1
|
Zhou H, Huo Y, Yang N, Wei T. Phosphatidic acid: from biophysical properties to diverse functions. FEBS J 2024; 291:1870-1885. [PMID: 37103336 DOI: 10.1111/febs.16809] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/15/2023] [Accepted: 04/26/2023] [Indexed: 04/28/2023]
Abstract
Phosphatidic acid (PA), the simplest phospholipid, acts as a key metabolic intermediate and second messenger that impacts diverse cellular and physiological processes across species ranging from microbes to plants and mammals. The cellular levels of PA dynamically change in response to stimuli, and multiple enzymatic reactions can mediate its production and degradation. PA acts as a signalling molecule and regulates various cellular processes via its effects on membrane tethering, enzymatic activities of target proteins, and vesicular trafficking. Because of its unique physicochemical properties compared to other phospholipids, PA has emerged as a class of new lipid mediators influencing membrane structure, dynamics, and protein interactions. This review summarizes the biosynthesis, dynamics, and cellular functions and properties of PA.
Collapse
Affiliation(s)
- Hejiang Zhou
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yanwu Huo
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Na Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Laboratory of Genetic and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Taotao Wei
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
The Roles of Par3, Par6, and aPKC Polarity Proteins in Normal Neurodevelopment and in Neurodegenerative and Neuropsychiatric Disorders. J Neurosci 2022; 42:4774-4793. [PMID: 35705493 DOI: 10.1523/jneurosci.0059-22.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 11/21/2022] Open
Abstract
Normal neural circuits and functions depend on proper neuronal differentiation, migration, synaptic plasticity, and maintenance. Abnormalities in these processes underlie various neurodevelopmental, neuropsychiatric, and neurodegenerative disorders. Neural development and maintenance are regulated by many proteins. Among them are Par3, Par6 (partitioning defective 3 and 6), and aPKC (atypical protein kinase C) families of evolutionarily conserved polarity proteins. These proteins perform versatile functions by forming tripartite or other combinations of protein complexes, which hereafter are collectively referred to as "Par complexes." In this review, we summarize the major findings on their biophysical and biochemical properties in cell polarization and signaling pathways. We next summarize their expression and localization in the nervous system as well as their versatile functions in various aspects of neurodevelopment, including neuroepithelial polarity, neurogenesis, neuronal migration, neurite differentiation, synaptic plasticity, and memory. These versatile functions rely on the fundamental roles of Par complexes in cell polarity in distinct cellular contexts. We also discuss how cell polarization may correlate with subcellular polarization in neurons. Finally, we review the involvement of Par complexes in neuropsychiatric and neurodegenerative disorders, such as schizophrenia and Alzheimer's disease. While emerging evidence indicates that Par complexes are essential for proper neural development and maintenance, many questions on their in vivo functions have yet to be answered. Thus, Par3, Par6, and aPKC continue to be important research topics to advance neuroscience.
Collapse
|
3
|
Vasquez CG, de la Serna EL, Dunn AR. How cells tell up from down and stick together to construct multicellular tissues - interplay between apicobasal polarity and cell-cell adhesion. J Cell Sci 2021; 134:272658. [PMID: 34714332 DOI: 10.1242/jcs.248757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polarized epithelia define a topological inside and outside, and hence constitute a key evolutionary innovation that enabled the construction of complex multicellular animal life. Over time, this basic function has been elaborated upon to yield the complex architectures of many of the organs that make up the human body. The two processes necessary to yield a polarized epithelium, namely regulated adhesion between cells and the definition of the apicobasal (top-bottom) axis, have likewise undergone extensive evolutionary elaboration, resulting in multiple sophisticated protein complexes that contribute to both functions. Understanding how these components function in combination to yield the basic architecture of a polarized cell-cell junction remains a major challenge. In this Review, we introduce the main components of apicobasal polarity and cell-cell adhesion complexes, and outline what is known about their regulation and assembly in epithelia. In addition, we highlight studies that investigate the interdependence between these two networks. We conclude with an overview of strategies to address the largest and arguably most fundamental unresolved question in the field, namely how a polarized junction arises as the sum of its molecular parts.
Collapse
Affiliation(s)
- Claudia G Vasquez
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Eva L de la Serna
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.,Biophysics Program, Stanford University, Stanford, CA 94305, USA.,Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Thompson BJ. Par-3 family proteins in cell polarity & adhesion. FEBS J 2021; 289:596-613. [PMID: 33565714 PMCID: PMC9290619 DOI: 10.1111/febs.15754] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/19/2021] [Accepted: 02/08/2021] [Indexed: 12/27/2022]
Abstract
The Par‐3/Baz family of polarity determinants is highly conserved across metazoans and includes C. elegans PAR‐3, Drosophila Bazooka (Baz), human Par‐3 (PARD3), and human Par‐3‐like (PARD3B). The C. elegans PAR‐3 protein localises to the anterior pole of asymmetrically dividing zygotes with cell division cycle 42 (CDC42), atypical protein kinase C (aPKC), and PAR‐6. The same C. elegans ‘PAR complex’ can also localise in an apical ring in epithelial cells. Drosophila Baz localises to the apical pole of asymmetrically dividing neuroblasts with Cdc42‐aPKC‐Par6, while in epithelial cells localises both in an apical ring with Cdc42‐aPKC‐Par6 and with E‐cadherin at adherens junctions. These apical and junctional localisations have become separated in human PARD3, which is strictly apical in many epithelia, and human PARD3B, which is strictly junctional in many epithelia. We discuss the molecular basis for this fundamental difference in localisation, as well as the possible functions of Par‐3/Baz family proteins as oligomeric clustering agents at the apical domain or at adherens junctions in epithelial stem cells. The evolution of Par‐3 family proteins into distinct apical PARD3 and junctional PARD3B orthologs coincides with the emergence of stratified squamous epithelia in vertebrates, where PARD3B, but not PARD3, is strongly expressed in basal layer stem cells – which lack a typical apical domain. We speculate that PARD3B may contribute to clustering of E‐cadherin, signalling from adherens junctions via Src family kinases or mitotic spindle orientation by adherens junctions in response to mechanical forces.
Collapse
Affiliation(s)
- Barry J Thompson
- ACRF Department of Cancer Biology & Therapeutics, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
5
|
Yamashita K, Mizuno K, Furukawa K, Hirose H, Sakurai N, Masuda-Hirata M, Amano Y, Hirose T, Suzuki A, Ohno S. Phosphorylation and dephosphorylation of Ser852 and Ser889 control the clustering, localization and function of PAR3. J Cell Sci 2020; 133:jcs244830. [PMID: 33093242 DOI: 10.1242/jcs.244830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/28/2020] [Indexed: 08/31/2023] Open
Abstract
Cell polarity is essential for various asymmetric cellular events, and the partitioning defective (PAR) protein PAR3 (encoded by PARD3 in mammals) plays a unique role as a cellular landmark to establish polarity. In epithelial cells, PAR3 localizes at the subapical border, such as the tight junction in vertebrates, and functions as an apical determinant. Although we know a great deal about the regulators of PAR3 localization, how PAR3 is concentrated and localized to a specific membrane domain remains an important question to be clarified. In this study, we demonstrate that ASPP2 (also known as TP53BP2), which controls PAR3 localization, links PAR3 and protein phosphatase 1 (PP1). The ASPP2-PP1 complex dephosphorylates a novel phosphorylation site, Ser852, of PAR3. Furthermore, Ser852- or Ser889-unphosphorylatable PAR3 mutants form protein clusters, and ectopically localize to the lateral membrane. Concomitance of clustering and ectopic localization suggests that PAR3 localization is a consequence of local clustering. We also demonstrate that unphosphorylatable forms of PAR3 exhibited a low molecular turnover and failed to coordinate rapid reconstruction of the tight junction, supporting that both the phosphorylated and dephosphorylated states are essential for the functional integrity of PAR3.
Collapse
Affiliation(s)
- Kazunari Yamashita
- Department of Molecular Biology, Yokohama City University School of Medicine, Kanazawa-ku, Yokohama 236-0004, Japan
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Keiko Mizuno
- Department of Molecular Biology, Yokohama City University School of Medicine, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Kana Furukawa
- Department of Molecular Biology, Yokohama City University School of Medicine, Kanazawa-ku, Yokohama 236-0004, Japan
- Laboratory for Lung Development and Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Hiroko Hirose
- Department of Molecular Biology, Yokohama City University School of Medicine, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Natsuki Sakurai
- Department of Molecular Biology, Yokohama City University School of Medicine, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Maki Masuda-Hirata
- Department of Molecular Biology, Yokohama City University School of Medicine, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Yoshiko Amano
- Department of Molecular Biology, Yokohama City University School of Medicine, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Tomonori Hirose
- Department of Molecular Biology, Yokohama City University School of Medicine, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Atsushi Suzuki
- Department of Molecular Biology, Yokohama City University School of Medicine, Kanazawa-ku, Yokohama 236-0004, Japan
- Molecular Cellular Biology Laboratory, Yokohama City University Graduate School of Medical Life Science, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Shigeo Ohno
- Department of Molecular Biology, Yokohama City University School of Medicine, Kanazawa-ku, Yokohama 236-0004, Japan
| |
Collapse
|
6
|
New Era of Diacylglycerol Kinase, Phosphatidic Acid and Phosphatidic Acid-Binding Protein. Int J Mol Sci 2020; 21:ijms21186794. [PMID: 32947951 PMCID: PMC7555651 DOI: 10.3390/ijms21186794] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Diacylglycerol kinase (DGK) phosphorylates diacylglycerol (DG) to generate phosphatidic acid (PA). Mammalian DGK consists of ten isozymes (α–κ) and governs a wide range of physiological and pathological events, including immune responses, neuronal networking, bipolar disorder, obsessive-compulsive disorder, fragile X syndrome, cancer, and type 2 diabetes. DG and PA comprise diverse molecular species that have different acyl chains at the sn-1 and sn-2 positions. Because the DGK activity is essential for phosphatidylinositol turnover, which exclusively produces 1-stearoyl-2-arachidonoyl-DG, it has been generally thought that all DGK isozymes utilize the DG species derived from the turnover. However, it was recently revealed that DGK isozymes, except for DGKε, phosphorylate diverse DG species, which are not derived from phosphatidylinositol turnover. In addition, various PA-binding proteins (PABPs), which have different selectivities for PA species, were recently found. These results suggest that DGK–PA–PABP axes can potentially construct a large and complex signaling network and play physiologically and pathologically important roles in addition to DGK-dependent attenuation of DG–DG-binding protein axes. For example, 1-stearoyl-2-docosahexaenoyl-PA produced by DGKδ interacts with and activates Praja-1, the E3 ubiquitin ligase acting on the serotonin transporter, which is a target of drugs for obsessive-compulsive and major depressive disorders, in the brain. This article reviews recent research progress on PA species produced by DGK isozymes, the selective binding of PABPs to PA species and a phosphatidylinositol turnover-independent DG supply pathway.
Collapse
|
7
|
Zeledon C, Sun X, Plutoni C, Emery G. The ArfGAP Drongo Promotes Actomyosin Contractility during Collective Cell Migration by Releasing Myosin Phosphatase from the Trailing Edge. Cell Rep 2020; 28:3238-3248.e3. [PMID: 31533044 DOI: 10.1016/j.celrep.2019.08.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 07/26/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023] Open
Abstract
Collective cell migration is involved in various developmental and pathological processes, including the dissemination of various cancer cells. During Drosophila melanogaster oogenesis, a group of cells called border cells migrate collectively toward the oocyte. Herein, we show that members of the Arf family of small GTPases and some of their regulators are required for normal border cell migration. Notably, we found that the ArfGAP Drongo and its GTPase-activating function are essential for the initial detachment of the border cell cluster from the basal lamina. We demonstrate through protein localization and genetic interactions that Drongo controls the localization of the myosin phosphatase in order to regulate myosin II activity at the back of the cluster. Moreover, we show that toward the class III Arf, Drongo acts antagonistically to the guanine exchange factor Steppke. Overall, our work describes a mechanistic pathway that promotes the local actomyosin contractility necessary for border cell detachment.
Collapse
Affiliation(s)
- Carlos Zeledon
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| | - Xiaojuan Sun
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| | - Cédric Plutoni
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| | - Gregory Emery
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada; Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
8
|
Krahn MP. Phospholipids of the Plasma Membrane - Regulators or Consequence of Cell Polarity? Front Cell Dev Biol 2020; 8:277. [PMID: 32411703 PMCID: PMC7198698 DOI: 10.3389/fcell.2020.00277] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/31/2020] [Indexed: 12/15/2022] Open
Abstract
Cell polarity is a key feature of many eukaryotic cells, including neurons, epithelia, endothelia and asymmetrically dividing stem cells. Apart from the specific localization of proteins to distinct domains of the plasma membrane, most of these cells exhibit an asymmetric distribution of phospholipids within the plasma membrane too. Notably, research over the last years has revealed that many known conserved regulators of apical-basal polarity in epithelial cells are capable of binding to phospholipids, which in turn regulate the localization and to some extent the function of these proteins. Conversely, phospholipid-modifying enzymes are recruited and controlled by polarity regulators, demonstrating an elaborated balance between asymmetrically localized proteins and phospholipids, which are enriched in certain (micro)domains of the plasma membrane. In this review, we will focus on our current understanding of apical-basal polarity and the implication of phospholipids within the plasma membrane during the cell polarization of epithelia and migrating cells.
Collapse
Affiliation(s)
- Michael P. Krahn
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Münster, Germany
| |
Collapse
|
9
|
Zhukovsky MA, Filograna A, Luini A, Corda D, Valente C. Phosphatidic acid in membrane rearrangements. FEBS Lett 2019; 593:2428-2451. [PMID: 31365767 DOI: 10.1002/1873-3468.13563] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022]
Abstract
Phosphatidic acid (PA) is the simplest cellular glycerophospholipid characterized by unique biophysical properties: a small headgroup; negative charge; and a phosphomonoester group. Upon interaction with lysine or arginine, PA charge increases from -1 to -2 and this change stabilizes protein-lipid interactions. The biochemical properties of PA also allow interactions with lipids in several subcellular compartments. Based on this feature, PA is involved in the regulation and amplification of many cellular signalling pathways and functions, as well as in membrane rearrangements. Thereby, PA can influence membrane fusion and fission through four main mechanisms: it is a substrate for enzymes producing lipids (lysophosphatidic acid and diacylglycerol) that are involved in fission or fusion; it contributes to membrane rearrangements by generating negative membrane curvature; it interacts with proteins required for membrane fusion and fission; and it activates enzymes whose products are involved in membrane rearrangements. Here, we discuss the biophysical properties of PA in the context of the above four roles of PA in membrane fusion and fission.
Collapse
Affiliation(s)
- Mikhail A Zhukovsky
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Angela Filograna
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Alberto Luini
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Daniela Corda
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Carmen Valente
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| |
Collapse
|
10
|
Kullmann L, Krahn MP. Redundant regulation of localization and protein stability of DmPar3. Cell Mol Life Sci 2018; 75:3269-3282. [PMID: 29523893 PMCID: PMC11105499 DOI: 10.1007/s00018-018-2792-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 03/03/2018] [Accepted: 03/07/2018] [Indexed: 11/25/2022]
Abstract
Apical-basal polarity is an important characteristic of epithelia and Drosophila neural stem cells. The conserved Par complex, which consists of the atypical protein kinase C and the scaffold proteins Baz and Par6, is a key player in the establishment of apical-basal cell polarity. Membrane recruitment of Baz has been reported to be accomplished by several mechanisms, which might function in redundancy, to ensure the correct localization of the complex. However, none of the described interactions was sufficient to displace the protein from the apical junctions. Here, we dissected the role of the oligomerization domain and the lipid-binding motif of Baz in vivo in the Drosophila embryo. We found that these domains function in redundancy to ensure the apical junctional localization of Baz: inactivation of only one domain is not sufficient to disrupt the function of Baz during apical-basal polarization of epithelial cells and neural stem cells. In contrast, mutation of both domains results in a strongly impaired protein stability and a phenotype characterized by embryonic lethality and an impaired apical-basal polarity in the embryonic epithelium and neural stem cells, resembling a baz-loss of function allele. Strikingly, the binding of Baz to the transmembrane proteins E-Cadherin, Echinoid, and Starry Night was not affected in this mutant protein. Our findings reveal a redundant function of the oligomerization and the lipid-binding domain, which is required for protein stability, correct subcellular localization, and apical-basal cell polarization.
Collapse
Affiliation(s)
- Lars Kullmann
- Molecular and Cellular Anatomy, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
- Internal Medicine D, University Hospital of Münster, Domagkstr. 3a, 48149, Münster, Germany
| | - Michael P Krahn
- Molecular and Cellular Anatomy, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany.
- Internal Medicine D, University Hospital of Münster, Domagkstr. 3a, 48149, Münster, Germany.
| |
Collapse
|
11
|
Lang CF, Munro E. The PAR proteins: from molecular circuits to dynamic self-stabilizing cell polarity. Development 2017; 144:3405-3416. [PMID: 28974638 DOI: 10.1242/dev.139063] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PAR proteins constitute a highly conserved network of scaffolding proteins, adaptors and enzymes that form and stabilize cortical asymmetries in response to diverse inputs. They function throughout development and across the metazoa to regulate cell polarity. In recent years, traditional approaches to identifying and characterizing molecular players and interactions in the PAR network have begun to merge with biophysical, theoretical and computational efforts to understand the network as a pattern-forming biochemical circuit. Here, we summarize recent progress in the field, focusing on recent studies that have characterized the core molecular circuitry, circuit design and spatiotemporal dynamics. We also consider some of the ways in which the PAR network has evolved to polarize cells in different contexts and in response to different cues and functional constraints.
Collapse
Affiliation(s)
- Charles F Lang
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA.,Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
| | - Edwin Munro
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA .,Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
12
|
Wen W, Zhang M. Protein Complex Assemblies in Epithelial Cell Polarity and Asymmetric Cell Division. J Mol Biol 2017; 430:3504-3520. [PMID: 28963071 DOI: 10.1016/j.jmb.2017.09.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 12/24/2022]
Abstract
Asymmetric local concentration of protein complexes on distinct membrane regions is a fundamental property in numerous biological processes and is a hallmark of cell polarity. Evolutionarily conserved core polarity proteins form specific and dynamic networks to regulate the establishment and maintenance of cell polarity, as well as distinct polarity-driven cellular events. This review focuses on the molecular and structural basis governing regulated formation of several sets of core cell polarity regulatory complexes, as well as their functions in epithelial cell polarization and asymmetric cell division.
Collapse
Affiliation(s)
- Wenyu Wen
- Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai 200040, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, PR China.
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
13
|
Abstract
The scaffold protein Par-3 (
Drosophila Bazooka) is a central organizer of cell polarity across animals. This review focuses on how the clustering of Par-3 contributes to cell polarity. It begins with the Par-3 homo-oligomerization mechanism and its regulation by Par-1 phosphorylation. The role of polarized cytoskeletal networks in distributing Par-3 clusters to one end of the cell is then discussed, as is the subsequent maintenance of polarized Par-3 clusters through hindered mobility and inhibition from the opposite pole. Finally, specific roles of Par-3 clusters are reviewed, including the bundling of microtubules, the cortical docking of centrosomes, the growth and positioning of cadherin–catenin clusters, and the inhibition of the Par-6–aPKC kinase cassette. Examples are drawn from
Drosophila, Caenorhabditis elegans, mammalian cell culture, and biochemical studies.
Collapse
Affiliation(s)
- Tony J C Harris
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
14
|
Weng M, Wieschaus E. Polarity protein Par3/Bazooka follows myosin-dependent junction repositioning. Dev Biol 2017; 422:125-134. [PMID: 28063874 DOI: 10.1016/j.ydbio.2017.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/29/2016] [Accepted: 01/04/2017] [Indexed: 11/24/2022]
Abstract
The polarity protein Par3/Bazooka (Baz) has been established as a central component of the apical basal polarity system that determines the position of cell-cell junctions in epithelial cells. Consistent with that view, we show that shortly before gastrulation in Drosophila, Baz protein in the mesoderm is down-regulated from junctional sites in response to Snail (Sna) expression. This down-regulation leads to a specific decrease in adherens junctions without affecting other E-Cadherin pools. However, we further show that, interactions between Baz and junctions are not unidirectional. During apical constriction and the internalization of the mesoderm, down-regulation of Baz is transiently blocked as adherens junctions shift apically and are strengthened in response to tension generated by contractile actomyosin. When such junction remodeling is prevented by down-regulating myosin, Baz is lost prematurely in mesodermal epithelium. During such apical shifts, Baz is initially left behind as the junction shifts position, but then re-accumulates at the new location of the junctions. On the dorsal side of the embryo, a similar pattern of myosin activity appears to limit the basal shift in junctions normally driven by Baz that controls epithelium folding. Our results suggest a model where the sensitivity of Baz to Sna expression leads to the Sna-dependent junction disassembly required for a complete epithelium-mesenchymal transition. Meanwhile this loss of Baz-dependent junction maintenance is countered by the myosin-based mechanism which promotes an apical shift and strengthening of junctions accompanied by a transient re-positioning and maintenance of Baz proteins.
Collapse
Affiliation(s)
- Mo Weng
- Department of Molecular Biology, Princeton University, USA
| | - Eric Wieschaus
- Department of Molecular Biology, Princeton University, USA; Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08540, USA.
| |
Collapse
|
15
|
Baldanzi G, Bettio V, Malacarne V, Graziani A. Diacylglycerol Kinases: Shaping Diacylglycerol and Phosphatidic Acid Gradients to Control Cell Polarity. Front Cell Dev Biol 2016; 4:140. [PMID: 27965956 PMCID: PMC5126041 DOI: 10.3389/fcell.2016.00140] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 11/14/2016] [Indexed: 12/24/2022] Open
Abstract
Diacylglycerol kinases (DGKs) terminate diacylglycerol (DAG) signaling and promote phosphatidic acid (PA) production. Isoform specific regulation of DGKs activity and localization allows DGKs to shape the DAG and PA gradients. The capacity of DGKs to constrain the areas of DAG signaling is exemplified by their role in defining the contact interface between T cells and antigen presenting cells: the immune synapse. Upon T cell receptor engagement, both DGK α and ζ metabolize DAG at the immune synapse thus constraining DAG signaling. Interestingly, their activity and localization are not fully redundant because DGKζ activity metabolizes the bulk of DAG in the cell, whereas DGKα limits the DAG signaling area localizing specifically at the periphery of the immune synapse. When DGKs terminate DAG signaling, the local PA production defines a new signaling domain, where PA recruits and activates a second wave of effector proteins. The best-characterized example is the role of DGKs in protrusion elongation and cell migration. Indeed, upon growth factor stimulation, several DGK isoforms, such as α, ζ, and γ, are recruited and activated at the plasma membrane. Here, local PA production controls cell migration by finely modulating cytoskeletal remodeling and integrin recycling. Interestingly, DGK-produced PA also controls the localization and activity of key players in cell polarity such as aPKC, Par3, and integrin β1. Thus, T cell polarization and directional migration may be just two instances of the general contribution of DGKs to the definition of cell polarity by local specification of membrane identity signaling.
Collapse
Affiliation(s)
- Gianluca Baldanzi
- Department of Translational Medicine, University of Piemonte OrientaleNovara, Italy; Institute for Research and Cure of Autoimmune DiseasesNovara, Italy
| | - Valentina Bettio
- Department of Translational Medicine, University of Piemonte OrientaleNovara, Italy; Institute for Research and Cure of Autoimmune DiseasesNovara, Italy
| | - Valeria Malacarne
- Department of Translational Medicine, University of Piemonte OrientaleNovara, Italy; Division of Experimental Oncology, School of Medicine, University Vita e Salute San RaffaeleMilan, Italy
| | - Andrea Graziani
- Department of Translational Medicine, University of Piemonte OrientaleNovara, Italy; Division of Experimental Oncology, School of Medicine, University Vita e Salute San RaffaeleMilan, Italy
| |
Collapse
|
16
|
Abstract
The ability to dictate cell fate decisions is critical during animal development. Moreover, faithful execution of this process ensures proper tissue homeostasis throughout adulthood, whereas defects in the molecular machinery involved may contribute to disease. Evolutionarily conserved protein complexes control cell fate decisions across diverse tissues. Maintaining proper daughter cell inheritance patterns of these determinants during mitosis is therefore a fundamental step of the cell fate decision-making process. In this review, we will discuss two key aspects of this fate determinant segregation activity, cortical cell polarity and mitotic spindle orientation, and how they operate together to produce oriented cell divisions that ultimately influence daughter cell fate. Our focus will be directed at the principal underlying molecular mechanisms and the specific cell fate decisions they have been shown to control.
Collapse
Affiliation(s)
| | | | - Christopher A. Johnston
- Author to whom correspondence should be addressed; ; Tel.: +1-505-277-1567; Fax: +1-505-277-0304
| |
Collapse
|
17
|
Abu-Siniyeh A, Owen DM, Benzing C, Rinkwitz S, Becker TS, Majumdar A, Gaus K. The aPKC/Par3/Par6 Polarity Complex and Membrane Order Are Functionally Interdependent in Epithelia During Vertebrate Organogenesis. Traffic 2015; 17:66-79. [PMID: 26456025 DOI: 10.1111/tra.12339] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 10/06/2015] [Accepted: 10/06/2015] [Indexed: 12/17/2022]
Abstract
The differential distribution of lipids between apical and basolateral membranes is necessary for many epithelial cell functions, but how this characteristic membrane organization is integrated within the polarity network during ductal organ development is poorly understood. Here we quantified membrane order in the gut, kidney and liver ductal epithelia in zebrafish larvae at 3-11 days post fertilization (dpf) with Laurdan 2-photon microscopy. We then applied a combination of Laurdan imaging, antisense knock-down and analysis of polarity markers to understand the relationship between membrane order and apical-basal polarity. We found a reciprocal relationship between membrane order and the cell polarity network. Reducing membrane condensation by exogenously added oxysterol or depletion of cholesterol reduced apical targeting of the polarity protein, aPKC. Conversely, using morpholino knock down in zebrafish, we found that membrane order was dependent upon the Crb3 and Par3 polarity protein expression in ductal epithelia. Hence our data suggest that the biophysical property of membrane lipid packing is a regulatory element in apical basal polarity.
Collapse
Affiliation(s)
- Ahmed Abu-Siniyeh
- School of Medical Sciences, ARC Centre for Advanced Molecular Imaging and Australian Centre for NanoMedicine, The University of New South Wales, Australia.,Present address: Department of Chemistry and Medical Analysis, Faculty of Science, Al-Balqa' Applied University, Al-Salt, 19117, Jordan
| | - Dylan M Owen
- Department of Physics and Randall Division of Cell and Molecular Biophysics, King's College London, UK
| | - Carola Benzing
- School of Medical Sciences, ARC Centre for Advanced Molecular Imaging and Australian Centre for NanoMedicine, The University of New South Wales, Australia
| | - Silke Rinkwitz
- Brain and Mind Research Institute, Sydney Medical School and Department of Health Sciences, University of Sydney, Australia
| | - Thomas S Becker
- Brain and Mind Research Institute, Sydney Medical School and Department of Health Sciences, University of Sydney, Australia
| | - Arindam Majumdar
- Department of Immunology, Genetics, and Pathology, Uppsala University, Sweden
| | - Katharina Gaus
- School of Medical Sciences, ARC Centre for Advanced Molecular Imaging and Australian Centre for NanoMedicine, The University of New South Wales, Australia
| |
Collapse
|
18
|
Lee DM, Rodrigues FF, Yu CG, Swan M, Harris TJC. PH Domain-Arf G Protein Interactions Localize the Arf-GEF Steppke for Cleavage Furrow Regulation in Drosophila. PLoS One 2015; 10:e0142562. [PMID: 26556630 PMCID: PMC4640550 DOI: 10.1371/journal.pone.0142562] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/23/2015] [Indexed: 11/18/2022] Open
Abstract
The recruitment of GDP/GTP exchange factors (GEFs) to specific subcellular sites dictates where they activate small G proteins for the regulation of various cellular processes. Cytohesins are a conserved family of plasma membrane GEFs for Arf small G proteins that regulate endocytosis. Analyses of mammalian cytohesins have identified a number of recruitment mechanisms for these multi-domain proteins, but the conservation and developmental roles for these mechanisms are unclear. Here, we report how the pleckstrin homology (PH) domain of the Drosophila cytohesin Steppke affects its localization and activity at cleavage furrows of the early embryo. We found that the PH domain is necessary for Steppke furrow localization, and for it to regulate furrow structure. However, the PH domain was not sufficient for the localization. Next, we examined the role of conserved PH domain amino acid residues that are required for mammalian cytohesins to bind PIP3 or GTP-bound Arf G proteins. We confirmed that the Steppke PH domain preferentially binds PIP3 in vitro through a conserved mechanism. However, disruption of residues for PIP3 binding had no apparent effect on GFP-Steppke localization and effects. Rather, residues for binding to GTP-bound Arf G proteins made major contributions to this Steppke localization and activity. By analyzing GFP-tagged Arf and Arf-like small G proteins, we found that Arf1-GFP, Arf6-GFP and Arl4-GFP, but not Arf4-GFP, localized to furrows. However, analyses of embryos depleted of Arf1, Arf6 or Arl4 revealed either earlier defects than occur in embryos depleted of Steppke, or no detectable furrow defects, possibly because of redundancies, and thus it was difficult to assess how individual Arf small G proteins affect Steppke. Nonetheless, our data show that the Steppke PH domain and its conserved residues for binding to GTP-bound Arf G proteins have substantial effects on Steppke localization and activity in early Drosophila embryos.
Collapse
Affiliation(s)
- Donghoon M. Lee
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | | | - Cao Guo Yu
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Michael Swan
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Tony J. C. Harris
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
19
|
Reversat A, Yuseff MI, Lankar D, Malbec O, Obino D, Maurin M, Penmatcha NVG, Amoroso A, Sengmanivong L, Gundersen GG, Mellman I, Darchen F, Desnos C, Pierobon P, Lennon-Duménil AM. Polarity protein Par3 controls B-cell receptor dynamics and antigen extraction at the immune synapse. Mol Biol Cell 2015; 26:1273-85. [PMID: 25631815 PMCID: PMC4454175 DOI: 10.1091/mbc.e14-09-1373] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
B-cell receptor (BCR) engagement with surface-tethered antigens leads to the formation of an immune synapse, which facilitates antigen uptake for presentation to T-lymphocytes. Antigen internalization and processing rely on the early dynein-dependent transport of BCR-antigen microclusters to the synapse center, as well as on the later polarization of the microtubule-organizing center (MTOC). MTOC repositioning allows the release of proteases and the delivery of MHC class II molecules at the synapse. Whether and how these events are coordinated have not been addressed. Here we show that the ancestral polarity protein Par3 promotes BCR-antigen microcluster gathering, as well as MTOC polarization and lysosome exocytosis, at the synapse by facilitating local dynein recruitment. Par3 is also required for antigen presentation to T-lymphocytes. Par3 therefore emerges as a key molecule in the coupling of the early and late events needed for efficient extraction and processing of immobilized antigen by B-cells.
Collapse
Affiliation(s)
- Anne Reversat
- INSERM U932, Institut Curie, Centre de Recherche, 75005 Paris, France
| | - Maria-Isabel Yuseff
- INSERM U932, Institut Curie, Centre de Recherche, 75005 Paris, France Departamento de Biologia Celular y Molecular, Pontificia Universidad Catolica de Chile, 6513677 Santiago, Chile
| | - Danielle Lankar
- INSERM U932, Institut Curie, Centre de Recherche, 75005 Paris, France
| | - Odile Malbec
- INSERM U932, Institut Curie, Centre de Recherche, 75005 Paris, France
| | - Dorian Obino
- INSERM U932, Institut Curie, Centre de Recherche, 75005 Paris, France
| | - Mathieu Maurin
- INSERM U932, Institut Curie, Centre de Recherche, 75005 Paris, France
| | | | - Alejandro Amoroso
- INSERM U932, Institut Curie, Centre de Recherche, 75005 Paris, France Facultad de Ciencias de la Salud, Universidad San Sebastián, 7510157 Santiago, Chile
| | - Lucie Sengmanivong
- Cell and Tissue Imaging Core Facility (PICT-IBiSA) and Nikon Imaging Centre, Institut Curie, UMR144, Centre de Recherche, 75005 Paris, France
| | - Gregg G Gundersen
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| | | | - François Darchen
- Université Paris Descartes, Sorbonne Paris Cité, CNRS UMR8250, 75270 Paris Cedex 06, France
| | - Claire Desnos
- Université Paris Descartes, Sorbonne Paris Cité, CNRS UMR8250, 75270 Paris Cedex 06, France
| | - Paolo Pierobon
- INSERM U932, Institut Curie, Centre de Recherche, 75005 Paris, France
| | | |
Collapse
|
20
|
Chauveau A, Le Floc'h A, Bantilan NS, Koretzky GA, Huse M. Diacylglycerol kinase α establishes T cell polarity by shaping diacylglycerol accumulation at the immunological synapse. Sci Signal 2014; 7:ra82. [PMID: 25161317 DOI: 10.1126/scisignal.2005287] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Polarization of the T cell microtubule-organizing center (MTOC) to the immunological synapse between the T cell and an antigen-presenting cell (APC) maintains the specificity of T cell effector responses by enabling directional secretion toward the APC. The reorientation of the MTOC is guided by a sharp gradient of the second messenger diacylglycerol (DAG), which is centered at the immunological synapse. We used a single-cell photoactivation approach to demonstrate that diacylglycerol kinase α (DGK-α), which catalyzes the conversion of DAG to phosphatidic acid, determined T cell polarity by limiting the diffusion of DAG. DGK-α-deficient T cells exhibited enlarged accumulations of DAG at the immunological synapse, as well as impaired reorientation of the MTOC. In contrast, T cells lacking the related isoform DGK-ζ did not display polarization defects. We also found that DGK-α localized preferentially to the periphery of the immunological synapse, suggesting that it constrained the area over which DAG accumulated. Phosphoinositide 3-kinase activity was required for the peripheral localization pattern of DGK-α, which suggests a link between DAG and phosphatidylinositol signaling during T cell activation. These results reveal a previously unappreciated function of DGK-α and provide insight into the mechanisms that determine lymphocyte polarity.
Collapse
Affiliation(s)
- Anne Chauveau
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Audrey Le Floc'h
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Niels S Bantilan
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Gary A Koretzky
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Morgan Huse
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
21
|
Consonni SV, Brouwer PM, van Slobbe ES, Bos JL. The PDZ domain of the guanine nucleotide exchange factor PDZGEF directs binding to phosphatidic acid during brush border formation. PLoS One 2014; 9:e98253. [PMID: 24858808 PMCID: PMC4032295 DOI: 10.1371/journal.pone.0098253] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 04/30/2014] [Indexed: 12/30/2022] Open
Abstract
PDZGEF is a guanine nucleotide exchange factor for the small G protein Rap. It was recently found that PDZGEF contributes to establishment of intestinal epithelial polarity downstream of the kinase Lkb1. By binding to phosphatidic acid enriched at the apical membrane, PDZGEF locally activates Rap2a resulting in induction of brush border formation via a pathway that includes the polarity players TNIK, Mst4 and Ezrin. Here we show that the PDZ domain of PDZGEF is essential and sufficient for targeting PDZGEF to the apical membrane of polarized intestinal epithelial cells. Inhibition of PLD and consequently production of phosphatidic acid inhibitis targeting of PDZGEF to the plasma membrane. Furthermore, localization requires specific positively charged residues within the PDZ domain. We conclude that local accumulation of PDZGEF at the apical membrane during establishment of epithelial polarity is mediated by electrostatic interactions between positively charged side chains in the PDZ domain and negatively charged phosphatidic acid.
Collapse
Affiliation(s)
- Sarah V. Consonni
- Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Patricia M. Brouwer
- Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Eleonora S. van Slobbe
- Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Johannes L. Bos
- Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
22
|
Yu CG, Tonikian R, Felsensteiner C, Jhingree JR, Desveaux D, Sidhu SS, Harris TJC. Peptide binding properties of the three PDZ domains of Bazooka (Drosophila Par-3). PLoS One 2014; 9:e86412. [PMID: 24466078 PMCID: PMC3899232 DOI: 10.1371/journal.pone.0086412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 12/12/2013] [Indexed: 12/24/2022] Open
Abstract
The Par complex is a conserved cell polarity regulator. Bazooka/Par-3 is scaffold for the complex and contains three PDZ domains in tandem. PDZ domains can act singly or synergistically to bind the C-termini of interacting proteins. Sequence comparisons among Drosophila Baz and its human and C. elegans Par-3 counterparts indicate a divergence of the peptide binding pocket of PDZ1 and greater conservation for the pockets of PDZ2 and PDZ3. However, it is unclear whether the domains from different species share peptide binding preferences, or if their tandem organization affects their peptide binding properties. To investigate these questions, we first used phage display screens to identify unique peptide binding profiles for each single PDZ domain of Baz. Comparisons with published phage display screens indicate that Baz and C. elegans PDZ2 bind to similar peptides, and that the peptide binding preferences of Baz PDZ3 are more similar to C. elegans versus human PDZ3. Next we quantified the peptide binding preferences of each Baz PDZ domain using single identified peptides in surface plasmon resonance assays. In these direct binding studies, each peptide had a binding preference for a single PDZ domain (although the peptide binding of PDZ2 was weakest and the least specific). PDZ1 and PDZ3 bound their peptides with dissociation constants in the nM range, whereas PDZ2-peptide binding was in the µM range. To test whether tandem PDZ domain organization affects peptide binding, we examined a fusion protein containing all three PDZ domains and their normal linker regions. The binding strengths of the PDZ-specific peptides to single PDZ domains and to the PDZ domain tandem were indistinguishable. Thus, the peptide binding pockets of each PDZ domain in Baz are not obviously affected by the presence of neighbouring PDZ domains, but act as isolated modules with specific in vitro peptide binding preferences.
Collapse
Affiliation(s)
- Cao Guo Yu
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Raffi Tonikian
- Terrence Donnelly Centre for Cellular and Biomolecular Research, and Banting and Best Department of Medical Research, and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Corinna Felsensteiner
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| | - Jacquelyn R. Jhingree
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| | - Darrell Desveaux
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| | - Sachdev S. Sidhu
- Terrence Donnelly Centre for Cellular and Biomolecular Research, and Banting and Best Department of Medical Research, and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Tony J. C. Harris
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
23
|
Huse M, Le Floc'h A, Liu X. From lipid second messengers to molecular motors: microtubule-organizing center reorientation in T cells. Immunol Rev 2013; 256:95-106. [PMID: 24117815 PMCID: PMC4595039 DOI: 10.1111/imr.12116] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In T lymphocytes, polarization of the microtubule-organizing center (MTOC) to the immunological synapse enables the directional secretion of cytokines, cytolytic factors, and other soluble molecules toward the antigen-presenting cell. This is likely to be crucial for maintaining the specificity of T-cell effector responses. Here, we review recent advances in our understanding of MTOC reorientation in T cells, focusing first on the importance of diacylglycerol and protein kinase C isozymes and then on the molecular motor proteins that function downstream to drive MTOC movement.
Collapse
Affiliation(s)
- Morgan Huse
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Audrey Le Floc'h
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Xin Liu
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
24
|
Chen J, Zhang M. The Par3/Par6/aPKC complex and epithelial cell polarity. Exp Cell Res 2013; 319:1357-64. [PMID: 23535009 DOI: 10.1016/j.yexcr.2013.03.021] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 03/11/2013] [Accepted: 03/16/2013] [Indexed: 12/20/2022]
Abstract
Apical-basal polarity is the basic organizing principle of epithelial cells, and endows epithelial cells to function as defensive barriers and as mediators of vectorial transport of nutrients in and out of organisms. Apical-basal polarity is controlled by a number of conserved polarity factors that regulate cytoskeletal organizations, asymmetric distributions of cellular components, and directional transports across cells. Polarity factors often occupy specific membrane regions in response to the adhesion forces generated by cell-cell and cell-extracellular matrix interactions. Both internal polarity factors and the external extracellular matrices play fundamental roles in epithelial cell polarity establishment and maintenance. This review focuses on recent developments of the Par3/Par6/aPKC complex and its interacting proteins in epithelial cell polarity.
Collapse
Affiliation(s)
- Jia Chen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | | |
Collapse
|