), emerges as a novel mechanism of SYNCRIP function in addition to the previously reported control of actin dynamics. Furthermore, we found that SYNCRIP synergizes with pro-neural miRNAs, such as miR-9. Thus, SYNCRIP appears to promote early neuronal differentiation by a two-tier mechanism involving the stabilization of pro-neural mRNAs by direct 3'UTR interaction and the repression of anti-neural mRNAs in a complex with neuronal miRISC. Together, our findings provide a rationale for future studies investigating the function of SYNCRIP in mammalian brain development and disease.
Collapse
Affiliation(s)
- Sharof Khudayberdiev
- Institute for Physiological Chemistry, Biochemical-Pharmacological Center Marburg, Philipps-University of Marburg, Marburg, Germany
| | - Michael Soutschek
- Lab of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, Swiss Federal Institute of Technology ETH, Zurich, Switzerland
| | - Irina Ammann
- Lab of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, Swiss Federal Institute of Technology ETH, Zurich, Switzerland
| | - Anika Heinze
- Institute for Physiological Chemistry, Biochemical-Pharmacological Center Marburg, Philipps-University of Marburg, Marburg, Germany
| | - Marco B Rust
- Institute for Physiological Chemistry, Biochemical-Pharmacological Center Marburg, Philipps-University of Marburg, Marburg, Germany
| | - Stefan Baumeister
- Fachbereich Biologie - Protein Analytik, Philipps-Universität Marburg, Marburg, Germany
| | - Gerhard Schratt
- Lab of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, Swiss Federal Institute of Technology ETH, Zurich, Switzerland
| |
Collapse
|
9
|
Prieto C, Kharas MG. RNA Regulators in Leukemia and Lymphoma. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a034967. [PMID: 31615866 DOI: 10.1101/cshperspect.a034967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Posttranscriptional regulation of mRNA is a powerful and tightly controlled process in which cells command the integrity, diversity, and abundance of their protein products. RNA-binding proteins (RBPs) are the principal players that control many intermediary steps of posttranscriptional regulation. Recent advances in this field have discovered the importance of RBPs in hematological diseases. Herein we will review a number of RBPs that have been determined to play critical functions in leukemia and lymphoma. Furthermore, we will discuss the potential therapeutic strategies that are currently being studied to specifically target RBPs in these diseases.
Collapse
Affiliation(s)
- Camila Prieto
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Michael G Kharas
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
10
|
Liu LY, Long X, Yang CP, Miyares RL, Sugino K, Singer RH, Lee T. Mamo decodes hierarchical temporal gradients into terminal neuronal fate. eLife 2019; 8:e48056. [PMID: 31545163 PMCID: PMC6764822 DOI: 10.7554/elife.48056] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/20/2019] [Indexed: 12/20/2022] Open
Abstract
Temporal patterning is a seminal method of expanding neuronal diversity. Here we unravel a mechanism decoding neural stem cell temporal gene expression and transforming it into discrete neuronal fates. This mechanism is characterized by hierarchical gene expression. First, Drosophila neuroblasts express opposing temporal gradients of RNA-binding proteins, Imp and Syp. These proteins promote or inhibit chinmo translation, yielding a descending neuronal gradient. Together, first and second-layer temporal factors define a temporal expression window of BTB-zinc finger nuclear protein, Mamo. The precise temporal induction of Mamo is achieved via both transcriptional and post-transcriptional regulation. Finally, Mamo is essential for the temporally defined, terminal identity of α'/β' mushroom body neurons and identity maintenance. We describe a straightforward paradigm of temporal fate specification where diverse neuronal fates are defined via integrating multiple layers of gene regulation. The neurodevelopmental roles of orthologous/related mammalian genes suggest a fundamental conservation of this mechanism in brain development.
Collapse
Affiliation(s)
- Ling-Yu Liu
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
| | - Xi Long
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
| | - Ching-Po Yang
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
| | - Rosa L Miyares
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
| | - Ken Sugino
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
| | - Robert H Singer
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
- Department of Anatomy and Structural Biology, Gruss Lipper Biophotonics CenterAlbert Einstein College of MedicineNew YorkUnited States
- Dominick P Purpura Department of Neuroscience, Gruss Lipper Biophotonics CenterAlbert Einstein College of MedicineNew YorkUnited States
| | - Tzumin Lee
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
| |
Collapse
|
11
|
Chung HW, Weng JC, King CE, Chuang CF, Chow WY, Chang YC. BDNF elevates the axonal levels of hnRNPs Q and R in cultured rat cortical neurons. Mol Cell Neurosci 2019; 98:97-108. [PMID: 31202892 DOI: 10.1016/j.mcn.2019.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 05/08/2019] [Accepted: 06/12/2019] [Indexed: 11/17/2022] Open
Abstract
Local translation plays important roles in the maintenance and various functions of axons, and dysfunctions of local translation in axons are implicated in various neurological diseases. Heterogeneous nuclear ribonucleoproteins (hnRNPs) are RNA binding proteins with multiple functions in RNA metabolism. Here, we identified 20 hnRNPs in the axons of cultured rat cortical neurons by interrogating published axon mass spectrometric databases with rat protein databases. Among those identified in axons are highly related hnRNPs Q and R. RT-PCR analysis indicated that axons also contained low levels of hnRNPs Q and R mRNAs. We further found that BDNF treatments raised the levels of hnRNPs Q and R proteins in whole neurons and axons. BDNF also increased the level of poly(A) RNA as well as the proportion of poly(A) RNA granules containing hnRNPs Q and R in the axon. However, following severing the connection between the cell bodies and axons, BDNF did not affect the levels of hnRNPs Q and R, the content of poly(A) RNA, or the colocalization of poly(A) RNA and hnRNPs Q and R in the axon any more, although BDNF still stimulated the local translation in severed axons as it did in intact axons. The results are consistent with that BDNF enhances the axonal transport of RNA granules. The results further suggest that hnRNPs Q and R play a role in the mechanism underlying the enhancement of axonal RNA transport by BDNF.
Collapse
Affiliation(s)
- Hui-Wen Chung
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan.
| | - Ju-Chen Weng
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-En King
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Fan Chuang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan.
| | - Wei-Yuan Chow
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan.
| | - Yen-Chung Chang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan; Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
12
|
Ashraf GM, Ganash M, Athanasios A. Computational analysis of non-coding RNAs in Alzheimer's disease. Bioinformation 2019; 15:351-357. [PMID: 31249438 PMCID: PMC6589468 DOI: 10.6026/97320630015351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 04/01/2019] [Indexed: 01/09/2023] Open
Abstract
Latest studies have shown that Long Noncoding RNAs corresponds to a crucial factor in neurodegenerative diseases and next-generation therapeutic targets. A wide range of advanced computational methods for the analysis of Noncoding RNAs mainly includes the prediction of RNA and miRNA structures. The problems that concern representations of specific biological structures such as secondary structures are either characterized as NP-complete or with high complexity. Numerous algorithms and techniques related to the enumeration of sequential terms of biological structures and mainly with exponential complexity have been constructed until now. While BACE1-AS, NATRad18, 17A, and hnRNP Q lnRNAs have been found to be associated with Alzheimer's disease, in this research study the significance of the most known β-turn-forming residues between these proteins is computationally identified and discussed, as a potentially crucial factor on the regulation of folding, aggregation and other intermolecular interactions.
Collapse
Affiliation(s)
- Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Magdah Ganash
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alexiou Athanasios
- Novel Global Community Educational Foundation, 7 Peterlee Place, Hebersham, NSW 2770, Australia
- AFNP Med, Austria
| |
Collapse
|
13
|
hnRNP Q Regulates Internal Ribosome Entry Site-Mediated fmr1 Translation in Neurons. Mol Cell Biol 2019; 39:MCB.00371-18. [PMID: 30478144 DOI: 10.1128/mcb.00371-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/15/2018] [Indexed: 01/05/2023] Open
Abstract
Fragile X syndrome (FXS) caused by loss of fragile X mental retardation protein (FMRP), is the most common cause of inherited intellectual disability. Numerous studies show that FMRP is an RNA binding protein that regulates translation of its binding targets and plays key roles in neuronal functions. However, the regulatory mechanism for FMRP expression is incompletely understood. Conflicting results regarding internal ribosome entry site (IRES)-mediated fmr1 translation have been reported. Here, we unambiguously demonstrate that the fmr1 gene, which encodes FMRP, exploits both IRES-mediated translation and canonical cap-dependent translation. Furthermore, we find that heterogeneous nuclear ribonucleoprotein Q (hnRNP Q) acts as an IRES-transacting factor (ITAF) for IRES-mediated fmr1 translation in neurons. We also show that semaphorin 3A (Sema3A)-induced axonal growth cone collapse is due to upregulation of hnRNP Q and subsequent IRES-mediated expression of FMRP. These data elucidate the regulatory mechanism of FMRP expression and its role in axonal growth cone collapse.
Collapse
|
14
|
Zou Y, Xu S, Xiao Y, Qiu Q, Shi M, Wang J, Liang L, Zhan Z, Yang X, Olsen N, Zheng SG, Xu H. Long noncoding RNA LERFS negatively regulates rheumatoid synovial aggression and proliferation. J Clin Invest 2018; 128:4510-4524. [PMID: 30198906 DOI: 10.1172/jci97965] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 07/26/2018] [Indexed: 12/27/2022] Open
Abstract
Fibroblast-like synoviocytes (FLSs) are critical to synovial aggression and joint destruction in rheumatoid arthritis (RA). The role of long noncoding RNAs (lncRNAs) in RA is largely unknown. Here, we identified a lncRNA, LERFS (lowly expressed in rheumatoid fibroblast-like synoviocytes), that negatively regulates the migration, invasion, and proliferation of FLSs through interaction with heterogeneous nuclear ribonucleoprotein Q (hnRNP Q). Under healthy conditions, by binding to the mRNA of RhoA, Rac1, and CDC42 - the small GTPase proteins that control the motility and proliferation of FLSs - the LERFS-hnRNP Q complex decreased the stability or translation of target mRNAs and downregulated their protein levels. But in RA FLSs, decreased LERFS levels induced a reduction of the LERFS-hnRNP Q complex, which reduced the binding of hnRNP Q to target mRNA and therefore increased the stability or translation of target mRNA. These findings suggest that a decrease in synovial LERFS may contribute to synovial aggression and joint destruction in RA and that targeting the lncRNA LERFS may have therapeutic potential in patients with RA.
Collapse
Affiliation(s)
- Yaoyao Zou
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Siqi Xu
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Youjun Xiao
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qian Qiu
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Maohua Shi
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jingnan Wang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liuqin Liang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhongping Zhan
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiuyan Yang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Nancy Olsen
- Department of Medicine, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania, USA
| | - Song Guo Zheng
- Department of Medicine, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania, USA
| | - Hanshi Xu
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
Kulkarni S, Ramsuran V, Rucevic M, Singh S, Lied A, Kulkarni V, O'hUigin C, Le Gall S, Carrington M. Posttranscriptional Regulation of HLA-A Protein Expression by Alternative Polyadenylation Signals Involving the RNA-Binding Protein Syncrip. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:3892-3899. [PMID: 29055006 PMCID: PMC5812486 DOI: 10.4049/jimmunol.1700697] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/25/2017] [Indexed: 01/15/2023]
Abstract
Genomic variation in the untranslated region (UTR) has been shown to influence HLA class I expression level and associate with disease outcomes. Sequencing of the 3'UTR of common HLA-A alleles indicated the presence of two polyadenylation signals (PAS). The proximal PAS is conserved, whereas the distal PAS is disrupted within certain alleles by sequence variants. Using 3'RACE, we confirmed expression of two distinct forms of the HLA-A 3'UTR based on use of either the proximal or the distal PAS, which differ in length by 100 bp. Specific HLA-A alleles varied in the usage of the proximal versus distal PAS, with some alleles using only the proximal PAS, and others using both the proximal and distal PAS to differing degrees. We show that the short and the long 3'UTR produced similar mRNA expression levels. However, the long 3'UTR conferred lower luciferase activity as compared with the short form, indicating translation inhibition of the long 3'UTR. RNA affinity pull-down followed by mass spectrometry analysis as well as RNA coimmunoprecipitation indicated differential binding of Syncrip to the long versus short 3'UTR. Depletion of Syncrip by small interfering RNA increased surface expression of an HLA-A allotype that uses primarily the long 3'UTR, whereas an allotype expressing only the short form was unaffected. Furthermore, specific blocking of the proximal 3'UTR reduced surface expression without decreasing mRNA expression. These data demonstrate HLA-A allele-specific variation in PAS usage, which modulates their cell surface expression posttranscriptionally.
Collapse
Affiliation(s)
- Smita Kulkarni
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139;
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX 78227
| | - Veron Ramsuran
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
- KwaZulu-Natal Research Innovation and Sequencing Platform, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
- Centre for the AIDS Programme of Research in South Africa, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa; and
| | | | - Sukhvinder Singh
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX 78227
| | - Alexandra Lied
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139
| | - Viraj Kulkarni
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX 78227
| | - Colm O'hUigin
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Sylvie Le Gall
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139
| | - Mary Carrington
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| |
Collapse
|
16
|
Ledda F, Paratcha G. Mechanisms regulating dendritic arbor patterning. Cell Mol Life Sci 2017; 74:4511-4537. [PMID: 28735442 PMCID: PMC11107629 DOI: 10.1007/s00018-017-2588-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 06/14/2017] [Accepted: 07/06/2017] [Indexed: 12/17/2022]
Abstract
The nervous system is populated by diverse types of neurons, each of which has dendritic trees with strikingly different morphologies. These neuron-specific morphologies determine how dendritic trees integrate thousands of synaptic inputs to generate different firing properties. To ensure proper neuronal function and connectivity, it is necessary that dendrite patterns are precisely controlled and coordinated with synaptic activity. Here, we summarize the molecular and cellular mechanisms that regulate the formation of cell type-specific dendrite patterns during development. We focus on different aspects of vertebrate dendrite patterning that are particularly important in determining the neuronal function; such as the shape, branching, orientation and size of the arbors as well as the development of dendritic spine protrusions that receive excitatory inputs and compartmentalize postsynaptic responses. Additionally, we briefly comment on the implications of aberrant dendritic morphology for nervous system disease.
Collapse
Affiliation(s)
- Fernanda Ledda
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine, University of Buenos Aires (UBA), Paraguay 2155, 3rd Floor, CABA, 1121, Buenos Aires, Argentina
| | - Gustavo Paratcha
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine, University of Buenos Aires (UBA), Paraguay 2155, 3rd Floor, CABA, 1121, Buenos Aires, Argentina.
| |
Collapse
|
17
|
Hald ES, Timm CD, Alford PW. Amyloid Beta Influences Vascular Smooth Muscle Contractility and Mechanoadaptation. J Biomech Eng 2017; 138:2551747. [PMID: 27590124 DOI: 10.1115/1.4034560] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Indexed: 01/09/2023]
Abstract
Amyloid beta accumulation in neuronal and cerebrovascular tissue is a key precursor to development of Alzheimer's disease and can result in neurodegeneration. While its persistence in Alzheimer's cases is well-studied, amyloid beta's direct effect on vascular function is unclear. Here, we measured the effect of amyloid beta treatment on vascular smooth muscle cell functional contractility and modeled the mechanoadaptive growth and remodeling response to these functional perturbations. We found that the amyloid beta 1-42 isoform induced a reduction in vascular smooth muscle cell mechanical output and reduced response to vasocontractile cues. These data were used to develop a thin-walled constrained mixture arterial model that suggests vessel growth, and remodeling in response to amyloid betamediated alteration of smooth muscle function leads to decreased ability of cerebrovascular vessels to vasodilate. These findings provide a possible explanation for the vascular injury and malfunction often associated with the development of neurodegeneration in Alzheimer's disease.
Collapse
Affiliation(s)
- Eric S Hald
- Department of Biomedical Engineering, University of Minnesota, 7-105 Nils Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 554555 e-mail:
| | - Connor D Timm
- Department of Biomedical Engineering, University of Minnesota, 7-105 Nils Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 554555 e-mail:
| | - Patrick W Alford
- Department of Biomedical Engineering, University of Minnesota, 7-105 Nils Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 554555 e-mail:
| |
Collapse
|
18
|
Shapiro LP, Parsons RG, Koleske AJ, Gourley SL. Differential expression of cytoskeletal regulatory factors in the adolescent prefrontal cortex: Implications for cortical development. J Neurosci Res 2017; 95:1123-1143. [PMID: 27735056 PMCID: PMC5352542 DOI: 10.1002/jnr.23960] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 09/04/2016] [Accepted: 09/12/2016] [Indexed: 12/27/2022]
Abstract
The prevalence of depression, anxiety, schizophrenia, and drug and alcohol use disorders peaks during adolescence. Further, up to 50% of "adult" mental health disorders emerge in adolescence. During adolescence, the prefrontal cortex (PFC) undergoes dramatic structural reorganization, in which dendritic spines and synapses are refined, pruned, and stabilized. Understanding the molecular mechanisms that underlie these processes should help to identify factors that influence the development of psychiatric illness. Here we briefly discuss the anatomical connections of the medial and orbital prefrontal cortex (mPFC and OFC, respectively). We then present original findings suggesting that dendritic spines on deep-layer excitatory neurons in the mouse mPFC and OFC prune at different adolescent ages, with later pruning in the OFC. In parallel, we used Western blotting to define levels of several cytoskeletal regulatory proteins during early, mid-, and late adolescence, focusing on tropomyosin-related kinase receptor B (TrkB) and β1-integrin-containing receptors and select signaling partners. We identified regional differences in the levels of several proteins in early and midadolescence that then converged in early adulthood. We also observed age-related differences in TrkB levels, both full-length and truncated isoforms, Rho-kinase 2, and synaptophysin in both PFC subregions. Finally, we identified changes in protein levels in the dorsal and ventral hippocampus that were distinct from those in the PFC. We conclude with a general review of the manner in which TrkB- and β1-integrin-mediated signaling influences neuronal structure in the postnatal brain. Elucidating the role of cytoskeletal regulatory factors throughout adolescence may identify critical mechanisms of PFC development. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lauren P Shapiro
- Molecular and Systems Pharmacology, Emory University, Atlanta, Georgia
- Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia
| | - Ryan G Parsons
- Department of Psychology and Neuroscience Institute, Graduate Program in Integrative Neuroscience, Program in Neuroscience, Stony Brook University, Stony Brook, New York
| | - Anthony J Koleske
- Department of Molecular Biophysics and Biochemistry, Department of Neurobiology, Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut
| | - Shannon L Gourley
- Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia
- Graduate Program in Neuroscience, Emory University, Atlanta, Georgia
| |
Collapse
|
19
|
Vu LP, Prieto C, Amin EM, Chhangawala S, Krivtsov A, Calvo-Vidal MN, Chou T, Chow A, Minuesa G, Park SM, Barlowe TS, Taggart J, Tivnan P, Deering RP, Chu LP, Kwon JA, Meydan C, Perales-Paton J, Arshi A, Gönen M, Famulare C, Patel M, Paietta E, Tallman MS, Lu Y, Glass J, Garret-Bakelman FE, Melnick A, Levine R, Al-Shahrour F, Järås M, Hacohen N, Hwang A, Garippa R, Lengner CJ, Armstrong SA, Cerchietti L, Cowley GS, Root D, Doench J, Leslie C, Ebert BL, Kharas MG. Functional screen of MSI2 interactors identifies an essential role for SYNCRIP in myeloid leukemia stem cells. Nat Genet 2017; 49:866-875. [PMID: 28436985 PMCID: PMC5508533 DOI: 10.1038/ng.3854] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 03/31/2017] [Indexed: 12/15/2022]
Abstract
The identity of the RNA-binding proteins (RBPs) that govern cancer stem cells remains poorly characterized. The MSI2 RBP is a central regulator of translation of cancer stem cell programs. Through proteomic analysis of the MSI2-interacting RBP network and functional shRNA screening, we identified 24 genes required for in vivo leukemia. Syncrip was the most differentially required gene between normal and myeloid leukemia cells. SYNCRIP depletion increased apoptosis and differentiation while delaying leukemogenesis. Gene expression profiling of SYNCRIP-depleted cells demonstrated a loss of the MLL and HOXA9 leukemia stem cell program. SYNCRIP and MSI2 interact indirectly though shared mRNA targets. SYNCRIP maintains HOXA9 translation, and MSI2 or HOXA9 overexpression rescued the effects of SYNCRIP depletion. Altogether, our data identify SYNCRIP as a new RBP that controls the myeloid leukemia stem cell program. We propose that targeting these RBP complexes might provide a novel therapeutic strategy in leukemia.
Collapse
Affiliation(s)
- Ly P Vu
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, and Center for Experimental Therapeutics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Camila Prieto
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, and Center for Experimental Therapeutics, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, USA
| | - Elianna M Amin
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, and Center for Experimental Therapeutics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sagar Chhangawala
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, USA.,Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Andrei Krivtsov
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - M Nieves Calvo-Vidal
- Department of Medicine, Division of Hematology/Oncology, Weill Cornell Medical College, New York, New York, USA
| | - Timothy Chou
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, and Center for Experimental Therapeutics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Arthur Chow
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, and Center for Experimental Therapeutics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Gerard Minuesa
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, and Center for Experimental Therapeutics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sun Mi Park
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, and Center for Experimental Therapeutics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Trevor S Barlowe
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, and Center for Experimental Therapeutics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - James Taggart
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, and Center for Experimental Therapeutics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Patrick Tivnan
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, and Center for Experimental Therapeutics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Lisa P Chu
- Division of Hematology, Brigham and Woman's Hospital, Boston, Massachusetts, USA
| | | | - Cem Meydan
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, USA
| | - Javier Perales-Paton
- Translational Bioinformatics Unit, Clinical Research Programme, Spanish National Cancer Research Centre, Madrid, Spain
| | - Arora Arshi
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Mithat Gönen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Christopher Famulare
- Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Minal Patel
- Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Elisabeth Paietta
- Department of Medicine, Montefiore Medical Center, Bronx, New York, USA
| | - Martin S Tallman
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Hospital, New York, New York, USA
| | - Yuheng Lu
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jacob Glass
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Hospital, New York, New York, USA
| | - Francine E Garret-Bakelman
- Department of Medicine and Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA.,Division of Hematology and Medical Oncology, Departments of Medicine and Pharmacology, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Ari Melnick
- Division of Hematology and Medical Oncology, Departments of Medicine and Pharmacology, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Ross Levine
- Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Fatima Al-Shahrour
- Translational Bioinformatics Unit, Clinical Research Programme, Spanish National Cancer Research Centre, Madrid, Spain
| | - Marcus Järås
- Department of Clinical Genetics, Lund University, Lund, Sweden
| | - Nir Hacohen
- Harvard Medical School, Boston, Massachusetts, USA
| | - Alexia Hwang
- RNAi Core, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ralph Garippa
- RNAi Core, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Christopher J Lengner
- Department of Animal Biology, Department of Cell and Developmental Biology, and Institute for Regenerative Medicine, Schools of Veterinary Medicine and Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Scott A Armstrong
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Leandro Cerchietti
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Glenn S Cowley
- Discovery Sciences, Janssen Research and Development, Spring House, Pennsylvania, USA
| | - David Root
- Broad Institute, Boston, Massachusetts, USA
| | | | - Christina Leslie
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Benjamin L Ebert
- Division of Hematology, Brigham and Woman's Hospital, Boston, Massachusetts, USA
| | - Michael G Kharas
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, and Center for Experimental Therapeutics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
20
|
Donlin-Asp PG, Fallini C, Campos J, Chou CC, Merritt ME, Phan HC, Bassell GJ, Rossoll W. The Survival of Motor Neuron Protein Acts as a Molecular Chaperone for mRNP Assembly. Cell Rep 2017; 18:1660-1673. [PMID: 28199839 PMCID: PMC5492976 DOI: 10.1016/j.celrep.2017.01.059] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/16/2016] [Accepted: 01/24/2017] [Indexed: 12/23/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a motor neuron disease caused by reduced levels of the survival of motor neuron (SMN) protein. SMN is part of a multiprotein complex that facilitates the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs). SMN has also been found to associate with mRNA-binding proteins, but the nature of this association was unknown. Here, we have employed a combination of biochemical and advanced imaging methods to demonstrate that SMN promotes the molecular interaction between IMP1 protein and the 3' UTR zipcode region of β-actin mRNA, leading to assembly of messenger ribonucleoprotein (mRNP) complexes that associate with the cytoskeleton to facilitate trafficking. We have identified defects in mRNP assembly in cells and tissues from SMA disease models and patients that depend on the SMN Tudor domain and explain the observed deficiency in mRNA localization and local translation, providing insight into SMA pathogenesis as a ribonucleoprotein (RNP)-assembly disorder.
Collapse
Affiliation(s)
- Paul G Donlin-Asp
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Claudia Fallini
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jazmin Campos
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ching-Chieh Chou
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Megan E Merritt
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Laboratory of Translational Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Han C Phan
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA; Laboratory of Translational Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Wilfried Rossoll
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA; Laboratory of Translational Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
21
|
Lai CH, Huang YC, Lee JC, Tseng JTC, Chang KC, Chen YJ, Ding NJ, Huang PH, Chang WC, Lin BW, Chen RY, Wang YC, Lai YC, Hung LY. Translational upregulation of Aurora-A by hnRNP Q1 contributes to cell proliferation and tumorigenesis in colorectal cancer. Cell Death Dis 2017; 8:e2555. [PMID: 28079881 PMCID: PMC5386382 DOI: 10.1038/cddis.2016.479] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/09/2016] [Accepted: 12/13/2016] [Indexed: 12/18/2022]
Abstract
By using RNA-immunoprecipitation assay following next-generation sequencing, a group of cell cycle-related genes targeted by hnRNP Q1 were identified, including Aurora-A kinase. Overexpressed hnRNP Q1 can upregulate Aurora-A protein, but not alter the mRNA level, through enhancing the translational efficiency of Aurora-A mRNA, either in a cap-dependent or -independent manner, by interacting with the 5′-UTR of Aurora-A mRNA through its RNA-binding domains (RBDs) 2 and 3. By ribosomal profiling assay further confirmed the translational regulation of Aurora-A mRNA by hnRNP Q1. Overexpression of hnRNP Q1 promotes cell proliferation and tumor growth. HnRNP Q1/ΔRBD23-truncated mutant, which loses the binding ability and translational regulation of Aurora-A mRNA, has no effect on promoting tumor growth. The expression level of hnRNP Q1 is positively correlated with Aurora-A in colorectal cancer. Taken together, our data indicate that hnRNP Q1 is a novel trans-acting factor that binds to Aurora-A mRNA 5′-UTRs and regulates its translation, which increases cell proliferation and contributes to tumorigenesis in colorectal cancer.
Collapse
Affiliation(s)
- Chien-Hsien Lai
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yu-Chuan Huang
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Jenq-Chang Lee
- Department of Surgery, College of Medicine, National Cheng Kung University Hospital, Tainan 70403, Taiwan
| | - Joseph Ta-Chien Tseng
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Kung-Chao Chang
- Department of Pathology, College of Medicine, National Cheng Kung University Hospital, Tainan 70403, Taiwan
| | - Yen-Ju Chen
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Nai-Jhu Ding
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Pao-Hsuan Huang
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Wen-Chang Chang
- Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Bo-Wen Lin
- Department of Surgery, College of Medicine, National Cheng Kung University Hospital, Tainan 70403, Taiwan
| | - Ruo-Yu Chen
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yu-Chu Wang
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yi-Chien Lai
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Liang-Yi Hung
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan.,Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan.,Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
22
|
King JR, Kabbani N. Alpha 7 nicotinic receptor coupling to heterotrimeric G proteins modulates RhoA activation, cytoskeletal motility, and structural growth. J Neurochem 2016; 138:532-45. [DOI: 10.1111/jnc.13660] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/27/2016] [Accepted: 05/06/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Justin R. King
- Department of Molecular Neuroscience; Krasnow Institute for Advanced Study; George Mason University; Fairfax Virginia USA
| | - Nadine Kabbani
- Department of Molecular Neuroscience; Krasnow Institute for Advanced Study; George Mason University; Fairfax Virginia USA
| |
Collapse
|
23
|
Geuens T, Bouhy D, Timmerman V. The hnRNP family: insights into their role in health and disease. Hum Genet 2016; 135:851-67. [PMID: 27215579 PMCID: PMC4947485 DOI: 10.1007/s00439-016-1683-5] [Citation(s) in RCA: 745] [Impact Index Per Article: 82.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/09/2016] [Indexed: 12/14/2022]
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) represent a large family of RNA-binding proteins (RBPs) that contribute to multiple aspects of nucleic acid metabolism including alternative splicing, mRNA stabilization, and transcriptional and translational regulation. Many hnRNPs share general features, but differ in domain composition and functional properties. This review will discuss the current knowledge about the different hnRNP family members, focusing on their structural and functional divergence. Additionally, we will highlight their involvement in neurodegenerative diseases and cancer, and the potential to develop RNA-based therapies.
Collapse
Affiliation(s)
- Thomas Geuens
- Peripheral Neuropathy Group, VIB Molecular Genetics Department, University of Antwerp-CDE, Parking P4, Building V, Room 1.30, Universiteitsplein 1, 2610, Antwerp, Belgium
- Neurogenetics Laboratory, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | - Delphine Bouhy
- Peripheral Neuropathy Group, VIB Molecular Genetics Department, University of Antwerp-CDE, Parking P4, Building V, Room 1.30, Universiteitsplein 1, 2610, Antwerp, Belgium
- Neurogenetics Laboratory, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | - Vincent Timmerman
- Peripheral Neuropathy Group, VIB Molecular Genetics Department, University of Antwerp-CDE, Parking P4, Building V, Room 1.30, Universiteitsplein 1, 2610, Antwerp, Belgium.
- Neurogenetics Laboratory, Institute Born Bunge, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
24
|
Beuck C, Williamson JR, Wüthrich K, Serrano P. The acidic domain is a unique structural feature of the splicing factor SYNCRIP. Protein Sci 2016; 25:1545-50. [PMID: 27081926 DOI: 10.1002/pro.2935] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/11/2016] [Accepted: 04/11/2016] [Indexed: 01/21/2023]
Abstract
The splicing factor SYNCRIP (hnRNP Q) is involved in viral replication, neural morphogenesis, modulation of circadian oscillation, and the regulation of the cytidine deaminase APOBEC1. It consists of three globular RNA-recognition motifs (RRM) domains flanked by an N-terminal acid-rich acidic sequence segment domain (AcD12-97 ) and a C-terminal domain containing an arginine-glycine-rich sequence motif (RGG/RXG box), which are located near to the N- and C-terminals, respectively. The acid-rich sequence segment is unique to SYNCRIP and the closely related protein hnRNP R, and is involved in interactions with APOBEC1. Here, we show that while AcD12-97 does not form a globular domain, structure-based annotation identified a self-folding globular domain with an all α-helix architecture, AcD24-107 . The NMR structure of AcD24-107 is fundamentally different from previously reported AcD molecular models. In addition to negatively charged surface areas, it contains a large hydrophobic cavity and a positively charged surface area as potential epitopes for intermolecular interactions.
Collapse
Affiliation(s)
- Christine Beuck
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, 92037
| | - James R Williamson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, 92037
| | - Kurt Wüthrich
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, 92037.,Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, 92037.,Joint Center for Structural Genomics, http://www.jcsg.org
| | - Pedro Serrano
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, 92037.,Joint Center for Structural Genomics, http://www.jcsg.org
| |
Collapse
|
25
|
Fujimura K, Choi S, Wyse M, Strnadel J, Wright T, Klemke R. Eukaryotic Translation Initiation Factor 5A (EIF5A) Regulates Pancreatic Cancer Metastasis by Modulating RhoA and Rho-associated Kinase (ROCK) Protein Expression Levels. J Biol Chem 2015; 290:29907-19. [PMID: 26483550 PMCID: PMC4706006 DOI: 10.1074/jbc.m115.687418] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/15/2015] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers with an overall survival rate of less than 5%. The poor patient outcome in PDAC is largely due to the high prevalence of systemic metastasis at the time of diagnosis and lack of effective therapeutics that target disseminated cells. The fact that the underlying mechanisms driving PDAC cell migration and dissemination are poorly understood have hindered drug development and compounded the lack of clinical success in this disease. Recent evidence indicates that mutational activation of K-Ras up-regulates eIF5A, a component of the cellular translational machinery that is critical for PDAC progression. However, the role of eIF5A in PDAC cell migration and metastasis has not been investigated. We report here that pharmacological inhibition or genetic knockdown of eIF5A reduces PDAC cell migration, invasion, and metastasis in vitro and in vivo. Proteomic profiling and bioinformatic analyses revealed that eIF5A controls an integrated network of cytoskeleton-regulatory proteins involved in cell migration. Functional interrogation of this network uncovered a critical RhoA/ROCK signaling node that operates downstream of eIF5A in invasive PDAC cells. Importantly, eIF5A mediates PDAC cell migration and invasion by modulating RhoA/ROCK protein expression levels. Together our findings implicate eIF5A as a cytoskeletal rheostat controlling RhoA/ROCK protein expression during PDAC cell migration and metastasis. Our findings also implicate the eIF5A/RhoA/ROCK module as a potential new therapeutic target to treat metastatic PDAC cells.
Collapse
Affiliation(s)
- Ken Fujimura
- From the Department of Pathology, Moores Cancer Center, University of California, San Diego, La Jolla, California 92093
| | - Sunkyu Choi
- From the Department of Pathology, Moores Cancer Center, University of California, San Diego, La Jolla, California 92093
| | - Meghan Wyse
- From the Department of Pathology, Moores Cancer Center, University of California, San Diego, La Jolla, California 92093
| | - Jan Strnadel
- From the Department of Pathology, Moores Cancer Center, University of California, San Diego, La Jolla, California 92093
| | - Tracy Wright
- From the Department of Pathology, Moores Cancer Center, University of California, San Diego, La Jolla, California 92093
| | - Richard Klemke
- From the Department of Pathology, Moores Cancer Center, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
26
|
Williams KR, McAninch DS, Stefanovic S, Xing L, Allen M, Li W, Feng Y, Mihailescu MR, Bassell GJ. hnRNP-Q1 represses nascent axon growth in cortical neurons by inhibiting Gap-43 mRNA translation. Mol Biol Cell 2015; 27:518-34. [PMID: 26658614 PMCID: PMC4751602 DOI: 10.1091/mbc.e15-07-0504] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 12/01/2015] [Indexed: 11/11/2022] Open
Abstract
A novel posttranscriptional mechanism for regulating the neuronal protein GAP-43 is reported. The mRNA-binding protein hnRNP-Q1 represses Gap-43 mRNA translation by a mechanism involving a 5′ untranslated region G-quadruplex structure, which affects GAP-43 function, as demonstrated by a GAP-43–dependent increase in neurite length and number with hnRNP-Q1 knockdown. Posttranscriptional regulation of gene expression by mRNA-binding proteins is critical for neuronal development and function. hnRNP-Q1 is an mRNA-binding protein that regulates mRNA processing events, including translational repression. hnRNP-Q1 is highly expressed in brain tissue, suggesting a function in regulating genes critical for neuronal development. In this study, we have identified Growth-associated protein 43 (Gap-43) mRNA as a novel target of hnRNP-Q1 and have demonstrated that hnRNP-Q1 represses Gap-43 mRNA translation and consequently GAP-43 function. GAP-43 is a neuronal protein that regulates actin dynamics in growth cones and facilitates axonal growth. Previous studies have identified factors that regulate Gap-43 mRNA stability and localization, but it remains unclear whether Gap-43 mRNA translation is also regulated. Our results reveal that hnRNP-Q1 knockdown increased nascent axon length, total neurite length, and neurite number in mouse embryonic cortical neurons and enhanced Neuro2a cell process extension; these phenotypes were rescued by GAP-43 knockdown. Additionally, we have identified a G-quadruplex structure in the 5′ untranslated region of Gap-43 mRNA that directly interacts with hnRNP-Q1 as a means to inhibit Gap-43 mRNA translation. Therefore hnRNP-Q1–mediated repression of Gap-43 mRNA translation provides an additional mechanism for regulating GAP-43 expression and function and may be critical for neuronal development.
Collapse
Affiliation(s)
- Kathryn R Williams
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Damian S McAninch
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282
| | - Snezana Stefanovic
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282
| | - Lei Xing
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Megan Allen
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322
| | - Wenqi Li
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322
| | - Yue Feng
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322
| | | | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
27
|
Single-Molecule Imaging of PSD-95 mRNA Translation in Dendrites and Its Dysregulation in a Mouse Model of Fragile X Syndrome. J Neurosci 2015; 35:7116-30. [PMID: 25948262 DOI: 10.1523/jneurosci.2802-14.2015] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fragile X syndrome (FXS) is caused by the loss of the fragile X mental retardation protein (FMRP), an RNA binding protein that regulates translation of numerous target mRNAs, some of which are dendritically localized. Our previous biochemical studies using synaptoneurosomes demonstrate a role for FMRP and miR-125a in regulating the translation of PSD-95 mRNA. However, the local translation of PSD-95 mRNA within dendrites and spines, as well as the roles of FMRP or miR-125a, have not been directly studied. Herein, local synthesis of a Venus-PSD-95 fusion protein was directly visualized in dendrites and spines using single-molecule imaging of a diffusion-restricted Venus-PSD-95 reporter under control of the PSD-95 3'UTR. The basal translation rates of Venus-PSD-95 mRNA was increased in cultured hippocampal neurons from Fmr1 KO mice compared with WT neurons, which correlated with a transient elevation of endogenous PSD-95 within dendrites. Following mGluR stimulation with (S)-3,5-dihydroxyphenylglycine, the rate of Venus-PSD-95 mRNA translation increased rapidly in dendrites of WT hippocampal neurons, but not in those of Fmr1 KO neurons or when the binding site of miR125a, previously shown to bind PSD-95 3'UTR, was mutated. This study provides direct support for the hypothesis that local translation within dendrites and spines is dysregulated in FXS. Impairments in the regulated local synthesis of PSD-95, a critical regulator of synaptic structure and function, may affect the spatiotemporal control of PSD-95 levels and affect dendritic spine development and synaptic plasticity in FXS.
Collapse
|
28
|
Wang X, Jiang W, Kang J, Liu Q, Nie M. Knockdown of RhoA expression alters ovarian cancer biological behavior in vitro and in nude mice. Oncol Rep 2015; 34:891-9. [PMID: 26035556 DOI: 10.3892/or.2015.4009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/28/2015] [Indexed: 11/06/2022] Open
Abstract
RhoA regulates cell proliferation, migration, angiogenesis and gene expression. Altered RhoA activity contributes to cancer progression. The present study investigated the effects of RhoA knockdown on the regulation of ovarian cancer biological behavior in vitro and in nude mice. The expression of RhoA was knocked down using a lentivirus carrying RhoA short hairpin RNA (shRNA) in ovarian cancer cells and was confirmed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. The altered ovarian cancer biological behaviors were assayed by cell viability, terminal deoxynucleotidyltransferase-mediated dUTP nick end-labeling (TUNEL), migration, invasion, and nude mice tumorigenicity assays, while the altered gene expression was detected by RT-qPCR and western blot analysis. The results showed that lentivirus-carrying RhoA shRNA significantly suppressed RhoA expression in ovarian cancer cells, which suppressed tumor cell viability, migration, invasion and adhesion in vitro. RhoA silencing also inhibited the tumorigenicity of ovarian cancer cells in nude mice, which was characterized by the suppression of tumor xenograft formation and growth and induction of tumor cell apoptosis. The results of the present study demonstrated that knockdown of RhoA expression had a significant antitumor effect on ovarian cancer cells in vitro and in nude mice, suggesting that RhoA may be a target for the development of a novel therapeutic strategy in the control of ovarian cancer.
Collapse
Affiliation(s)
- Xiaoxia Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Wenyan Jiang
- Department of Obstetrics and Gynecology, Guangzhou First People's Hospital Affiliated to Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Jiali Kang
- Department of Obstetrics and Gynecology, Guangzhou First People's Hospital Affiliated to Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Qicai Liu
- Experimental Medical Research Center, Guangzhou Medical University, Guangzhou, Guangdong 510182, P.R. China
| | - Miaoling Nie
- Department of Obstetrics and Gynecology, Guangzhou First People's Hospital Affiliated to Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| |
Collapse
|
29
|
Hald ES, Steucke KE, Reeves JA, Win Z, Alford PW. Long-term vascular contractility assay using genipin-modified muscular thin films. Biofabrication 2014; 6:045005. [PMID: 25245868 DOI: 10.1088/1758-5082/6/4/045005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Vascular disease is a leading cause of death globally and typically manifests chronically due to long-term maladaptive arterial growth and remodeling. To date, there is no in vitro technique for studying vascular function over relevant disease time courses that both mimics in vivo-like tissue structure and provides a simple readout of tissue stress. We aimed to extend tissue viability in our muscular thin film contractility assay by modifying the polydimethylsiloxane (PDMS) substrate with micropatterned genipin, allowing extracellular matrix turnover without cell loss. To achieve this, we developed a microfluidic delivery system to pattern genipin and extracellular matrix proteins on PDMS prior to cell seeding. Tissues constructed using this method showed improved viability and maintenance of in vivo-like lamellar structure. Functional contractility of tissues fabricated on genipin-modified substrates remained consistent throughout two weeks in culture. These results suggest that muscular thin films with genipin-modified PDMS substrates are a viable method for conducting functional studies of arterial growth and remodeling in vascular diseases.
Collapse
Affiliation(s)
- Eric S Hald
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
30
|
Wigington CP, Williams KR, Meers MP, Bassell GJ, Corbett AH. Poly(A) RNA-binding proteins and polyadenosine RNA: new members and novel functions. WILEY INTERDISCIPLINARY REVIEWS. RNA 2014; 5:601-22. [PMID: 24789627 PMCID: PMC4332543 DOI: 10.1002/wrna.1233] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/07/2014] [Accepted: 03/06/2014] [Indexed: 02/05/2023]
Abstract
Poly(A) RNA-binding proteins (Pabs) bind with high affinity and specificity to polyadenosine RNA. Textbook models show a nuclear Pab, PABPN1, and a cytoplasmic Pab, PABPC, where the nuclear PABPN1 modulates poly(A) tail length and the cytoplasmic PABPC stabilizes poly(A) RNA in the cytoplasm and also enhances translation. While these conventional roles are critically important, the Pab family has expanded recently both in number and in function. A number of novel roles have emerged for both PAPBPN1 and PABPC that contribute to the fine-tuning of gene expression. Furthermore, as the characterization of the nucleic acid binding properties of RNA-binding proteins advances, additional proteins that show high affinity and specificity for polyadenosine RNA are being discovered. With this expansion of the Pab family comes a concomitant increase in the potential for Pabs to modulate gene expression. Further complication comes from an expansion of the potential binding sites for Pab proteins as revealed by an analysis of templated polyadenosine stretches present within the transcriptome. Thus, Pabs could influence mRNA fate and function not only by binding to the nontemplated poly(A) tail but also to internal stretches of adenosine. Understanding the diverse functions of Pab proteins is not only critical to understand how gene expression is regulated but also to understand the molecular basis for tissue-specific diseases that occur when Pab proteins are altered. Here we describe both conventional and recently emerged functions for PABPN1 and PABPC and then introduce and discuss three new Pab family members, ZC3H14, hnRNP-Q1, and LARP4.
Collapse
Affiliation(s)
- Callie P. Wigington
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Kathryn R. Williams
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael P. Meers
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Gary J. Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Anita H. Corbett
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
31
|
Comegna M, Succoio M, Napolitano M, Vitale M, D'Ambrosio C, Scaloni A, Passaro F, Zambrano N, Cimino F, Faraonio R. Identification of miR-494 direct targets involved in senescence of human diploid fibroblasts. FASEB J 2014; 28:3720-33. [PMID: 24823364 DOI: 10.1096/fj.13-239129] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cellular senescence is a permanent cell cycle arrest triggered by different stimuli. We recently identified up-regulation of microRNA (miR)-494 as a component of the genetic program leading to senescence of human diploid IMR90 fibroblasts. Here, we used 2-dimensional differential gel electrophoresis (2D-DIGE) coupled to mass spectrometry to profile protein expression changes induced by adoptive overexpression of miR-494 in IMR90 cells. miR-494 induced robust perturbation of the IMR90 proteome by significantly (P≤0.05) down-regulating a number of proteins. Combination of mass spectrometry-based identification of down-regulated proteins and bioinformatic prediction of the miR-494 binding sites on the relevant mRNAs identified 26 potential targets of miR-494. Among them, computational analysis identified 7 potential evolution-conserved miR-494 targets. Functional miR-494 binding sites were confirmed in 3'-untranslated regions (UTRs) of 4 of them [heterogeneous nuclear ribonucleoprotein A3 (hnRNPA3), protein disulfide isomerase A3 (PDIA3), UV excision repair protein RAD23 homolog B (RAD23B), and synaptotagmin-binding cytoplasmic RNA-interacting protein (SYNCRIP)/heterogeneous nuclear ribonucleoprotein Q (hnRNPQ)]. Their reduced expression correlated with miR-494 up-regulation in senescent cells. RNA interference-mediated knockdown of hnRNPA3 and, to a lesser extent, RAD23B mirrored the senescent phenotype induced by miR-494 overexpression, blunting cell proliferation and causing up-regulation of SA-β-galactosidase and DNA damage. Ectopic expression of hnRNPA3 or RAD23B slowed the appearance of the senescent phenotype induced by miR-494. Overall, these findings identify novel miR-494 direct targets that are involved in cellular senescence.
Collapse
Affiliation(s)
- Marika Comegna
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy; Center of Genetics Engineering (CEINGE) Biotecnologie Avanzate s.c. a r.l, Naples, Italy; and
| | - Mariangela Succoio
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy; Center of Genetics Engineering (CEINGE) Biotecnologie Avanzate s.c. a r.l, Naples, Italy; and
| | - Marco Napolitano
- Fondazione SDN, Istituto di Ricerca Diagnostica e Nucleare, Naples, Italy
| | - Monica Vitale
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy; Center of Genetics Engineering (CEINGE) Biotecnologie Avanzate s.c. a r.l, Naples, Italy; and
| | - Chiara D'Ambrosio
- Proteomics and Mass Spectrometry Laboratory, National Research Council, Naples, Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, National Research Council, Naples, Italy
| | - Fabiana Passaro
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy; Fondazione SDN, Istituto di Ricerca Diagnostica e Nucleare, Naples, Italy; Center of Genetics Engineering (CEINGE) Biotecnologie Avanzate s.c. a r.l, Naples, Italy; and
| | - Nicola Zambrano
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy; Center of Genetics Engineering (CEINGE) Biotecnologie Avanzate s.c. a r.l, Naples, Italy; and
| | - Filiberto Cimino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy; Fondazione SDN, Istituto di Ricerca Diagnostica e Nucleare, Naples, Italy; Center of Genetics Engineering (CEINGE) Biotecnologie Avanzate s.c. a r.l, Naples, Italy; and
| | - Raffaella Faraonio
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy; Center of Genetics Engineering (CEINGE) Biotecnologie Avanzate s.c. a r.l, Naples, Italy; and
| |
Collapse
|
32
|
Gomes C, Merianda TT, Lee SJ, Yoo S, Twiss JL. Molecular determinants of the axonal mRNA transcriptome. Dev Neurobiol 2014; 74:218-32. [PMID: 23959706 PMCID: PMC3933445 DOI: 10.1002/dneu.22123] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/05/2013] [Accepted: 08/13/2013] [Indexed: 12/12/2022]
Abstract
Axonal protein synthesis has been shown to play a role in developmental and regenerative growth, as well as in cell body responses to axotomy. Recent studies have begun to identify the protein products that contribute to these autonomous responses of axons. In the peripheral nervous system, intra-axonal protein synthesis has been implicated in the localized in vivo responses to neuropathic stimuli, and there is emerging evidence for protein synthesis in CNS axons in vivo. Despite that hundreds of mRNAs have now been shown to localize into the axonal compartment, knowledge of what RNA binding proteins are responsible for this is quite limited. Here, we review the current state of knowledge of RNA transport mechanisms and highlight recently uncovered mechanisms for dynamically altering the axonal transcriptome. Both changes in the levels or activities of components of the RNA transport apparatus and alterations in transcription of transported mRNAs can effectively shift the axonal mRNA population. Consistent with this, the axonal RNA population shifts with development, with changes in growth state, and in response to extracellular stimulation. Each of these events must impact the transcriptional and transport apparatuses of the neuron, thus directly and indirectly modifying the axonal transcriptome.
Collapse
Affiliation(s)
- Cynthia Gomes
- Department of Biology, Drexel University, Philadelphia, Pennsylvania 19104 USA
| | - Tanuja T. Merianda
- Department of Biology, Drexel University, Philadelphia, Pennsylvania 19104 USA
| | - Seung Joon Lee
- Department of Biology, Drexel University, Philadelphia, Pennsylvania 19104 USA
| | - Soonmoon Yoo
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware 19803 USA
| | - Jeffery L. Twiss
- Department of Biology, Drexel University, Philadelphia, Pennsylvania 19104 USA
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29201
| |
Collapse
|
33
|
Alder J, Kallman S, Palmieri A, Khadim F, Ayer JJ, Kumar S, Tsung K, Grinberg I, Thakker-Varia S. Neuropeptide orphanin FQ inhibits dendritic morphogenesis through activation of RhoA. Dev Neurobiol 2013; 73:769-84. [PMID: 23821558 DOI: 10.1002/dneu.22101] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 06/20/2013] [Accepted: 06/21/2013] [Indexed: 12/18/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) plays a facilitatory role in neuronal development and promotion of differentiation. Mechanisms that oppose BDNF's stimulatory effects create balance and regulate dendritic growth. However, these mechanisms have not been studied. We have focused our studies on the BDNF-induced neuropeptide OrphaninFQ/ Nociceptin (OFQ); while BDNF is known to enhance synaptic activity, OFQ has opposite effects on activity, learning, and memory. We have now examined whether OFQ provides a balance to the stimulatory effects of BDNF on neuronal differentiation in the hippocampus. Golgi staining in OFQ knockout (KO) mice revealed an increase in primary dendrite length as well as spine density, suggesting that endogenous OFQ inhibits dendritic morphology. We have also used cultured hippocampal neurons to demonstrate that exogenous OFQ has an inhibitory effect on dendritic growth and that the neuropeptide alters the response to BDNF when pre-administered. To determine if BDNF and OFQ act in a feedback loop, we inhibited the actions of the BDNF and OFQ receptors, TrkB and NOP using ANA-12 and NOP KO mice respectively but our data suggest that the two factors do not act in a negative feedback loop. We found that the inhibition of dendritic morphology induced by OFQ is via enhanced RhoA activity. Finally, we have evidence that RhoA activation is required for the inhibitory effects of OFQ on dendritic morphology. Our results reveal basic mechanisms by which neurons not only regulate the formation of proper dendritic growth during development but also control plasticity in the mature nervous system.
Collapse
Affiliation(s)
- Janet Alder
- Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Harris JL, Richards RS, Chow CWK, Lee S, Kim M, Buck M, Teng L, Clarke R, Gardiner RA, Lavin MF. BMCC1 is an AP-2 associated endosomal protein in prostate cancer cells. PLoS One 2013; 8:e73880. [PMID: 24040105 PMCID: PMC3765211 DOI: 10.1371/journal.pone.0073880] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 07/23/2013] [Indexed: 12/04/2022] Open
Abstract
The prostate cancer antigen gene 3 (PCA3) is embedded in an intron of a second gene BMCC1 (Bcl2-/adenovirus E1B nineteen kDa-interacting protein 2 (BNIP-2) and Cdc42GAP homology BCH motif-containing molecule at the carboxyl terminal region 1) which is also upregulated in prostate cancer. BMCC1 was initially annotated as two genes (C9orf65/PRUNE and BNIPXL) on either side of PCA3 but our data suggest that it represents a single gene coding for a high molecular weight protein. Here we demonstrate for the first time the expression of a >300 kDa BMCC1 protein (BMCC1-1) in prostate cancer and melanoma cell lines. This protein was found exclusively in the microsomal fraction and localised to cytoplasmic vesicles. We also observed expression of BMCC1 protein in prostate cancer sections using immunohistology. GST pull down, immunoprecipitation and mass spectrometry protein interaction studies identified multiple members of the Adaptor Related Complex 2 (AP-2) as BMCC1 interactors. Consistent with a role for BMCC1 as an AP-2 interacting endosomal protein, BMCC1 co-localised with β-adaptin at the perinuclear region of the cell. BMCC1 also showed partial co-localisation with the early endosome small GTP-ase Rab-5 as well as strong co-localisation with internalised pulse-chase labelled transferrin (Tf), providing evidence that BMCC1 is localised to functional endocytic vesicles. BMCC1 knockdown did not affect Tf uptake and AP-2 knockdown did not disperse BMCC1 vesicular distribution, excluding an essential role for BMCC1 in canonical AP-2 mediated endocytic uptake. Instead, we posit a novel role for BMCC1 in post-endocytic trafficking. This study provides fundamental characterisation of the BMCC1 complex in prostate cancer cells and for the first time implicates it in vesicle trafficking.
Collapse
Affiliation(s)
- Janelle L. Harris
- Queensland Institute of Medical Research, Herston, Brisbane, Queensland, Australia
- * E-mail: (MFL); (JLH)
| | - Renée S. Richards
- Queensland Institute of Medical Research, Herston, Brisbane, Queensland, Australia
- University of Queensland Centre for Clinical Research, Herston, Brisbane, Queensland, Australia
| | - Clement W. K. Chow
- Queensland Institute of Medical Research, Herston, Brisbane, Queensland, Australia
- University of Queensland Centre for Clinical Research, Herston, Brisbane, Queensland, Australia
| | - Soon Lee
- School of Medicine, University of Western Sydney, Liverpool, Sydney, Australia
| | - Misook Kim
- University of Queensland Centre for Clinical Research, Herston, Brisbane, Queensland, Australia
| | - Marion Buck
- Queensland Institute of Medical Research, Herston, Brisbane, Queensland, Australia
- University of Queensland Centre for Clinical Research, Herston, Brisbane, Queensland, Australia
| | - Linda Teng
- University of Queensland Centre for Clinical Research, Herston, Brisbane, Queensland, Australia
| | - Raymond Clarke
- School of Medicine, University of Western Sydney, Liverpool, Sydney, Australia
| | - Robert A. Gardiner
- University of Queensland Centre for Clinical Research, Herston, Brisbane, Queensland, Australia
| | - Martin F. Lavin
- Queensland Institute of Medical Research, Herston, Brisbane, Queensland, Australia
- University of Queensland Centre for Clinical Research, Herston, Brisbane, Queensland, Australia
- * E-mail: (MFL); (JLH)
| |
Collapse
|
35
|
Abstract
Neurite growth requires neurite extension and retraction, which are associated with protein degradation. Autophagy is a conserved bulk degradation pathway that regulates several cellular processes. However, little is known about autophagic regulation during early neurite growth. In this study, we investigated whether autophagy was involved in early neurite growth and how it regulated neurite growth in primary cortical neurons. Components of autophagy were expressed and autophagy was activated during early neurite growth. Interestingly, inhibition of autophagy by atg7 small interfering RNA (siRNA) caused elongation of axons, while activation of autophagy by rapamycin suppressed axon growth. Surprisingly, inhibition of autophagy reduced the protein level of RhoA. Moreover, expression of RhoA suppressed axon overelongation mediated by autophagy inhibition, whereas inhibition of the RhoA signaling pathway by Y-27632 recovered rapamycin-mediated suppression of axon growth. Interestingly, hnRNP-Q1, which negatively regulates RhoA, accumulated in autophagy-deficient neurons, while its protein level was reduced by autophagy activation. Overall, our study suggests that autophagy negatively regulates axon extension via the RhoA-ROCK pathway by regulating hnRNP-Q1 in primary cortical neurons. Therefore, autophagy might serve as a fine-tuning mechanism to regulate early axon extension.
Collapse
|
36
|
Abstract
In the developing brain, dendrite branches and dendritic spines form and turn over dynamically. By contrast, most dendrite arbors and dendritic spines in the adult brain are stable for months, years and possibly even decades. Emerging evidence reveals that dendritic spine and dendrite arbor stability have crucial roles in the correct functioning of the adult brain and that loss of stability is associated with psychiatric disorders and neurodegenerative diseases. Recent findings have provided insights into the molecular mechanisms that underlie long-term dendrite stabilization, how these mechanisms differ from those used to mediate structural plasticity and how they are disrupted in disease.
Collapse
|
37
|
Koop A, Sellami N, Adam-Klages S, Lettau M, Kabelitz D, Janssen O, Heidebrecht HJ. Down-regulation of the cancer/testis antigen 45 (CT45) is associated with altered tumor cell morphology, adhesion and migration. Cell Commun Signal 2013; 11:41. [PMID: 23758873 PMCID: PMC3689639 DOI: 10.1186/1478-811x-11-41] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 06/04/2013] [Indexed: 11/13/2022] Open
Abstract
Background Due to their restricted expression in male germ cells and certain tumors, cancer/testis (CT) antigens are regarded as promising targets for tumor therapy. CT45 is a recently identified nuclear CT antigen that was associated with a severe disease score in Hodgkin’s lymphoma and poor prognosis in multiple myeloma. As for many CT antigens, the biological function of CT45 in developing germ cells and in tumor cells is largely unknown. Methods CT45 expression was down-regulated in CT45-positive Hodgkin’s lymphoma (L428), fibrosarcoma (HT1080) and myeloma (U266B1) cells using RNA interference. An efficient CT45 knock-down was confirmed by immunofluorescence staining and/or Western blotting. These cellular systems allowed us to analyze the impact of CT45 down-regulation on proliferation, cell cycle progression, morphology, adhesion, migration and invasive capacity of tumor cells. Results Reduced levels of CT45 did not coincide with changes in cell cycle progression or proliferation. However, we observed alterations in cell adherence, morphology and migration/invasion after CT45 down-regulation. Significant changes in the distribution of cytoskeleton-associated proteins were detected by confocal imaging. Changes in cell adherence were recorded in real-time using the xCelligence system with control and siRNA-treated cells. Altered migratory and invasive capacity of CT45 siRNA-treated cells were visualized in 3D migration and invasion assays. Moreover, we found that CT45 down-regulation altered the level of the heterogeneous nuclear ribonucleoprotein syncrip (hnRNP-Q1) which is known to be involved in the control of focal adhesion formation and cell motility. Conclusions Providing first evidence of a cell biological function of CT45, we suggest that this cancer/testis antigen is involved in the modulation of cell morphology, cell adherence and cell motility. Enhanced motility and/or invasiveness of CT45-positive cells could contribute to the more severe disease progression that is correlated to CT45-positivity in several malignancies.
Collapse
Affiliation(s)
- Anja Koop
- Institute for Immunology, University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str, 3, Bldg 17, Kiel, 24105, Germany.
| | | | | | | | | | | | | |
Collapse
|
38
|
Svitkin YV, Yanagiya A, Karetnikov AE, Alain T, Fabian MR, Khoutorsky A, Perreault S, Topisirovic I, Sonenberg N. Control of translation and miRNA-dependent repression by a novel poly(A) binding protein, hnRNP-Q. PLoS Biol 2013; 11:e1001564. [PMID: 23700384 PMCID: PMC3660254 DOI: 10.1371/journal.pbio.1001564] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/10/2013] [Indexed: 02/05/2023] Open
Abstract
The heterogeneous nuclear ribonucleoprotein Q2 competitively binds mRNA poly(A) tails to regulate translational and miRNA-related functions of PABP. Translation control often operates via remodeling of messenger ribonucleoprotein particles. The poly(A) binding protein (PABP) simultaneously interacts with the 3′ poly(A) tail of the mRNA and the eukaryotic translation initiation factor 4G (eIF4G) to stimulate translation. PABP also promotes miRNA-dependent deadenylation and translational repression of target mRNAs. We demonstrate that isoform 2 of the mouse heterogeneous nuclear protein Q (hnRNP-Q2/SYNCRIP) binds poly(A) by default when PABP binding is inhibited. In addition, hnRNP-Q2 competes with PABP for binding to poly(A) in vitro. Depleting hnRNP-Q2 from translation extracts stimulates cap-dependent and IRES-mediated translation that is dependent on the PABP/poly(A) complex. Adding recombinant hnRNP-Q2 to the extracts inhibited translation in a poly(A) tail-dependent manner. The displacement of PABP from the poly(A) tail by hnRNP-Q2 impaired the association of eIF4E with the 5′ m7G cap structure of mRNA, resulting in the inhibition of 48S and 80S ribosome initiation complex formation. In mouse fibroblasts, silencing of hnRNP-Q2 stimulated translation. In addition, hnRNP-Q2 impeded let-7a miRNA-mediated deadenylation and repression of target mRNAs, which require PABP. Thus, by competing with PABP, hnRNP-Q2 plays important roles in the regulation of global translation and miRNA-mediated repression of specific mRNAs. The regulation of mRNA translation and stability is of paramount importance for almost every cellular function. In eukaryotes, the poly(A) binding protein (PABP) is a central regulator of both global and mRNA-specific translation. PABP simultaneously interacts with the 3′ poly(A) tail of the mRNA and the eukaryotic translation initiation factor 4G (eIF4G). These interactions circularize the mRNA and stimulate translation. PABP also regulates specific mRNAs by promoting miRNA-dependent deadenylation and translational repression. A key step in understanding PABP's functions is to identify factors that affect its association with the poly(A) tail. Here we show that the cytoplasmic isoform of the mouse heterogeneous nuclear ribonucleoprotein Q (hnRNP-Q2/SYNCRIP), which exhibits binding preference to poly(A), interacts with the poly(A) tail by default when PABP binding is inhibited. In addition, hnRNP-Q2 competes with PABP for binding to the poly(A) tail. Depleting hnRNP-Q2 stimulates translation in cell-free extracts and in cultured cells, in agreement with its function as translational repressor. In addition, hnRNP-Q2 impeded miRNA-mediated deadenylation and repression of target mRNAs, which requires PABP. Thus, competition from hnRNP-Q2 provides a novel mechanism by which multiple functions of PABP are regulated. This regulation could play important roles in various biological processes, such as development, viral infection, and human disease.
Collapse
Affiliation(s)
- Yuri V. Svitkin
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Akiko Yanagiya
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Alexey E. Karetnikov
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Tommy Alain
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Marc R. Fabian
- Lady Davis Institute for Medical Research, Jewish General Hospital, Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - Arkady Khoutorsky
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Sandra Perreault
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Ivan Topisirovic
- Lady Davis Institute for Medical Research, Jewish General Hospital, Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
39
|
Abl2/Arg controls dendritic spine and dendrite arbor stability via distinct cytoskeletal control pathways. J Neurosci 2013; 33:1846-57. [PMID: 23365224 DOI: 10.1523/jneurosci.4284-12.2013] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rho family GTPases coordinate cytoskeletal rearrangements in neurons, and mutations in their regulators are associated with mental retardation and other neurodevelopmental disorders (Billuart et al., 1998; Kutsche et al., 2000; Newey et al., 2005; Benarroch, 2007). Chromosomal microdeletions encompassing p190RhoGAP or its upstream regulator, the Abl2/Arg tyrosine kinase, have been observed in cases of mental retardation associated with developmental defects (Scarbrough et al., 1988; James et al., 1996; Takano et al., 1997; Chaabouni et al., 2006; Leal et al., 2009). Genetic knock-out of Arg in mice leads to synapse, dendritic spine, and dendrite arbor loss accompanied by behavioral deficits (Moresco et al., 2005; Sfakianos et al., 2007). To elucidate the cell-autonomous mechanisms by which Arg regulates neuronal stability, we knocked down Arg in mouse hippocampal neuronal cultures. We find that Arg knockdown significantly destabilizes dendrite arbors and reduces dendritic spine density by compromising dendritic spine stability. Inhibiting RhoA prevents dendrite arbor loss following Arg knockdown in neurons, but does not block spine loss. Interestingly, Arg-deficient neurons exhibit increased miniature EPSC amplitudes, and their remaining spines exhibit larger heads deficient in the actin stabilizing protein cortactin. Spine destabilization in Arg knockdown neurons is prevented by blocking NMDA receptor-dependent relocalization of cortactin from spines, or by forcing cortactin into spines via fusion to an actin-binding region of Arg. Thus, Arg employs distinct mechanisms to selectively regulate spine and dendrite stability: Arg dampens activity-dependent disruption of cortactin localization to stabilize spines and attenuates Rho activity to stabilize dendrite arbors.
Collapse
|
40
|
Rodnight RB, Gottfried C. Morphological plasticity of rodent astroglia. J Neurochem 2012; 124:263-75. [PMID: 23278277 DOI: 10.1111/jnc.12087] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 11/04/2012] [Accepted: 11/04/2012] [Indexed: 11/29/2022]
Abstract
In the past two decades, there has been an explosion of research on the role of neuroglial interactions in the control of brain homeostasis in both physiological and pathological conditions. Astrocytes, a subtype of glia in the central nervous system, are dynamic signaling elements that regulate neurogenesis and development of brain circuits, displaying intimate dynamic relationships with neurons, especially at synaptic sites where they functionally integrate the tripartite synapse. When astrocytes are isolated from the brain and maintained in culture, they exhibit a polygonal shape unlike their precursors in vivo. However, cultured astrocytes can be induced to undergo morphological plasticity leading to process formation, either by interaction with neurons or by the influence of pharmacological agents. This review highlights studies on the molecular mechanisms underlying morphological plasticity in astrocyte cultures and intact brain tissue, both in situ and in vivo.
Collapse
Affiliation(s)
- Richard Burnard Rodnight
- School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute, The University of Newcastle, Callaghan, Australia
| | | |
Collapse
|
41
|
Swanger SA, Bassell GJ. Dendritic protein synthesis in the normal and diseased brain. Neuroscience 2012; 232:106-27. [PMID: 23262237 DOI: 10.1016/j.neuroscience.2012.12.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 11/21/2012] [Accepted: 12/01/2012] [Indexed: 01/25/2023]
Abstract
Synaptic activity is a spatially limited process that requires a precise, yet dynamic, complement of proteins within the synaptic micro-domain. The maintenance and regulation of these synaptic proteins is regulated, in part, by local mRNA translation in dendrites. Protein synthesis within the postsynaptic compartment allows neurons tight spatial and temporal control of synaptic protein expression, which is critical for proper functioning of synapses and neural circuits. In this review, we discuss the identity of proteins synthesized within dendrites, the receptor-mediated mechanisms regulating their synthesis, and the possible roles for these locally synthesized proteins. We also explore how our current understanding of dendritic protein synthesis in the hippocampus can be applied to new brain regions and to understanding the pathological mechanisms underlying varied neurological diseases.
Collapse
Affiliation(s)
- S A Swanger
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - G J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|