1
|
Tai SB, Huang CY, Chung CL, Sung PJ, Wen ZH, Chen CL. Prodigiosin Inhibits Transforming Growth Factor β Signaling by Interfering Receptor Recycling and Subcellular Translocation in Epithelial Cells. Mol Pharmacol 2024; 105:286-300. [PMID: 38278554 DOI: 10.1124/molpharm.123.000776] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/05/2023] [Accepted: 01/02/2024] [Indexed: 01/28/2024] Open
Abstract
Prodigiosin (PG) is a naturally occurring polypyrrole red pigment produced by numerous microorganisms including some Serratia and Streptomyces strains. PG has exhibited promising anticancer activity; however, the molecular mechanisms of action of PG on malignant cells remain ambiguous. Transforming growth factor-β (TGF-β) is a multifunctional cytokine that governs a wide array of cellular processes in development and tissue homeostasis. Malfunctions of TGF-β signaling are associated with numerous human cancers. Emerging evidence underscores the significance of internalized TGF-β receptors and their intracellular trafficking in initiating signaling cascades. In this study, we identified PG as a potent inhibitor of the TGF-β pathway. PG blocked TGF-β signaling by targeting multiple sites of this pathway, including facilitating the sequestering of TGF-β receptors in the cytoplasm by impeding the recycling of type II TGF-β receptors to the cell surface. Additionally, PG prompts a reduction in the abundance of receptors on the cell surface through the disruption of the receptor glycosylation. In human Caucasian lung carcinoma cells and human hepatocellular cancer cell line cells, nanomolar concentrations of PG substantially diminish TGF-β-triggered phosphorylation of Smad2 protein. This attenuation is further reflected in the suppression of downstream target gene expression, including those encoding fibronectin, plasminogen activator inhibitor-1, and N-cadherin. SIGNIFICANCE STATEMENT: Prodigiosin (PG) emerges from this study as a potent TGF-β pathway inhibitor, disrupting receptor trafficking and glycosylation and reducing TGF-β signaling and downstream gene expression. These findings not only shed light on PG's potential therapeutic role but also present a captivating avenue towards future anti-TGF-β strategies.
Collapse
Affiliation(s)
- Shun-Ban Tai
- Departments of Marine Biotechnology and Resources (S.-B.T., Z.-H.W.) and Biological Sciences (C.-L.Chu., C.-L.Che.), National Sun Yat-Sen University, Kaohsiung, Taiwan; Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, Zuoying Armed Forces General Hospital, Kaohsiung, Taiwan (S.-B.T.); Department of Orthopaedics, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan (C.-y.H.); National Museum of Marine Biology and Aquarium, Pingtung, Taiwan (P.-J.S.); and Department of Biotechnology (C.-L.Che.) and Graduate Institute of Natural Products, College of Pharmacy (C.-L.Che.), Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Yin Huang
- Departments of Marine Biotechnology and Resources (S.-B.T., Z.-H.W.) and Biological Sciences (C.-L.Chu., C.-L.Che.), National Sun Yat-Sen University, Kaohsiung, Taiwan; Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, Zuoying Armed Forces General Hospital, Kaohsiung, Taiwan (S.-B.T.); Department of Orthopaedics, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan (C.-y.H.); National Museum of Marine Biology and Aquarium, Pingtung, Taiwan (P.-J.S.); and Department of Biotechnology (C.-L.Che.) and Graduate Institute of Natural Products, College of Pharmacy (C.-L.Che.), Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Ling Chung
- Departments of Marine Biotechnology and Resources (S.-B.T., Z.-H.W.) and Biological Sciences (C.-L.Chu., C.-L.Che.), National Sun Yat-Sen University, Kaohsiung, Taiwan; Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, Zuoying Armed Forces General Hospital, Kaohsiung, Taiwan (S.-B.T.); Department of Orthopaedics, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan (C.-y.H.); National Museum of Marine Biology and Aquarium, Pingtung, Taiwan (P.-J.S.); and Department of Biotechnology (C.-L.Che.) and Graduate Institute of Natural Products, College of Pharmacy (C.-L.Che.), Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ping-Jyun Sung
- Departments of Marine Biotechnology and Resources (S.-B.T., Z.-H.W.) and Biological Sciences (C.-L.Chu., C.-L.Che.), National Sun Yat-Sen University, Kaohsiung, Taiwan; Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, Zuoying Armed Forces General Hospital, Kaohsiung, Taiwan (S.-B.T.); Department of Orthopaedics, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan (C.-y.H.); National Museum of Marine Biology and Aquarium, Pingtung, Taiwan (P.-J.S.); and Department of Biotechnology (C.-L.Che.) and Graduate Institute of Natural Products, College of Pharmacy (C.-L.Che.), Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Zhi-Hong Wen
- Departments of Marine Biotechnology and Resources (S.-B.T., Z.-H.W.) and Biological Sciences (C.-L.Chu., C.-L.Che.), National Sun Yat-Sen University, Kaohsiung, Taiwan; Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, Zuoying Armed Forces General Hospital, Kaohsiung, Taiwan (S.-B.T.); Department of Orthopaedics, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan (C.-y.H.); National Museum of Marine Biology and Aquarium, Pingtung, Taiwan (P.-J.S.); and Department of Biotechnology (C.-L.Che.) and Graduate Institute of Natural Products, College of Pharmacy (C.-L.Che.), Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Lin Chen
- Departments of Marine Biotechnology and Resources (S.-B.T., Z.-H.W.) and Biological Sciences (C.-L.Chu., C.-L.Che.), National Sun Yat-Sen University, Kaohsiung, Taiwan; Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, Zuoying Armed Forces General Hospital, Kaohsiung, Taiwan (S.-B.T.); Department of Orthopaedics, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan (C.-y.H.); National Museum of Marine Biology and Aquarium, Pingtung, Taiwan (P.-J.S.); and Department of Biotechnology (C.-L.Che.) and Graduate Institute of Natural Products, College of Pharmacy (C.-L.Che.), Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Guo RJ, Cao YF, Li EM, Xu LY. Multiple functions and dual characteristics of RAB11A in cancers. Biochim Biophys Acta Rev Cancer 2023; 1878:188966. [PMID: 37657681 DOI: 10.1016/j.bbcan.2023.188966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/05/2023] [Accepted: 08/05/2023] [Indexed: 09/03/2023]
Abstract
Vesicle trafficking is an unceasing and elaborate cellular process that functions in material transport and information delivery. Recent studies have identified the small GTPase, Ras-related protein in brain 11A (RAB11A), as a key regulator in this process. Aberrant RAB11A expression has been reported in several types of cancers, suggesting the important functions and characteristics of RAB11A in cancer. These discoveries are of great significance because therapeutic strategies based on the physiological and pathological status of RAB11A might make cancer treatment more effective, as the molecular mechanisms of cancer development have not been completely revealed. However, these studies on RAB11A have not been reviewed and discussed specifically. Therefore, we summarize and discuss the recent findings of RAB11A involvement in different biological processes, including endocytic recycling regulation, receptors and adhesion molecules recycling, exosome secretion, phagophore formation and cytokinesis, as well as regulatory mechanisms in several tumor types. Moreover, contradictory effects of RAB11A have also been observed in different types of cancers, implying the dual characteristics of RAB11A in cancer, which are either oncogenic or tumor-suppressive. This review on the functions and characteristics of RAB11A highlights the value of RAB11A in inducing multiple important phenotypes based on vesicle trafficking and therefore will offer insights for future studies to reveal the molecular mechanisms, clinical significance, and therapeutic targeting of RAB11A in different cancers.
Collapse
Affiliation(s)
- Rui-Jian Guo
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Yu-Fei Cao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China.
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, PR China.
| |
Collapse
|
3
|
Wu M, Wang Z, Shi X, Zan D, Chen H, Yang S, Ding F, Yang L, Tan P, Ma RZ, Wang J, Ma L, Ma Y, Jin J. TGFβ1-RCN3-TGFBR1 loop facilitates pulmonary fibrosis by orchestrating fibroblast activation. Respir Res 2023; 24:222. [PMID: 37710230 PMCID: PMC10500825 DOI: 10.1186/s12931-023-02533-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) bears high mortality due to unclear pathogenesis and limited therapeutic options. Therefore, identifying novel regulators is required to develop alternative therapeutic strategies. METHODS The lung fibroblasts from IPF patients and Reticulocalbin 3 (RCN3) fibroblast-selective knockdown mouse model were used to determine the importance of Rcn3 in IPF; the epigenetic analysis and protein interaction assays, including BioID, were used for mechanistic studies. RESULTS Reticulocalbin 3 (RCN3) upregulation is associated with the fibrotic activation of lung fibroblasts from IPF patients and Rcn3 overexpression blunts the antifibrotic effects of pirfenidone and nintedanib. Moreover, repressing Rcn3 expression in mouse fibroblasts ameliorates bleomycin-induced lung fibrosis and pulmonary dysfunction in vivo. Mechanistically, RCN3 promotes fibroblast activation by maintaining persistent activation of TGFβ1 signalling via the TGFβ1-RCN3-TGFBR1 positive feedback loop, in which RCN3 upregulated by TGFβ1 exposure detains EZH2 (an epigenetic methyltransferase) in the cytoplasm through RCN3-EZH2 interaction, leading to the release of the EZH2-H3K27me3 epigenetic repression of TGFBR1 and the persistent expression of TGFBR1. CONCLUSIONS These findings introduce a novel regulating mechanism of TGFβ1 signalling in fibroblasts and uncover a critical role of the RCN3-mediated loop in lung fibrosis. RCN3 upregulation may cause resistance to IPF treatment and targeting RCN3 could be a novel approach to ameliorate pulmonary fibrosis.
Collapse
Affiliation(s)
- Mingting Wu
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital Jingxi Campus, Capital Medical University, No. 5 Jingyuan Road, Beijing, China
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhenyan Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital Jingxi Campus, Capital Medical University, No. 5 Jingyuan Road, Beijing, China
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiaoqian Shi
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Danni Zan
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital Jingxi Campus, Capital Medical University, No. 5 Jingyuan Road, Beijing, China
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hong Chen
- Department of Pathology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shuqiao Yang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital Jingxi Campus, Capital Medical University, No. 5 Jingyuan Road, Beijing, China
| | - Fangping Ding
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital Jingxi Campus, Capital Medical University, No. 5 Jingyuan Road, Beijing, China
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Liu Yang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, No. 8, Xi Tou Tiao, Youanmen Wai, Beijing, China
| | - Pingping Tan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Runlin Z Ma
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital Jingxi Campus, Capital Medical University, No. 5 Jingyuan Road, Beijing, China
| | - Lishuang Ma
- Department of Neonatal Surgery, Children's Hospital of Capital Institute of Pediatrics, Peking Union Medical College, Beijing, China
| | - Yingmin Ma
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, No. 8, Xi Tou Tiao, Youanmen Wai, Beijing, China.
| | - Jiawei Jin
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital Jingxi Campus, Capital Medical University, No. 5 Jingyuan Road, Beijing, China.
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Lee H, Aylward AJ, Pearse RV, Hsieh YC, Augur ZM, Benoit CR, Chou V, Knupp A, Pan C, Goberdhan S, Duong DM, Seyfried NT, Bennett DA, Klein HU, De Jager PL, Menon V, Young JE, Young-Pearse TL. Cell-type-specific regulation of APOE levels in human neurons by the Alzheimer's disease risk gene SORL1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.25.530017. [PMID: 36865313 PMCID: PMC9980168 DOI: 10.1101/2023.02.25.530017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
SORL1 is strongly implicated in the pathogenesis of Alzheimer's disease (AD) through human genetic studies that point to an association of reduced SORL1 levels with higher risk for AD. To interrogate the role(s) of SORL1 in human brain cells, SORL1 null iPSCs were generated, followed by differentiation to neuron, astrocyte, microglia, and endothelial cell fates. Loss of SORL1 led to alterations in both overlapping and distinct pathways across cell types, with the greatest effects in neurons and astrocytes. Intriguingly, SORL1 loss led to a dramatic neuron-specific reduction in APOE levels. Further, analyses of iPSCs derived from a human aging cohort revealed a neuron-specific linear correlation between SORL1 and APOE RNA and protein levels, a finding validated in human post-mortem brain. Pathway analysis implicated intracellular transport pathways and TGF- β/SMAD signaling in the function of SORL1 in neurons. In accord, enhancement of retromer-mediated trafficking and autophagy rescued elevated phospho-tau observed in SORL1 null neurons but did not rescue APOE levels, suggesting that these phenotypes are separable. Stimulation and inhibition of SMAD signaling modulated APOE RNA levels in a SORL1-dependent manner. These studies provide a mechanistic link between two of the strongest genetic risk factors for AD.
Collapse
|
5
|
Beaven E, Kumar R, Bhatt HN, Esquivel SV, Nurunnabi M. Myofibroblast specific targeting approaches to improve fibrosis treatment. Chem Commun (Camb) 2022; 58:13556-13571. [PMID: 36445310 PMCID: PMC9946855 DOI: 10.1039/d2cc04825f] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Fibrosis has been shown to develop in individuals with underlying health conditions, especially chronic inflammatory diseases. Fibrosis is often diagnosed in various organs, including the liver, lungs, kidneys, heart, and skin, and has been described as excessive accumulation of extracellular matrix that can affect specific organs in the body or systemically throughout the body. Fibrosis as a chronic condition can result in organ failure and result in death of the individual. Understanding and identification of specific biomarkers associated with fibrosis has emerging potential in the development of diagnosis and targeting treatment modalities. Therefore, in this review, we will discuss multiple signaling pathways such as TGF-β, collagen, angiotensin, and cadherin and outline the chemical nature of the different signaling pathways involved in fibrogenesis as well as the mechanisms. Although it has been well established that TGF-β is the main catalyst initiating and driving multiple pathways for fibrosis, targeting TGF-β can be challenging as this molecule regulates essential functions throughout the body that help to keep the body in homeostasis. We also discuss collagen, angiotensin, and cadherins and their role in fibrosis. We comprehensively discuss the various delivery systems used to target collagen, angiotensin, and cadherins to manage fibrosis. Nevertheless, understanding the steps by which this molecule drives fibrosis development can aid in the development of specific targets of its cascading mechanism. Throughout the review, we will demonstrate the mechanism of fibrosis targeting to improve targeting delivery and therapy.
Collapse
Affiliation(s)
- Elfa Beaven
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, USA.
- Department of Biomedical Engineering, The University of Texas El Paso, El Paso, TX 79968, USA
| | - Raj Kumar
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, USA.
- Department of Biomedical Engineering, The University of Texas El Paso, El Paso, TX 79968, USA
| | - Himanshu N Bhatt
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, USA.
- Department of Biomedical Engineering, The University of Texas El Paso, El Paso, TX 79968, USA
| | - Stephanie V Esquivel
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, USA.
- Aerospace Center (cSETR), The University of Texas El Paso, El Paso, TX 79968, USA
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, USA.
- Department of Biomedical Engineering, The University of Texas El Paso, El Paso, TX 79968, USA
- Aerospace Center (cSETR), The University of Texas El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas El Paso, El Paso, TX 79968, USA
| |
Collapse
|
6
|
Trelford CB, Dagnino L, Di Guglielmo GM. Transforming growth factor-β in tumour development. Front Mol Biosci 2022; 9:991612. [PMID: 36267157 PMCID: PMC9577372 DOI: 10.3389/fmolb.2022.991612] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/15/2022] [Indexed: 11/14/2022] Open
Abstract
Transforming growth factor-β (TGFβ) is a ubiquitous cytokine essential for embryonic development and postnatal tissue homeostasis. TGFβ signalling regulates several biological processes including cell growth, proliferation, apoptosis, immune function, and tissue repair following injury. Aberrant TGFβ signalling has been implicated in tumour progression and metastasis. Tumour cells, in conjunction with their microenvironment, may augment tumourigenesis using TGFβ to induce epithelial-mesenchymal transition, angiogenesis, lymphangiogenesis, immune suppression, and autophagy. Therapies that target TGFβ synthesis, TGFβ-TGFβ receptor complexes or TGFβ receptor kinase activity have proven successful in tissue culture and in animal models, yet, due to limited understanding of TGFβ biology, the outcomes of clinical trials are poor. Here, we review TGFβ signalling pathways, the biology of TGFβ during tumourigenesis, and how protein quality control pathways contribute to the tumour-promoting outcomes of TGFβ signalling.
Collapse
Affiliation(s)
- Charles B. Trelford
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Lina Dagnino
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Oncology, Children’s Health Research Institute and Lawson Health Research Institute, London, ON, Canada
| | - Gianni M. Di Guglielmo
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
7
|
Peterson AJ, Murphy SJ, Mundt MG, Shimell M, Leof EB, O’Connor MB. A juxtamembrane basolateral targeting motif regulates signaling through a TGF-β pathway receptor in Drosophila. PLoS Biol 2022; 20:e3001660. [PMID: 35594316 PMCID: PMC9162340 DOI: 10.1371/journal.pbio.3001660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 06/02/2022] [Accepted: 05/04/2022] [Indexed: 11/23/2022] Open
Abstract
In polarized epithelial cells, receptor-ligand interactions can be restricted by different spatial distributions of the 2 interacting components, giving rise to an underappreciated layer of regulatory complexity. We explored whether such regulation occurs in the Drosophila wing disc, an epithelial tissue featuring the TGF-β family member Decapentaplegic (Dpp) as a morphogen controlling growth and patterning. Dpp protein has been observed in an extracellular gradient within the columnar cell layer of the disc, but also uniformly in the disc lumen, leading to the question of how graded signaling is achieved in the face of 2 distinctly localized ligand pools. We find the Dpp Type II receptor Punt, but not the Type I receptor Tkv, is enriched at the basolateral membrane and depleted at the junctions and apical surface. Wit, a second Type II receptor, shows a markedly different behavior, with the protein detected on all membrane regions but enriched at the apical side. Mutational studies identified a short juxtamembrane sequence required for basolateral restriction of Punt in both wing discs and mammalian Madin-Darby canine kidney (MDCK) cells. This basolateral targeting (BLT) determinant can dominantly confer basolateral localization on an otherwise apical receptor. Rescue of punt mutants with transgenes altered in the targeting motif showed that flies expressing apicalized Punt due to the lack of a functional BLT displayed developmental defects, female sterility, and significant lethality. We also show that apicalized Punt does not produce an ectopic signal, indicating that the apical pool of Dpp is not a significant signaling source even when presented with Punt. Instead, we find that basolateral presentation of Punt is required for optimal signaling. Finally, we present evidence that the BLT acts through polarized sorting machinery that differs between types of epithelia. This suggests a code whereby each epithelial cell type may differentially traffic common receptors to enable distinctive responses to spatially localized pools of extracellular ligands.
Collapse
Affiliation(s)
- Aidan J. Peterson
- Department of Genetics, Cell Biology & Development and the Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Stephen J. Murphy
- Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Melinda G. Mundt
- Department of Genetics, Cell Biology & Development and the Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - MaryJane Shimell
- Department of Genetics, Cell Biology & Development and the Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Edward B. Leof
- Thoracic Diseases Research Unit, Department of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Michael B. O’Connor
- Department of Genetics, Cell Biology & Development and the Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
8
|
Gock N, Follett J, Rintoul GL, Beischlag TV, Lee FJ. Endosomal recycling and dopamine neurotransmission: Exploring the links between the retromer and Parkinson's disease. Synapse 2022; 76:e22224. [DOI: 10.1002/syn.22224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/17/2021] [Accepted: 01/23/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Nathan Gock
- Faculty of Health Sciences Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
- Centre for Cell Biology, Development, and Disease Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
| | - Jordan Follett
- Laboratory of Neurogenetics and Neuroscience Department of Neurology University of Florida 1149 Newell Dr Gainesville FL 32610‐0236 United States
| | - Gordon L Rintoul
- Department of Biological Sciences Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
- Centre for Cell Biology, Development, and Disease Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
| | - Timothy V Beischlag
- Faculty of Health Sciences Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
- Centre for Cell Biology, Development, and Disease Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
| | - Frank J.S. Lee
- Faculty of Health Sciences Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
- Centre for Cell Biology, Development, and Disease Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
| |
Collapse
|
9
|
Liu Y, Deng H, Liang L, Zhang G, Xia J, Ding K, Tang N, Wang K. Depletion of VPS35 attenuates metastasis of hepatocellular carcinoma by restraining the Wnt/PCP signaling pathway. Genes Dis 2021; 8:232-240. [PMID: 33997170 PMCID: PMC8099696 DOI: 10.1016/j.gendis.2020.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 12/24/2022] Open
Abstract
Vesicle Protein Sorting 35 (VPS35) is a novel oncogene that promotes tumor growth through the PI3K/AKT signaling in hepatocellular carcinoma (HCC). However, the role of VPS35 in HCC metastasis and the underlying mechanisms remain largely unclear. In this study, we observed that overexpression of VPS35 enhanced hepatoma cell invasion and metastasis by inducing epithelial-mesenchymal transition (EMT)-related gene expression. Conversely, knockout of VPS35 significantly inhibited hepatoma cell migration and invasion. Furthermore, depletion of VPS35 decreased the lung metastasis of HCC in nude mice. By transcriptome analysis, we determined that VPS35 promoted HCC metastasis by activating the Wnt/non-canonical planar cell polarity (PCP) pathway. Mechanistically, VPS35 activated the PCP pathway by regulating membrane sorting and trafficking of Frizzled-2 (FZD2) and ROR1 in hepatoma cells. Collectively, our results indicate that VPS35 promotes HCC metastasis via enhancing the Wnt/PCP signaling, thus providing a potential prognostic marker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Yi Liu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, PR China
| | - Haijun Deng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, PR China
| | - Li Liang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, PR China
| | - Guiji Zhang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, PR China
| | - Jie Xia
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, PR China
| | - Keyue Ding
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, PR China
| | - Kai Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, PR China
| |
Collapse
|
10
|
Abstract
For decades, recycling of membrane proteins has been represented in figures by arrows between the "endosome" and the plasma membrane, but recently there has been an explosion in the understanding of the mechanisms and protein complexes required to facilitate protein recycling. Here, some key discoveries will be introduced, including assigning function to a number of recently recognized protein complexes and linking their function to protein recycling. Furthermore, the importance of lipid interactions and links to diseases and epithelial polarity will be summarized.
Collapse
Affiliation(s)
- Fiona J McDonald
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
11
|
Cancer-driving mutations and variants of components of the membrane trafficking core machinery. Life Sci 2020; 264:118662. [PMID: 33127517 DOI: 10.1016/j.lfs.2020.118662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
The core machinery for vesicular membrane trafficking broadly comprises of coat proteins, RABs, tethering complexes and SNAREs. As cellular membrane traffic modulates key processes of mitogenic signaling, cell migration, cell death and autophagy, its dysregulation could potentially results in increased cell proliferation and survival, or enhanced migration and invasion. Changes in the levels of some components of the core machinery of vesicular membrane trafficking, likely due to gene amplifications and/or alterations in epigenetic factors (such as DNA methylation and micro RNA) have been extensively associated with human cancers. Here, we provide an overview of association of membrane trafficking with cancer, with a focus on mutations and variants of coat proteins, RABs, tethering complex components and SNAREs that have been uncovered in human cancer cells/tissues. The major cellular and molecular cancer-driving or suppression mechanisms associated with these components of the core membrane trafficking machinery shall be discussed.
Collapse
|
12
|
Tzavlaki K, Moustakas A. TGF-β Signaling. Biomolecules 2020; 10:biom10030487. [PMID: 32210029 PMCID: PMC7175140 DOI: 10.3390/biom10030487] [Citation(s) in RCA: 507] [Impact Index Per Article: 101.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 02/06/2023] Open
Abstract
Transforming growth factor-β (TGF-β) represents an evolutionarily conserved family of secreted polypeptide factors that regulate many aspects of physiological embryogenesis and adult tissue homeostasis. The TGF-β family members are also involved in pathophysiological mechanisms that underlie many diseases. Although the family comprises many factors, which exhibit cell type-specific and developmental stage-dependent biological actions, they all signal via conserved signaling pathways. The signaling mechanisms of the TGF-β family are controlled at the extracellular level, where ligand secretion, deposition to the extracellular matrix and activation prior to signaling play important roles. At the plasma membrane level, TGF-βs associate with receptor kinases that mediate phosphorylation-dependent signaling to downstream mediators, mainly the SMAD proteins, and mediate oligomerization-dependent signaling to ubiquitin ligases and intracellular protein kinases. The interplay between SMADs and other signaling proteins mediate regulatory signals that control expression of target genes, RNA processing at multiple levels, mRNA translation and nuclear or cytoplasmic protein regulation. This article emphasizes signaling mechanisms and the importance of biochemical control in executing biological functions by the prototype member of the family, TGF-β.
Collapse
|
13
|
Lin J, Vora M, Kane NS, Gleason RJ, Padgett RW. Human Marfan and Marfan-like Syndrome associated mutations lead to altered trafficking of the Type II TGFβ receptor in Caenorhabditis elegans. PLoS One 2019; 14:e0216628. [PMID: 31071172 PMCID: PMC6508650 DOI: 10.1371/journal.pone.0216628] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/24/2019] [Indexed: 12/14/2022] Open
Abstract
The transforming growth factor-β (TGFβ) family plays an important role in many developmental processes and when mutated often contributes to various diseases. Marfan syndrome is a genetic disease with an occurrence of approximately 1 in 5,000. The disease is caused by mutations in fibrillin, which lead to an increase in TGFβ ligand activity, resulting in abnormalities of connective tissues which can be life-threatening. Mutations in other components of TGFβ signaling (receptors, Smads, Schnurri) lead to similar diseases with attenuated phenotypes relative to Marfan syndrome. In particular, mutations in TGFβ receptors, most of which are clustered at the C-terminal end, result in Marfan-like (MFS-like) syndromes. Even though it was assumed that many of these receptor mutations would reduce or eliminate signaling, in many cases signaling is active. From our previous studies on receptor trafficking in C. elegans, we noticed that many of these receptor mutations that lead to Marfan-like syndromes overlap with mutations that cause mis-trafficking of the receptor, suggesting a link between Marfan-like syndromes and TGFβ receptor trafficking. To test this hypothesis, we introduced three of these key MFS and MFS-like mutations into the C. elegans TGFβ receptor and asked if receptor trafficking is altered. We find that in every case studied, mutated receptors mislocalize to the apical surface rather than basolateral surface of the polarized intestinal cells. Further, we find that these mutations result in longer animals, a phenotype due to over-stimulation of the nematode TGFβ pathway and, importantly, indicating that function of the receptor is not abrogated in these mutants. Our nematode models of Marfan syndrome suggest that MFS and MFS-like mutations in the type II receptor lead to mis-trafficking of the receptor and possibly provides an explanation for the disease, a phenomenon which might also occur in some cancers that possess the same mutations within the type II receptor (e.g. colon cancer).
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Animals, Genetically Modified
- Caenorhabditis elegans/genetics
- Caenorhabditis elegans/metabolism
- Caenorhabditis elegans Proteins/chemistry
- Caenorhabditis elegans Proteins/genetics
- Caenorhabditis elegans Proteins/metabolism
- Disease Models, Animal
- Humans
- Marfan Syndrome/genetics
- Marfan Syndrome/metabolism
- Mutation, Missense
- Protein Domains
- Receptor, Transforming Growth Factor-beta Type II/chemistry
- Receptor, Transforming Growth Factor-beta Type II/genetics
- Receptor, Transforming Growth Factor-beta Type II/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Transforming Growth Factor beta/chemistry
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Homology, Amino Acid
- Species Specificity
Collapse
Affiliation(s)
- Jing Lin
- Waksman Institute, Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
| | - Mehul Vora
- Waksman Institute, Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
- * E-mail: (MV); (RWP)
| | - Nanci S. Kane
- Waksman Institute, Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
| | - Ryan J. Gleason
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Richard W. Padgett
- Waksman Institute, Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
- * E-mail: (MV); (RWP)
| |
Collapse
|
14
|
Fouani L, Kovacevic Z, Richardson DR. Targeting Oncogenic Nuclear Factor Kappa B Signaling with Redox-Active Agents for Cancer Treatment. Antioxid Redox Signal 2019; 30:1096-1123. [PMID: 29161883 DOI: 10.1089/ars.2017.7387] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE Nuclear factor kappa B (NF-κB) signaling is essential under physiologically relevant conditions. However, aberrant activation of this pathway plays a pertinent role in tumorigenesis and contributes to resistance. Recent Advances: The importance of the NF-κB pathway means that its targeting must be specific to avoid side effects. For many currently used therapeutics and those under development, the ability to generate reactive oxygen species (ROS) is a promising strategy. CRITICAL ISSUES As cancer cells exhibit greater ROS levels than their normal counterparts, they are more sensitive to additional ROS, which may be a potential therapeutic niche. It is known that ROS are involved in (i) the activation of NF-κB signaling, when in sublethal amounts; and (ii) high levels induce cytotoxicity resulting in apoptosis. Indeed, ROS-induced cytotoxicity is valuable for its capabilities in killing cancer cells, but establishing the potency of ROS for effective inhibition of NF-κB signaling is necessary. Indeed, some cancer treatments, currently used, activate NF-κB and may stimulate oncogenesis and confer resistance. FUTURE DIRECTIONS Thus, combinatorial approaches using ROS-generating agents alongside conventional therapeutics may prove an effective tactic to reduce NF-κB activity to kill cancer cells. One strategy is the use of thiosemicarbazones, which form redox-active metal complexes that generate high ROS levels to deliver potent antitumor activity. These agents also upregulate the metastasis suppressor, N-myc downstream regulated gene 1 (NDRG1), which functions as an NF-κB signaling inhibitor. It is proposed that targeting NF-κB signaling may proffer a new therapeutic niche to improve the efficacy of anticancer regimens.
Collapse
Affiliation(s)
- Leyla Fouani
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, Australia
| |
Collapse
|
15
|
Derynck R, Budi EH. Specificity, versatility, and control of TGF-β family signaling. Sci Signal 2019; 12:12/570/eaav5183. [PMID: 30808818 DOI: 10.1126/scisignal.aav5183] [Citation(s) in RCA: 532] [Impact Index Per Article: 88.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Encoded in mammalian cells by 33 genes, the transforming growth factor-β (TGF-β) family of secreted, homodimeric and heterodimeric proteins controls the differentiation of most, if not all, cell lineages and many aspects of cell and tissue physiology in multicellular eukaryotes. Deregulation of TGF-β family signaling leads to developmental anomalies and disease, whereas enhanced TGF-β signaling contributes to cancer and fibrosis. Here, we review the fundamentals of the signaling mechanisms that are initiated upon TGF-β ligand binding to its cell surface receptors and the dependence of the signaling responses on input from and cooperation with other signaling pathways. We discuss how cells exquisitely control the functional presentation and activation of heteromeric receptor complexes of transmembrane, dual-specificity kinases and, thus, define their context-dependent responsiveness to ligands. We also introduce the mechanisms through which proteins called Smads act as intracellular effectors of ligand-induced gene expression responses and show that the specificity and impressive versatility of Smad signaling depend on cross-talk from other pathways. Last, we discuss how non-Smad signaling mechanisms, initiated by distinct ligand-activated receptor complexes, complement Smad signaling and thus contribute to cellular responses.
Collapse
Affiliation(s)
- Rik Derynck
- Department of Cell and Tissue Biology and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA 94143, USA.
| | - Erine H Budi
- Department of Cell and Tissue Biology and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
16
|
Miller DSJ, Bloxham RD, Jiang M, Gori I, Saunders RE, Das D, Chakravarty P, Howell M, Hill CS. The Dynamics of TGF-β Signaling Are Dictated by Receptor Trafficking via the ESCRT Machinery. Cell Rep 2018; 25:1841-1855.e5. [PMID: 30428352 PMCID: PMC7615189 DOI: 10.1016/j.celrep.2018.10.056] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 08/03/2018] [Accepted: 10/15/2018] [Indexed: 01/17/2023] Open
Abstract
Signal transduction pathways stimulated by secreted growth factors are tightly regulated at multiple levels between the cell surface and the nucleus. The trafficking of cell surface receptors is emerging as a key step for regulating appropriate cellular responses, with perturbations in this process contributing to human diseases, including cancer. For receptors recognizing ligands of the transforming growth factor β (TGF-β) family, little is known about how trafficking is regulated or how this shapes signaling dynamics. Here, using whole genome small interfering RNA (siRNA) screens, we have identified the ESCRT (endosomal sorting complex required for transport) machinery as a crucial determinant of signal duration. Downregulation of ESCRT components increases the outputs of TGF-β signaling and sensitizes cells to low doses of ligand in their microenvironment. This sensitization drives an epithelial-to-mesenchymal transition (EMT) in response to low doses of ligand, and we demonstrate a link between downregulation of the ESCRT machinery and cancer survival.
Collapse
Affiliation(s)
- Daniel S J Miller
- Developmental Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Robert D Bloxham
- Developmental Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ming Jiang
- High Throughput Screening Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ilaria Gori
- Developmental Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Rebecca E Saunders
- High Throughput Screening Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Debipriya Das
- Developmental Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Probir Chakravarty
- Bioinformatics and Biostatistics Facility, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Michael Howell
- High Throughput Screening Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
17
|
Stroupe C. This Is the End: Regulation of Rab7 Nucleotide Binding in Endolysosomal Trafficking and Autophagy. Front Cell Dev Biol 2018; 6:129. [PMID: 30333976 PMCID: PMC6176412 DOI: 10.3389/fcell.2018.00129] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/14/2018] [Indexed: 01/07/2023] Open
Abstract
Rab7 – or in yeast, Ypt7p – governs membrane trafficking in the late endocytic and autophagic pathways. Rab7 also regulates mitochondrion-lysosome contacts, the sites of mitochondrial fission. Like all Rab GTPases, Rab7 cycles between an “active” GTP-bound form that binds downstream effectors – e.g., the HOPS and retromer complexes and the dynactin-binding Rab-interacting lysosomal protein (RILP) – and an “inactive” GDP-bound form that cannot bind effectors. Accessory proteins regulate the nucleotide binding state of Rab7: guanine nucleotide exchange factors (GEFs) stimulate exchange of bound GDP for GTP, resulting in Rab7 activation, whereas GTPase activating proteins (GAPs) boost Rab7’s GTP hydrolysis activity, thereby inactivating Rab7. This review will discuss the GEF and GAPs that control Rab7 nucleotide binding, and thus regulate Rab7’s activity in endolysosomal trafficking and autophagy. It will also consider how bacterial pathogens manipulate Rab7 nucleotide binding to support intracellular invasion and immune evasion.
Collapse
Affiliation(s)
- Christopher Stroupe
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, United States
| |
Collapse
|
18
|
Yakymovych I, Yakymovych M, Heldin CH. Intracellular trafficking of transforming growth factor β receptors. Acta Biochim Biophys Sin (Shanghai) 2018; 50:3-11. [PMID: 29186283 DOI: 10.1093/abbs/gmx119] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Indexed: 02/06/2023] Open
Abstract
Transforming growth factor β (TGFβ) family members signal via heterotetrameric complexes of type I (TβRI) and type II (TβRII) dual specificity kinase receptors. The availability of the receptors on the cell surface is controlled by several mechanisms. Newly synthesized TβRI and TβRII are delivered from the Golgi apparatus to the cell surface via separate routes. On the cell surface, TGFβ receptors are distributed between different microdomains of the plasma membrane and can be internalized via clathrin- and caveolae-mediated endocytic mechanisms. Although receptor endocytosis is not essential for TGFβ signaling, localization of the activated receptor complexes on the early endosomes promotes TGFβ-induced Smad activation. Caveolae-mediated endocytosis, which is widely regarded as a mechanism that facilitates the degradation of TGFβ receptors, has been shown to be required for TGFβ signaling via non-Smad pathways. The importance of proper control of TGFβ receptor intracellular trafficking is emphasized by clinical data, as mislocalization of receptors has been described in connection with several human diseases. Thus, control of intracellular trafficking of the TGFβ receptors together with the regulation of their expression, posttranslational modifications and down-regulation, ensure proper regulation of TGFβ signaling.
Collapse
Affiliation(s)
- Ihor Yakymovych
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala 75123, Sweden
| | - Mariya Yakymovych
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala 75123, Sweden
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala 75123, Sweden
| |
Collapse
|
19
|
Garcia-Castillo MD, Chinnapen DJF, Lencer WI. Membrane Transport across Polarized Epithelia. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a027912. [PMID: 28213463 DOI: 10.1101/cshperspect.a027912] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polarized epithelial cells line diverse surfaces throughout the body forming selective barriers between the external environment and the internal milieu. To cross these epithelial barriers, large solutes and other cargoes must undergo transcytosis, an endocytic pathway unique to polarized cell types, and significant for the development of cell polarity, uptake of viral and bacterial pathogens, transepithelial signaling, and immunoglobulin transport. Here, we review recent advances in our knowledge of the transcytotic pathway for proteins and lipids. We also discuss briefly the promise of harnessing the molecules that undergo transcytosis as vehicles for clinical applications in drug delivery.
Collapse
Affiliation(s)
| | - Daniel J-F Chinnapen
- Division of Gastroenterology, Boston Children's Hospital, Boston, Massachusetts 02155.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02155.,Department of Pediatrics, Harvard Digestive Diseases Center, Boston, Massachusetts 02155
| | - Wayne I Lencer
- Division of Gastroenterology, Boston Children's Hospital, Boston, Massachusetts 02155.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02155.,Department of Pediatrics, Harvard Digestive Diseases Center, Boston, Massachusetts 02155
| |
Collapse
|
20
|
Yin X, Kang JH, Andrianifahanana M, Wang Y, Jung MY, Hernandez DM, Leof EB. Basolateral delivery of the type I transforming growth factor beta receptor is mediated by a dominant-acting cytoplasmic motif. Mol Biol Cell 2017; 28:2701-2711. [PMID: 28768825 PMCID: PMC5620377 DOI: 10.1091/mbc.e17-05-0334] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 12/25/2022] Open
Abstract
A novel motif within the cytoplasmic tail of the type I TGF-β receptor (TβRI) controls basolateral delivery. While this element functions independent of TβRI recycling and heteromeric TGF-β receptor trafficking, it can dominantly direct an apically expressed receptor to the basolateral membrane in polarized epithelial cells. Delivery of biomolecules to the correct subcellular locales is critical for proper physiological function. To that end, we have previously determined that type I and II transforming growth factor beta (TGF-β) receptors (TβRI and TβRII, respectively) localize to the basolateral domain in polarized epithelia. While TβRII targeting was shown to be regulated by sequences between amino acids 529 and 538, the analogous region(s) within TβRI is unknown. To address that question, sequential cytoplasmic TβRI truncations and point mutations identified a targeting motif between residues 158 and 163 (VxxEED) required for basolateral TβRI expression. Further studies documented that receptor internalization, down-regulation, direct recycling, or Smad signaling were unaffected by motif mutations that caused TβRI mislocalization. However, inclusion of amino acids 148–217 containing the targeting motif was able to direct basolateral expression of the apically sorted nerve growth factor receptor (NGFR, p75; extracellular and transmembrane regions) in a dominant manner. Finally, coexpression of apically targeted type I and type II TGF-β receptors mediated Smad3 signaling from the apical membrane of polarized epithelial cells. These findings demonstrate that the absence of apical TGF-β signaling in normal epithelia is primarily a reflection of domain-specific receptor expression and not an inability to couple with the signaling machinery.
Collapse
Affiliation(s)
- Xueqian Yin
- Thoracic Diseases Research Unit, Department of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Jeong-Han Kang
- Thoracic Diseases Research Unit, Department of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Mahefatiana Andrianifahanana
- Thoracic Diseases Research Unit, Department of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Youli Wang
- Division of Nephrology, Augusta University, Augusta, GA 30904
| | - Mi-Yeon Jung
- Thoracic Diseases Research Unit, Department of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Danielle M Hernandez
- Thoracic Diseases Research Unit, Department of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Edward B Leof
- Thoracic Diseases Research Unit, Department of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| |
Collapse
|
21
|
Abstract
Transforming growth factor β (TGF-β) family members signal via heterotetrameric complexes of type I and type II dual specificity kinase receptors. The activation and stability of the receptors are controlled by posttranslational modifications, such as phosphorylation, ubiquitylation, sumoylation, and neddylation, as well as by interaction with other proteins at the cell surface and in the cytoplasm. Activation of TGF-β receptors induces signaling via formation of Smad complexes that are translocated to the nucleus where they act as transcription factors, as well as via non-Smad pathways, including the Erk1/2, JNK and p38 MAP kinase pathways, and the Src tyrosine kinase, phosphatidylinositol 3'-kinase, and Rho GTPases.
Collapse
Affiliation(s)
- Carl-Henrik Heldin
- Ludwig Institute for Cancer Research Ltd., Science for Life Laboratory, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Aristidis Moustakas
- Ludwig Institute for Cancer Research Ltd., Science for Life Laboratory, Uppsala University, SE-751 24 Uppsala, Sweden Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden
| |
Collapse
|
22
|
Liu JJ. Retromer-Mediated Protein Sorting and Vesicular Trafficking. J Genet Genomics 2016; 43:165-77. [PMID: 27157806 DOI: 10.1016/j.jgg.2016.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/02/2016] [Accepted: 02/02/2016] [Indexed: 12/25/2022]
Abstract
Retromer is an evolutionarily conserved multimeric protein complex that mediates intracellular transport of various vesicular cargoes and functions in a wide variety of cellular processes including polarized trafficking, developmental signaling and lysosome biogenesis. Through its interaction with the Rab GTPases and their effectors, membrane lipids, molecular motors, the endocytic machinery and actin nucleation promoting factors, retromer regulates sorting and trafficking of transmembrane proteins from endosomes to the trans-Golgi network (TGN) and the plasma membrane. In this review, I highlight recent progress in the understanding of retromer-mediated protein sorting and vesicle trafficking and discuss how retromer contributes to a diverse set of developmental, physiological and pathological processes.
Collapse
Affiliation(s)
- Jia-Jia Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
23
|
Chan ASM, Clairfeuille T, Landao-Bassonga E, Kinna G, Ng PY, Loo LS, Cheng TS, Zheng M, Hong W, Teasdale RD, Collins BM, Pavlos NJ. Sorting nexin 27 couples PTHR trafficking to retromer for signal regulation in osteoblasts during bone growth. Mol Biol Cell 2016; 27:1367-82. [PMID: 26912788 PMCID: PMC4831889 DOI: 10.1091/mbc.e15-12-0851] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/10/2016] [Indexed: 12/26/2022] Open
Abstract
The parathyroid hormone 1 receptor (PTHR) is central to the process of bone formation and remodeling. PTHR signaling requires receptor internalization into endosomes, which is then terminated by recycling or degradation. Here we show that sorting nexin 27 (SNX27) functions as an adaptor that couples PTHR to the retromer trafficking complex. SNX27 binds directly to the C-terminal PDZ-binding motif of PTHR, wiring it to retromer for endosomal sorting. The structure of SNX27 bound to the PTHR motif reveals a high-affinity interface involving conserved electrostatic interactions. Mechanistically, depletion of SNX27 or retromer augments intracellular PTHR signaling in endosomes. Osteoblasts genetically lacking SNX27 show similar disruptions in PTHR signaling and greatly reduced capacity for bone mineralization, contributing to profound skeletal deficits in SNX27-knockout mice. Taken together, our data support a critical role for SNX27-retromer mediated transport of PTHR in normal bone development.
Collapse
Affiliation(s)
- Audrey S M Chan
- Cellular Orthopaedic Laboratory, School of Surgery, University of Western Australia, Nedlands 6009, Australia
| | - Thomas Clairfeuille
- Institute for Molecular Bioscience, University of Queensland, St. Lucia 4072, Australia
| | - Euphemie Landao-Bassonga
- Cellular Orthopaedic Laboratory, School of Surgery, University of Western Australia, Nedlands 6009, Australia
| | - Genevieve Kinna
- Institute for Molecular Bioscience, University of Queensland, St. Lucia 4072, Australia
| | - Pei Ying Ng
- Cellular Orthopaedic Laboratory, School of Surgery, University of Western Australia, Nedlands 6009, Australia
| | - Li Shen Loo
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673
| | - Tak Sum Cheng
- Cellular Orthopaedic Laboratory, School of Surgery, University of Western Australia, Nedlands 6009, Australia
| | - Minghao Zheng
- Cellular Orthopaedic Laboratory, School of Surgery, University of Western Australia, Nedlands 6009, Australia
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673
| | - Rohan D Teasdale
- Institute for Molecular Bioscience, University of Queensland, St. Lucia 4072, Australia
| | - Brett M Collins
- Institute for Molecular Bioscience, University of Queensland, St. Lucia 4072, Australia
| | - Nathan J Pavlos
- Cellular Orthopaedic Laboratory, School of Surgery, University of Western Australia, Nedlands 6009, Australia
| |
Collapse
|
24
|
Vergés M. Retromer in Polarized Protein Transport. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 323:129-79. [PMID: 26944621 DOI: 10.1016/bs.ircmb.2015.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Retromer is an evolutionary conserved protein complex required for endosome-to-Golgi retrieval of receptors for lysosomal hydrolases. It is constituted by a heterotrimer encoded by the vacuolar protein sorting (VPS) gene products Vps26, Vps35, and Vps29, which selects cargo, and a dimer of phosphoinositide-binding sorting nexins, which deforms the membrane. Recent progress in the mechanism of retromer assembly and functioning has strengthened the link between sorting at the endosome and cytoskeleton dynamics. Retromer is implicated in endosomal sorting of many cargos and plays an essential role in plant and animal development. Although it is best known for endosome sorting to the trans-Golgi network, it also intervenes in recycling to the plasma membrane. In polarized cells, such as epithelial cells and neurons, retromer may also be utilized for transcytosis and long-range transport. Considerable evidence implicates retromer in establishment and maintenance of cell polarity. That includes sorting of the apical polarity module Crumbs; regulation of retromer function by the basolateral polarity module Scribble; and retromer-dependent recycling of various cargoes to a certain surface domain, thus controlling polarized location and cell homeostasis. Importantly, altered retromer function has been linked to neurodegeneration, such as in Alzheimer's or Parkinson's disease. This review will underline how alterations in retromer localization and function may affect polarized protein transport and polarity establishment, thereby causing developmental defects and disease.
Collapse
Affiliation(s)
- Marcel Vergés
- Cardiovascular Genetics Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain; Medical Sciences Department, University of Girona, Girona, Spain.
| |
Collapse
|
25
|
Beclin 1 regulates neuronal transforming growth factor-β signaling by mediating recycling of the type I receptor ALK5. Mol Neurodegener 2015; 10:69. [PMID: 26692002 PMCID: PMC4687091 DOI: 10.1186/s13024-015-0065-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/10/2015] [Indexed: 12/23/2022] Open
Abstract
Background Beclin 1 is a key regulator of multiple trafficking pathways, including autophagy and receptor recycling in yeast and microglia. Decreased beclin 1 levels in the CNS result in neurodegeneration, an effect attributed to impaired autophagy. However, neurons also rely heavily on trophic factors, and signaling through these pathways requires the proper trafficking of trophic factor receptors. Results We discovered that beclin 1 regulates signaling through the neuroprotective TGF-β pathway. Beclin 1 is required for recycling of the type I TGF-β receptor ALK5. We show that beclin 1 recruits the retromer to ALK5 and facilitates its localization to Rab11+ endosomes. Decreased levels of beclin 1, or its binding partners VPS34 and UVRAG, impair TGF-β signaling. Conclusions These findings identify beclin 1 as a positive regulator of a trophic signaling pathway via receptor recycling, and suggest that neuronal death induced by decreased beclin 1 levels may also be due to impaired trophic factor signaling. Electronic supplementary material The online version of this article (doi:10.1186/s13024-015-0065-0) contains supplementary material, which is available to authorized users.
Collapse
|
26
|
Hierro A, Gershlick DC, Rojas AL, Bonifacino JS. Formation of Tubulovesicular Carriers from Endosomes and Their Fusion to the trans-Golgi Network. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 318:159-202. [PMID: 26315886 DOI: 10.1016/bs.ircmb.2015.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Endosomes undergo extensive spatiotemporal rearrangements as proteins and lipids flux through them in a series of fusion and fission events. These controlled changes enable the concentration of cargo for eventual degradation while ensuring the proper recycling of other components. A growing body of studies has now defined multiple recycling pathways from endosomes to the trans-Golgi network (TGN) which differ in their molecular machineries. The recycling process requires specific sets of lipids, coats, adaptors, and accessory proteins that coordinate cargo selection with membrane deformation and its association with the cytoskeleton. Specific tethering factors and SNARE (SNAP (Soluble NSF Attachment Protein) Receptor) complexes are then required for the docking and fusion with the acceptor membrane. Herein, we summarize some of the current knowledge of the machineries that govern the retrograde transport from endosomes to the TGN.
Collapse
Affiliation(s)
- Aitor Hierro
- Structural Biology Unit, CIC bioGUNE, Derio, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - David C Gershlick
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | - Juan S Bonifacino
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
27
|
Nallet-Staub F, Yin X, Gilbert C, Marsaud V, Ben Mimoun S, Javelaud D, Leof EB, Mauviel A. Cell density sensing alters TGF-β signaling in a cell-type-specific manner, independent from Hippo pathway activation. Dev Cell 2015; 32:640-51. [PMID: 25758862 DOI: 10.1016/j.devcel.2015.01.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 10/09/2014] [Accepted: 01/14/2015] [Indexed: 10/23/2022]
Abstract
Cell-cell contacts inhibit cell growth and proliferation in part by activating the Hippo pathway that drives the phosphorylation and nuclear exclusion of the transcriptional coactivators YAP and TAZ. Cell density and Hippo signaling have also been reported to block transforming growth factor β (TGF-β) responses, based on the ability of phospho-YAP/TAZ to sequester TGF-β-activated SMAD complexes in the cytoplasm. Herein, we provide evidence that epithelial cell polarization interferes with TGF-β signaling well upstream and independent of cytoplasmic YAP/TAZ. Rather, polarized basolateral presentation of TGF-β receptors I and II deprives apically delivered TGF-β of access to its receptors. Basolateral ligand delivery nonetheless remains entirely effective to induce TGF-β responses. These data demonstrate that cell-type-specific inhibition of TGF-β signaling by cell density is restricted to polarized epithelial cells and reflects the polarized distribution of TGF-β receptors, which thus affects SMAD activation irrespective of Hippo pathway activation.
Collapse
Affiliation(s)
- Flore Nallet-Staub
- Institut Curie, Centre de Recherche, Team "TGF-β and Oncogenesis," Equipe Labellisée Ligue Contre le Cancer, 91400 Orsay, France; INSERM U1021, 91400 Orsay, France; CNRS UMR 3347, 91400 Orsay, France; Université Paris XI, 91400 Orsay, France
| | - Xueqian Yin
- Thoracic Disease Research Unit, Departments of Biochemistry/Molecular Biology and Medicine, Mayo Clinic Cancer Center, Rochester, MN 55905, USA
| | - Cristèle Gilbert
- Institut Curie, Centre de Recherche, Team "TGF-β and Oncogenesis," Equipe Labellisée Ligue Contre le Cancer, 91400 Orsay, France; INSERM U1021, 91400 Orsay, France; CNRS UMR 3347, 91400 Orsay, France; Université Paris XI, 91400 Orsay, France
| | - Véronique Marsaud
- Institut Curie, Centre de Recherche, Team "TGF-β and Oncogenesis," Equipe Labellisée Ligue Contre le Cancer, 91400 Orsay, France; INSERM U1021, 91400 Orsay, France; CNRS UMR 3347, 91400 Orsay, France; Université Paris XI, 91400 Orsay, France
| | - Saber Ben Mimoun
- Institut Curie, Centre de Recherche, Team "TGF-β and Oncogenesis," Equipe Labellisée Ligue Contre le Cancer, 91400 Orsay, France; INSERM U1021, 91400 Orsay, France; CNRS UMR 3347, 91400 Orsay, France; Université Paris XI, 91400 Orsay, France
| | - Delphine Javelaud
- Institut Curie, Centre de Recherche, Team "TGF-β and Oncogenesis," Equipe Labellisée Ligue Contre le Cancer, 91400 Orsay, France; INSERM U1021, 91400 Orsay, France; CNRS UMR 3347, 91400 Orsay, France; Université Paris XI, 91400 Orsay, France
| | - Edward B Leof
- Thoracic Disease Research Unit, Departments of Biochemistry/Molecular Biology and Medicine, Mayo Clinic Cancer Center, Rochester, MN 55905, USA.
| | - Alain Mauviel
- Institut Curie, Centre de Recherche, Team "TGF-β and Oncogenesis," Equipe Labellisée Ligue Contre le Cancer, 91400 Orsay, France; INSERM U1021, 91400 Orsay, France; CNRS UMR 3347, 91400 Orsay, France; Université Paris XI, 91400 Orsay, France.
| |
Collapse
|
28
|
Mellado M, Cuartero Y, Brugada R, Verges M. Subcellular localisation of retromer in post-endocytic pathways of polarised Madin-Darby canine kidney cells. Biol Cell 2014; 106:377-93. [PMID: 25081925 DOI: 10.1111/boc.201400011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 07/28/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND INFORMATION Retromer is required for endosome-to-Golgi retrieval of the cation-independent mannose 6-phosphate receptor (CI-MPR), allowing delivery of hydrolases into lysosomes. It is constituted by a conserved heterotrimer formed by vacuolar protein sorting (Vps) gene products Vps26, Vps35 and Vps29, which is in charge of cargo selection, and a dimer of phosphoinositide-binding sorting nexins (SNXs), which has a structural role. Retromer has been implicated in sorting of additional cargo. Thus, retromer also promotes polymeric immunoglobulin A (pIgA) transcytosis by the pIgA receptor (pIgR) in polarised cells, and considerable evidence implicates retromer in controlling epithelial cell polarity. However, the precise localisation of retromer along the endocytic pathway of polarised cells has not been studied in detail. RESULTS Our biochemical analysis using rat liver endosome fractions suggests a distinct distribution pattern. Although subunits of the cargo-selective complex were enriched in early endosomes (EEs), levels of SNX2 were greater in sorting endosomes. We then immunolocalised the retromer subunits in polarised Madin-Darby canine kidney (MDCK) cells by confocal microscopy. An estimated 25% of total Vps26 and SNX2 localised to EEs, with negligible portions in recycling endosomes as well as in late endosomes and lysosomes. Although Vps26 was in structures of more heterogeneous size and shape than SNX2, these markedly overlapped. In consequence, the two retromer subcomplexes mostly colocalised. When we analysed retromer overlap with its cargo, we found that structures retromer and pIgA(+) are independent of those structures retromer and CI-MPR(+) . Remarkably, retromer localised preferentially at the transcytotic pathway. Pharmacological inhibition of phosphoinositide 3-kinase affected the co-distribution of retromer with pIgA and the CI-MPR, delaying pIgA progress to the apical surface. CONCLUSIONS In polarised MDCK cells, we found retromer associated with certain specialised EE-derived pathways. Our data imply that retromer is largely engaged in pIgA transcytosis in pIgR-expressing MDCK cells, as opposed to endosome-to-Golgi retrieval.
Collapse
Affiliation(s)
- Maravillas Mellado
- Laboratory of Epithelial Cell Biology, Príncipe Felipe Research Center (CIPF), Valencia, 46012, Spain
| | | | | | | |
Collapse
|
29
|
Abstract
Polarized cells such as epithelial cells and neurons exhibit different plasma membrane domains with distinct protein compositions. Recent studies have shown that sorting of transmembrane proteins to the basolateral domain of epithelial cells and the somatodendritic domain of neurons is mediated by recognition of signals in the cytosolic domains of the proteins by adaptors. These adaptors are components of protein coats associated with the trans-Golgi network and/or recycling endosomes. The clathrin-associated adaptor protein 1 (AP-1) complex plays a preeminent role in this process, although other adaptors and coat proteins, such as AP-4, ARH, Numb, exomer, and retromer, have also been implicated.
Collapse
Affiliation(s)
- Juan S Bonifacino
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
30
|
BMP signaling requires retromer-dependent recycling of the type I receptor. Proc Natl Acad Sci U S A 2014; 111:2578-83. [PMID: 24550286 DOI: 10.1073/pnas.1319947111] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transforming growth factor β (TGFβ) superfamily of signaling pathways, including the bone morphogenetic protein (BMP) subfamily of ligands and receptors, controls a myriad of developmental processes across metazoan biology. Transport of the receptors from the plasma membrane to endosomes has been proposed to promote TGFβ signal transduction and shape BMP-signaling gradients throughout development. However, how postendocytic trafficking of BMP receptors contributes to the regulation of signal transduction has remained enigmatic. Here we report that the intracellular domain of Caenorhabditis elegans BMP type I receptor SMA-6 (small-6) binds to the retromer complex, and in retromer mutants, SMA-6 is degraded because of its missorting to lysosomes. Surprisingly, we find that the type II BMP receptor, DAF-4 (dauer formation-defective-4), is retromer-independent and recycles via a distinct pathway mediated by ARF-6 (ADP-ribosylation factor-6). Importantly, we find that loss of retromer blocks BMP signaling in multiple tissues. Taken together, our results indicate a mechanism that separates the type I and type II receptors during receptor recycling, potentially terminating signaling while preserving both receptors for further rounds of activation.
Collapse
|
31
|
Goldenring JR. A central role for vesicle trafficking in epithelial neoplasia: intracellular highways to carcinogenesis. Nat Rev Cancer 2013; 13:813-20. [PMID: 24108097 PMCID: PMC4011841 DOI: 10.1038/nrc3601] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epithelial cell carcinogenesis involves the loss of cell polarity, alteration of polarized protein presentation, dynamic cell morphology changes, increased proliferation, and increased cell motility and invasion. Membrane vesicle trafficking underlies all of these processes. Specific membrane trafficking regulators, including RAB small GTPases, through the coordinated dynamics of intracellular trafficking along cytoskeletal pathways, determine the cell surface presentation of proteins and the overall function of both differentiated and neoplastic cells. Although mutations in vesicle trafficking proteins may not be direct drivers of transformation, components of the machinery of vesicle movement have crucial roles in the phenotypes of neoplastic cells. Therefore, the regulators of membrane vesicle trafficking decisions are essential mediators of the full range of cell physiologies that drive cancer cell biology, including initial loss of cell polarity, invasion and metastasis. Targeting of these fundamental intracellular processes may permit the manipulation of cancer cell behaviour.
Collapse
Affiliation(s)
- James R Goldenring
- Departments of Surgery and Cell and Developmental Biology, Epithelial Biology Center and the Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA; and the Nashville Veternas Affairs Medical Center, Nashville, Tennessee 37212, USA
| |
Collapse
|