1
|
Venkatraman K, Budin I. Cardiolipin remodeling maintains the inner mitochondrial membrane in cells with saturated lipidomes. J Lipid Res 2024; 65:100601. [PMID: 39038656 PMCID: PMC11381790 DOI: 10.1016/j.jlr.2024.100601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024] Open
Abstract
Cardiolipin (CL) is a unique, four-chain phospholipid synthesized in the inner mitochondrial membrane (IMM). The acyl chain composition of CL is regulated through a remodeling pathway, whose loss causes mitochondrial dysfunction in Barth syndrome (BTHS). Yeast has been used extensively as a model system to characterize CL metabolism, but mutants lacking its two remodeling enzymes, Cld1p and Taz1p, exhibit mild structural and respiratory phenotypes compared to mammalian cells. Here, we show an essential role for CL remodeling in the structure and function of the IMM in yeast grown under reduced oxygenation. Microaerobic fermentation, which mimics natural yeast environments, caused the accumulation of saturated fatty acids and, under these conditions, remodeling mutants showed a loss of IMM ultrastructure. We extended this observation to HEK293 cells, where phospholipase A2 inhibition by Bromoenol lactone resulted in respiratory dysfunction and cristae loss upon mild treatment with exogenous saturated fatty acids. In microaerobic yeast, remodeling mutants accumulated unremodeled, saturated CL, but also displayed reduced total CL levels, highlighting the interplay between saturation and CL biosynthesis and/or breakdown. We identified the mitochondrial phospholipase A1 Ddl1p as a regulator of CL levels, and those of its precursors phosphatidylglycerol and phosphatidic acid, under these conditions. Loss of Ddl1p partially rescued IMM structure in cells unable to initiate CL remodeling and had differing lipidomic effects depending on oxygenation. These results introduce a revised yeast model for investigating CL remodeling and suggest that its structural functions are dependent on the overall lipid environment in the mitochondrion.
Collapse
Affiliation(s)
- Kailash Venkatraman
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Itay Budin
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Wang J, Taki M, Ohba Y, Arita M, Yamaguchi S. Fluorescence Lifetime Imaging of Lipid Heterogeneity in the Inner Mitochondrial Membrane with a Super-photostable Environment-Sensitive Probe. Angew Chem Int Ed Engl 2024; 63:e202404328. [PMID: 38804831 DOI: 10.1002/anie.202404328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Indexed: 05/29/2024]
Abstract
The inner mitochondrial membrane (IMM) undergoes dynamic morphological changes, which are crucial for the maintenance of mitochondrial functions as well as cell survival. As the dynamics of the membrane are governed by its lipid components, a fluorescent probe that can sense spatiotemporal alterations in the lipid properties of the IMM over long periods of time is required to understand mitochondrial physiological functions in detail. Herein, we report a red-emissive IMM-labeling reagent with excellent photostability and sensitivity to its environment, which enables the visualization of the IMM ultrastructure using super-resolution microscopy as well as of the lipid heterogeneity based on the fluorescence lifetime at the single mitochondrion level. Combining the probe and fluorescence lifetime imaging microscopy (FLIM) showed that peroxidation of unsaturated lipids in the IMM by reactive oxygen species caused an increase in the membrane order, which took place prior to mitochondrial swelling.
Collapse
Affiliation(s)
- Junwei Wang
- Institute of Transformative Bio-Molecules, Nagoya University, Furo, Chikusa, Nagoya 464-8601, Japan
| | - Masayasu Taki
- Institute of Transformative Bio-Molecules, Nagoya University, Furo, Chikusa, Nagoya 464-8601, Japan
| | - Yohsuke Ohba
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo 105-8512, Japan
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Makoto Arita
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo 105-8512, Japan
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama-City University, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shigehiro Yamaguchi
- Institute of Transformative Bio-Molecules, Nagoya University, Furo, Chikusa, Nagoya 464-8601, Japan
- Department of Chemistry, Graduate School of Science, Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
3
|
Morcillo P, Kabra K, Velasco K, Cordero H, Jennings S, Yun TD, Larrea D, Akman HO, Schon EA. Aberrant ER-mitochondria communication is a common pathomechanism in mitochondrial disease. Cell Death Dis 2024; 15:405. [PMID: 38858390 PMCID: PMC11164949 DOI: 10.1038/s41419-024-06781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024]
Abstract
Genetic mutations causing primary mitochondrial disease (i.e those compromising oxidative phosphorylation [OxPhos]) resulting in reduced bioenergetic output display great variability in their clinical features, but the reason for this is unknown. We hypothesized that disruption of the communication between endoplasmic reticulum (ER) and mitochondria at mitochondria-associated ER membranes (MAM) might play a role in this variability. To test this, we assayed MAM function and ER-mitochondrial communication in OxPhos-deficient cells, including cybrids from patients with selected pathogenic mtDNA mutations. Our results show that each of the various mutations studied indeed altered MAM functions, but notably, each disorder presented with a different MAM "signature". We also found that mitochondrial membrane potential is a key driver of ER-mitochondrial connectivity. Moreover, our findings demonstrate that disruption in ER-mitochondrial communication has consequences for cell survivability that go well beyond that of reduced ATP output. The findings of a "MAM-OxPhos" axis, the role of mitochondrial membrane potential in controlling this process, and the contribution of MAM dysfunction to cell death, reveal a new relationship between mitochondria and the rest of the cell, as well as providing new insights into the diagnosis and treatment of these devastating disorders.
Collapse
Affiliation(s)
- Patricia Morcillo
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA.
| | - Khushbu Kabra
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Kevin Velasco
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Hector Cordero
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, 10032, USA
- Immunology Group, Department of Physiology, Faculty of Veterinary, University of Extremadura, Caceres, 10003, Spain
| | - Sarah Jennings
- Stony Brook University, Stony Brook, New York, NY, 11794, USA
| | - Taekyung D Yun
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Delfina Larrea
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - H Orhan Akman
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Eric A Schon
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA.
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
4
|
Mavuduru VA, Vadupu L, Ghosh KK, Chakrabortty S, Gulyás B, Padmanabhan P, Ball WB. Mitochondrial phospholipid transport: Role of contact sites and lipid transport proteins. Prog Lipid Res 2024; 94:101268. [PMID: 38195013 DOI: 10.1016/j.plipres.2024.101268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/11/2024]
Abstract
One of the major constituents of mitochondrial membranes is the phospholipids, which play a key role in maintaining the structure and the functions of the mitochondria. However, mitochondria do not synthesize most of the phospholipids in situ, necessitating the presence of phospholipid import pathways. Even for the phospholipids, which are synthesized within the inner mitochondrial membrane (IMM), the phospholipid precursors must be imported from outside the mitochondria. Therefore, the mitochondria heavily rely on the phospholipid transport pathways for its proper functioning. Since, mitochondria are not part of a vesicular trafficking network, the molecular mechanisms of how mitochondria receive its phospholipids remain a relevant question. One of the major ways that hydrophobic phospholipids can cross the aqueous barrier of inter or intraorganellar spaces is by apposing membranes, thereby decreasing the distance of transport, or by being sequestered by lipid transport proteins (LTPs). Therefore, with the discovery of LTPs and membrane contact sites (MCSs), we are beginning to understand the molecular mechanisms of phospholipid transport pathways in the mitochondria. In this review, we will present a brief overview of the recent findings on the molecular architecture and the importance of the MCSs, both the intraorganellar and interorganellar contact sites, in facilitating the mitochondrial phospholipid transport. In addition, we will also discuss the role of LTPs for trafficking phospholipids through the intermembrane space (IMS) of the mitochondria. Mechanistic insights into different phospholipid transport pathways of mitochondria could be exploited to vary the composition of membrane phospholipids and gain a better understanding of their precise role in membrane homeostasis and mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Vijay Aditya Mavuduru
- Department of Biological Sciences, School of Engineering and Sciences, SRM University AP Andhra Pradesh, Guntur, Andhra Pradesh 522240, India
| | - Lavanya Vadupu
- Department of Biological Sciences, School of Engineering and Sciences, SRM University AP Andhra Pradesh, Guntur, Andhra Pradesh 522240, India
| | - Krishna Kanta Ghosh
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Sabyasachi Chakrabortty
- Department of Chemistry, School of Engineering and Sciences, SRM University AP Andhra Pradesh, Guntur, Andhra Pradesh 522502, India
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore, 636921, Singapore; Cognitive Neuroimaging Centre, Nanyang Technological University, Singapore, 59 Nanyang Drive, 636921, Singapore; Department of Clinical Neuroscience, Karolinska Institute, Stockholm 17176, Sweden
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore, 636921, Singapore; Cognitive Neuroimaging Centre, Nanyang Technological University, Singapore, 59 Nanyang Drive, 636921, Singapore.
| | - Writoban Basu Ball
- Department of Biological Sciences, School of Engineering and Sciences, SRM University AP Andhra Pradesh, Guntur, Andhra Pradesh 522240, India.
| |
Collapse
|
5
|
Kagan VE, Tyurina YY, Mikulska-Ruminska K, Damschroder D, Vieira Neto E, Lasorsa A, Kapralov AA, Tyurin VA, Amoscato AA, Samovich SN, Souryavong AB, Dar HH, Ramim A, Liang Z, Lazcano P, Ji J, Schmidtke MW, Kiselyov K, Korkmaz A, Vladimirov GK, Artyukhova MA, Rampratap P, Cole LK, Niyatie A, Baker EK, Peterson J, Hatch GM, Atkinson J, Vockley J, Kühn B, Wessells R, van der Wel PCA, Bahar I, Bayir H, Greenberg ML. Anomalous peroxidase activity of cytochrome c is the primary pathogenic target in Barth syndrome. Nat Metab 2023; 5:2184-2205. [PMID: 37996701 PMCID: PMC11213643 DOI: 10.1038/s42255-023-00926-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/10/2023] [Indexed: 11/25/2023]
Abstract
Barth syndrome (BTHS) is a life-threatening genetic disorder with unknown pathogenicity caused by mutations in TAFAZZIN (TAZ) that affect remodeling of mitochondrial cardiolipin (CL). TAZ deficiency leads to accumulation of mono-lyso-CL (MLCL), which forms a peroxidase complex with cytochrome c (cyt c) capable of oxidizing polyunsaturated fatty acid-containing lipids. We hypothesized that accumulation of MLCL facilitates formation of anomalous MLCL-cyt c peroxidase complexes and peroxidation of polyunsaturated fatty acid phospholipids as the primary BTHS pathogenic mechanism. Using genetic, biochemical/biophysical, redox lipidomic and computational approaches, we reveal mechanisms of peroxidase-competent MLCL-cyt c complexation and increased phospholipid peroxidation in different TAZ-deficient cells and animal models and in pre-transplant biopsies from hearts of patients with BTHS. A specific mitochondria-targeted anti-peroxidase agent inhibited MLCL-cyt c peroxidase activity, prevented phospholipid peroxidation, improved mitochondrial respiration of TAZ-deficient C2C12 myoblasts and restored exercise endurance in a BTHS Drosophila model. Targeting MLCL-cyt c peroxidase offers therapeutic approaches to BTHS treatment.
Collapse
Affiliation(s)
- Valerian E Kagan
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health, Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | - Yulia Y Tyurina
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health, Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Karolina Mikulska-Ruminska
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Deena Damschroder
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Eduardo Vieira Neto
- Department of Pediatrics, Genetic and Genomic Medicine Division, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alessia Lasorsa
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Alexander A Kapralov
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health, Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Vladimir A Tyurin
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health, Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andrew A Amoscato
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health, Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Svetlana N Samovich
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health, Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Austin B Souryavong
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health, Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Haider H Dar
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health, Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Abu Ramim
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Zhuqing Liang
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Pablo Lazcano
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Jiajia Ji
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | | | - Kirill Kiselyov
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aybike Korkmaz
- Department of Pediatrics, Division of Critical Care and Hospital Medicine, Redox Health Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Georgy K Vladimirov
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health, Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Margarita A Artyukhova
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health, Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Pushpa Rampratap
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Laura K Cole
- Department of Pharmacology and Therapeutics, University of Manitoba, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Ammanamanchi Niyatie
- Department of Pediatrics, Pediatric Institute for Heart Regeneration and Therapeutics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Emma-Kate Baker
- Department of Chemistry & Centre for Biotechnology, Brock University, St Catharines, Ontario, Canada
| | - Jim Peterson
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health, Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Grant M Hatch
- Department of Pharmacology and Therapeutics, University of Manitoba, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Jeffrey Atkinson
- Department of Chemistry & Centre for Biotechnology, Brock University, St Catharines, Ontario, Canada
| | - Jerry Vockley
- Department of Pediatrics, Genetic and Genomic Medicine Division, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bernhard Kühn
- Department of Pediatrics, Pediatric Institute for Heart Regeneration and Therapeutics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert Wessells
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Patrick C A van der Wel
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Ivet Bahar
- Laufer Center for Physical Quantitative Biology and Department of Biochemistry and Cell Biology, School of Medicine, Stony Brook University, New York, NY, USA
| | - Hülya Bayir
- Department of Pediatrics, Division of Critical Care and Hospital Medicine, Redox Health Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
6
|
Senoo N, Chinthapalli DK, Baile MG, Golla VK, Saha B, Ogunbona OB, Saba JA, Munteanu T, Valdez Y, Whited K, Chorev D, Alder NN, May ER, Robinson CV, Claypool SM. Conserved cardiolipin-mitochondrial ADP/ATP carrier interactions assume distinct structural and functional roles that are clinically relevant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539595. [PMID: 37205478 PMCID: PMC10187269 DOI: 10.1101/2023.05.05.539595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The mitochondrial phospholipid cardiolipin (CL) promotes bioenergetics via oxidative phosphorylation (OXPHOS). Three tightly bound CLs are evolutionarily conserved in the ADP/ATP carrier (AAC in yeast; adenine nucleotide translocator, ANT in mammals) which resides in the inner mitochondrial membrane and exchanges ADP and ATP to enable OXPHOS. Here, we investigated the role of these buried CLs in the carrier using yeast Aac2 as a model. We introduced negatively charged mutations into each CL-binding site of Aac2 to disrupt the CL interactions via electrostatic repulsion. While all mutations disturbing the CL-protein interaction destabilized Aac2 monomeric structure, transport activity was impaired in a pocket-specific manner. Finally, we determined that a disease-associated missense mutation in one CL-binding site in ANT1 compromised its structure and transport activity, resulting in OXPHOS defects. Our findings highlight the conserved significance of CL in AAC/ANT structure and function, directly tied to specific lipid-protein interactions.
Collapse
Affiliation(s)
- Nanami Senoo
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Mitochondrial Phospholipid Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dinesh K. Chinthapalli
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Oxford, OX1 3QU, UK
| | - Matthew G. Baile
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Vinaya K. Golla
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Bodhisattwa Saha
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, OX1 3QU, UK
| | - Oluwaseun B. Ogunbona
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - James A. Saba
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Teona Munteanu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yllka Valdez
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kevin Whited
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dror Chorev
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, OX1 3QU, UK
| | - Nathan N. Alder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Eric R. May
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Carol V. Robinson
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Oxford, OX1 3QU, UK
| | - Steven M. Claypool
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Mitochondrial Phospholipid Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
7
|
van de Poll F, Sutter BM, Acoba MG, Caballero D, Jahangiri S, Yang YS, Lee CD, Tu BP. Pbp1 associates with Puf3 and promotes translation of its target mRNAs involved in mitochondrial biogenesis. PLoS Genet 2023; 19:e1010774. [PMID: 37216416 PMCID: PMC10237644 DOI: 10.1371/journal.pgen.1010774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/02/2023] [Accepted: 05/07/2023] [Indexed: 05/24/2023] Open
Abstract
Pbp1 (poly(A)-binding protein-binding protein 1) is a cytoplasmic stress granule marker that is capable of forming condensates that function in the negative regulation of TORC1 signaling under respiratory conditions. Polyglutamine expansions in its mammalian ortholog ataxin-2 lead to spinocerebellar dysfunction due to toxic protein aggregation. Here, we show that loss of Pbp1 in S. cerevisiae leads to decreased amounts of mRNAs and mitochondrial proteins which are targets of Puf3, a member of the PUF (Pumilio and FBF) family of RNA-binding proteins. We found that Pbp1 supports the translation of Puf3-target mRNAs in respiratory conditions, such as those involved in the assembly of cytochrome c oxidase and subunits of mitochondrial ribosomes. We further show that Pbp1 and Puf3 interact through their respective low complexity domains, which is required for Puf3-target mRNA translation. Our findings reveal a key role for Pbp1-containing assemblies in enabling the translation of mRNAs critical for mitochondrial biogenesis and respiration. They may further explain prior associations of Pbp1/ataxin-2 with RNA, stress granule biology, mitochondrial function, and neuronal health.
Collapse
Affiliation(s)
- Floortje van de Poll
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Benjamin M. Sutter
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Michelle Grace Acoba
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Daniel Caballero
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Samira Jahangiri
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Yu-San Yang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Chien-Der Lee
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Benjamin P. Tu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
8
|
Schiller J, Laube E, Wittig I, Kühlbrandt W, Vonck J, Zickermann V. Insights into complex I assembly: Function of NDUFAF1 and a link with cardiolipin remodeling. SCIENCE ADVANCES 2022; 8:eadd3855. [PMID: 36383672 PMCID: PMC9668296 DOI: 10.1126/sciadv.add3855] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/14/2022] [Indexed: 06/02/2023]
Abstract
Respiratory complex I is a ~1-MDa proton pump in mitochondria. Its structure has been revealed in great detail, but the structural basis of its assembly, in humans involving at least 15 assembly factors, is essentially unknown. We determined cryo-electron microscopy structures of assembly intermediates associated with assembly factor NDUFAF1 in a yeast model system. Subunits ND2 and NDUFC2 together with assembly factors NDUFAF1 and CIA84 form the nucleation point of the NDUFAF1-dependent assembly pathway. Unexpectedly, the cardiolipin remodeling enzyme tafazzin is an integral component of this core complex. In a later intermediate, all 12 subunits of the proximal proton pump module have assembled. NDUFAF1 locks the central ND3 subunit in an assembly-competent conformation, and major rearrangements of central subunits are required for complex I maturation.
Collapse
Affiliation(s)
- Jonathan Schiller
- Institute of Biochemistry II, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany
- Center for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| | - Eike Laube
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Ilka Wittig
- Functional Proteomics, Institute for Cardiovascular Physiology, Goethe University, 60590 Frankfurt am Main, Germany
| | - Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Volker Zickermann
- Institute of Biochemistry II, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany
- Center for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| |
Collapse
|
9
|
Bandela M, Suryadevara V, Fu P, Reddy SP, Bikkavilli K, Huang LS, Dhavamani S, Subbaiah PV, Singla S, Dudek SM, Ware LB, Ramchandran R, Natarajan V. Role of Lysocardiolipin Acyltransferase in Cigarette Smoke-Induced Lung Epithelial Cell Mitochondrial ROS, Mitochondrial Dynamics, and Apoptosis. Cell Biochem Biophys 2022; 80:203-216. [PMID: 34724158 PMCID: PMC11650883 DOI: 10.1007/s12013-021-01043-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 02/07/2023]
Abstract
Cigarette smoke is the primary cause of Chronic Obstructive Pulmonary Disorder (COPD). Cigarette smoke extract (CSE)-induced oxidative damage of the lungs results in mitochondrial dysfunction and apoptosis of epithelium. Mitochondrial cardiolipin (CL) present in the inner mitochondrial membrane plays an important role in mitochondrial function, wherein its fatty acid composition is regulated by lysocardiolipin acyltransferase (LYCAT). In this study, we investigated the role of LYCAT expression and activity in mitochondrial oxidative stress, mitochondrial dynamics, and lung epithelial cell apoptosis. LYCAT expression was increased in human lung specimens from smokers, and cigarette smoke-exposed-mouse lung tissues. Cigarette smoke extract (CSE) increased LYCAT mRNA levels and protein expression, modulated cardiolipin fatty acid composition, and enhanced mitochondrial fission in the bronchial epithelial cell line, BEAS-2B in vitro. Inhibition of LYCAT activity with a peptide mimetic, attenuated CSE-mediated mitochondrial (mt) reactive oxygen species (ROS), mitochondrial fragmentation, and apoptosis, while MitoTEMPO attenuated CSE-induced MitoROS, mitochondrial fission and apoptosis of BEAS-2B cells. Collectively, these findings suggest that increased LYCAT expression promotes MitoROS, mitochondrial dynamics and apoptosis of lung epithelial cells. Given the key role of LYCAT in mitochondrial cardiolipin remodeling and function, strategies aimed at inhibiting LYCAT activity and ROS may offer an innovative approach to minimize lung inflammation caused by cigarette smoke.
Collapse
Affiliation(s)
- Mounica Bandela
- Departments of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Vidyani Suryadevara
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Panfeng Fu
- Departments of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA
- The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, China
| | - Sekhar P Reddy
- Departments of Pediatrics, University of Illinois at Chicago, Chicago, IL, USA
| | - Kamesh Bikkavilli
- Departments of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Long Shuang Huang
- Departments of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Sugasini Dhavamani
- Departments of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Papasani V Subbaiah
- Departments of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Sunit Singla
- Departments of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Steven M Dudek
- Departments of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Lorraine B Ware
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ramaswamy Ramchandran
- Departments of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Viswanathan Natarajan
- Departments of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA.
- Departments of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
10
|
Bozelli JC, Epand RM. Interplay between cardiolipin and plasmalogens in Barth syndrome. J Inherit Metab Dis 2022; 45:99-110. [PMID: 34655242 DOI: 10.1002/jimd.12449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 12/28/2022]
Abstract
Barth syndrome (BTHS) is a rare inherited metabolic disease resulting from mutations in the gene of the enzyme tafazzin, which catalyzes the acyl chain remodeling of the mitochondrial-specific lipid cardiolipin (CL). Tissue samples of individuals with BTHS present abnormalities in the level and the molecular species of CL. In addition, in tissues of a tafazzin knockdown mouse as well as in cells derived from BTHS patients it has been shown that plasmalogens, a subclass of glycerophospholipids, also have abnormal levels. Likewise, administration of a plasmalogen precursor to cells derived from BTHS patients led to an increase in plasmalogen and to some extent CL levels. These results indicate an interplay between CL and plasmalogens in BTHS. This interdependence is supported by the concomitant loss in these lipids in different pathological conditions. However, currently the molecular mechanism linking CL and plasmalogens is not fully understood. Here, a review of the evidence showing the linkage between the levels of CL and plasmalogens is presented. In addition, putative mechanisms that might play a role in this interplay are proposed. Finally, the opportunity of therapeutic approaches based on the regulation of plasmalogens as new therapies for the treatment of BTHS is discussed.
Collapse
Affiliation(s)
- José Carlos Bozelli
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre, Hamilton, Ontario, Canada
| | - Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre, Hamilton, Ontario, Canada
| |
Collapse
|
11
|
Rosier K, McDevitt MT, Smet J, Floyd BJ, Verschoore M, Marcaida MJ, Bingman CA, Lemmens I, Dal Peraro M, Tavernier J, Cravatt BF, Gounko NV, Vints K, Monnens Y, Bhalla K, Aerts L, Rashan EH, Vanlander AV, Van Coster R, Régal L, Pagliarini DJ, Creemers JW. Prolyl endopeptidase-like is a (thio)esterase involved in mitochondrial respiratory chain function. iScience 2021; 24:103460. [PMID: 34888501 PMCID: PMC8634043 DOI: 10.1016/j.isci.2021.103460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/27/2021] [Accepted: 11/11/2021] [Indexed: 11/25/2022] Open
Abstract
Deficiency of the serine hydrolase prolyl endopeptidase-like (PREPL) causes a recessive metabolic disorder characterized by neonatal hypotonia, feeding difficulties, and growth hormone deficiency. The pathophysiology of PREPL deficiency and the physiological substrates of PREPL remain largely unknown. In this study, we connect PREPL with mitochondrial gene expression and oxidative phosphorylation by analyzing its protein interactors. We demonstrate that the long PREPLL isoform localizes to mitochondria, whereas PREPLS remains cytosolic. Prepl KO mice showed reduced mitochondrial complex activities and disrupted mitochondrial gene expression. Furthermore, mitochondrial ultrastructure was abnormal in a PREPL-deficient patient and Prepl KO mice. In addition, we reveal that PREPL has (thio)esterase activity and inhibition of PREPL by Palmostatin M suggests a depalmitoylating function. We subsequently determined the crystal structure of PREPL, thereby providing insight into the mechanism of action. Taken together, PREPL is a (thio)esterase rather than a peptidase and PREPLL is involved in mitochondrial homeostasis.
Collapse
Affiliation(s)
- Karen Rosier
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Molly T. McDevitt
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Joél Smet
- Department of Internal Medicine and Pediatrics, Division of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Brendan J. Floyd
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Maxime Verschoore
- Department of Internal Medicine and Pediatrics, Division of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Maria J. Marcaida
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Craig A. Bingman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Irma Lemmens
- Center for Medical Biotechnology, VIB, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jan Tavernier
- Center for Medical Biotechnology, VIB, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Benjamin F. Cravatt
- The Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Natalia V. Gounko
- VIB-KU Leuven Center for Brain & Disease Research, Electron Microscopy Platform & VIB-Bioimaging Core, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Katlijn Vints
- VIB-KU Leuven Center for Brain & Disease Research, Electron Microscopy Platform & VIB-Bioimaging Core, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Yenthe Monnens
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Kritika Bhalla
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Laetitia Aerts
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Edrees H. Rashan
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Arnaud V. Vanlander
- Department of Internal Medicine and Pediatrics, Division of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Rudy Van Coster
- Department of Internal Medicine and Pediatrics, Division of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Luc Régal
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium
- Department of Pediatrics, Pediatric Neurology and Metabolism, UZ Brussel, Brussels, Belgium
| | - David J. Pagliarini
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
- Departments of Cell Biology and Physiology, Biochemistry and Molecular Biophysics, and Genetics, Washington University School of Medicine, St Louis, MO 63110, USA
| | - John W.M. Creemers
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Iriondo MN, Etxaniz A, Antón Z, Montes LR, Alonso A. Molecular and mesoscopic geometries in autophagosome generation. A review. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183731. [PMID: 34419487 DOI: 10.1016/j.bbamem.2021.183731] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 01/18/2023]
Abstract
Autophagy is an essential process in cell self-repair and survival. The centre of the autophagic event is the generation of the so-called autophagosome (AP), a vesicle surrounded by a double membrane (two bilayers). The AP delivers its cargo to a lysosome, for degradation and re-use of the hydrolysis products as new building blocks. AP formation is a very complex event, requiring dozens of specific proteins, and involving numerous instances of membrane biogenesis and architecture, including membrane fusion and fission. Many stages of AP generation can be rationalised in terms of curvature, both the molecular geometry of lipids interpreted in terms of 'intrinsic curvature', and the overall mesoscopic curvature of the whole membrane, as observed with microscopy techniques. The present contribution intends to bring together the worlds of biophysics and cell biology of autophagy, in the hope that the resulting cross-pollination will generate abundant fruit.
Collapse
Affiliation(s)
- Marina N Iriondo
- Instituto Biofisika (CSIC, UPV/EHU) and Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, 48940 Leioa, Spain
| | - Asier Etxaniz
- Instituto Biofisika (CSIC, UPV/EHU) and Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, 48940 Leioa, Spain
| | - Zuriñe Antón
- Instituto Biofisika (CSIC, UPV/EHU) and Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, 48940 Leioa, Spain
| | - L Ruth Montes
- Instituto Biofisika (CSIC, UPV/EHU) and Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, 48940 Leioa, Spain
| | - Alicia Alonso
- Instituto Biofisika (CSIC, UPV/EHU) and Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, 48940 Leioa, Spain.
| |
Collapse
|
13
|
Acoba MG, Senoo N, Claypool SM. Phospholipid ebb and flow makes mitochondria go. J Cell Biol 2021; 219:151918. [PMID: 32614384 PMCID: PMC7401802 DOI: 10.1083/jcb.202003131] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 01/19/2023] Open
Abstract
Mitochondria, so much more than just being energy factories, also have the capacity to synthesize macromolecules including phospholipids, particularly cardiolipin (CL) and phosphatidylethanolamine (PE). Phospholipids are vital constituents of mitochondrial membranes, impacting the plethora of functions performed by this organelle. Hence, the orchestrated movement of phospholipids to and from the mitochondrion is essential for cellular integrity. In this review, we capture recent advances in the field of mitochondrial phospholipid biosynthesis and trafficking, highlighting the significance of interorganellar communication, intramitochondrial contact sites, and lipid transfer proteins in maintaining membrane homeostasis. We then discuss the physiological functions of CL and PE, specifically how they associate with protein complexes in mitochondrial membranes to support bioenergetics and maintain mitochondrial architecture.
Collapse
Affiliation(s)
- Michelle Grace Acoba
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Nanami Senoo
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Steven M Claypool
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
14
|
Senoo N, Kandasamy S, Ogunbona OB, Baile MG, Lu Y, Claypool SM. Cardiolipin, conformation, and respiratory complex-dependent oligomerization of the major mitochondrial ADP/ATP carrier in yeast. SCIENCE ADVANCES 2020; 6:eabb0780. [PMID: 32923632 PMCID: PMC7455186 DOI: 10.1126/sciadv.abb0780] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 07/08/2020] [Indexed: 05/30/2023]
Abstract
The phospholipid cardiolipin has pleiotropic structural and functional roles that are collectively essential for mitochondrial biology. Yet, the molecular details of how this lipid supports the structure and function of proteins and protein complexes are poorly understood. To address this property of cardiolipin, we use the mitochondrial adenosine 5'-diphosphate/adenosine 5'-triphosphate carrier (Aac) as a model. Here, we have determined that cardiolipin is critical for both the tertiary and quaternary assembly of the major yeast Aac isoform Aac2 as well as its conformation. Notably, these cardiolipin-provided structural roles are separable. In addition, we show that multiple copies of Aac2 engage in shared complexes that are largely dependent on the presence of assembled respiratory complexes III and IV or respiratory supercomplexes. Intriguingly, the assembly state of Aac2 is sensitive to its transport-related conformation. Together, these results expand our understanding of the numerous structural roles provided by cardiolipin for mitochondrial membrane proteins.
Collapse
|
15
|
Mass spectrometric investigation of cardiolipins and their oxidation products after two-dimensional heart-cut liquid chromatography. J Chromatogr A 2020; 1619:460918. [DOI: 10.1016/j.chroma.2020.460918] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 12/12/2022]
|
16
|
Promotion of plasmalogen biosynthesis reverse lipid changes in a Barth Syndrome cell model. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158677. [PMID: 32126285 DOI: 10.1016/j.bbalip.2020.158677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/06/2020] [Accepted: 02/27/2020] [Indexed: 12/31/2022]
Abstract
In Barth syndrome (BTHS) mutations in tafazzin leads to changes in both the quantities and the molecular species of cardiolipin (CL), which are the hallmarks of BTHS. Contrary to the well-established alterations in CL associated with BTHS; recently a marked decrease in the plasmalogen levels in Barth specimens has been identified. To restore the plasmalogen levels, the present study reports the effect of promotion of plasmalogen biosynthesis on the lipidome of lymphoblasts derived from Barth patients as well as on cell viability, mitochondria biogenesis, and mitochondrial membrane potential. High resolution 31P NMR phospholipidomic analysis showed an increase in the levels of plasmenylethanolamine (the major plasmalogen in lymphoblasts), which reached values comparable to the control and a compensatory decrease in the levels of its diacyl-PE counterpart. Importantly, 31P NMR showed a significant increase in the levels of CL, while not altering the levels of monolysocardiolipin. Mass spectrometry measurements showed that the promotion of plasmalogen biosynthesis did not change the molecular species profile of targeted phospholipids. In addition, promotion of plasmalogen biosynthesis did not impact on cellular viability, although it significantly decrease mitochondria copy number and restored mitochondrial membrane potential. Overall, the results showed the efficacy of the promotion of plasmalogen biosynthesis on increasing the CL levels in a BTHS cell model and highlight the potential beneficial effect of a diet supplemented with plasmalogen precursors to BTHS patients.
Collapse
|
17
|
Helmer PO, Korf A, Hayen H. Analysis of artificially oxidized cardiolipins and monolyso-cardiolipins via liquid chromatography/high-resolution mass spectrometry and Kendrick mass defect plots after hydrophilic interaction liquid chromatography based sample preparation. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8566. [PMID: 31469924 DOI: 10.1002/rcm.8566] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/21/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE Cardiolipins (CL) are a special lipid class which plays a main role in energy metabolism in mitochondria and is involved in apoptosis. In contrast to other glycerophospholipids, they contain four fatty acyl residues which results in a high structural diversity. Oxidation, for example by reactive oxygen species, or lyso forms such as monolyso-CL (MLCL), increases this diversity. Mass spectrometric analysis and computational identification of CL, MLCL and their oxidation products is therefore a challenging task. METHODS In order to distinguish CL, MLCL and their oxidation products, a liquid chromatography/tandem mass spectrometry (LC/MS/MS) method was developed. A hydrophilic interaction liquid chromatography (HILIC)-based solid-phase extraction (SPE) clean-up approach was developed for CL enrichment. Graphical analysis of CL, MLCL and their oxidation products was carried out by a three-dimensional Kendrick mass defect (3D-KMD) plot module, as well as a refined lipid search module of the open-source metabolomics data mining software MZmine 2. RESULTS The HILIC-based SPE clean-up enabled complete separation of polar and nonpolar lipid classes. A yeast (Saccharomyces cerevisiae) lipid extract, which was artificially oxidized by means of the Fenton reaction, was analyzed by the developed LC/MS/MS method. CL species with differences in chain length and degree of unsaturation have been separated by high-performance liquid chromatography (HPLC). In total 66 CL, MLCL and oxidized species have been identified utilizing 3D-KMD plots in combination with database matching using MZmine 2. For further characterization of annotated species, MS/MS experiments have been utilized. CONCLUSIONS 3D-KMD plots capturing chromatographic and high-resolution mass spectrometry data have been successfully used for graphical identification of CL, MLCL as well as their oxidized species. Therefore, we chose multiple KMD bases such as hydrogen and oxygen to visualize the degree of unsaturation and oxidation capturing chromatographic data by means of a color-coded paint scale as the third dimension. In combination with database matching, the analysis of low concentrated lipid species in complex samples has been significantly improved.
Collapse
Affiliation(s)
- Patrick O Helmer
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, 48149, Münster, Germany
| | - Ansgar Korf
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, 48149, Münster, Germany
| | - Heiko Hayen
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, 48149, Münster, Germany
| |
Collapse
|
18
|
Garlid AO, Schaffer CT, Kim J, Bhatt H, Guevara-Gonzalez V, Ping P. TAZ encodes tafazzin, a transacylase essential for cardiolipin formation and central to the etiology of Barth syndrome. Gene 2019; 726:144148. [PMID: 31647997 DOI: 10.1016/j.gene.2019.144148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/12/2019] [Accepted: 09/27/2019] [Indexed: 12/31/2022]
Abstract
Tafazzin, which is encoded by the TAZ gene, catalyzes transacylation to form mature cardiolipin and shows preference for the transfer of a linoleic acid (LA) group from phosphatidylcholine (PC) to monolysocardiolipin (MLCL) with influence from mitochondrial membrane curvature. The protein contains domains and motifs involved in targeting, anchoring, and an active site for transacylase activity. Tafazzin activity affects many aspects of mitochondrial structure and function, including that of the electron transport chain, fission-fusion, as well as apoptotic signaling. TAZ mutations are implicated in Barth syndrome, an underdiagnosed and devastating disease that primarily affects male pediatric patients with a broad spectrum of disease pathologies that impact the cardiovascular, neuromuscular, metabolic, and hematologic systems.
Collapse
Affiliation(s)
- Anders O Garlid
- Cardiovascular Data Science Training Program at UCLA, University of California at Los Angeles, CA 90095, USA; Department of Physiology, University of California at Los Angeles, CA 90095, USA.
| | - Calvin T Schaffer
- Cardiovascular Data Science Training Program at UCLA, University of California at Los Angeles, CA 90095, USA; Department of Physiology, University of California at Los Angeles, CA 90095, USA
| | - Jaewoo Kim
- Cardiovascular Data Science Training Program at UCLA, University of California at Los Angeles, CA 90095, USA; Department of Physiology, University of California at Los Angeles, CA 90095, USA
| | - Hirsh Bhatt
- Cardiovascular Data Science Training Program at UCLA, University of California at Los Angeles, CA 90095, USA; Department of Physiology, University of California at Los Angeles, CA 90095, USA
| | - Vladimir Guevara-Gonzalez
- Cardiovascular Data Science Training Program at UCLA, University of California at Los Angeles, CA 90095, USA; Department of Mathematics, University of California at Los Angeles, CA 90095, USA
| | - Peipei Ping
- Cardiovascular Data Science Training Program at UCLA, University of California at Los Angeles, CA 90095, USA; Department of Physiology, University of California at Los Angeles, CA 90095, USA; Department of Medicine/Cardiology, University of California at Los Angeles, CA 90095, USA; Department of Bioinformatics, University of California at Los Angeles, CA 90095, USA; Scalable Analytics Institute (ScAi), University of California at Los Angeles, CA 90095, USA.
| |
Collapse
|
19
|
Vamecq J, Papegay B, Nuyens V, Boogaerts J, Leo O, Kruys V. Mitochondrial dysfunction, AMPK activation and peroxisomal metabolism: A coherent scenario for non-canonical 3-methylglutaconic acidurias. Biochimie 2019; 168:53-82. [PMID: 31626852 DOI: 10.1016/j.biochi.2019.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022]
Abstract
The occurrence of 3-methylglutaconic aciduria (3-MGA) is a well understood phenomenon in leucine oxidation and ketogenesis disorders (primary 3-MGAs). In contrast, its genesis in non-canonical (secondary) 3-MGAs, a growing-up group of disorders encompassing more than a dozen of inherited metabolic diseases, is a mystery still remaining unresolved for three decades. To puzzle out this anthologic problem of metabolism, three clues were considered: (i) the variety of disorders suggests a common cellular target at the cross-road of metabolic and signaling pathways, (ii) the response to leucine loading test only discriminative for primary but not secondary 3-MGAs suggests these latter are disorders of extramitochondrial HMG-CoA metabolism as also attested by their failure to increase 3-hydroxyisovalerate, a mitochondrial metabolite accumulating only in primary 3-MGAs, (iii) the peroxisome is an extramitochondrial site possessing its own pool and displaying metabolism of HMG-CoA, suggesting its possible involvement in producing extramitochondrial 3-methylglutaconate (3-MG). Following these clues provides a unifying common basis to non-canonical 3-MGAs: constitutive mitochondrial dysfunction induces AMPK activation which, by inhibiting early steps in cholesterol and fatty acid syntheses, pipelines cytoplasmic acetyl-CoA to peroxisomes where a rise in HMG-CoA followed by local dehydration and hydrolysis may lead to 3-MGA yield. Additional contributors are considered, notably for 3-MGAs associated with hyperammonemia, and to a lesser extent in CLPB deficiency. Metabolic and signaling itineraries followed by the proposed scenario are essentially sketched, being provided with compelling evidence from the literature coming in their support.
Collapse
Affiliation(s)
- Joseph Vamecq
- Inserm, CHU Lille, Univ Lille, Department of Biochemistry and Molecular Biology, Laboratory of Hormonology, Metabolism-Nutrition & Oncology (HMNO), Center of Biology and Pathology (CBP) Pierre-Marie Degand, CHRU Lille, EA 7364 RADEME, University of North France, Lille, France.
| | - Bérengère Papegay
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Vincent Nuyens
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Jean Boogaerts
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Oberdan Leo
- Laboratory of Immunobiology, Department of Molecular Biology, ULB Immunology Research Center (UIRC), Free University of Brussels (ULB), Gosselies, Belgium
| | - Véronique Kruys
- Laboratory of Molecular Biology of the Gene, Department of Molecular Biology, ULB Immunology Research Center (UIRC), Free University of Brussels (ULB), Gosselies, Belgium
| |
Collapse
|
20
|
Assembly of the complexes of oxidative phosphorylation triggers the remodeling of cardiolipin. Proc Natl Acad Sci U S A 2019; 116:11235-11240. [PMID: 31110016 DOI: 10.1073/pnas.1900890116] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cardiolipin (CL) is a mitochondrial phospholipid with a very specific and functionally important fatty acid composition, generated by tafazzin. However, in vitro tafazzin catalyzes a promiscuous acyl exchange that acquires specificity only in response to perturbations of the physical state of lipids. To identify the process that imposes acyl specificity onto CL remodeling in vivo, we analyzed a series of deletions and knockdowns in Saccharomyces cerevisiae and Drosophila melanogaster, including carriers, membrane homeostasis proteins, fission-fusion proteins, cristae-shape controlling and MICOS proteins, and the complexes I-V. Among those, only the complexes of oxidative phosphorylation (OXPHOS) affected the CL composition. Rather than any specific complex, it was the global impairment of the OXPHOS system that altered CL and at the same time shortened its half-life. The knockdown of OXPHOS expression had the same effect on CL as the knockdown of tafazzin in Drosophila flight muscles, including a change in CL composition and the accumulation of monolyso-CL. Thus, the assembly of OXPHOS complexes induces CL remodeling, which, in turn, leads to CL stabilization. We hypothesize that protein crowding in the OXPHOS system imposes packing stress on the lipid bilayer, which is relieved by CL remodeling to form tightly packed lipid-protein complexes.
Collapse
|
21
|
Calzada E, Avery E, Sam PN, Modak A, Wang C, McCaffery JM, Han X, Alder NN, Claypool SM. Phosphatidylethanolamine made in the inner mitochondrial membrane is essential for yeast cytochrome bc 1 complex function. Nat Commun 2019; 10:1432. [PMID: 30926815 PMCID: PMC6441012 DOI: 10.1038/s41467-019-09425-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 03/11/2019] [Indexed: 12/18/2022] Open
Abstract
Of the four separate PE biosynthetic pathways in eukaryotes, one occurs in the mitochondrial inner membrane (IM) and is executed by phosphatidylserine decarboxylase (Psd1). Deletion of Psd1 is lethal in mice and compromises mitochondrial function. We hypothesize that this reflects inefficient import of non-mitochondrial PE into the IM. Here, we test this by re-wiring PE metabolism in yeast by re-directing Psd1 to the outer mitochondrial membrane or the endomembrane system and show that PE can cross the IMS in both directions. Nonetheless, PE synthesis in the IM is critical for cytochrome bc1 complex (III) function and mutations predicted to disrupt a conserved PE-binding site in the complex III subunit, Qcr7, impair complex III activity similar to PSD1 deletion. Collectively, these data challenge the current dogma of PE trafficking and demonstrate that PE made in the IM by Psd1 support the intrinsic functionality of complex III.
Collapse
Affiliation(s)
- Elizabeth Calzada
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Erica Avery
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pingdewinde N Sam
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Arnab Modak
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Chunyan Wang
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - J Michael McCaffery
- Integrated Imaging Center, Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Nathan N Alder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Steven M Claypool
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
22
|
Overexpression of branched-chain amino acid aminotransferases rescues the growth defects of cells lacking the Barth syndrome-related gene TAZ1. J Mol Med (Berl) 2019; 97:269-279. [PMID: 30604168 DOI: 10.1007/s00109-018-1728-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/23/2018] [Accepted: 12/03/2018] [Indexed: 10/27/2022]
Abstract
The yeast protein Taz1 is the orthologue of human Tafazzin, a phospholipid acyltransferase involved in cardiolipin (CL) remodeling via a monolyso CL (MLCL) intermediate. Mutations in Tafazzin lead to Barth syndrome (BTHS), a metabolic and neuromuscular disorder that primarily affects the heart, muscles, and immune system. Similar to observations in fibroblasts and platelets from patients with BTHS or from animal models, abolishing yeast Taz1 results in decreased total CL amounts, increased levels of MLCL, and mitochondrial dysfunction. However, the biochemical mechanisms underlying the mitochondrial dysfunction in BTHS remain unclear. To better understand the pathomechanism of BTHS, we searched for multi-copy suppressors of the taz1Δ growth defect in yeast cells. We identified the branched-chain amino acid transaminases (BCATs) Bat1 and Bat2 as such suppressors. Similarly, overexpression of the mitochondrial isoform BCAT2 in mammalian cells lacking TAZ improves their growth. Elevated levels of Bat1 or Bat2 did not restore the reduced membrane potential, altered stability of respiratory complexes, or the defective accumulation of MLCL species in yeast taz1Δ cells. Importantly, supplying yeast or mammalian cells lacking TAZ1 with certain amino acids restored their growth behavior. Hence, our findings suggest that the metabolism of amino acids has an important and disease-relevant role in cells lacking Taz1 function. KEY MESSAGES: Bat1 and Bat2 are multi-copy suppressors of retarded growth of taz1Δ yeast cells. Overexpression of Bat1/2 in taz1Δ cells does not rescue known mitochondrial defects. Supplementation of amino acids enhances growth of cells lacking Taz1 or Tafazzin. Altered metabolism of amino acids might be involved in the pathomechanism of BTSH.
Collapse
|
23
|
Lou W, Ting HC, Reynolds CA, Tyurina YY, Tyurin VA, Li Y, Ji J, Yu W, Liang Z, Stoyanovsky DA, Anthonymuthu TS, Frasso MA, Wipf P, Greenberger JS, Bayır H, Kagan VE, Greenberg ML. Genetic re-engineering of polyunsaturated phospholipid profile of Saccharomyces cerevisiae identifies a novel role for Cld1 in mitigating the effects of cardiolipin peroxidation. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1354-1368. [PMID: 29935382 PMCID: PMC6641546 DOI: 10.1016/j.bbalip.2018.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 01/18/2023]
Abstract
Cardiolipin (CL) is a unique phospholipid localized almost exclusively within the mitochondrial membranes where it is synthesized. Newly synthesized CL undergoes acyl remodeling to produce CL species enriched with unsaturated acyl groups. Cld1 is the only identified CL-specific phospholipase in yeast and is required to initiate the CL remodeling pathway. In higher eukaryotes, peroxidation of CL, yielding CLOX, has been implicated in the cellular signaling events that initiate apoptosis. CLOX can undergo enzymatic hydrolysis, resulting in the release of lipid mediators with signaling properties. Our previous findings suggested that CLD1 expression is upregulated in response to oxidative stress, and that one of the physiological roles of CL remodeling is to remove peroxidized CL. To exploit the powerful yeast model to study functions of CLD1 in CL peroxidation, we expressed the H. brasiliensis Δ12-desaturase gene in yeast, which then synthesized poly unsaturated fatty acids(PUFAs) that are incorporated into CL species. Using LC-MS based redox phospholipidomics, we identified and quantified the molecular species of CL and other phospholipids in cld1Δ vs. WT cells. Loss of CLD1 led to a dramatic decrease in chronological lifespan, mitochondrial membrane potential, and respiratory capacity; it also resulted in increased levels of mono-hydroperoxy-CLs, particularly among the highly unsaturated CL species, including tetralinoleoyl-CL. In addition, purified Cld1 exhibited a higher affinity for CLOX, and treatment of cells with H2O2 increased CLD1 expression in the logarithmic growth phase. These data suggest that CLD1 expression is required to mitigate oxidative stress. The findings from this study contribute to our overall understanding of CL remodeling and its role in mitigating oxidative stress.
Collapse
Affiliation(s)
- Wenjia Lou
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Hsiu-Chi Ting
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Christian A Reynolds
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Yulia Y Tyurina
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States; Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Vladimir A Tyurin
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States; Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yiran Li
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Jiajia Ji
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Wenxi Yu
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Zhuqing Liang
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Detcho A Stoyanovsky
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Tamil S Anthonymuthu
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, United States; Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Michael A Frasso
- Chemistry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Peter Wipf
- Chemistry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joel S Greenberger
- Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hülya Bayır
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States; Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, United States; Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States; Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, United States; Chemistry, University of Pittsburgh, Pittsburgh, PA, United States; Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States; Laboratory of Navigational Redox Lipidomics,and Department of Human Pathology, IM Sechenov Moscow State Medical University, Moscow, Russian Federation.
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States.
| |
Collapse
|
24
|
Virčíková V, Pokorná L, Tahotná D, Džugasová V, Balážová M, Griač P. Schizosaccharomyces pombe cardiolipin synthase is part of a mitochondrial fusion protein regulated by intron retention. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1331-1344. [PMID: 29958934 DOI: 10.1016/j.bbalip.2018.06.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 06/08/2018] [Accepted: 06/23/2018] [Indexed: 11/29/2022]
Abstract
Cardiolipin (CL) is a unique lipid component of mitochondria in all eukaryotes. It is important for the architecture of mitochondrial membranes and for mitochondrial dynamics. CL also creates a highly specific microenvironment of mitochondrial protein machineries. CL biosynthetic pathway is, however, only partially characterized in the fission yeast Schizosaccharomyces pombe. Here we show that CL synthase is an essential protein in S. pombe. It is encoded by the ORF SPAC22A12.08c as a C terminal part of a tandem fusion protein together with a mitochondrial hydrolase of unknown function. Expression of S. pombe CL synthase is able to complement deletion of the CRD1 gene of Saccharomyces cerevisiae and, vice versa, S. cerevisiae CRD1 gene complements deletion of S. pombe SPAC22A12.08c. The proper expression of CL synthase and its partner in the tandem protein, the mitochondrial hydrolase, is regulated at the level of alternate intron splicing. The first part of the SPAC22A12.08c fusion protein could be translated from both major SPAC22A12.08c derived mRNAs, with and without intron IV. Functional CL synthase, however, is produced only from the minor SPAC22A12.08c derived mRNA that has intron IV retained. Thus, intron retention is a novel mechanism for the differential expression of two proteins that evolved as a fusion protein and are under the control of the same promoter.
Collapse
Affiliation(s)
- Veronika Virčíková
- Centre of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Lucia Pokorná
- Centre of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Dana Tahotná
- Centre of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Vladimíra Džugasová
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Mária Balážová
- Centre of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Peter Griač
- Centre of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia.
| |
Collapse
|
25
|
Yao CH, Liu GY, Wang R, Moon SH, Gross RW, Patti GJ. Identifying off-target effects of etomoxir reveals that carnitine palmitoyltransferase I is essential for cancer cell proliferation independent of β-oxidation. PLoS Biol 2018; 16:e2003782. [PMID: 29596410 PMCID: PMC5892939 DOI: 10.1371/journal.pbio.2003782] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 04/10/2018] [Accepted: 02/22/2018] [Indexed: 02/06/2023] Open
Abstract
It has been suggested that some cancer cells rely upon fatty acid oxidation (FAO) for energy. Here we show that when FAO was reduced approximately 90% by pharmacological inhibition of carnitine palmitoyltransferase I (CPT1) with low concentrations of etomoxir, the proliferation rate of various cancer cells was unaffected. Efforts to pharmacologically inhibit FAO more than 90% revealed that high concentrations of etomoxir (200 μM) have an off-target effect of inhibiting complex I of the electron transport chain. Surprisingly, however, when FAO was reduced further by genetic knockdown of CPT1, the proliferation rate of these same cells decreased nearly 2-fold and could not be restored by acetate or octanoic acid supplementation. Moreover, CPT1 knockdowns had altered mitochondrial morphology and impaired mitochondrial coupling, whereas cells in which CPT1 had been approximately 90% inhibited by etomoxir did not. Lipidomic profiling of mitochondria isolated from CPT1 knockdowns showed depleted concentrations of complex structural and signaling lipids. Additionally, expression of a catalytically dead CPT1 in CPT1 knockdowns did not restore mitochondrial coupling. Taken together, these results suggest that transport of at least some long-chain fatty acids into the mitochondria by CPT1 may be required for anabolic processes that support healthy mitochondrial function and cancer cell proliferation independent of FAO.
Collapse
Affiliation(s)
- Cong-Hui Yao
- Department of Chemistry, Washington University, St. Louis, Missouri, United States of America
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Gao-Yuan Liu
- Department of Chemistry, Washington University, St. Louis, Missouri, United States of America
- Department of Internal Medicine, Division of Bioorganic and Molecular Pharmacology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Rencheng Wang
- Department of Chemistry, Washington University, St. Louis, Missouri, United States of America
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Sung Ho Moon
- Department of Chemistry, Washington University, St. Louis, Missouri, United States of America
- Department of Internal Medicine, Division of Bioorganic and Molecular Pharmacology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Richard W. Gross
- Department of Chemistry, Washington University, St. Louis, Missouri, United States of America
- Department of Internal Medicine, Division of Bioorganic and Molecular Pharmacology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Gary J. Patti
- Department of Chemistry, Washington University, St. Louis, Missouri, United States of America
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
26
|
Basu Ball W, Neff JK, Gohil VM. The role of nonbilayer phospholipids in mitochondrial structure and function. FEBS Lett 2017; 592:1273-1290. [PMID: 29067684 DOI: 10.1002/1873-3468.12887] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 12/18/2022]
Abstract
Mitochondrial structure and function are influenced by the unique phospholipid composition of its membranes. While mitochondria contain all the major classes of phospholipids, recent studies have highlighted specific roles of the nonbilayer-forming phospholipids phosphatidylethanolamine (PE) and cardiolipin (CL) in the assembly and activity of mitochondrial respiratory chain (MRC) complexes. The nonbilayer phospholipids are cone-shaped molecules that introduce curvature stress in the bilayer membrane and have been shown to impact mitochondrial fusion and fission. In addition to their overlapping roles in these mitochondrial processes, each nonbilayer phospholipid also plays a unique role in mitochondrial function; for example, CL is specifically required for MRC supercomplex formation. Recent discoveries of mitochondrial PE- and CL-trafficking proteins and prior knowledge of their biosynthetic pathways have provided targets for precisely manipulating nonbilayer phospholipid levels in the mitochondrial membranes in vivo. Thus, the genetic mutants of these pathways could be valuable tools in illuminating molecular functions and biophysical properties of nonbilayer phospholipids in driving mitochondrial bioenergetics and dynamics.
Collapse
Affiliation(s)
- Writoban Basu Ball
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - John K Neff
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Vishal M Gohil
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| |
Collapse
|
27
|
Lesnefsky EJ, Chen Q, Hoppel CL. Mitochondrial Metabolism in Aging Heart. Circ Res 2017; 118:1593-611. [PMID: 27174952 DOI: 10.1161/circresaha.116.307505] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/05/2016] [Indexed: 02/07/2023]
Abstract
Altered mitochondrial metabolism is the underlying basis for the increased sensitivity in the aged heart to stress. The aged heart exhibits impaired metabolic flexibility, with a decreased capacity to oxidize fatty acids and enhanced dependence on glucose metabolism. Aging impairs mitochondrial oxidative phosphorylation, with a greater role played by the mitochondria located between the myofibrils, the interfibrillar mitochondria. With aging, there is a decrease in activity of complexes III and IV, which account for the decrease in respiration. Furthermore, aging decreases mitochondrial content among the myofibrils. The end result is that in the interfibrillar area, there is ≈50% decrease in mitochondrial function, affecting all substrates. The defective mitochondria persist in the aged heart, leading to enhanced oxidant production and oxidative injury and the activation of oxidant signaling for cell death. Aging defects in mitochondria represent new therapeutic targets, whether by manipulation of the mitochondrial proteome, modulation of electron transport, activation of biogenesis or mitophagy, or the regulation of mitochondrial fission and fusion. These mechanisms provide new ways to attenuate cardiac disease in elders by preemptive treatment of age-related defects, in contrast to the treatment of disease-induced dysfunction.
Collapse
Affiliation(s)
- Edward J Lesnefsky
- From the Division of Cardiology, Department of Medicine, Pauley Heart Center (E.J.L, Q.C.), Departments of Biochemistry and Molecular Biology and Physiology and Biophsyics (E.J.L.), Virginia Commonwealth University, Richmond, VA (E.J.L., Q.C.); Medical Service, McGuire Veterans Affairs Medical Center, Richmond, VA (E.J.L.); and Departments of Pharmacology (C.L.H.) and Medicine (E.J.L., C.L.H.), Center for Mitochondrial Disease (C.L.H.), Case Western Reserve University, School of Medicine, Cleveland, OH
| | - Qun Chen
- From the Division of Cardiology, Department of Medicine, Pauley Heart Center (E.J.L, Q.C.), Departments of Biochemistry and Molecular Biology and Physiology and Biophsyics (E.J.L.), Virginia Commonwealth University, Richmond, VA (E.J.L., Q.C.); Medical Service, McGuire Veterans Affairs Medical Center, Richmond, VA (E.J.L.); and Departments of Pharmacology (C.L.H.) and Medicine (E.J.L., C.L.H.), Center for Mitochondrial Disease (C.L.H.), Case Western Reserve University, School of Medicine, Cleveland, OH
| | - Charles L Hoppel
- From the Division of Cardiology, Department of Medicine, Pauley Heart Center (E.J.L, Q.C.), Departments of Biochemistry and Molecular Biology and Physiology and Biophsyics (E.J.L.), Virginia Commonwealth University, Richmond, VA (E.J.L., Q.C.); Medical Service, McGuire Veterans Affairs Medical Center, Richmond, VA (E.J.L.); and Departments of Pharmacology (C.L.H.) and Medicine (E.J.L., C.L.H.), Center for Mitochondrial Disease (C.L.H.), Case Western Reserve University, School of Medicine, Cleveland, OH.
| |
Collapse
|
28
|
Kagan VE, Bayır H, Tyurina YY, Bolevich SB, Maguire JJ, Fadeel B, Balasubramanian K. Elimination of the unnecessary: Intra- and extracellular signaling by anionic phospholipids. Biochem Biophys Res Commun 2017; 482:482-490. [PMID: 28212735 PMCID: PMC5319735 DOI: 10.1016/j.bbrc.2016.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 11/01/2016] [Indexed: 12/19/2022]
Abstract
High fidelity of biological systems is frequently achieved by duplication of the essential intracellular machineries or, removal of the entire cell, which becomes unnecessary or even harmful in altered physiological environments. Carefully controlled removal of these cells, without damaging normal cells, requires precise signaling, and is critical to maintaining homeostasis. This review describes how two anionic phospholipids - phosphatidylserine (PS) and cardiolipin (CL) - residing in distinct compartments of the cell, signal removal of "the unnecessary" using several uniform principles. One of these principles is realized by collapse of inherent transmembrane asymmetry and the externalization of the signal on the outer membrane surface - mitochondria for CL and the plasma membrane for PS - to trigger mitophagy and phagocytosis, respectively. Release from damaged cells of intracellular structures with externalized CL or externalized PS triggers their elimination by phagocytosis. Another of these principles is realized by oxidation of polyunsaturated species of CL and PS. Highly specific oxidation of CL by cytochrome c serves as a signal for mitochondria-dependent apoptosis, while oxidation of externalized PS improves its effectiveness to trigger phagocytosis of effete cells.
Collapse
Affiliation(s)
- Valerian E Kagan
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA; Department of Human Pathology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.
| | - Hülya Bayır
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yulia Y Tyurina
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sergey B Bolevich
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - John J Maguire
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bengt Fadeel
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Krishnakumar Balasubramanian
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
29
|
CLD1 Reverses the Ubiquinone Insufficiency of Mutant cat5/coq7 in a Saccharomyces cerevisiae Model System. PLoS One 2016; 11:e0162165. [PMID: 27603010 PMCID: PMC5014327 DOI: 10.1371/journal.pone.0162165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/16/2016] [Indexed: 11/23/2022] Open
Abstract
Ubiquinone (Qn) functions as a mobile electron carrier in mitochondria. In humans, Q biosynthetic pathway mutations lead to Q10 deficiency, a life threatening disorder. We have used a Saccharomyces cerevisiae model of Q6 deficiency to screen for new modulators of ubiquinone biosynthesis. We generated several hypomorphic alleles of coq7/cat5 (clk-1 in Caenorhabditis elegans) encoding the penultimate enzyme in Q biosynthesis which converts 5-demethoxy Q6 (DMQ6) to 5-demethyl Q6, and screened for genes that, when overexpressed, suppressed their inability to grow on non-fermentable ethanol—implying recovery of lost mitochondrial function. Through this approach we identified Cardiolipin-specific Deacylase 1 (CLD1), a gene encoding a phospholipase A2 required for cardiolipin acyl remodeling. Interestingly, not all coq7 mutants were suppressed by Cld1p overexpression, and molecular modeling of the mutant Coq7p proteins that were suppressed showed they all contained disruptions in a hydrophobic α-helix that is predicted to mediate membrane-binding. CLD1 overexpression in the suppressible coq7 mutants restored the ratio of DMQ6 to Q6 toward wild type levels, suggesting recovery of lost Coq7p function. Identification of a spontaneous Cld1p loss-of-function mutation illustrated that Cld1p activity was required for coq7 suppression. This observation was further supported by HPLC-ESI-MS/MS profiling of monolysocardiolipin, the product of Cld1p. In summary, our results present a novel example of a lipid remodeling enzyme reversing a mitochondrial ubiquinone insufficiency by facilitating recovery of hypomorphic enzymatic function.
Collapse
|
30
|
Biosynthesis, remodeling and turnover of mitochondrial cardiolipin. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:3-7. [PMID: 27556952 DOI: 10.1016/j.bbalip.2016.08.010] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/03/2016] [Accepted: 08/17/2016] [Indexed: 12/15/2022]
Abstract
Among mitochondrial lipids, cardiolipin occupies a unique place. It is the only phospholipid that is specific to mitochondria and although it is merely a minor component, accounting for 10-20% of the total phospholipid content, cardiolipin plays an important role in the molecular organization, and thus the function of the cristae. This review covers the formation of cardiolipin, a phospholipid dimer containing two phosphatidyl residues, and its assembly into mitochondrial membranes. While a large body of literature exists on this topic, the review focuses on papers that appeared in the past three years. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.
Collapse
|
31
|
Intramitochondrial phospholipid trafficking. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:81-89. [PMID: 27542541 DOI: 10.1016/j.bbalip.2016.08.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/03/2016] [Accepted: 08/11/2016] [Indexed: 12/29/2022]
Abstract
Mitochondrial functions and architecture rely on a defined lipid composition of their outer and inner membranes, which are characterized by a high content of non-bilayer phospholipids such as cardiolipin (CL) and phosphatidylethanolamine (PE). Mitochondrial membrane lipids are synthesized in the endoplasmic reticulum (ER) or within mitochondria from ER-derived precursor lipids, are asymmetrically distributed within mitochondria and can relocate in response to cellular stress. Maintenance of lipid homeostasis thus requires multiple lipid transport processes to be orchestrated within mitochondria. Recent findings identified members of the Ups/PRELI family as specific lipid transfer proteins in mitochondria that shuttle phospholipids between mitochondrial membranes. They cooperate with membrane organizing proteins that preserve the spatial organization of mitochondrial membranes and the formation of membrane contact sites, unravelling an intimate crosstalk of membrane lipid transport and homeostasis with the structural organization of mitochondria. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.
Collapse
|
32
|
Known unknowns of cardiolipin signaling: The best is yet to come. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:8-24. [PMID: 27498292 PMCID: PMC5323096 DOI: 10.1016/j.bbalip.2016.08.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/27/2016] [Accepted: 08/01/2016] [Indexed: 12/11/2022]
Abstract
Since its discovery 75years ago, a wealth of knowledge has accumulated on the role of cardiolipin, the hallmark phospholipid of mitochondria, in bioenergetics and particularly on the structural organization of the inner mitochondrial membrane. A surge of interest in this anionic doubly-charged tetra-acylated lipid found in both prokaryotes and mitochondria has emerged based on its newly discovered signaling functions. Cardiolipin displays organ, tissue, cellular and transmembrane distribution asymmetries. A collapse of the membrane asymmetry represents a pro-mitophageal mechanism whereby externalized cardiolipin acts as an "eat-me" signal. Oxidation of cardiolipin's polyunsaturated acyl chains - catalyzed by cardiolipin complexes with cytochrome c. - is a pro-apoptotic signal. The messaging functions of myriads of cardiolipin species and their oxidation products are now being recognized as important intracellular and extracellular signals for innate and adaptive immune systems. This newly developing field of research exploring cardiolipin signaling is the main subject of this review. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.
Collapse
|
33
|
Abe M, Hasegawa Y, Oku M, Sawada Y, Tanaka E, Sakai Y, Miyoshi H. Mechanism for Remodeling of the Acyl Chain Composition of Cardiolipin Catalyzed by Saccharomyces cerevisiae Tafazzin. J Biol Chem 2016; 291:15491-502. [PMID: 27268057 DOI: 10.1074/jbc.m116.718510] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Indexed: 01/26/2023] Open
Abstract
Remodeling of the acyl chains of cardiolipin (CL) is responsible for final molecular composition of mature CL after de novo CL synthesis in mitochondria. Yeast Saccharomyces cerevisiae undergoes tafazzin-mediated CL remodeling, in which tafazzin serves as a transacylase from phospholipids to monolyso-CL (MLCL). In light of the diversity of the acyl compositions of mature CL between different organisms, the mechanism underlying tafazzin-mediated transacylation remains to be elucidated. We investigated the mechanism responsible for transacylation using purified S. cerevisiae tafazzin with liposomes composed of various sets of acyl donors and acceptors. The results revealed that tafazzin efficiently catalyzes transacylation in liposomal membranes with highly ordered lipid bilayer structure. Tafazzin elicited unique acyl chain specificity against phosphatidylcholine (PC) as follows: linoleoyl (18:2) > oleoyl (18:1) = palmitoleoyl (16:1) ≫ palmitoyl (16:0). In these reactions, tafazzin selectively removed the sn-2 acyl chain of PC and transferred it into the sn-1 and sn-2 positions of MLCL isomers at equivalent rates. We demonstrated for the first time that MLCL and dilyso-CL have inherent abilities to function as an acyl donor to monolyso-PC and acyl acceptor from PC, respectively. Furthermore, a Barth syndrome-associated tafazzin mutant (H77Q) was shown to completely lack the catalytic activity in our assay. It is difficult to reconcile the present results with the so-called thermodynamic remodeling hypothesis, which premises that tafazzin reacylates MLCL by unsaturated acyl chains only in disordered non-bilayer lipid domain. The acyl specificity of tafazzin may be one of the factors that determine the acyl composition of mature CL in S. cerevisiae mitochondria.
Collapse
Affiliation(s)
- Masato Abe
- From the Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yui Hasegawa
- From the Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masahide Oku
- From the Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yoshiki Sawada
- From the Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Eriko Tanaka
- From the Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yasuyoshi Sakai
- From the Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hideto Miyoshi
- From the Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
34
|
Lu YW, Galbraith L, Herndon JD, Lu YL, Pras-Raves M, Vervaart M, Van Kampen A, Luyf A, Koehler CM, McCaffery JM, Gottlieb E, Vaz FM, Claypool SM. Defining functional classes of Barth syndrome mutation in humans. Hum Mol Genet 2016; 25:1754-70. [PMID: 26908608 PMCID: PMC4986330 DOI: 10.1093/hmg/ddw046] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/08/2016] [Accepted: 02/15/2016] [Indexed: 11/13/2022] Open
Abstract
The X-linked disease Barth syndrome (BTHS) is caused by mutations in TAZ; TAZ is the main determinant of the final acyl chain composition of the mitochondrial-specific phospholipid, cardiolipin. To date, a detailed characterization of endogenous TAZ has only been performed in yeast. Further, why a given BTHS-associated missense mutation impairs TAZ function has only been determined in a yeast model of this human disease. Presently, the detailed characterization of yeast tafazzin harboring individual BTHS mutations at evolutionarily conserved residues has identified seven distinct loss-of-function mechanisms caused by patient-associated missense alleles. However, whether the biochemical consequences associated with individual mutations also occur in the context of human TAZ in a validated mammalian model has not been demonstrated. Here, utilizing newly established monoclonal antibodies capable of detecting endogenous TAZ, we demonstrate that mammalian TAZ, like its yeast counterpart, is localized to the mitochondrion where it adopts an extremely protease-resistant fold, associates non-integrally with intermembrane space-facing membranes and assembles in a range of complexes. Even though multiple isoforms are expressed at the mRNA level, only a single polypeptide that co-migrates with the human isoform lacking exon 5 is expressed in human skin fibroblasts, HEK293 cells, and murine heart and liver mitochondria. Finally, using a new genome-edited mammalian BTHS cell culture model, we demonstrate that the loss-of-function mechanisms for two BTHS alleles that represent two of the seven functional classes of BTHS mutation as originally defined in yeast, are the same when modeled in human TAZ.
Collapse
Affiliation(s)
- Ya-Wen Lu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185, USA
| | - Laura Galbraith
- Cancer Research UK, The Beatson Institute for Cancer Research, Glasgow G61 1BD, UK
| | - Jenny D Herndon
- Department of Chemistry and Biochemistry, Molecular Biology Institute, and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095-1569, USA
| | - Ya-Lin Lu
- Division of Biology and Biomedical Sciences, Graduate School of Arts and Sciences, Washington University, St. Louis, MO 63130-4899, USA
| | - Mia Pras-Raves
- Departments of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases and
| | - Martin Vervaart
- Departments of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases and
| | - Antoine Van Kampen
- Bioinformatics Laboratory, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, Amsterdam, The Netherlands and
| | - Angela Luyf
- Bioinformatics Laboratory, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, Amsterdam, The Netherlands and
| | - Carla M Koehler
- Department of Chemistry and Biochemistry, Molecular Biology Institute, and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095-1569, USA
| | - J Michael McCaffery
- Integrated Imaging Center, Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Eyal Gottlieb
- Cancer Research UK, The Beatson Institute for Cancer Research, Glasgow G61 1BD, UK
| | - Frederic M Vaz
- Departments of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases and
| | - Steven M Claypool
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185, USA,
| |
Collapse
|
35
|
Dolinsky VW, Cole LK, Sparagna GC, Hatch GM. Cardiac mitochondrial energy metabolism in heart failure: Role of cardiolipin and sirtuins. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1544-54. [PMID: 26972373 DOI: 10.1016/j.bbalip.2016.03.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/03/2016] [Accepted: 03/04/2016] [Indexed: 01/19/2023]
Abstract
Mitochondrial oxidation of fatty acids accounts for the majority of cardiac ATP production in the heart. Fatty acid utilization by cardiac mitochondria is controlled at the level of fatty acid uptake, lipid synthesis, mobilization and mitochondrial import and oxidation. Consequently defective mitochondrial function appears to be central to the development of heart failure. Cardiolipin is a key mitochondrial phospholipid required for the activity of the electron transport chain. In heart failure, loss of cardiolipin and tetralinoleoylcardiolipin helps to fuel the generation of excessive reactive oxygen species that are a by-product of inefficient mitochondrial electron transport chain complexes I and III. In this vicious cycle, reactive oxygen species generate lipid peroxides and may, in turn, cause oxidation of cardiolipin catalyzed by cytochrome c leading to cardiomyocyte apoptosis. Hence, preservation of cardiolipin and mitochondrial function may be keys to the prevention of heart failure development. In this review, we summarize cardiac energy metabolism and the important role that fatty acid uptake and metabolism play in this process and how defects in these result in heart failure. We highlight the key role that cardiolipin and sirtuins play in cardiac mitochondrial β-oxidation. In addition, we review the potential of pharmacological modulation of cardiolipin through the polyphenolic molecule resveratrol as a sirtuin-activator in attenuating mitochondrial dysfunction. Finally, we provide novel experimental evidence that resveratrol treatment increases cardiolipin in isolated H9c2 cardiac myocytes and tetralinoleoylcardiolipin in the heart of the spontaneously hypertensive rat and hypothesize that this leads to improvement in mitochondrial function. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.
Collapse
Affiliation(s)
- Vernon W Dolinsky
- Department of Pharmacology & Therapeutics, Faculty of Health Sciences, University of Manitoba, Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba (CHRIM), Canada
| | - Laura K Cole
- Department of Pharmacology & Therapeutics, Faculty of Health Sciences, University of Manitoba, Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba (CHRIM), Canada
| | - Genevieve C Sparagna
- Department of Medicine, Division of Cardiology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Grant M Hatch
- Department of Pharmacology & Therapeutics, Faculty of Health Sciences, University of Manitoba, Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba (CHRIM), Canada; Department of Biochemistry and Medical Genetics, Faculty of Health Sciences, Center for Research and Treatment of Atherosclerosis, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
36
|
Saric A, Andreau K, Armand AS, Møller IM, Petit PX. Barth Syndrome: From Mitochondrial Dysfunctions Associated with Aberrant Production of Reactive Oxygen Species to Pluripotent Stem Cell Studies. Front Genet 2016; 6:359. [PMID: 26834781 PMCID: PMC4719219 DOI: 10.3389/fgene.2015.00359] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 12/15/2015] [Indexed: 12/22/2022] Open
Abstract
Mutations in the gene encoding the enzyme tafazzin, TAZ, cause Barth syndrome (BTHS). Individuals with this X-linked multisystem disorder present cardiomyopathy (CM) (often dilated), skeletal muscle weakness, neutropenia, growth retardation, and 3-methylglutaconic aciduria. Biopsies of the heart, liver and skeletal muscle of patients have revealed mitochondrial malformations and dysfunctions. It is the purpose of this review to summarize recent results of studies on various animal or cell models of Barth syndrome, which have characterized biochemically the strong cellular defects associated with TAZ mutations. Tafazzin is a mitochondrial phospholipidlysophospholipid transacylase that shuttles acyl groups between phospholipids and regulates the remodeling of cardiolipin (CL), a unique inner mitochondrial membrane phospholipid dimer consisting of two phosphatidyl residues linked by a glycerol bridge. After their biosynthesis, the acyl chains of CLs may be modified in remodeling processes involving up to three different enzymes. Their characteristic acyl chain composition depends on the function of tafazzin, although the enzyme itself surprisingly lacks acyl specificity. CLs are crucial for correct mitochondrial structure and function. In addition to their function in the basic mitochondrial function of ATP production, CLs play essential roles in cardiac function, apoptosis, autophagy, cell cycle regulation and Fe-S cluster biosynthesis. Recent developments in tafazzin research have provided strong insights into the link between mitochondrial dysfunction and the production of reactive oxygen species (ROS). An important tool has been the generation of BTHS-specific induced pluripotent stem cells (iPSCs) from BTHS patients. In a complementary approach, disease-specific mutations have been introduced into wild-type iPSC lines enabling direct comparison with isogenic controls. iPSC-derived cardiomyocytes were then characterized using biochemical and classical bioenergetic approaches. The cells are tested in a "heart-on-chip" assay to model the pathophysiology in vitro, to characterize the underlying mechanism of BTHS deriving from TAZ mutations, mitochondrial deficiencies and ROS production and leading to tissue defects, and to evaluate potential therapies with the use of mitochondrially targeted antioxidants.
Collapse
Affiliation(s)
- Ana Saric
- INSERM U 1124 "Toxicologie, Pharmacologie et Signalisation Cellulaire" and "FR 3567" CNRS Chimie, Toxicologie, Signalisation Cellulaire et Cibles Thérapeutiques, Université Paris Descartes - Centre Universitaire des Saints-PèresParis, France; Division of Molecular Medicine, Ruđer Bošković InstituteZagreb, Croatia
| | - Karine Andreau
- INSERM U 1124 "Toxicologie, Pharmacologie et Signalisation Cellulaire" and "FR 3567" CNRS Chimie, Toxicologie, Signalisation Cellulaire et Cibles Thérapeutiques, Université Paris Descartes - Centre Universitaire des Saints-Pères Paris, France
| | - Anne-Sophie Armand
- INSERM U 1124 "Toxicologie, Pharmacologie et Signalisation Cellulaire" and "FR 3567" CNRS Chimie, Toxicologie, Signalisation Cellulaire et Cibles Thérapeutiques, Université Paris Descartes - Centre Universitaire des Saints-Pères Paris, France
| | - Ian M Møller
- Department of Molecular Biology and Genetics, Aarhus University Slagelse, Denmark
| | - Patrice X Petit
- INSERM U 1124 "Toxicologie, Pharmacologie et Signalisation Cellulaire" and "FR 3567" CNRS Chimie, Toxicologie, Signalisation Cellulaire et Cibles Thérapeutiques, Université Paris Descartes - Centre Universitaire des Saints-Pères Paris, France
| |
Collapse
|
37
|
Renne MF, Bao X, De Smet CH, de Kroon AIPM. Lipid Acyl Chain Remodeling in Yeast. Lipid Insights 2016; 8:33-40. [PMID: 26819558 PMCID: PMC4720183 DOI: 10.4137/lpi.s31780] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/21/2015] [Indexed: 11/05/2022] Open
Abstract
Membrane lipid homeostasis is maintained by de novo synthesis, intracellular transport, remodeling, and degradation of lipid molecules. Glycerophospholipids, the most abundant structural component of eukaryotic membranes, are subject to acyl chain remodeling, which is defined as the post-synthetic process in which one or both acyl chains are exchanged. Here, we review studies addressing acyl chain remodeling of membrane glycerophospholipids in Saccharomyces cerevisiae, a model organism that has been successfully used to investigate lipid synthesis and its regulation. Experimental evidence for the occurrence of phospholipid acyl chain exchange in cardiolipin, phosphatidylcholine, phosphatidylinositol, and phosphatidylethanolamine is summarized, including methods and tools that have been used for detecting remodeling. Progress in the identification of the enzymes involved is reported, and putative functions of acyl chain remodeling in yeast are discussed.
Collapse
Affiliation(s)
- Mike F Renne
- Membrane Biochemistry and Biophysics, Bijvoet Center for Biomolecular Research, Institute of Biomembranes, Utrecht University, Utrecht, the Netherlands
| | - Xue Bao
- Membrane Biochemistry and Biophysics, Bijvoet Center for Biomolecular Research, Institute of Biomembranes, Utrecht University, Utrecht, the Netherlands
| | - Cedric H De Smet
- Membrane Biochemistry and Biophysics, Bijvoet Center for Biomolecular Research, Institute of Biomembranes, Utrecht University, Utrecht, the Netherlands.; Present address: Division of Cell Biology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Anton I P M de Kroon
- Membrane Biochemistry and Biophysics, Bijvoet Center for Biomolecular Research, Institute of Biomembranes, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
38
|
Acquired deficiency of tafazzin in the adult heart: Impact on mitochondrial function and response to cardiac injury. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1861:294-300. [PMID: 26692032 DOI: 10.1016/j.bbalip.2015.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/11/2015] [Accepted: 12/11/2015] [Indexed: 12/22/2022]
Abstract
The content and composition of cardiolipin (CL) is critical for preservation of mitochondrial oxidative phosphorylation (OXPHOS) and inner membrane integrity. Tafazzin (Taz) is an enzyme responsible for remodeling of immature CL containing mixed acyl groups into the mature tetralinoleyl form (C18:2)4-CL. We hypothesized that acquired defects in Taz in the mature heart would impact remodeling of CL and augment cardiac injury. The role of acquired Taz deficiency was studied using the inducible Taz knockdown (TazKD) mouse. Taz-specific shRNA is induced by doxycycline (DOX). One day of DOX intake decreased Taz mRNA in the heart to 20% vs. DOX-treated WT. Knockdown was initiated at an adult age and was stable during long term feeding. CL phenotype was assessed by (C18:2)4-CL content and was reduced 40% vs. WT at two months of DOX. TazKD showed increased production of reactive oxygen species and increased susceptibility to permeability transition pore opening at baseline. However, OXPHOS measured using the rate of oxygen consumption was unchanged in the setting of acquired Taz deficiency. Infarct size, measured in isolated buffer-perfused Langendorff hearts following 25min. Stop flow ischemia and 60min. Reperfusion was not altered in TazKD hearts. Thus, impaired Taz-function with onset at adult age does not enhance susceptibility to ischemia-reperfusion injury.
Collapse
|
39
|
Gaspard GJ, McMaster CR. Cardiolipin metabolism and its causal role in the etiology of the inherited cardiomyopathy Barth syndrome. Chem Phys Lipids 2015; 193:1-10. [PMID: 26415690 DOI: 10.1016/j.chemphyslip.2015.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/14/2015] [Accepted: 09/16/2015] [Indexed: 01/11/2023]
Abstract
Cardiolipin (CL) is a phospholipid with many unique characteristics. CL is synthesized in the mitochondria and resides almost exclusively within the mitochondrial inner membrane. Unlike most phospholipids that have two fatty acyl chains, CL possesses four fatty acyl chains resulting in unique biophysical characteristics that impact several biological processes including membrane fission and fusion. In addition, several proteins directly bind CL including proteins within the electron transport chain, the ADP/ATP carrier, and proteins that mediate mitophagy. Tafazzin is an enzyme that remodels saturated fatty acyl chains within CL to unsaturated fatty acyl chains, loss of function mutations in the TAZ gene encoding tafazzin are causal for the inherited cardiomyopathy Barth syndrome. Cells from Barth syndrome patients as well as several models of Barth have reduced mitochondrial functions including impaired electron transport chain function and increased reactive oxygen species (ROS) production. Mitochondria in cells from Barth syndrome patients, as well as several model organism mimics of Barth syndrome, are large and lack cristae consistent with the recently described role of CL participating in the generation of mitochondrial membrane contact sites. Cells with an inactive TAZ gene have also been shown to have a decreased capacity to undergo mitophagy when faced with stresses such as increased ROS or decreased mitochondrial quality control. This review describes CL metabolism and how defects in CL metabolism cause Barth syndrome, the etiology of Barth syndrome, and known modifiers of Barth syndrome phenotypes some of which could be explored for their amelioration of Barth syndrome in higher organisms.
Collapse
Affiliation(s)
- Gerard J Gaspard
- Departments of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Christopher R McMaster
- Departments of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada; Departments of Pharmacology, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
40
|
Luévano-Martínez LA, Kowaltowski AJ. Phosphatidylglycerol-derived phospholipids have a universal, domain-crossing role in stress responses. Arch Biochem Biophys 2015; 585:90-97. [PMID: 26391924 DOI: 10.1016/j.abb.2015.09.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 11/19/2022]
Abstract
Phosphatidylglycerol and phospholipids derived from it are widely distributed throughout the three domains of life. Cardiolipin is the best characterized of these phospholipids, and plays a key role in the response to environmental variations. Phosphatidylglycerol-derived phospholipids confer cell membranes with a wide range of responses, including changes in surface charge, fluidity, flexibility, morphology, biosynthesis and remodeling, that adapt the cell to these situations. Furthermore, the synthesis and remodeling of these phospholipids is finely regulated, highlighting the importance of these lipids in cell homeostasis and responses during stressful situations. In this article, we review the most important roles of these anionic phospholipids across domains, focusing on the biophysical basis by which these phospholipids are used in stress responses.
Collapse
Affiliation(s)
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil.
| |
Collapse
|
41
|
Watanabe Y, Tamura Y, Kawano S, Endo T. Structural and mechanistic insights into phospholipid transfer by Ups1-Mdm35 in mitochondria. Nat Commun 2015; 6:7922. [PMID: 26235513 PMCID: PMC4532887 DOI: 10.1038/ncomms8922] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/25/2015] [Indexed: 01/30/2023] Open
Abstract
Eukaryotic cells are compartmentalized into membrane-bounded organelles whose functions rely on lipid trafficking to achieve membrane-specific compositions of lipids. Here we focused on the Ups1–Mdm35 system, which mediates phosphatidic acid (PA) transfer between the outer and inner mitochondrial membranes, and determined the X-ray structures of Mdm35 and Ups1–Mdm35 with and without PA. The Ups1–Mdm35 complex constitutes a single domain that has a deep pocket and flexible Ω-loop lid. Structure-based mutational analyses revealed that a basic residue at the pocket bottom and the Ω-loop lid are important for PA extraction from the membrane following Ups1 binding. Ups1 binding to the membrane is enhanced by the dissociation of Mdm35. We also show that basic residues around the pocket entrance are important for Ups1 binding to the membrane and PA extraction. These results provide a structural basis for understanding the mechanism of PA transfer between mitochondrial membranes. Phospholipid trafficking between membranes is essential to maintain the structural integrity and function of membrane-bound cellular compartments. Here the authors establish the structural basis for transport of phosphatidic acid between the outer and inner membranes of the mitochondria by the Ups1–Mdm35 lipid-transport complex.
Collapse
Affiliation(s)
- Yasunori Watanabe
- 1] Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, 603-8555, Japan [2] JST/CREST, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, 603-8555, Japan [3] JST/CREST, Research Center for Materials Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Yasushi Tamura
- 1] JST/CREST, Research Center for Materials Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan [2] Research Center for Materials Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Shin Kawano
- 1] Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, 603-8555, Japan [2] JST/CREST, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, 603-8555, Japan [3] JST/CREST, Research Center for Materials Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan [4] Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Toshiya Endo
- 1] Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, 603-8555, Japan [2] JST/CREST, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, 603-8555, Japan [3] JST/CREST, Research Center for Materials Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan [4] Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| |
Collapse
|
42
|
Onguka O, Calzada E, Ogunbona OB, Claypool SM. Phosphatidylserine decarboxylase 1 autocatalysis and function does not require a mitochondrial-specific factor. J Biol Chem 2015; 290:12744-52. [PMID: 25829489 DOI: 10.1074/jbc.m115.641118] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylethanolamine (PE) is a major cellular phospholipid that can be made by four separate pathways, one of which resides in the mitochondrion. The mitochondrial enzyme that generates PE is phosphatidylserine decarboxylase 1 (Psd1p). The pool of PE produced by Psd1p, which cannot be compensated for by the other cellular PE metabolic pathways, is important for numerous mitochondrial functions, including oxidative phosphorylation and mitochondrial dynamics and morphology, and is essential for murine development. To become catalytically active, Psd1p undergoes an autocatalytic processing step involving a conserved LGST motif that separates the enzyme into α and β subunits that remain non-covalently attached and are anchored to the inner membrane by virtue of the membrane-embedded β subunit. It was speculated that Psd1p autocatalysis requires a mitochondrial-specific factor and that for Psd1p to function in vivo, it had to be embedded with the correct topology in the mitochondrial inner membrane. However, the identity of the mitochondrial factor required for Psd1p autocatalysis has not been identified. With the goal of defining molecular requirements for Psd1p autocatalysis, we demonstrate that: 1) despite the conservation of the LGST motif from bacteria to humans, only the serine residue is absolutely required for Psd1p autocatalysis and function; 2) yeast Psd1p does not require its substrate phosphatidylserine for autocatalysis; and 3) contrary to a prior report, yeast Psd1p autocatalysis does not require mitochondrial-specific phospholipids, proteins, or co-factors, because Psd1p re-directed to the secretory pathway undergoes autocatalysis normally and is fully functional in vivo.
Collapse
Affiliation(s)
- Ouma Onguka
- From the Department of Physiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Elizabeth Calzada
- From the Department of Physiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Oluwaseun B Ogunbona
- From the Department of Physiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Steven M Claypool
- From the Department of Physiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
43
|
Lu YW, Claypool SM. Disorders of phospholipid metabolism: an emerging class of mitochondrial disease due to defects in nuclear genes. Front Genet 2015; 6:3. [PMID: 25691889 PMCID: PMC4315098 DOI: 10.3389/fgene.2015.00003] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/06/2015] [Indexed: 01/14/2023] Open
Abstract
The human nuclear and mitochondrial genomes co-exist within each cell. While the mitochondrial genome encodes for a limited number of proteins, transfer RNAs, and ribosomal RNAs, the vast majority of mitochondrial proteins are encoded in the nuclear genome. Of the multitude of mitochondrial disorders known to date, only a fifth are maternally inherited. The recent characterization of the mitochondrial proteome therefore serves as an important step toward delineating the nosology of a large spectrum of phenotypically heterogeneous diseases. Following the identification of the first nuclear gene defect to underlie a mitochondrial disorder, a plenitude of genetic variants that provoke mitochondrial pathophysiology have been molecularly elucidated and classified into six categories that impact: (1) oxidative phosphorylation (subunits and assembly factors); (2) mitochondrial DNA maintenance and expression; (3) mitochondrial protein import and assembly; (4) mitochondrial quality control (chaperones and proteases); (5) iron–sulfur cluster homeostasis; and (6) mitochondrial dynamics (fission and fusion). Here, we propose that an additional class of genetic variant be included in the classification schema to acknowledge the role of genetic defects in phospholipid biosynthesis, remodeling, and metabolism in mitochondrial pathophysiology. This seventh class includes a small but notable group of nuclear-encoded proteins whose dysfunction impacts normal mitochondrial phospholipid metabolism. The resulting human disorders present with a diverse array of pathologic consequences that reflect the variety of functions that phospholipids have in mitochondria and highlight the important role of proper membrane homeostasis in mitochondrial biology.
Collapse
Affiliation(s)
- Ya-Wen Lu
- Department of Physiology, School of Medicine, Johns Hopkins University Baltimore, MD, USA
| | - Steven M Claypool
- Department of Physiology, School of Medicine, Johns Hopkins University Baltimore, MD, USA
| |
Collapse
|
44
|
Ye C, Shen Z, Greenberg ML. Cardiolipin remodeling: a regulatory hub for modulating cardiolipin metabolism and function. J Bioenerg Biomembr 2014; 48:113-23. [PMID: 25432572 DOI: 10.1007/s10863-014-9591-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 11/14/2014] [Indexed: 12/11/2022]
Abstract
Cardiolipin (CL), the signature phospholipid of mitochondria, is involved in a plethora of cellular processes and is crucial for mitochondrial function and architecture. The de novo synthesis of CL in the mitochondria is followed by a unique remodeling process, in which CL undergoes cycles of deacylation and reacylation. Specific fatty acyl composition is acquired during this process, and remodeled CL contains predominantly unsaturated fatty acids. The importance of CL remodeling is underscored by the life-threatening genetic disorder Barth syndrome (BTHS), caused by mutations in tafazzin, which reacylates monolysocardiolipin (MLCL) generated from the deacylation of CL. Just as CL-deficient yeast mutants have been instrumental in elucidating functions of this lipid, the recently characterized CL-phospholipase mutant cld1Δ and the tafazzin mutant taz1Δ are powerful tools to understand the functions of CL remodeling. In this review, we discuss recent advances in understanding the role of CL in mitochondria with specific focus on the enigmatic functions of CL remodeling.
Collapse
Affiliation(s)
- Cunqi Ye
- Department of Biological Sciences, Wayne State University, Detroit, 5047 Gullen Mall, Michigan, 48202, MI, USA
| | - Zheni Shen
- Department of Biological Sciences, Wayne State University, Detroit, 5047 Gullen Mall, Michigan, 48202, MI, USA
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, 5047 Gullen Mall, Michigan, 48202, MI, USA.
| |
Collapse
|
45
|
Tamura Y, Sesaki H, Endo T. Phospholipid transport via mitochondria. Traffic 2014; 15:933-45. [PMID: 24954234 DOI: 10.1111/tra.12188] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/16/2014] [Accepted: 06/16/2014] [Indexed: 12/27/2022]
Abstract
In eukaryotic cells, complex membrane structures called organelles are highly developed to exert specialized functions. Mitochondria are one of such organelles consisting of the outer and inner membranes (OM and IM) with characteristic protein and phospholipid compositions. Maintaining proper phospholipid compositions of the membranes is crucial for mitochondrial integrity, thereby contributing to normal cell activities. As cellular locations for phospholipid synthesis are restricted to specific compartments such as the endoplasmic reticulum (ER) membrane and the mitochondrial inner membrane, newly synthesized phospholipids have to be transported and distributed properly from the ER or mitochondria to other cellular membranes. Although understanding of molecular mechanisms of phospholipid transport are much behind those of protein transport, recent studies using yeast as a model system began to provide intriguing insights into phospholipid exchange between the ER and mitochondria as well as between the mitochondrial OM and IM. In this review, we summarize the latest findings of phospholipid transport via mitochondria and discuss the implicated molecular mechanisms.
Collapse
Affiliation(s)
- Yasushi Tamura
- Research Center for Materials Science, Nagoya University, Nagoya, 464-8602, Japan
| | | | | |
Collapse
|
46
|
Ren M, Phoon CKL, Schlame M. Metabolism and function of mitochondrial cardiolipin. Prog Lipid Res 2014; 55:1-16. [PMID: 24769127 DOI: 10.1016/j.plipres.2014.04.001] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/04/2014] [Accepted: 04/14/2014] [Indexed: 12/22/2022]
Abstract
Since it has been recognized that mitochondria are crucial not only for energy metabolism but also for other cellular functions, there has been a growing interest in cardiolipin, the specific phospholipid of mitochondrial membranes. Indeed, cardiolipin is a universal component of mitochondria in all eukaryotes. It has a unique dimeric structure comprised of two phosphatidic acid residues linked by a glycerol bridge, which gives rise to unique physicochemical properties. Cardiolipin plays an important role in the structural organization and the function of mitochondrial membranes. In this article, we review the literature on cardiolipin biology, focusing on the most important discoveries of the past decade. Specifically, we describe the formation, the migration, and the degradation of cardiolipin and we discuss how cardiolipin affects mitochondrial function. We also give an overview of the various phenotypes of cardiolipin deficiency in different organisms.
Collapse
Affiliation(s)
- Mindong Ren
- Department of Anesthesiology, New York University School of Medicine, New York, USA; Department of Cell Biology, New York University School of Medicine, New York, USA
| | - Colin K L Phoon
- Department of Pediatrics, New York University School of Medicine, New York, USA
| | - Michael Schlame
- Department of Anesthesiology, New York University School of Medicine, New York, USA; Department of Cell Biology, New York University School of Medicine, New York, USA.
| |
Collapse
|
47
|
Kagan VE, Chu CT, Tyurina YY, Cheikhi A, Bayir H. Cardiolipin asymmetry, oxidation and signaling. Chem Phys Lipids 2014; 179:64-9. [PMID: 24300280 PMCID: PMC3973441 DOI: 10.1016/j.chemphyslip.2013.11.010] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 11/22/2013] [Accepted: 11/23/2013] [Indexed: 01/16/2023]
Abstract
Cardiolipins (CLs) are ancient and unusual dimeric phospholipids localized in the plasma membrane of bacteria and in the inner mitochondrial membrane of eukaryotes. In mitochondria, two types of asymmetries--trans-membrane and molecular--are essential determinants of CL functions. In this review, we describe CL-based signaling mitochondrial pathways realized via modulation of trans-membrane asymmetry and leading to externalization and peroxidation of CLs in mitophagy and apoptosis, respectively. We discuss possible mechanisms of CL translocations from the inner leaflet of the inner to the outer leaflet of the outer mitochondrial membranes. We present redox reaction mechanisms of cytochrome c-catalyzed CL peroxidation as a required stage in the execution of apoptosis. We also emphasize the significance of CL-related metabolic pathways as new targets for drug discovery. Finally, a remarkable diversity of polyunsaturated CL species and their oxidation products have evolved in eukaryotes vs. prokaryotes. This diversity--associated with CL molecular asymmetry--is presented as the basis for mitochondrial communications language.
Collapse
Affiliation(s)
- Valerian E Kagan
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| | - Charleen T Chu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15219, USA; Center for Neuroscience, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Yulia Y Tyurina
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Amin Cheikhi
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Hülya Bayir
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
48
|
Ye C, Lou W, Li Y, Chatzispyrou IA, Hüttemann M, Lee I, Houtkooper RH, Vaz FM, Chen S, Greenberg ML. Deletion of the cardiolipin-specific phospholipase Cld1 rescues growth and life span defects in the tafazzin mutant: implications for Barth syndrome. J Biol Chem 2013; 289:3114-25. [PMID: 24318983 DOI: 10.1074/jbc.m113.529487] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cardiolipin (CL) that is synthesized de novo is deacylated to monolysocardiolipin (MLCL), which is reacylated by tafazzin. Remodeled CL contains mostly unsaturated fatty acids. In eukaryotes, loss of tafazzin leads to growth and respiration defects, and in humans, this results in the life-threatening disorder Barth syndrome. Tafazzin deficiency causes a decrease in the CL/MLCL ratio and decreased unsaturated CL species. Which of these biochemical outcomes contributes to the physiological defects is not known. Yeast cells have a single CL-specific phospholipase, Cld1, that can be exploited to distinguish between these outcomes. The cld1Δ mutant has decreased unsaturated CL, but the CL/MLCL ratio is similar to that of wild type cells. We show that cld1Δ rescues growth, life span, and respiratory defects of the taz1Δ mutant. This suggests that defective growth and respiration in tafazzin-deficient cells are caused by the decreased CL/MLCL ratio and not by a deficiency in unsaturated CL. CLD1 expression is increased during respiratory growth and regulated by the heme activator protein transcriptional activation complex. Overexpression of CLD1 leads to decreased mitochondrial respiration and growth and instability of mitochondrial DNA. However, ATP concentrations are maintained by increasing glycolysis. We conclude that transcriptional regulation of Cld1-mediated deacylation of CL influences energy metabolism by modulating the relative contribution of glycolysis and respiration.
Collapse
Affiliation(s)
- Cunqi Ye
- From the Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Baile MG, Sathappa M, Lu YW, Pryce E, Whited K, McCaffery JM, Han X, Alder NN, Claypool SM. Unremodeled and remodeled cardiolipin are functionally indistinguishable in yeast. J Biol Chem 2013; 289:1768-78. [PMID: 24285538 DOI: 10.1074/jbc.m113.525733] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
After biosynthesis, an evolutionarily conserved acyl chain remodeling process generates a final highly homogeneous and yet tissue-specific molecular form of the mitochondrial lipid cardiolipin. Hence, cardiolipin molecules in different organisms, and even different tissues within the same organism, contain a distinct collection of attached acyl chains. This observation is the basis for the widely accepted paradigm that the acyl chain composition of cardiolipin is matched to the unique mitochondrial demands of a tissue. For this hypothesis to be correct, cardiolipin molecules with different acyl chain compositions should have distinct functional capacities, and cardiolipin that has been remodeled should promote cardiolipin-dependent mitochondrial processes better than its unremodeled form. However, functional disparities between different molecular forms of cardiolipin have never been established. Here, we interrogate this simple but crucial prediction utilizing the best available model to do so, Saccharomyces cerevisiae. Specifically, we compare the ability of unremodeled and remodeled cardiolipin, which differ markedly in their acyl chain composition, to support mitochondrial activities known to require cardiolipin. Surprisingly, defined changes in the acyl chain composition of cardiolipin do not alter either mitochondrial morphology or oxidative phosphorylation. Importantly, preventing cardiolipin remodeling initiation in yeast lacking TAZ1, an ortholog of the causative gene in Barth syndrome, ameliorates mitochondrial dysfunction. Thus, our data do not support the prevailing hypothesis that unremodeled cardiolipin is functionally distinct from remodeled cardiolipin, at least for the functions examined, suggesting alternative physiological roles for this conserved pathway.
Collapse
Affiliation(s)
- Matthew G Baile
- From the Department of Physiology, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Cardiolipin-dependent formation of mitochondrial respiratory supercomplexes. Chem Phys Lipids 2013; 179:42-8. [PMID: 24220496 DOI: 10.1016/j.chemphyslip.2013.10.012] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 10/21/2013] [Accepted: 10/30/2013] [Indexed: 11/20/2022]
Abstract
The organization of individual respiratory Complexes I, III, and IV (mammalian cells) or III and IV (yeast) of the mitochondria into higher order supercomplexes (SCs) is generally accepted. However, the factors that regulate SC formation and the functional significance of SCs are not well understood. The mitochondrial signature phospholipid cardiolipin (CL) plays a central role in formation and stability of respiratory SCs from yeast to man. Studies in yeast mutants in which the CL level can be regulated displayed a direct correlation between CL levels and SC formation. Disease states in which CL levels are reduced also show defects in SC formation. Three-dimensional density maps of yeast and bovine SCs by electron cryo-microscopy show gaps between the transmembrane-localized interfaces of individual complexes consistent with the large excess of CL in SCs over that integrated into the structure of individual respiratory complexes. Finally, the yeast SC composed of Complex III and two Complexes IV was reconstituted in liposomes from purified individual complexes containing integrated CLs. Reconstitution was wholly dependent on inclusion of additional CL in the liposomes. Therefore, non-integral CL molecules play an important role in SC formation and may be involved in regulation of SC stability under metabolic conditions where CL levels fluctuate.
Collapse
|