1
|
Choi W, Goldfarb D, Yan F, Major MB, Fanning AS, Peifer M. Proximity proteomics provides a new resource for exploring the function of Afadin and the complexity of cell-cell adherens junctions. Biol Open 2025; 14:bio061811. [PMID: 39882731 PMCID: PMC11810119 DOI: 10.1242/bio.061811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/27/2024] [Indexed: 01/31/2025] Open
Abstract
The network of proteins at the interface between cell-cell adherens junctions and the actomyosin cytoskeleton provides robust yet dynamic connections that facilitate cell shape change and motility. While this was initially thought to be a simple linear connection via classic cadherins and their associated catenins, we now have come to appreciate that many more proteins are involved, providing robustness and mechanosensitivity. Defining the full set of proteins in this network remains a key objective in our field. Proximity proteomics provides a means to define these networks. Mammalian Afadin and its Drosophila homolog Canoe are key parts of this protein network, facilitating diverse cell shape changes during gastrulation and other events of embryonic morphogenesis. Here we report results of several proximity proteomics screens, defining proteins in the neighborhood of both the N- and C-termini of mammalian Afadin in the premier epithelial model, MDCK cells. We compare our results with previous screens done in other cell types, and with proximity proteomics efforts with other junctional proteins. These reveal the value of multiple screens in defining the full network of neighbors and offer interesting insights into the overlap in protein composition between different epithelial cell junctions.
Collapse
Affiliation(s)
- Wangsun Choi
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Dennis Goldfarb
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA63110
- Institute for Informatics, Data Science & Biostatistics, Washington University School of Medicine, St. Louis, MO, USA63110
| | - Feng Yan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael B. Major
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA63110
| | - Alan S. Fanning
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
2
|
Clarke DN, Miller PW, Martin AC. EGFR-dependent actomyosin patterning coordinates morphogenetic movements between tissues in Drosophila melanogaster. Dev Cell 2025; 60:270-287.e6. [PMID: 39461341 PMCID: PMC11755374 DOI: 10.1016/j.devcel.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/19/2024] [Accepted: 10/03/2024] [Indexed: 10/29/2024]
Abstract
The movements that give rise to the body's structure are powered by cell shape changes and rearrangements that are coordinated at supracellular scales. How such cellular coordination arises and integrates different morphogenetic programs is unclear. Using quantitative imaging, we found a complex pattern of adherens junction (AJ) levels in the ectoderm prior to gastrulation onset in Drosophila. AJ intensity exhibited a double-sided gradient, with peaks at the dorsal midline and ventral neuroectoderm. We show that this dorsal-ventral AJ pattern is regulated by epidermal growth factor (EGF) signaling and that this signal is required for ectoderm cell movement during mesoderm invagination and axis extension. We identify AJ levels and junctional actomyosin as downstream effectors of EGFR signaling. Overall, our study demonstrates an EGF-patterned mechanical feedback mechanism that coordinates tissue folding and convergent extension to facilitate embryo-wide gastrulation movements.
Collapse
Affiliation(s)
- D Nathaniel Clarke
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Pearson W Miller
- Department of Mathematics, University of California, San Diego, La Jolla, CA, USA.
| | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
3
|
McParland ED, Gurley NJ, Wolfsberg LR, Butcher TA, Bhattarai A, Jensen CC, Johnson RI, Slep KC, Peifer M. The dual Ras-association domains of Drosophila Canoe have differential roles in linking cell junctions to the cytoskeleton during morphogenesis. J Cell Sci 2024; 137:jcs263546. [PMID: 39450902 PMCID: PMC11698047 DOI: 10.1242/jcs.263546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
During development cells must change shape and move without disrupting dynamic tissue architecture. This requires robust linkage of cell-cell adherens junctions to the force-generating actomyosin cytoskeleton. Drosophila Canoe and mammalian afadin play key roles in the regulation of such linkages. One central task for the field is defining mechanisms by which upstream inputs from Ras-family GTPases regulate Canoe and afadin. These proteins are unusual in sharing two tandem Ras-association (RA) domains - RA1 and RA2 - which when deleted virtually eliminate Canoe function. Work in vitro has suggested that RA1 and RA2 differ in GTPase affinity, but their individual functions in vivo remain unknown. Combining bioinformatic and biochemical approaches, we find that both RA1 and RA2 bind to active Rap1 with similar affinities, and that their conserved N-terminal extensions enhance binding. We created Drosophila canoe mutants to test RA1 and RA2 function in vivo. Despite their similar affinities for Rap1, RA1 and RA2 play strikingly different roles. Deleting RA1 virtually eliminates Canoe function, whereas mutants lacking RA2 are viable and fertile but have defects in junctional reinforcement in embryos and during pupal eye development. These data significantly expand our understanding of the regulation of adherens junction-cytoskeletal linkages.
Collapse
Affiliation(s)
- Emily D. McParland
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Noah J. Gurley
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Leah R. Wolfsberg
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - T. Amber Butcher
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Abhi Bhattarai
- Biology Department, Wesleyan University, Middletown, CT 06459, USA
| | - Corbin C. Jensen
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Ruth I. Johnson
- Biology Department, Wesleyan University, Middletown, CT 06459, USA
| | - Kevin C. Slep
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
Choi W, Goldfarb D, Yan F, Major MB, Fanning AS, Peifer M. Proximity proteomics provides a new resource for exploring the function of Afadin and the complexity of cell-cell adherens junctions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622507. [PMID: 39574742 PMCID: PMC11581034 DOI: 10.1101/2024.11.07.622507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
The network of proteins at the interface between cell-cell adherens junctions and the actomyosin cytoskeleton provides robust yet dynamic connections that facilitate cell shape change and motility. While this was initially thought to be a simple linear connection via classic cadherins and their associated catenins, we now have come to appreciate that many more proteins are involved, providing robustness and mechanosensitivity. Defining the full network of proteins in this network remains a key objective in our field. Proximity proteomics provides a means to define these networks. Mammalian Afadin and its Drosophila homolog Canoe are key parts of this protein network, facilitating diverse cell shape changes during gastrulation and other events of embryonic morphogenesis. Here we report results of several proximity proteomics screens, defining proteins in the neighborhood of both the N- and C-termini of mammalian Afadin in the premier epithelial model, MDCK cells. We compare our results with previous screens done in other cell types, and with proximity proteomics efforts with other junctional proteins. These reveal the value of multiple screens in defining the full network of neighbors and offer interesting insights into the overlap in protein composition between different epithelial cell junctions.
Collapse
Affiliation(s)
- Wangsun Choi
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Dennis Goldfarb
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA 63110
- Institute for Informatics, Data Science & Biostatistics, Washington University School of Medicine, St. Louis, MO, USA 63110
| | - Feng Yan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - M. Ben Major
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA 63110
| | - Alan S. Fanning
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| |
Collapse
|
5
|
Hall AE, Klompstra D, Nance J. C. elegans Afadin is required for epidermal morphogenesis and functionally interfaces with the cadherin-catenin complex and RhoGAP PAC-1/ARHGAP21. Dev Biol 2024; 511:12-25. [PMID: 38556137 PMCID: PMC11088504 DOI: 10.1016/j.ydbio.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/07/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
During epithelial morphogenesis, the apical junctions connecting cells must remodel as cells change shape and make new connections with their neighbors. In the C. elegans embryo, new apical junctions form when epidermal cells migrate and seal with one another to encase the embryo in skin ('ventral enclosure'), and junctions remodel when epidermal cells change shape to squeeze the embryo into a worm shape ('elongation'). The junctional cadherin-catenin complex (CCC), which links epithelial cells to each other and to cortical actomyosin, is essential for C. elegans epidermal morphogenesis. RNAi genetic enhancement screens have identified several genes encoding proteins that interact with the CCC to promote epidermal morphogenesis, including the scaffolding protein Afadin (AFD-1), whose depletion alone results in only minor morphogenesis defects. Here, by creating a null mutation in afd-1, we show that afd-1 provides a significant contribution to ventral enclosure and elongation on its own. Unexpectedly, we find that afd-1 mutant phenotypes are strongly modified by diet, revealing a previously unappreciated parental nutritional input to morphogenesis. We identify functional interactions between AFD-1 and the CCC by demonstrating that E-cadherin is required for the polarized distribution of AFD-1 to cell contact sites in early embryos. Finally, we show that afd-1 promotes the enrichment of polarity regulator, and CCC-interacting protein, PAC-1/ARHGAP21 to cell contact sites, and we identify genetic interactions suggesting that afd-1 and pac-1 regulate epidermal morphogenesis at least in part through parallel mechanisms. Our findings reveal that C. elegans AFD-1 makes a significant contribution to epidermal morphogenesis and functionally interfaces with core and associated CCC proteins.
Collapse
Affiliation(s)
- Allison E Hall
- Department of Cell Biology, NYU School of Medicine, New York, NY, 10016, USA; Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, NY, 10016, USA; Regis University, Biology Department, Denver, CO, 80221, USA.
| | - Diana Klompstra
- Department of Cell Biology, NYU School of Medicine, New York, NY, 10016, USA; Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, NY, 10016, USA
| | - Jeremy Nance
- Department of Cell Biology, NYU School of Medicine, New York, NY, 10016, USA; Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, NY, 10016, USA; University of Wisconsin - Madison, Department of Cell and Regenerative Biology and Center for Quantitative Cell Imaging, Madison, WI, 53706, USA.
| |
Collapse
|
6
|
McParland ED, Butcher TA, Gurley NJ, Johnson RI, Slep KC, Peifer M. The Dilute domain in Canoe is not essential for linking cell junctions to the cytoskeleton but supports morphogenesis robustness. J Cell Sci 2024; 137:jcs261734. [PMID: 38323935 PMCID: PMC11006394 DOI: 10.1242/jcs.261734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024] Open
Abstract
Robust linkage between adherens junctions and the actomyosin cytoskeleton allows cells to change shape and move during morphogenesis without tearing tissues apart. The Drosophila multidomain protein Canoe and its mammalian homolog afadin are crucial for this, as in their absence many events of morphogenesis fail. To define the mechanism of action for Canoe, we are taking it apart. Canoe has five folded protein domains and a long intrinsically disordered region. The largest is the Dilute domain, which is shared by Canoe and myosin V. To define the roles of this domain in Canoe, we combined biochemical, genetic and cell biological assays. AlphaFold was used to predict its structure, providing similarities and contrasts with Myosin V. Biochemical data suggested one potential shared function - the ability to dimerize. We generated Canoe mutants with the Dilute domain deleted (CnoΔDIL). Surprisingly, they were viable and fertile. CnoΔDIL localized to adherens junctions and was enriched at junctions under tension. However, when its dose was reduced, CnoΔDIL did not provide fully wild-type function. Furthermore, canoeΔDIL mutants had defects in the orchestrated cell rearrangements of eye development. This reveals the robustness of junction-cytoskeletal connections during morphogenesis and highlights the power of natural selection to maintain protein structure.
Collapse
Affiliation(s)
- Emily D. McParland
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - T. Amber Butcher
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Noah J. Gurley
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Ruth I. Johnson
- Biology Department, Wesleyan University, Middletown, CT 06459, USA
| | - Kevin C. Slep
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
7
|
Li L, Zhang N, Beati SAH, De Las Heras Chanes J, di Pietro F, Bellaiche Y, Müller HAJ, Großhans J. Kinesin-1 patterns Par-1 and Rho signaling at the cortex of syncytial embryos of Drosophila. J Cell Biol 2024; 223:e202206013. [PMID: 37955925 PMCID: PMC10641515 DOI: 10.1083/jcb.202206013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 03/23/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
The cell cortex of syncytial Drosophila embryos is patterned into cap and intercap regions by centrosomes, specific sets of proteins that are restricted to their respective regions by unknown mechanisms. Here, we found that Kinesin-1 is required for the restriction of plus- and minus-ends of centrosomal and non-centrosomal microtubules to the cap region, marked by EB1 and Patronin/Shot, respectively. Kinesin-1 also directly or indirectly restricts proteins and Rho signaling to the intercap, including the RhoGEF Pebble, Dia, Myosin II, Capping protein-α, and the polarity protein Par-1. Furthermore, we found that Par-1 is required for cap restriction of Patronin/Shot, and vice versa Patronin, for Par-1 enrichment at the intercap. In summary, our data support a model that Kinesin-1 would mediate the restriction of centrosomal and non-centrosomal microtubules to a region close to the centrosomes and exclude Rho signaling and Par-1. In addition, mutual antagonistic interactions would refine and maintain the boundary between cap and intercap and thus generate a distinct cortical pattern.
Collapse
Affiliation(s)
- Long Li
- Department of Biology, Philipps University, Marburg, Germany
| | - Na Zhang
- Department of Biology, Philipps University, Marburg, Germany
| | - Seyed Amir Hamze Beati
- Division of Developmental Genetics, Institute for Biology, University of Kassel, Kassel, Germany
| | - Jose De Las Heras Chanes
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 3215, Inserm U934, Genetics and Developmental Biology , Paris, France
| | - Florencia di Pietro
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 3215, Inserm U934, Genetics and Developmental Biology , Paris, France
| | - Yohanns Bellaiche
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 3215, Inserm U934, Genetics and Developmental Biology , Paris, France
| | - Hans-Arno J Müller
- Division of Developmental Genetics, Institute for Biology, University of Kassel, Kassel, Germany
| | - Jörg Großhans
- Department of Biology, Philipps University, Marburg, Germany
| |
Collapse
|
8
|
Clarke DN, Martin AC. EGFR-dependent actomyosin patterning coordinates morphogenetic movements between tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.573057. [PMID: 38187543 PMCID: PMC10769333 DOI: 10.1101/2023.12.22.573057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The movements that give rise to the body's structure are powered by cell shape changes and rearrangements that are coordinated at supracellular scales. How such cellular coordination arises and integrates different morphogenetic programs is unclear. Using quantitative imaging, we found a complex pattern of adherens junction (AJ) levels in the ectoderm prior to gastrulation onset in Drosophila. AJ intensity exhibited a double-sided gradient, with peaks at the dorsal midline and ventral neuroectoderm. We show that this dorsal-ventral AJ pattern is regulated by epidermal growth factor (EGF) signaling and that this signal is required for ectoderm cell movement during mesoderm invagination and axis extension. We identify AJ levels and junctional actomyosin as downstream effectors of EGFR signaling. Overall, our study demonstrates a mechanism of coordination between tissue folding and convergent extension that facilitates embryo-wide gastrulation movements.
Collapse
Affiliation(s)
| | - Adam C Martin
- Dept. of Biology, Massachusetts Institute of Technology
| |
Collapse
|
9
|
McParland ED, Amber Butcher T, Gurley NJ, Johnson RI, Slep KC, Peifer M. The Dilute domain of Canoe is not essential for Canoe's role in linking adherens junctions to the cytoskeleton but contributes to robustness of morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.562854. [PMID: 37905001 PMCID: PMC10614895 DOI: 10.1101/2023.10.18.562854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Robust linkage between cell-cell adherens junctions and the actomyosin cytoskeleton allows cells to change shape and move during morphogenesis without tearing tissues apart. The multidomain protein Drosophila Canoe and its mammalian homolog Afadin are critical for this linkage, and in their absence many events of morphogenesis fail. To define underlying mechanisms, we are taking Canoe apart, using Drosophila as our model. Canoe and Afadin share five folded protein domains, followed by a large intrinsically disordered region. The largest of these folded domains is the Dilute domain, which is found in Canoe/Afadin, their paralogs, and members of the MyosinV family. To define the roles of Canoe's Dilute domain we have combined biochemical, genetic and cell biological assays. Use of the AlphaFold tools revealed the predicted structure of the Canoe/Afadin Dilute domain, providing similarities and contrasts with that of MyosinV. Our biochemical data suggest one potential shared function: the ability to dimerize. We next generated Drosophila mutants with the Dilute domain cleanly deleted. Surprisingly, these mutants are viable and fertile, and CanoeΔDIL protein localizes to adherens junctions and is enriched at junctions under tension. However, when we reduce the dose of CanoeΔDIL protein in a sensitized assay, it becomes clear it does not provide full wildtype function. Further, canoeΔDIL mutants have defects in pupal eye development, another process that requires orchestrated cell rearrangements. Together, these data reveal the robustness in AJ-cytoskeletal connections during multiple embryonic and postembryonic events, and the power of natural selection to maintain protein structure even in robust systems.
Collapse
Affiliation(s)
- Emily D. McParland
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - T. Amber Butcher
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Noah J. Gurley
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | | | - Kevin C. Slep
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| |
Collapse
|
10
|
Yost PP, Al-Nouman A, Curtiss J. The Rap1 small GTPase affects cell fate or survival and morphogenetic patterning during Drosophila melanogaster eye development. Differentiation 2023; 133:12-24. [PMID: 37437447 PMCID: PMC10528170 DOI: 10.1016/j.diff.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/14/2023]
Abstract
The Drosophila melanogaster eye has been instrumental for determining both how cells communicate with one another to determine cell fate, as well as cell morphogenesis and patterning. Here, we describe the effects of the small GTPase Rap1 on the development of multiple cell types in the D. melanogaster eye. Although Rap1 has previously been linked to RTK-Ras-MAPK signaling in eye development, we demonstrate that manipulation of Rap1 activity is modified by increase or decrease of Delta/Notch signaling during several events of cell fate specification in eye development. In addition, we demonstrate that manipulating Rap1 function either in primary pigment cells or in interommatidial cells affects cone cell contact switching, primary pigment cell enwrapment of the ommatidial cluster, and sorting of secondary and tertiary pigment cells. These data suggest that Rap1 has roles in both ommatidial cell recruitment/survival and in ommatidial morphogenesis in the pupal stage. They lay groundwork for future experiments on the role of Rap1 in these events.
Collapse
Affiliation(s)
- Philip P Yost
- New Mexico State University, 1780 E University Ave, Las Cruces, NM, 88003, USA
| | | | - Jennifer Curtiss
- New Mexico State University, 1780 E University Ave, Las Cruces, NM, 88003, USA.
| |
Collapse
|
11
|
Messer CL, McDonald JA. Rap1 promotes epithelial integrity and cell viability in a growing tissue. Dev Biol 2023; 501:1-19. [PMID: 37269969 DOI: 10.1016/j.ydbio.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/10/2023] [Accepted: 05/24/2023] [Indexed: 06/05/2023]
Abstract
Having intact epithelial tissues is critical for embryonic development and adult homeostasis. How epithelia respond to damaging insults or tissue growth while still maintaining intercellular connections and barrier integrity during development is poorly understood. The conserved small GTPase Rap1 is critical for establishing cell polarity and regulating cadherin-catenin cell junctions. Here, we identified a new role for Rap1 in maintaining epithelial integrity and tissue shape during Drosophila oogenesis. Loss of Rap1 activity disrupted the follicle cell epithelium and the shape of egg chambers during a period of major growth. Rap1 was required for proper E-Cadherin localization in the anterior epithelium and for epithelial cell survival. Both Myo-II and the adherens junction-cytoskeletal linker protein α-Catenin were required for normal egg chamber shape but did not strongly affect cell viability. Blocking the apoptotic cascade failed to rescue the cell shape defects caused by Rap1 inhibition. One consequence of increased cell death caused by Rap1 inhibition was the loss of polar cells and other follicle cells, which later in development led to fewer cells forming a migrating border cell cluster. Our results thus indicate dual roles for Rap1 in maintaining epithelia and cell survival in a growing tissue during development.
Collapse
Affiliation(s)
- C Luke Messer
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Jocelyn A McDonald
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
12
|
Hiremath C, Gao L, Geshow K, Patterson Q, Barlow H, Cleaver O, Marciano DK. Rap1 regulates lumen continuity via Afadin in renal epithelia. Dev Biol 2023; 501:20-27. [PMID: 37276970 PMCID: PMC10460627 DOI: 10.1016/j.ydbio.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/13/2023] [Accepted: 05/11/2023] [Indexed: 06/07/2023]
Abstract
The continuity of a lumen within an epithelial tubule is critical for its function. We previously found that the F-actin binding protein Afadin is required for timely lumen formation and continuity in renal tubules formed from the nephrogenic mesenchyme in mice. Afadin is a known effector and interactor of the small GTPase Rap1, and in the current study, we examine the role of Rap1 in nephron tubulogenesis. Here, we demonstrate that Rap1 is required for nascent lumen formation and continuity in cultured 3D epithelial spheroids and in vivo in murine renal epithelial tubules derived from the nephrogenic mesenchyme, where its absence ultimately leads to severe morphogenetic defects in the tubules. By contrast, Rap1 is not required for lumen continuity or morphogenesis in renal tubules derived from the ureteric epithelium, which differ in that they form by extension from a pre-existing tubule. We further demonstrate that Rap1 is required for correct localization of Afadin to adherens junctions both in vitro and in vivo. Together, these results suggest a model in which Rap1 localizes Afadin to junctional complexes, which in turn regulates nascent lumen formation and positioning to ensure continuous tubulogenesis.
Collapse
Affiliation(s)
- Chitkale Hiremath
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Lei Gao
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Kenya Geshow
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Quinten Patterson
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Haley Barlow
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Ondine Cleaver
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Denise K Marciano
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA.
| |
Collapse
|
13
|
Hall AE, Klompstra D, Nance J. C. elegans Afadin is required for epidermal morphogenesis and functionally interfaces with the cadherin-catenin complex and RhoGAP PAC-1/ARHGAP21. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.28.551013. [PMID: 37546884 PMCID: PMC10402129 DOI: 10.1101/2023.07.28.551013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
During epithelial morphogenesis, the apical junctions connecting cells must remodel as cells change shape and make new connections with their neighbors. In the C. elegans embryo, new apical junctions form when epidermal cells migrate and seal with one another to encase the embryo in skin ('ventral enclosure'), and junctions remodel when epidermal cells change shape to squeeze the embryo into a worm shape ('elongation'). The junctional cadherin-catenin complex (CCC), which links epithelial cells to each other and to cortical actomyosin, is essential for C. elegans epidermal morphogenesis. RNAi genetic enhancement screens have identified several proteins that interact with the CCC to promote epidermal morphogenesis, including the scaffolding protein Afadin (AFD-1), whose depletion alone results in only minor morphogenesis defects. Here, by creating a null mutation in afd-1 , we show that afd-1 provides a significant contribution to ventral enclosure and elongation on its own. Unexpectedly, we find that afd-1 mutant phenotypes are strongly modified by diet, revealing a previously unappreciated maternal nutritional input to morphogenesis. We identify functional interactions between AFD-1 and the CCC by demonstrating that E-cadherin is required for the polarized distribution of AFD-1 to cell contact sites in early embryos. Finally, we show that afd-1 promotes the enrichment of polarity regulator and CCC-interacting protein PAC-1/ARHGAP21 to cell contact sites, and identify genetic interactions suggesting that afd-1 and pac-1 regulate epidermal morphogenesis at least in part through parallel mechanisms. Our findings reveal that C. elegans AFD-1 makes a significant contribution to epidermal morphogenesis and functionally interfaces with core and associated CCC proteins.
Collapse
|
14
|
Schmidt A, Finegan T, Häring M, Kong D, Fletcher AG, Alam Z, Grosshans J, Wolf F, Peifer M. Polychaetoid/ZO-1 strengthens cell junctions under tension while localizing differently than core adherens junction proteins. Mol Biol Cell 2023; 34:ar81. [PMID: 37163320 PMCID: PMC10398881 DOI: 10.1091/mbc.e23-03-0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/11/2023] Open
Abstract
During embryonic development, dramatic cell shape changes and movements reshape the embryonic body plan. These require robust but dynamic linkage between the cell-cell adherens junctions and the force-generating actomyosin cytoskeleton. Our view of this linkage has evolved, and we now realize linkage is mediated by mechanosensitive multiprotein complexes assembled via multivalent connections. Here we combine genetic, cell biological, and modeling approaches to define the mechanism of action and functions of an important player, Drosophila polychaetoid, homologue of mammalian ZO-1. Our data reveal that Pyd reinforces cell junctions under elevated tension, and facilitates cell rearrangements. Pyd is important to maintain junctional contractility and in its absence cell rearrangements stall. We next use structured illumination microscopy to define the molecular architecture of cell-cell junctions during these events. The cadherin-catenin complex and Cno both localize to puncta along the junctional membrane, but are differentially enriched in different puncta. Pyd, in contrast, exhibits a distinct localization to strands that extend out from the region occupied by core junction proteins. We then discuss the implications for the protein network at the junction-cytoskeletal interface, suggesting different proteins localize and function in distinct ways, perhaps in distinct subcomplexes, but combine to produce robust connections.
Collapse
Affiliation(s)
- Anja Schmidt
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Tara Finegan
- Department of Biology, University of Rochester, Rochester, New York 14627-0211
| | - Matthias Häring
- Göttingen Campus Institute for Dynamics of Biological Networks, Georg August University, 37075 Göttingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
- Institute for Dynamics of Complex Systems, Georg August University, 37077 Göttingen, Germany
| | - Deqing Kong
- Department of Biology, Philipps University, 35043 Marburg, Germany
| | - Alexander G Fletcher
- School of Mathematics and Statistics and Bateson Centre, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Zuhayr Alam
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Jörg Grosshans
- Department of Biology, Philipps University, 35043 Marburg, Germany
| | - Fred Wolf
- Göttingen Campus Institute for Dynamics of Biological Networks, Georg August University, 37075 Göttingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
- Institute for Dynamics of Complex Systems, Georg August University, 37077 Göttingen, Germany
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| |
Collapse
|
15
|
Schmidt A, Finegan T, Häring M, Kong D, Fletcher AG, Alam Z, Grosshans J, Wolf F, Peifer M. Polychaetoid/ZO-1 strengthens cell junctions under tension while localizing differently than core adherens junction proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530634. [PMID: 36909597 PMCID: PMC10002719 DOI: 10.1101/2023.03.01.530634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
During embryonic development dramatic cell shape changes and movements re-shape the embryonic body plan. These require robust but dynamic linkage between the cell-cell adherens junctions and the force-generating actomyosin cytoskeleton. Our view of this linkage has evolved, and we now realize linkage is mediated by a mechanosensitive multiprotein complex assembled via multivalent connections. Here we combine genetic, cell biological and modeling approaches to define the mechanism of action and functions of an important player, Drosophila Polychaetoid, homolog of mammalian ZO-1. Our data reveal that Pyd reinforces cell junctions under elevated tension, and facilitates cell rearrangements. Pyd is important to maintain junctional contractility and in its absence cell rearrangements stall. We next use structured illumination microscopy to define the molecular architecture of cell-cell junctions during these events. The cadherin-catenin complex and Cno both localize to puncta along the junctional membrane, but are differentially enriched in different puncta. Pyd, in contrast, exhibits a distinct localization to strands that extend out from the region occupied by core junction proteins. We then discuss the implications for the protein network at the junction-cytoskeletal interface, suggesting different proteins localize and function in distinct ways but combine to produce robust connections.
Collapse
Affiliation(s)
- Anja Schmidt
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Tara Finegan
- Department of Biology, University of Rochester, Rochester, New York, USA 14627-0211
| | - Matthias Häring
- Göttingen Campus Institute for Dynamics of Biological Networks, Georg August University, Hermann Rein Str. 3, 37075 Göttingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Hermann Rein St. 3, 37075 Göttingen, German
- Institute for Dynamics of Complex Systems, Georg August University, Friedrich Hund Pl. 1, 37077 Göttingen, Germany
| | - Deqing Kong
- Department of Biology, Philipps University, Karl-von-Frisch-Straße 8, 35043 Marburg, Germany
| | - Alexander G Fletcher
- School of Mathematics and Statistics & Bateson Centre, University of Sheffield, Sheffield, UK
| | - Zuhayr Alam
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Jörg Grosshans
- Department of Biology, Philipps University, Karl-von-Frisch-Straße 8, 35043 Marburg, Germany
| | - Fred Wolf
- Göttingen Campus Institute for Dynamics of Biological Networks, Georg August University, Hermann Rein Str. 3, 37075 Göttingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Hermann Rein St. 3, 37075 Göttingen, German
- Institute for Dynamics of Complex Systems, Georg August University, Friedrich Hund Pl. 1, 37077 Göttingen, Germany
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| |
Collapse
|
16
|
Sokac AM, Biel N, De Renzis S. Membrane-actin interactions in morphogenesis: Lessons learned from Drosophila cellularization. Semin Cell Dev Biol 2023; 133:107-122. [PMID: 35396167 PMCID: PMC9532467 DOI: 10.1016/j.semcdb.2022.03.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 01/12/2023]
Abstract
During morphogenesis, changes in the shapes of individual cells are harnessed to mold an entire tissue. These changes in cell shapes require the coupled remodeling of the plasma membrane and underlying actin cytoskeleton. In this review, we highlight cellularization of the Drosophila embryo as a model system to uncover principles of how membrane and actin dynamics are co-regulated in space and time to drive morphogenesis.
Collapse
Affiliation(s)
- Anna Marie Sokac
- Department of Cell and Developmental Biology, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA; Graduate Program in Integrative and Molecular Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Natalie Biel
- Department of Cell and Developmental Biology, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA; Graduate Program in Integrative and Molecular Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stefano De Renzis
- European Molecular Biology Laboratory Heidelberg, 69117 Heidelberg, Germany
| |
Collapse
|
17
|
Perez-Vale KZ, Yow KD, Gurley NJ, Greene M, Peifer M. Rap1 regulates apical contractility to allow embryonic morphogenesis without tissue disruption and acts in part via Canoe-independent mechanisms. Mol Biol Cell 2023; 34:ar7. [PMID: 36287827 PMCID: PMC9816648 DOI: 10.1091/mbc.e22-05-0176] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/06/2022] [Accepted: 10/21/2022] [Indexed: 02/03/2023] Open
Abstract
Embryonic morphogenesis is powered by dramatic changes in cell shape and arrangement driven by the cytoskeleton and its connections to adherens junctions. This requires robust linkage allowing morphogenesis without disrupting tissue integrity. The small GTPase Rap1 is a key regulator of cell adhesion, controlling both cadherin-mediated and integrin-mediated processes. We have defined multiple roles in morphogenesis for one Rap1 effector, Canoe/Afadin, which ensures robust junction-cytoskeletal linkage. We now ask what mechanisms regulate Canoe and other junction-cytoskeletal linkers during Drosophila morphogenesis, defining roles for Rap1 and one of its guanine nucleotide exchange factor (GEF) regulators, Dizzy. Rap1 uses Canoe as one effector, regulating junctional planar polarity. However, Rap1 has additional roles in junctional protein localization and balanced apical constriction-in its absence, Bazooka/Par3 localization is fragmented, and cells next to mitotic cells apically constrict and invaginate, disrupting epidermal integrity. In contrast, the GEF Dizzy has phenotypes similar to but slightly less severe than Canoe loss, suggesting that this GEF regulates Rap1 action via Canoe. Taken together, these data reveal that Rap1 is a crucial regulator of morphogenesis, likely acting in parallel via Canoe and other effectors, and that different Rap1 GEFs regulate distinct functions of Rap1.
Collapse
Affiliation(s)
- Kia Z. Perez-Vale
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Kristi D. Yow
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Noah J. Gurley
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Melissa Greene
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Mark Peifer
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| |
Collapse
|
18
|
Pickett MA, Sallee MD, Cote L, Naturale VF, Akpinaroglu D, Lee J, Shen K, Feldman JL. Separable mechanisms drive local and global polarity establishment in the Caenorhabditiselegans intestinal epithelium. Development 2022; 149:dev200325. [PMID: 36264257 PMCID: PMC9845746 DOI: 10.1242/dev.200325] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 10/06/2022] [Indexed: 11/17/2022]
Abstract
Apico-basolateral polarization is essential for epithelial cells to function as selective barriers and transporters, and to provide mechanical resilience to organs. Epithelial polarity is established locally, within individual cells to establish distinct apical, junctional and basolateral domains, and globally, within a tissue where cells coordinately orient their apico-basolateral axes. Using live imaging of endogenously tagged proteins and tissue-specific protein depletion in the Caenorhabditiselegans embryonic intestine, we found that local and global polarity establishment are temporally and genetically separable. Local polarity is initiated prior to global polarity and is robust to perturbation. PAR-3 is required for global polarization across the intestine but local polarity can arise in its absence, as small groups of cells eventually established polarized domains in PAR-3-depleted intestines in a HMR-1 (E-cadherin)-dependent manner. Despite the role of PAR-3 in localizing PKC-3 to the apical surface, we additionally found that PAR-3 and PKC-3/aPKC have distinct roles in the establishment and maintenance of local and global polarity. Taken together, our results indicate that different mechanisms are required for local and global polarity establishment in vivo.
Collapse
Affiliation(s)
- Melissa A. Pickett
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Department of Biological Sciences, San Jose State University, San Jose, CA 95112, USA
| | - Maria D. Sallee
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Lauren Cote
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | | | - Joo Lee
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Kang Shen
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
19
|
Goudreault M, Gagné V, Jo CH, Singh S, Killoran RC, Gingras AC, Smith MJ. Afadin couples RAS GTPases to the polarity rheostat Scribble. Nat Commun 2022; 13:4562. [PMID: 35931706 PMCID: PMC9355967 DOI: 10.1038/s41467-022-32335-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 07/26/2022] [Indexed: 11/10/2022] Open
Abstract
AFDN/Afadin is required for establishment and maintenance of cell-cell contacts and is a unique effector of RAS GTPases. The biological consequences of RAS complex with AFDN are unknown. We used proximity-based proteomics to generate an interaction map for two isoforms of AFDN, identifying the polarity protein SCRIB/Scribble as the top hit. We reveal that the first PDZ domain of SCRIB and the AFDN FHA domain mediate a direct but non-canonical interaction between these important adhesion and polarity proteins. Further, the dual RA domains of AFDN have broad specificity for RAS and RAP GTPases, and KRAS co-localizes with AFDN and promotes AFDN-SCRIB complex formation. Knockout of AFDN or SCRIB in epithelial cells disrupts MAPK and PI3K activation kinetics and inhibits motility in a growth factor-dependent manner. These data have important implications for understanding why cells with activated RAS have reduced cell contacts and polarity defects and implicate AFDN as a genuine RAS effector. Goudreault et al. investigate the role of Afadin downstream of RAS GTPases, substantiating this cell adhesion protein as a true RAS effector that couples its activation to cell polarity through the Scribble protein.
Collapse
Affiliation(s)
- Marilyn Goudreault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Valérie Gagné
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Chang Hwa Jo
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Swati Singh
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Ryan C Killoran
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1X5, Canada
| | - Matthew J Smith
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada. .,Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC, H3T 1J4, Canada.
| |
Collapse
|
20
|
Apical-basal polarity and the control of epithelial form and function. Nat Rev Mol Cell Biol 2022; 23:559-577. [PMID: 35440694 DOI: 10.1038/s41580-022-00465-y] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2022] [Indexed: 02/02/2023]
Abstract
Epithelial cells are the most common cell type in all animals, forming the sheets and tubes that compose most organs and tissues. Apical-basal polarity is essential for epithelial cell form and function, as it determines the localization of the adhesion molecules that hold the cells together laterally and the occluding junctions that act as barriers to paracellular diffusion. Polarity must also target the secretion of specific cargoes to the apical, lateral or basal membranes and organize the cytoskeleton and internal architecture of the cell. Apical-basal polarity in many cells is established by conserved polarity factors that define the apical (Crumbs, Stardust/PALS1, aPKC, PAR-6 and CDC42), junctional (PAR-3) and lateral (Scribble, DLG, LGL, Yurt and RhoGAP19D) domains, although recent evidence indicates that not all epithelia polarize by the same mechanism. Research has begun to reveal the dynamic interactions between polarity factors and how they contribute to polarity establishment and maintenance. Elucidating these mechanisms is essential to better understand the roles of apical-basal polarity in morphogenesis and how defects in polarity contribute to diseases such as cancer.
Collapse
|
21
|
Camuglia J, Chanet S, Martin AC. Morphogenetic forces planar polarize LGN/Pins in the embryonic head during Drosophila gastrulation. eLife 2022; 11:e78779. [PMID: 35796436 PMCID: PMC9262390 DOI: 10.7554/elife.78779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/05/2022] [Indexed: 01/03/2023] Open
Abstract
Spindle orientation is often achieved by a complex of Partner of Inscuteable (Pins)/LGN, Mushroom Body Defect (Mud)/Nuclear Mitotic Apparatus (NuMa), Gαi, and Dynein, which interacts with astral microtubules to rotate the spindle. Cortical Pins/LGN recruitment serves as a critical step in this process. Here, we identify Pins-mediated planar cell polarized divisions in several of the mitotic domains of the early Drosophila embryo. We found that neither planar cell polarity pathways nor planar polarized myosin localization determined division orientation; instead, our findings strongly suggest that Pins planar polarity and force generated from mesoderm invagination are important. Disrupting Pins polarity via overexpression of a myristoylated version of Pins caused randomized division angles. We found that disrupting forces through chemical inhibitors, depletion of an adherens junction protein, or blocking mesoderm invagination disrupted Pins planar polarity and spindle orientation. Furthermore, directional ablations that separated mesoderm from mitotic domains disrupted spindle orientation, suggesting that forces transmitted from mesoderm to mitotic domains can polarize Pins and orient division during gastrulation. To our knowledge, this is the first in vivo example where mechanical force has been shown to polarize Pins to mediate division orientation.
Collapse
Affiliation(s)
- Jaclyn Camuglia
- Biology Department, Massachusetts Institute of TechnologyCambridge, MAUnited States
| | - Soline Chanet
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSLParisFrance
| | - Adam C Martin
- Biology Department, Massachusetts Institute of TechnologyCambridge, MAUnited States
| |
Collapse
|
22
|
Restriction of subapical proteins during cellularization depends on the onset of zygotic transcription and the formin Dia. Dev Biol 2022; 487:110-121. [PMID: 35525304 DOI: 10.1016/j.ydbio.2022.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 11/21/2022]
Abstract
Cortical domains are characterized by spatially restricted polarity proteins. The pattern of cortical domains is dynamic and changes during cell differentiation and development. Although there is a good understanding for how the cortical pattern is maintained, e. g. by mutual antagonism, less is known about how the initial pattern is established, and its dynamics coordinated with developmental progression. Here we investigate the initial restriction of subapical marker proteins during the syncytial-cellular transition in Drosophila embryos. The subapical markers Canoe/Afadin, the complex ELMO-Sponge, Baz and Arm become initially restricted between apical and lateral domains during cellularization. We define the role of zygotic genome activation as a timer for subapical domain formation. Subapical markers remained widely spread in embryos treated with α-amanitin and became precociously restricted in mutant embryos with premature zygotic transcription. In contrast, remodeling of the nuclear division cycle without cytokinesis to a full cell cycle is not a prerequisite for subapical domain formation, since we observed timely subapical restriction in embryos undergoing an extra nuclear cycle. We provide evidence that earliest subapical markers ELMO-Sponge and Canoe are required for subapical accumulation of Baz. Supporting an important role of cortical F-actin in subapical restriction, we found that the formin Dia was required for Baz restriction, and its distribution depended on the onset of zygotic gene expression. In summary, we define zygotic transcription as a timer, to which subapical markers respond in a dia-dependent mechanism.
Collapse
|
23
|
Perez-Vale KZ, Yow KD, Johnson RI, Byrnes AE, Finegan TM, Slep KC, Peifer M. Multivalent interactions make adherens junction-cytoskeletal linkage robust during morphogenesis. J Cell Biol 2021; 220:e202104087. [PMID: 34762121 PMCID: PMC8590279 DOI: 10.1083/jcb.202104087] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/15/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
Embryogenesis requires cells to change shape and move without disrupting epithelial integrity. This requires robust, responsive linkage between adherens junctions and the actomyosin cytoskeleton. Using Drosophila morphogenesis, we define molecular mechanisms mediating junction-cytoskeletal linkage and explore the role of mechanosensing. We focus on the junction-cytoskeletal linker Canoe, a multidomain protein. We engineered the canoe locus to define how its domains mediate its mechanism of action. To our surprise, the PDZ and FAB domains, which we thought connected junctions and F-actin, are not required for viability or mechanosensitive recruitment to junctions under tension. The FAB domain stabilizes junctions experiencing elevated force, but in its absence, most cells recover, suggesting redundant interactions. In contrast, the Rap1-binding RA domains are critical for all Cno functions and enrichment at junctions under tension. This supports a model in which junctional robustness derives from a large protein network assembled via multivalent interactions, with proteins at network nodes and some node connections more critical than others.
Collapse
Affiliation(s)
- Kia Z. Perez-Vale
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Kristi D. Yow
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | - Amy E. Byrnes
- Program in Molecular and Cellular Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Tara M. Finegan
- Department of Physics and BioInspired Syracuse, Syracuse University, Syracuse, NY
| | - Kevin C. Slep
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Mark Peifer
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
24
|
Houssin E, Pinot M, Bellec K, Le Borgne R. Par3 cooperates with Sanpodo for the assembly of Notch clusters following asymmetric division of Drosophila sensory organ precursor cells. eLife 2021; 10:e66659. [PMID: 34596529 PMCID: PMC8516416 DOI: 10.7554/elife.66659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 09/25/2021] [Indexed: 12/15/2022] Open
Abstract
In multiple cell lineages, Delta-Notch signalling regulates cell fate decisions owing to unidirectional signalling between daughter cells. In Drosophila pupal sensory organ lineage, Notch regulates the intra-lineage pIIa/pIIb fate decision at cytokinesis. Notch and Delta that localise apically and basally at the pIIa-pIIb interface are expressed at low levels and their residence time at the plasma membrane is in the order of minutes. How Delta can effectively interact with Notch to trigger signalling from a large plasma membrane area remains poorly understood. Here, we report that the signalling interface possesses a unique apico-basal polarity with Par3/Bazooka localising in the form of nano-clusters at the apical and basal level. Notch is preferentially targeted to the pIIa-pIIb interface, where it co-clusters with Bazooka and its cofactor Sanpodo. Clusters whose assembly relies on Bazooka and Sanpodo activities are also positive for Neuralized, the E3 ligase required for Delta activity. We propose that the nano-clusters act as snap buttons at the new pIIa-pIIb interface to allow efficient intra-lineage signalling.
Collapse
Affiliation(s)
- Elise Houssin
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F- 35000RennesFrance
- Equipe Labellisée Ligue Nationale contre le cancerGlasgowUnited Kingdom
| | - Mathieu Pinot
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F- 35000RennesFrance
- Equipe Labellisée Ligue Nationale contre le cancerGlasgowUnited Kingdom
| | - Karen Bellec
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F- 35000RennesFrance
- Equipe Labellisée Ligue Nationale contre le cancerGlasgowUnited Kingdom
| | - Roland Le Borgne
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F- 35000RennesFrance
- Equipe Labellisée Ligue Nationale contre le cancerGlasgowUnited Kingdom
| |
Collapse
|
25
|
RAS GTPase signalling to alternative effector pathways. Biochem Soc Trans 2021; 48:2241-2252. [PMID: 33125484 DOI: 10.1042/bst20200506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023]
Abstract
RAS GTPases are fundamental regulators of development and drivers of an extraordinary number of human cancers. RAS oncoproteins constitutively signal through downstream effector proteins, triggering cancer initiation, progression and metastasis. In the absence of targeted therapeutics to mutant RAS itself, inhibitors of downstream pathways controlled by the effector kinases RAF and PI3K have become tools in the treatment of RAS-driven tumours. Unfortunately, the efficacy of this approach has been greatly minimized by the prevalence of acquired drug resistance. Decades of research have established that RAS signalling is highly complex, and in addition to RAF and PI3K these small GTPase proteins can interact with an array of alternative effectors that feature RAS binding domains. The consequence of RAS binding to these effectors remains relatively unexplored, but these pathways may provide targets for combinatorial therapeutics. We discuss here three candidate alternative effectors: RALGEFs, RASSF5 and AFDN, detailing their interaction with RAS GTPases and their biological significance. The metastatic nature of RAS-driven cancers suggests more attention should be granted to these alternate pathways, as they are highly implicated in the regulation of cell adhesion, polarity, cell size and cytoskeletal architecture.
Collapse
|
26
|
Nakajima YI. Scrib module proteins: Control of epithelial architecture and planar spindle orientation. Int J Biochem Cell Biol 2021; 136:106001. [PMID: 33962021 DOI: 10.1016/j.biocel.2021.106001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 01/15/2023]
Abstract
The Scrib module proteins, Scrib, Dlg, and Lgl, are conserved regulators of cell polarity in diverse biological contexts. Originally discovered as neoplastic tumor suppressors in the fruit fly Drosophila melanogaster, disruption of Scrib module components leads to tumorigenesis in mammalian epithelia and is associated with human cancers. With multiple protein interacting domains, Scrib module proteins function as determinants of basolateral identity in epithelial cells with apical-basal polarity while acting as signaling platform scaffold proteins. Recent studies have further revealed novel roles of the Scrib module in the control of epithelial architecture, ranging from polarity establishment and tricellular junction formation to planar spindle orientation during cell division. This review updates the current understanding of the molecular nature and physiological functions of the Scrib module with a focus on in vivo studies, providing a framework for how these protein dynamics affect the processes of epithelial organization.
Collapse
Affiliation(s)
- Yu-Ichiro Nakajima
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan; Graduate School of Life Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
27
|
Sun J, Macabenta F, Akos Z, Stathopoulos A. Collective Migrations of Drosophila Embryonic Trunk and Caudal Mesoderm-Derived Muscle Precursor Cells. Genetics 2020; 215:297-322. [PMID: 32487692 PMCID: PMC7268997 DOI: 10.1534/genetics.120.303258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 04/17/2020] [Indexed: 01/06/2023] Open
Abstract
Mesoderm migration in the Drosophila embryo is a highly conserved, complex process that is required for the formation of specialized tissues and organs, including the somatic and visceral musculature. In this FlyBook chapter, we will compare and contrast the specification and migration of cells originating from the trunk and caudal mesoderm. Both cell types engage in collective migrations that enable cells to achieve new positions within developing embryos and form distinct tissues. To start, we will discuss specification and early morphogenetic movements of the presumptive mesoderm, then focus on the coordinate movements of the two subtypes trunk mesoderm and caudal visceral mesoderm, ending with a comparison of these processes including general insights gained through study.
Collapse
Affiliation(s)
- Jingjing Sun
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Frank Macabenta
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Zsuzsa Akos
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Angelike Stathopoulos
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
28
|
Jossin Y. Molecular mechanisms of cell polarity in a range of model systems and in migrating neurons. Mol Cell Neurosci 2020; 106:103503. [PMID: 32485296 DOI: 10.1016/j.mcn.2020.103503] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/20/2020] [Accepted: 05/23/2020] [Indexed: 01/09/2023] Open
Abstract
Cell polarity is defined as the asymmetric distribution of cellular components along an axis. Most cells, from the simplest single-cell organisms to highly specialized mammalian cells, are polarized and use similar mechanisms to generate and maintain polarity. Cell polarity is important for cells to migrate, form tissues, and coordinate activities. During development of the mammalian cerebral cortex, cell polarity is essential for neurogenesis and for the migration of newborn but as-yet undifferentiated neurons. These oriented migrations include both the radial migration of excitatory projection neurons and the tangential migration of inhibitory interneurons. In this review, I will first describe the development of the cerebral cortex, as revealed at the cellular level. I will then define the core molecular mechanisms - the Par/Crb/Scrib polarity complexes, small GTPases, the actin and microtubule cytoskeletons, and phosphoinositides/PI3K signaling - that are required for asymmetric cell division, apico-basal and front-rear polarity in model systems, including C elegans zygote, Drosophila embryos and cultured mammalian cells. As I go through each core mechanism I will explain what is known about its importance in radial and tangential migration in the developing mammalian cerebral cortex.
Collapse
Affiliation(s)
- Yves Jossin
- Laboratory of Mammalian Development & Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
29
|
Shank2 Binds to aPKC and Controls Tight Junction Formation with Rap1 Signaling during Establishment of Epithelial Cell Polarity. Cell Rep 2020; 31:107407. [DOI: 10.1016/j.celrep.2020.02.088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/22/2020] [Accepted: 02/25/2020] [Indexed: 11/19/2022] Open
|
30
|
Wu J, Rowart P, Jouret F, Gassaway BM, Rajendran V, Rinehart J, Caplan MJ. Mechanisms involved in AMPK-mediated deposition of tight junction components to the plasma membrane. Am J Physiol Cell Physiol 2020; 318:C486-C501. [PMID: 31913699 DOI: 10.1152/ajpcell.00422.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AMP-activated protein kinase (AMPK) activation promotes early stages of epithelial junction assembly. AMPK activation in MDCK renal epithelial cells facilitates localization of the junction-associated proteins aPKCζ and Par3 to the plasma membrane and promotes conversion of Cdc42, a key regulator of epithelial polarization and junction assembly, to its active GTP bound state. Furthermore, Par3 is an important regulator of AMPK-mediated aPKCζ localization. Both aPKCζ and Par3 serve as intermediates in AMPK-mediated junction assembly, with inhibition of aPKCζ activity or Par3 knockdown disrupting AMPK's ability to facilitate zonula occludens (ZO-1) localization. AMPK phosphorylates the adherens junction protein afadin and regulates its interaction with the tight-junction protein zonula occludens-1. Afadin is phosphorylated at two critical sites, S228 (residing within an aPKCζ consensus site) and S1102 (residing within an AMPK consensus site), that are differentially regulated during junction assembly and that exert different effects on the process. Expression of phospho-defective mutants (S228A and S1102A) perturbed ZO-1 localization to the plasma membrane during AMPK-induced junction assembly. Expression of S228A increased the ZO-1/afadin interaction, while S1102A reduced this interaction during extracellular calcium-induced junction assembly. Inhibition of aPKCζ activity also increased the ZO-1/afadin interaction. Taken together, these data suggest that aPKCζ phosphorylation of afadin terminates the ZO-1/afadin interaction and thus permits the later stages of junction assembly.
Collapse
Affiliation(s)
- Jingshing Wu
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
| | - Pascal Rowart
- Groupe Interdisciplinaire de Génoprotéomique Appliquée, Cardiovascular Sciences, University of Liège, Liège, Belgium
| | - Francois Jouret
- Groupe Interdisciplinaire de Génoprotéomique Appliquée, Cardiovascular Sciences, University of Liège, Liège, Belgium
| | - Brandon M Gassaway
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut.,Systems Biology Institute, Yale University, West Haven, Connecticut
| | - Vanathy Rajendran
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
| | - Jesse Rinehart
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut.,Systems Biology Institute, Yale University, West Haven, Connecticut
| | - Michael J Caplan
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
31
|
Lough KJ, Byrd KM, Descovich CP, Spitzer DC, Bergman AJ, Beaudoin GM, Reichardt LF, Williams SE. Telophase correction refines division orientation in stratified epithelia. eLife 2019; 8:49249. [PMID: 31833472 PMCID: PMC6959978 DOI: 10.7554/elife.49249] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023] Open
Abstract
During organogenesis, precise control of spindle orientation balances proliferation and differentiation. In the developing murine epidermis, planar and perpendicular divisions yield symmetric and asymmetric fate outcomes, respectively. Classically, division axis specification involves centrosome migration and spindle rotation, events occurring early in mitosis. Here, we identify a novel orientation mechanism which corrects erroneous anaphase orientations during telophase. The directionality of reorientation correlates with the maintenance or loss of basal contact by the apical daughter. While the scaffolding protein LGN is known to determine initial spindle positioning, we show that LGN also functions during telophase to reorient oblique divisions toward perpendicular. The fidelity of telophase correction also relies on the tension-sensitive adherens junction proteins vinculin, α-E-catenin, and afadin. Failure of this corrective mechanism impacts tissue architecture, as persistent oblique divisions induce precocious, sustained differentiation. The division orientation plasticity provided by telophase correction may enable progenitors to adapt to local tissue needs.
Collapse
Affiliation(s)
- Kendall J Lough
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, United States.,Department of Biology, Lineberger Comprehensive Cancer Centre, The University of North Carolina, Chapel Hill, United States
| | - Kevin M Byrd
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, United States.,Department of Biology, Lineberger Comprehensive Cancer Centre, The University of North Carolina, Chapel Hill, United States.,Department of Oral & Craniofacial Health Sciences, The University of North Carolina School of Dentistry, Chapel Hill, United States
| | - Carlos P Descovich
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, United States.,Department of Biology, Lineberger Comprehensive Cancer Centre, The University of North Carolina, Chapel Hill, United States
| | - Danielle C Spitzer
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, United States.,Department of Biology, Lineberger Comprehensive Cancer Centre, The University of North Carolina, Chapel Hill, United States
| | - Abby J Bergman
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, United States.,Department of Biology, Lineberger Comprehensive Cancer Centre, The University of North Carolina, Chapel Hill, United States
| | - Gerard Mj Beaudoin
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, United States.,Department of Physiology, University of California, San Francisco, San Francisco, United States
| | - Louis F Reichardt
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, United States.,Department of Physiology, University of California, San Francisco, San Francisco, United States
| | - Scott E Williams
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, United States.,Department of Biology, Lineberger Comprehensive Cancer Centre, The University of North Carolina, Chapel Hill, United States
| |
Collapse
|
32
|
Bonello TT, Choi W, Peifer M. Scribble and Discs-large direct initial assembly and positioning of adherens junctions during the establishment of apical-basal polarity. Development 2019; 146:dev.180976. [PMID: 31628110 DOI: 10.1242/dev.180976] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/14/2019] [Indexed: 01/05/2023]
Abstract
Apical-basal polarity is a fundamental property of animal tissues. Drosophila embryos provide an outstanding model for defining mechanisms that initiate and maintain polarity. Polarity is initiated during cellularization, when cell-cell adherens junctions are positioned at the future boundary of apical and basolateral domains. Polarity maintenance then involves complementary and antagonistic interplay between apical and basal polarity complexes. The Scribble/Dlg module is well-known for promoting basolateral identity during polarity maintenance. Here, we report a surprising role for Scribble/Dlg in polarity initiation, placing it near the top of the network-positioning adherens junctions. Scribble and Dlg are enriched in nascent adherens junctions, are essential for adherens junction positioning and supermolecular assembly, and also play a role in basal junction assembly. We test the hypotheses for the underlying mechanisms, exploring potential effects on protein trafficking, cytoskeletal polarity or Par-1 localization/function. Our data suggest that the Scribble/Dlg module plays multiple roles in polarity initiation. Different domains of Scribble contribute to these distinct roles. Together, these data reveal novel roles for Scribble/Dlg as master scaffolds regulating assembly of distinct junctional complexes at different times and places.
Collapse
Affiliation(s)
- Teresa T Bonello
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Wangsun Choi
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA .,Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
33
|
Pickett MA, Naturale VF, Feldman JL. A Polarizing Issue: Diversity in the Mechanisms Underlying Apico-Basolateral Polarization In Vivo. Annu Rev Cell Dev Biol 2019; 35:285-308. [PMID: 31461314 DOI: 10.1146/annurev-cellbio-100818-125134] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Polarization along an apico-basolateral axis is a hallmark of epithelial cells and is essential for their selective barrier and transporter functions, as well as for their ability to provide mechanical resiliency to organs. Loss of polarity along this axis perturbs development and is associated with a wide number of diseases. We describe three steps involved in polarization: symmetry breaking, polarity establishment, and polarity maintenance. While the proteins involved in these processes are highly conserved among epithelial tissues and species, the execution of these steps varies widely and is context dependent. We review both theoretical principles underlying these steps and recent work demonstrating how apico-basolateral polarity is established in vivo in different tissues, highlighting how developmental and physiological contexts play major roles in the execution of the epithelial polarity program.
Collapse
Affiliation(s)
- Melissa A Pickett
- Department of Biology, Stanford University, Stanford, California 94305, USA;
| | - Victor F Naturale
- Department of Biology, Stanford University, Stanford, California 94305, USA;
| | - Jessica L Feldman
- Department of Biology, Stanford University, Stanford, California 94305, USA;
| |
Collapse
|
34
|
Manning LA, Perez-Vale KZ, Schaefer KN, Sewell MT, Peifer M. The Drosophila Afadin and ZO-1 homologues Canoe and Polychaetoid act in parallel to maintain epithelial integrity when challenged by adherens junction remodeling. Mol Biol Cell 2019; 30:1938-1960. [PMID: 31188739 PMCID: PMC6727765 DOI: 10.1091/mbc.e19-04-0209] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
During morphogenesis, cells must change shape and move without disrupting tissue integrity. This requires cell-cell junctions to allow dynamic remodeling while resisting forces generated by the actomyosin cytoskeleton. Multiple proteins play roles in junctional-cytoskeletal linkage, but the mechanisms by which they act remain unclear. Drosophila Canoe maintains adherens junction-cytoskeletal linkage during gastrulation. Canoe's mammalian homologue Afadin plays similar roles in cultured cells, working in parallel with ZO-1 proteins, particularly at multicellular junctions. We take these insights back to the fly embryo, exploring how cells maintain epithelial integrity when challenged by adherens junction remodeling during germband extension and dorsal closure. We found that Canoe helps cells maintain junctional-cytoskeletal linkage when challenged by the junctional remodeling inherent in mitosis, cell intercalation, and neuroblast invagination or by forces generated by the actomyosin cable at the leading edge. However, even in the absence of Canoe, many cells retain epithelial integrity. This is explained by a parallel role played by the ZO-1 homologue Polychaetoid. In embryos lacking both Canoe and Polychaetoid, cell junctions fail early, with multicellular junctions especially sensitive, leading to widespread loss of epithelial integrity. Our data suggest that Canoe and Polychaetoid stabilize Bazooka/Par3 at cell-cell junctions, helping maintain balanced apical contractility and tissue integrity.
Collapse
Affiliation(s)
- Lathiena A Manning
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Kia Z Perez-Vale
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Kristina N Schaefer
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Mycah T Sewell
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
35
|
Rap1 Negatively Regulates the Hippo Pathway to Polarize Directional Protrusions in Collective Cell Migration. Cell Rep 2019; 22:2160-2175. [PMID: 29466741 DOI: 10.1016/j.celrep.2018.01.080] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 12/12/2017] [Accepted: 01/25/2018] [Indexed: 02/08/2023] Open
Abstract
In collective cell migration, directional protrusions orient cells in response to external cues, which requires coordinated polarity among the migrating cohort. However, the molecular mechanism has not been well defined. Drosophila border cells (BCs) migrate collectively and invade via the confined space between nurse cells, offering an in vivo model to examine how group polarity is organized. Here, we show that the front/back polarity of BCs requires Rap1, hyperactivation of which disrupts cluster polarity and induces misoriented protrusions and loss of asymmetry in the actin network. Conversely, hypoactive Rap1 causes fewer protrusions and cluster spinning during migration. A forward genetic screen revealed that downregulation of the Hippo (Hpo) pathway core components hpo or mats enhances the Rap1V12-induced migration defect and misdirected protrusions. Mechanistically, association of Rap1V12 with the kinase domain of Hpo suppresses its activity, which releases Hpo signaling-mediated suppression of F-actin elongation, promoting cellular protrusions in collective cell migration.
Collapse
|
36
|
Camp D, Haage A, Solianova V, Castle WM, Xu QA, Lostchuck E, Goult BT, Tanentzapf G. Direct binding of Talin to Rap1 is required for cell-ECM adhesion in Drosophila. J Cell Sci 2018; 131:jcs.225144. [PMID: 30446511 DOI: 10.1242/jcs.225144] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/08/2018] [Indexed: 12/27/2022] Open
Abstract
Attachment of cells to the extracellular matrix (ECM) via integrins is essential for animal development and tissue maintenance. The cytoplasmic protein Talin (encoded by rhea in flies) is necessary for linking integrins to the cytoskeleton, and its recruitment is a key step in the assembly of the adhesion complex. However, the mechanisms that regulate Talin recruitment to sites of adhesion in vivo are still not well understood. Here, we show that Talin recruitment to, and maintenance at, sites of integrin-mediated adhesion requires a direct interaction between Talin and the GTPase Rap1. A mutation that blocks the direct binding of Talin to Rap1 abolished Talin recruitment to sites of adhesion and the resulting phenotype phenocopies that seen with null alleles of Talin. Moreover, we show that Rap1 activity modulates Talin recruitment to sites of adhesion via its direct binding to Talin. These results identify the direct Talin-Rap1 interaction as a key in vivo mechanism for controlling integrin-mediated cell-ECM adhesion.
Collapse
Affiliation(s)
- Darius Camp
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada V6T 1Z3
| | - Amanda Haage
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada V6T 1Z3
| | - Veronika Solianova
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada V6T 1Z3
| | - William M Castle
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Qinyuan A Xu
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada V6T 1Z3
| | - Emily Lostchuck
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada V6T 1Z3
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada V6T 1Z3
| |
Collapse
|
37
|
Kullmann L, Krahn MP. Redundant regulation of localization and protein stability of DmPar3. Cell Mol Life Sci 2018; 75:3269-3282. [PMID: 29523893 PMCID: PMC11105499 DOI: 10.1007/s00018-018-2792-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 03/03/2018] [Accepted: 03/07/2018] [Indexed: 11/25/2022]
Abstract
Apical-basal polarity is an important characteristic of epithelia and Drosophila neural stem cells. The conserved Par complex, which consists of the atypical protein kinase C and the scaffold proteins Baz and Par6, is a key player in the establishment of apical-basal cell polarity. Membrane recruitment of Baz has been reported to be accomplished by several mechanisms, which might function in redundancy, to ensure the correct localization of the complex. However, none of the described interactions was sufficient to displace the protein from the apical junctions. Here, we dissected the role of the oligomerization domain and the lipid-binding motif of Baz in vivo in the Drosophila embryo. We found that these domains function in redundancy to ensure the apical junctional localization of Baz: inactivation of only one domain is not sufficient to disrupt the function of Baz during apical-basal polarization of epithelial cells and neural stem cells. In contrast, mutation of both domains results in a strongly impaired protein stability and a phenotype characterized by embryonic lethality and an impaired apical-basal polarity in the embryonic epithelium and neural stem cells, resembling a baz-loss of function allele. Strikingly, the binding of Baz to the transmembrane proteins E-Cadherin, Echinoid, and Starry Night was not affected in this mutant protein. Our findings reveal a redundant function of the oligomerization and the lipid-binding domain, which is required for protein stability, correct subcellular localization, and apical-basal cell polarization.
Collapse
Affiliation(s)
- Lars Kullmann
- Molecular and Cellular Anatomy, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
- Internal Medicine D, University Hospital of Münster, Domagkstr. 3a, 48149, Münster, Germany
| | - Michael P Krahn
- Molecular and Cellular Anatomy, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany.
- Internal Medicine D, University Hospital of Münster, Domagkstr. 3a, 48149, Münster, Germany.
| |
Collapse
|
38
|
Sawant K, Chen Y, Kotian N, Preuss KM, McDonald JA. Rap1 GTPase promotes coordinated collective cell migration in vivo. Mol Biol Cell 2018; 29:2656-2673. [PMID: 30156466 PMCID: PMC6249841 DOI: 10.1091/mbc.e17-12-0752] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
During development and in cancer, cells often move together in small to large collectives. To move as a unit, cells within collectives need to stay coupled together and coordinate their motility. How cell collectives remain interconnected and migratory, especially when moving through in vivo environments, is not well understood. The genetically tractable border cell group undergoes a highly polarized and cohesive cluster-type migration in the Drosophila ovary. Here we report that the small GTPase Rap1, through activation by PDZ-GEF, regulates border cell collective migration. We find that Rap1 maintains cell contacts within the cluster, at least in part by promoting the organized distribution of E-cadherin at specific cell-cell junctions. Rap1 also restricts migratory protrusions to the front of the border cell cluster and promotes the extension of protrusions with normal dynamics. Further, Rap1 is required in the outer migratory border cells but not in the central nonmigratory polar cells. Such cell specificity correlates well with the spatial distribution of the inhibitory Rapgap1 protein, which is higher in polar cells than in border cells. We propose that precisely regulated Rap1 activity reinforces connections between cells and polarizes the cluster, thus facilitating the coordinated collective migration of border cells.
Collapse
Affiliation(s)
- Ketki Sawant
- Division of Biology, Kansas State University, Manhattan, KS 66506.,Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115
| | - Yujun Chen
- Division of Biology, Kansas State University, Manhattan, KS 66506
| | - Nirupama Kotian
- Division of Biology, Kansas State University, Manhattan, KS 66506
| | - Kevin M Preuss
- Division of Biology, Kansas State University, Manhattan, KS 66506
| | | |
Collapse
|
39
|
Hapak SM, Rothlin CV, Ghosh S. PAR3-PAR6-atypical PKC polarity complex proteins in neuronal polarization. Cell Mol Life Sci 2018; 75:2735-2761. [PMID: 29696344 PMCID: PMC11105418 DOI: 10.1007/s00018-018-2828-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/03/2018] [Accepted: 04/23/2018] [Indexed: 01/01/2023]
Abstract
Polarity is a fundamental feature of cells. Protein complexes, including the PAR3-PAR6-aPKC complex, have conserved roles in establishing polarity across a number of eukaryotic cell types. In neurons, polarity is evident as distinct axonal versus dendritic domains. The PAR3, PAR6, and aPKC proteins also play important roles in neuronal polarization. During this process, either aPKC kinase activity, the assembly of the PAR3-PAR6-aPKC complex or the localization of these proteins is regulated downstream of a number of signaling pathways. In turn, the PAR3, PAR6, and aPKC proteins control various effector molecules to establish neuronal polarity. Herein, we discuss the many signaling mechanisms and effector functions that have been linked to PAR3, PAR6, and aPKC during the establishment of neuronal polarity.
Collapse
Affiliation(s)
- Sophie M Hapak
- Department of Medicine, School of Medicine, University of Minnesota, 401 East River Parkway, Minneapolis, MN, 55455, USA.
| | - Carla V Rothlin
- Department of Immunobiology, School of Medicine, Yale University, 300 Cedar Street, New Haven, CT, 06520, USA
- Department of Pharmacology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Sourav Ghosh
- Department of Neurology, School of Medicine, Yale University, 300 George Street, New Haven, CT, 06511, USA
- Department of Pharmacology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| |
Collapse
|
40
|
Schmidt A, Grosshans J. Dynamics of cortical domains in early Drosophila development. J Cell Sci 2018; 131:131/7/jcs212795. [DOI: 10.1242/jcs.212795] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
ABSTRACT
Underlying the plasma membrane of eukaryotic cells is an actin cortex that includes actin filaments and associated proteins. A special feature of all polarized and epithelial cells are cortical domains, each of which is characterized by specific sets of proteins. Typically, an epithelial cell contains apical, subapical, lateral and basal domains. The domain-specific protein sets contain evolutionarily conserved proteins, as well as cell-type-specific factors. Among the conserved proteins are, the Par proteins, Crumbs complex and the lateral proteins Scribbled and Discs large 1. Organization of the plasma membrane into cortical domains is dynamic and depends on cell type, differentiation and developmental stage. The dynamics of cortical organization is strikingly visible in early Drosophila embryos, which increase the number of distinct cortical domains from one, during the pre-blastoderm stage, to two in syncytial blastoderm embryos, before finally acquiring the four domains that are typical for epithelial cells during cellularization. In this Review, we will describe the dynamics of cortical organization in early Drosophila embryos and discuss the processes and mechanisms underlying cortical remodeling.
Collapse
Affiliation(s)
- Anja Schmidt
- Institute for Developmental Biochemistry, Medical School, University of Göttingen, 37077 Göttingen, Germany
| | - Jörg Grosshans
- Institute for Developmental Biochemistry, Medical School, University of Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
41
|
Walther RF, Burki M, Pinal N, Rogerson C, Pichaud F. Rap1, Canoe and Mbt cooperate with Bazooka to promote zonula adherens assembly in the fly photoreceptor. J Cell Sci 2018; 131:jcs207779. [PMID: 29507112 PMCID: PMC5897711 DOI: 10.1242/jcs.207779] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 02/07/2018] [Indexed: 12/25/2022] Open
Abstract
In Drosophila epithelial cells, apical exclusion of Bazooka (the Drosophila Par3 protein) defines the position of the zonula adherens (ZA), which demarcates the apical and lateral membrane and allows cells to assemble into sheets. Here, we show that the small GTPase Rap1, its effector Canoe (Cno) and the Cdc42 effector kinase Mushroom bodies tiny (Mbt), converge in regulating epithelial morphogenesis by coupling stabilization of the adherens junction (AJ) protein E-Cadherin and Bazooka retention at the ZA. Furthermore, our results show that the localization of Rap1, Cno and Mbt at the ZA is interdependent, indicating that their functions during ZA morphogenesis are interlinked. In this context, we find the Rap1-GEF Dizzy is enriched at the ZA and our results suggest that it promotes Rap1 activity during ZA morphogenesis. Altogether, we propose the Dizzy, Rap1 and Cno pathway and Mbt converge in regulating the interface between Bazooka and AJ material to promote ZA morphogenesis.
Collapse
Affiliation(s)
- Rhian F Walther
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Mubarik Burki
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Noelia Pinal
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Clare Rogerson
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Franck Pichaud
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
42
|
Bonello TT, Perez-Vale KZ, Sumigray KD, Peifer M. Rap1 acts via multiple mechanisms to position Canoe and adherens junctions and mediate apical-basal polarity establishment. Development 2018; 145:dev157941. [PMID: 29361565 PMCID: PMC5825837 DOI: 10.1242/dev.157941] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 12/18/2017] [Indexed: 01/05/2023]
Abstract
Epithelial apical-basal polarity drives assembly and function of most animal tissues. Polarity initiation requires cell-cell adherens junction assembly at the apical-basolateral boundary. Defining the mechanisms underlying polarity establishment remains a key issue. Drosophila embryos provide an ideal model, as 6000 polarized cells assemble simultaneously. Current data place the actin-junctional linker Canoe (fly homolog of Afadin) at the top of the polarity hierarchy, where it directs Bazooka/Par3 and adherens junction positioning. Here we define mechanisms regulating Canoe localization/function. Spatial organization of Canoe is multifaceted, involving membrane localization, recruitment to nascent junctions and macromolecular assembly at tricellular junctions. Our data suggest apical activation of the small GTPase Rap1 regulates all three events, but support multiple modes of regulation. The Rap1GEF Dizzy (PDZ-GEF) is crucial for Canoe tricellular junction enrichment but not apical retention. The Rap1-interacting RA domains of Canoe mediate adherens junction and tricellular junction recruitment but are dispensable for membrane localization. Our data also support a role for Canoe multimerization. These multifactorial inputs shape Canoe localization, correct Bazooka and adherens junction positioning, and thus apical-basal polarity. We integrate the existing data into a new polarity establishment model.
Collapse
Affiliation(s)
- Teresa T Bonello
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Kia Z Perez-Vale
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kaelyn D Sumigray
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
43
|
Quiroga S, Bisbal M, Cáceres A. Regulation of plasma membrane expansion during axon formation. Dev Neurobiol 2017; 78:170-180. [PMID: 29090510 DOI: 10.1002/dneu.22553] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/28/2017] [Accepted: 10/29/2017] [Indexed: 12/14/2022]
Abstract
Here, will review current evidence regarding the signaling pathways and mechanisms underlying membrane addition at sites of active growth during axon formation. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 170-180, 2018.
Collapse
Affiliation(s)
- Santiago Quiroga
- Dpto. de Química Biológica Ranwel Caputto y Centro de Investigaciones en Química Biológica Córdoba (CIQUIBIC-CONICET) Av. Haya de la Torre s/n Ciudad Universitaria, Córdoba, Argentina.,Universidad Nacional de Córdoba (UNC) Av. Haya de la Torre s/n Ciudad Universitaria, Córdoba, Argentina
| | - Mariano Bisbal
- Universidad Nacional de Córdoba (UNC) Av. Haya de la Torre s/n Ciudad Universitaria, Córdoba, Argentina.,Instituto Mercedes y Martín Ferreyra (INIMEC-CONICET) Av. Friuli 2434, 5016, Córdoba, Argentina.,Instituto Universitario Ciencias Biomédicas de Córdoba (IUCBC), Av. Friuli 2786, 5016, Córdoba, Argentina
| | - Alfredo Cáceres
- Universidad Nacional de Córdoba (UNC) Av. Haya de la Torre s/n Ciudad Universitaria, Córdoba, Argentina.,Instituto Mercedes y Martín Ferreyra (INIMEC-CONICET) Av. Friuli 2434, 5016, Córdoba, Argentina.,Instituto Universitario Ciencias Biomédicas de Córdoba (IUCBC), Av. Friuli 2786, 5016, Córdoba, Argentina
| |
Collapse
|
44
|
Bembenek JN, Meshik X, Tsarouhas V. Meeting report - Cellular dynamics: membrane-cytoskeleton interface. J Cell Sci 2017; 130:2775-2779. [PMID: 29360626 DOI: 10.1242/jcs.208660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The first ever 'Cellular Dynamics' meeting on the membrane-cytoskeleton interface took place in Southbridge, MA on May 21-24, 2017 and was co-organized by Michael Way, Elizabeth Chen, Margaret Gardel and Jennifer Lippincott-Schwarz. Investigators from around the world studying a broad range of related topics shared their insights into the function and regulation of the cytoskeleton and membrane compartments. This provided great opportunities to learn about key questions in various cellular processes, from the basic organization and operation of the cell to higher-order interactions in adhesion, migration, metastasis, division and immune cell interactions in different model organisms. This unique and diverse mix of research interests created a stimulating and educational meeting that will hopefully continue to be a successful meeting for years to come.
Collapse
Affiliation(s)
- Joshua N Bembenek
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Xenia Meshik
- Department of Anesthesiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Vasilios Tsarouhas
- Department of Molecular Biosciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
45
|
Abstract
The scaffold protein Par-3 (
Drosophila Bazooka) is a central organizer of cell polarity across animals. This review focuses on how the clustering of Par-3 contributes to cell polarity. It begins with the Par-3 homo-oligomerization mechanism and its regulation by Par-1 phosphorylation. The role of polarized cytoskeletal networks in distributing Par-3 clusters to one end of the cell is then discussed, as is the subsequent maintenance of polarized Par-3 clusters through hindered mobility and inhibition from the opposite pole. Finally, specific roles of Par-3 clusters are reviewed, including the bundling of microtubules, the cortical docking of centrosomes, the growth and positioning of cadherin–catenin clusters, and the inhibition of the Par-6–aPKC kinase cassette. Examples are drawn from
Drosophila, Caenorhabditis elegans, mammalian cell culture, and biochemical studies.
Collapse
Affiliation(s)
- Tony J C Harris
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
46
|
Schmidt A, Lv Z, Großhans J. ELMO and Sponge specify subapical restriction of Canoe and formation of the subapical domain in early Drosophila embryos. Development 2017; 145:dev.157909. [DOI: 10.1242/dev.157909] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 12/18/2017] [Indexed: 01/06/2023]
Abstract
Canoe/Afadin and the GTPase Rap1 specify the subapical domain during cellularization in Drosophila embryos. The timing of domain formation is unclear. The subapical domain may gradually mature or emerge synchronously with basal and lateral domain. The mechanism for activation of Rap1 by potential guanyl nucleotide exchange factors (GEF) or GTPase activating proteins (GAP) is unknown. Here, we retraced the emergence of the subapical domain at the onset of cellularization by in vivo imaging with CanoeYFP in comparison to the lateral and basal markers, ScribbledGFP and CherrySlam. CanoeYFP accumulates at a subapical position at about the same time as the lateral marker ScribbledGFP but a few minutes prior to basal CherrySlam. Furthermore, we show that the unconventional GEF complex ELMO-Sponge is subapically enriched and is required for subapical restriction of Canoe. The localization dynamics of ELMO-Sponge suggests a patterning mechanism for positioning the subapical region adjacent to the apical region. While marking the disc-like apical regions before cellularization, ELMO-Sponge redistributes to a ring-like pattern surrounding the apical region at the onset of cellularization.
Collapse
Affiliation(s)
- Anja Schmidt
- Institute for Developmental Biochemistry, University of Göttingen, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| | - Zhiyi Lv
- Institute for Developmental Biochemistry, University of Göttingen, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| | - Jörg Großhans
- Institute for Developmental Biochemistry, University of Göttingen, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| |
Collapse
|
47
|
Molecular Control of Atypical Protein Kinase C: Tipping the Balance between Self-Renewal and Differentiation. J Mol Biol 2016; 428:1455-64. [PMID: 26992354 DOI: 10.1016/j.jmb.2016.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/20/2016] [Accepted: 03/03/2016] [Indexed: 01/05/2023]
Abstract
Complex organisms are faced with the challenge of generating and maintaining diverse cell types, ranging from simple epithelia to neurons and motile immune cells [1-3]. To meet this challenge, a complex set of regulatory pathways controls nearly every aspect of cell growth and function, including genetic and epigenetic programming, cytoskeleton dynamics, and protein trafficking. The far reach of cell fate specification pathways makes it particularly catastrophic when they malfunction, both during development and for tissue homeostasis in adult organisms. Furthermore, the therapeutic promise of stem cells derives from their ability to deftly navigate the multitude of pathways that control cell fate [4]. How the molecular components making up these pathways function to specify cell fate is beginning to become clear. Work from diverse systems suggests that the atypical Protein Kinase C (aPKC) is a key regulator of cell fate decisions in metazoans [5-7]. Here, we examine some of the diverse physiological outcomes of aPKC's function in differentiation, along with the molecular pathways that control aPKC and those that are responsive to changes in its catalytic activity.
Collapse
|
48
|
Chrzanowska-Wodnicka M, White GC, Quilliam LA, Whitehead KJ. Small GTPase Rap1 Is Essential for Mouse Development and Formation of Functional Vasculature. PLoS One 2015; 10:e0145689. [PMID: 26714318 PMCID: PMC4694701 DOI: 10.1371/journal.pone.0145689] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 12/07/2015] [Indexed: 11/18/2022] Open
Abstract
Background Small GTPase Rap1 has been implicated in a number of basic cellular functions, including cell-cell and cell-matrix adhesion, proliferation and regulation of polarity. Evolutionarily conserved, Rap1 has been studied in model organisms: yeast, Drosophila and mice. Mouse in vivo studies implicate Rap1 in the control of multiple stem cell, leukocyte and vascular cell functions. In vitro, several Rap1 effectors and regulatory mechanisms have been proposed. In particular, Rap1 has been implicated in maintaining epithelial and endothelial cell junction integrity and linked with cerebral cavernous malformations. Rationale How Rap1 signaling network controls mammalian development is not clear. As a first step in addressing this question, we present phenotypes of murine total and vascular-specific Rap1a, Rap1b and double Rap1a and Rap1b (Rap1) knockout (KO) mice. Results and Conclusions The majority of total Rap1 KO mice die before E10.5, consistent with the critical role of Rap1 in epithelial morphogenesis. At that time point, about 50% of Tie2-double Rap1 KOs appear grossly normal and develop normal vasculature, while the remaining 50% suffer tissue degeneration and show vascular abnormalities, including hemorrhages and engorgement of perineural vessels, albeit with normal branchial arches. However, no Tie2-double Rap1 KO embryos are present at E15.5, with hemorrhages a likely cause of death. Therefore, at least one Rap1 allele is required for development prior to the formation of the vascular system; and in endothelium–for the life-supporting function of the vasculature.
Collapse
Affiliation(s)
| | - Gilbert C. White
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, 53201, United States of America
| | - Lawrence A. Quilliam
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
| | - Kevin J. Whitehead
- Division of Cardiovascular Medicine, Pediatric Cardiology, Molecular Medicine Program, University of Utah, Salt Lake City, UT, 84112, United States of America
| |
Collapse
|
49
|
Marada S, Truong A, Ogden SK. The small GTPase Rap1 is a modulator of Hedgehog signaling. Dev Biol 2015; 409:84-94. [PMID: 26481064 DOI: 10.1016/j.ydbio.2015.10.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 12/31/2022]
Abstract
During development, the evolutionarily conserved Hedgehog (Hh) morphogen provides instructional cues that influence cell fate, cell affinity and tissue morphogenesis. To do so, the Hh signaling cascade must coordinate its activity with other morphogenetic signals. This can occur through engagement of or response to effectors that do not typically function as core Hh pathway components. Given the ability of small G proteins of the Ras family to impact cell survival, differentiation, growth and adhesion, we wanted to determine whether Hh and Ras signaling might intersect during development. We performed genetic modifier tests in Drosophila to examine the ability of select Ras family members to influence Hh signal output, and identified Rap1 as a positive modulator of Hh pathway activity. Our results suggest that Rap1 is activated to its GTP-bound form in response to Hh ligand, and that the GTPase exchange factor C3G likely contributes to this activation. The Rap1 effector Canoe (Cno) also impacts Hh signal output, suggesting that a C3G-Rap1-Cno axis intersects the Hh pathway during tissue morphogenesis.
Collapse
Affiliation(s)
- Suresh Marada
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, United States
| | - Ashley Truong
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, United States; Rhodes College Summer Plus Program, Rhodes College, Memphis, TN 38112, United States
| | - Stacey K Ogden
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, United States.
| |
Collapse
|
50
|
A Par-1-Par-3-Centrosome Cell Polarity Pathway and Its Tuning for Isotropic Cell Adhesion. Curr Biol 2015; 25:2701-8. [PMID: 26455305 DOI: 10.1016/j.cub.2015.08.063] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 07/08/2015] [Accepted: 08/28/2015] [Indexed: 02/02/2023]
Abstract
To form regulated barriers between body compartments, epithelial cells polarize into apical and basolateral domains and assemble adherens junctions (AJs). Despite close links with polarity networks that generate single polarized domains, AJs distribute isotropically around the cell circumference for adhesion with all neighboring cells [1-3]. How AJs avoid the influence of polarity networks to maintain their isotropy has been unclear. In established epithelia, trans cadherin interactions could maintain AJ isotropy [4], but AJs are dynamic during epithelial development and remodeling [5, 6], and thus specific mechanisms may control their isotropy. In Drosophila, aPKC prevents hyper-polarization of junctions as epithelia develop from cellularization to gastrulation [7]. Here, we show that aPKC does so by inhibiting a positive feedback loop between Bazooka (Baz)/Par-3, a junctional organizer [5, 8-10], and centrosomes. Without aPKC, Baz and centrosomes lose their isotropic distributions and recruit each other to single plasma membrane (PM) domains. Surprisingly, our loss- and gain-of-function analyses show that the Baz-centrosome positive feedback loop is driven by Par-1, a kinase known to phosphorylate Baz and inhibit its basolateral localization [8, 11, 12]. We find that Par-1 promotes the positive feedback loop through both centrosome microtubule effects and Baz phosphorylation. Normally, aPKC attenuates the circuit by expelling Par-1 from the apical domain at gastrulation. The combination of local activation and global inhibition is a common polarization strategy [13-16]. Par-1 seems to couple both effects for a potent Baz polarization mechanism that is regulated for the isotropy of Baz and AJs around the cell circumference.
Collapse
|