1
|
Alabdi L, Altuwaijri N, Zhu JY, Efthymiou S, Lee H, Duan J, Salem I, Yu P, Abdullah NL, Alzahrani F, Xu Q, Felemban MM, Alfaifi A, Rahman F, Christoforou M, Maqbool S, Martinez-Agosto JA, Alsaif HS, Hashem M, Helaby R, Alsulaiman A, Maroofian R, Houlden H, Arold ST, Ibrahim LA, Han Z, Alkuraya FS. SLK is mutated in individuals with a neurodevelopmental disorder. EBioMedicine 2025; 116:105725. [PMID: 40347834 DOI: 10.1016/j.ebiom.2025.105725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/09/2025] [Accepted: 04/11/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Key to neuronal cell polarization and maturation is proper cytoskeletal organization and function that endows the bipolar neuronal cell with mature dendrites, axons, and functional synapses. Ste20-like kinase (SLK) has been shown to have various cytoskeletal roles. SLK regulates the polarity of microtubules, and its deficiency in the developing murine cortex leads to major defects including impaired development of the distal dendritic tree. No neurodevelopmental phenotypes in humans, however, have been linked to SLK. METHODS Clinical phenotyping, positional mapping, exome sequencing and functional analyses using patient-derived cells, SLK knock down cell lines, as well as a Drosophila model of Slik deficiency (the orthologue of SLK). FINDINGS We identified three individuals from three families (two are consanguineous) in whom a neurodevelopmental disorder (NDD) is linked to biallelic variants in SLK. The deleterious nature of these variants is confirmed by their failure to rescue the abnormal synapse maturation and locomotor defects phenotype in a Drosophila model of Slik deficiency. We also recapitulated the previously published abnormal cytoskeletal phenotype using patient cells, which showed abnormal organization of the cytoskeleton with accompanying impairment of migration and polarization. Furthermore, transdifferentiated neurons from patient fibroblasts displayed immature neuronal-like morphology with reduced dendritic arborization. INTERPRETATION Our results support an autosomal recessive SLK-related NDD and suggest abnormal cytoskeleton-mediated neuronal maturation as the underlying mechanism. FUNDING MRC (MR/S01165X/1, MR/S005021/1, G0601943, MR/S005021/1), The National Institute for Health Research University College London Hospitals Biomedical Research Centre, Rosetree Trust, Ataxia UK, MSA Trust, Brain Research UK, Sparks GOSH Charity, Muscular Dystrophy UK (MDUK), Muscular Dystrophy Association (MDA USA). National Institutes of Health (NIH) grants HL134940 and DK098410. King Abdullah University of Science and Technology (KAUST) through the baseline fund to STA and LI as well as to STA and LI, and the KAUST Center of Excellence for Smart Health (KCSH), under award number 5932.
Collapse
Affiliation(s)
- Lama Alabdi
- Department of Translational Genomics, Genomic Medicine Centre of Excellence, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia
| | - Norah Altuwaijri
- Department of Translational Genomics, Genomic Medicine Centre of Excellence, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia
| | - Jun-Yi Zhu
- Center for Precision Disease Modeling, Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, 670 West Baltimore Street, Baltimore, MD, 21201, USA
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Hangnoh Lee
- Center for Precision Disease Modeling, Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, 670 West Baltimore Street, Baltimore, MD, 21201, USA
| | - Jianli Duan
- Center for Precision Disease Modeling, Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, 670 West Baltimore Street, Baltimore, MD, 21201, USA
| | - Israa Salem
- KAUST Center of Excellence for Smart Health, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Piao Yu
- KAUST Center of Excellence for Smart Health, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Nor Linda Abdullah
- KAUST Center of Excellence for Smart Health, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Fatema Alzahrani
- Department of Translational Genomics, Genomic Medicine Centre of Excellence, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia
| | - Qing Xu
- KAUST Center for Smart Health, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Mashael M Felemban
- KAUST Center for Smart Health, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Abdullah Alfaifi
- Department of Pediatrics, Security Forces Hospital, Riyadh, 12611, Saudi Arabia
| | - Fatima Rahman
- Developmental & Behavioral Paediatrics, Institute of Child Health and the Children Hospital, Lahore, 54600, Pakistan
| | - Marilena Christoforou
- Department of Neuromuscular Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Shazia Maqbool
- Developmental & Behavioral Paediatrics, Institute of Child Health and the Children Hospital, Lahore, 54600, Pakistan
| | - Julian A Martinez-Agosto
- Departments of Human Genetics, Pediatrics and Psychiatry, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Hessa S Alsaif
- Wellness and Preventative Medicine Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Mais Hashem
- Department of Translational Genomics, Genomic Medicine Centre of Excellence, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia
| | - Rana Helaby
- Department of Translational Genomics, Genomic Medicine Centre of Excellence, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia
| | - Ahood Alsulaiman
- Department of Translational Genomics, Genomic Medicine Centre of Excellence, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Stefan T Arold
- KAUST Center of Excellence for Smart Health, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia; KAUST Center for Smart Health, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Leena A Ibrahim
- KAUST Center of Excellence for Smart Health, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia; KAUST Center for Smart Health, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Zhe Han
- Center for Precision Disease Modeling, Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, 670 West Baltimore Street, Baltimore, MD, 21201, USA.
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Genomic Medicine Centre of Excellence, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia; Lifera Omics, Riyadh, 13519, Saudi Arabia.
| |
Collapse
|
2
|
Bodin A, Greibill L, Gouju J, Letournel F, Pozzi S, Julien JP, Renaud L, Bohl D, Millecamps S, Verny C, Cassereau J, Lenaers G, Chevrollier A, Tassin AM, Codron P. Transactive response DNA-binding protein 43 is enriched at the centrosome in human cells. Brain 2023; 146:3624-3633. [PMID: 37410912 PMCID: PMC10473568 DOI: 10.1093/brain/awad228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/14/2023] [Accepted: 06/03/2023] [Indexed: 07/08/2023] Open
Abstract
The centrosome, as the main microtubule organizing centre, plays key roles in cell polarity, genome stability and ciliogenesis. The recent identification of ribosomes, RNA-binding proteins and transcripts at the centrosome suggests local protein synthesis. In this context, we hypothesized that TDP-43, a highly conserved RNA binding protein involved in the pathophysiology of amyotrophic lateral sclerosis and frontotemporal lobar degeneration, could be enriched at this organelle. Using dedicated high magnification sub-diffraction microscopy on human cells, we discovered a novel localization of TDP-43 at the centrosome during all phases of the cell cycle. These results were confirmed on purified centrosomes by western blot and immunofluorescence microscopy. In addition, the co-localization of TDP-43 and pericentrin suggested a pericentriolar enrichment of the protein, leading us to hypothesize that TDP-43 might interact with local mRNAs and proteins. Supporting this hypothesis, we found four conserved centrosomal mRNAs and 16 centrosomal proteins identified as direct TDP-43 interactors. More strikingly, all the 16 proteins are implicated in the pathophysiology of TDP-43 proteinopathies, suggesting that TDP-43 dysfunction in this organelle contributes to neurodegeneration. This first description of TDP-43 centrosomal enrichment paves the way for a more comprehensive understanding of TDP-43 physiology and pathology.
Collapse
Affiliation(s)
- Alexia Bodin
- Univ Angers, Equipe MitoLab, Unité MitoVasc, Inserm U1083, CNRS 6015, SFR ICAT, 49100 Angers, France
- Neurobiology and neuropathology, University-Hospital of Angers, 49933 Angers, France
| | - Logan Greibill
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris Sud, Université Paris-Saclay, 91190 Gif sur Yvette, France
| | - Julien Gouju
- Neurobiology and neuropathology, University-Hospital of Angers, 49933 Angers, France
| | - Franck Letournel
- Neurobiology and neuropathology, University-Hospital of Angers, 49933 Angers, France
| | - Silvia Pozzi
- Department of Psychiatry and Neuroscience, University of Laval, Québec City, Qc G1V 0A6, Canada
- CERVO Brain Research Centre, Québec, Qc G1E 1T2, Canada
| | - Jean-Pierre Julien
- Department of Psychiatry and Neuroscience, University of Laval, Québec City, Qc G1V 0A6, Canada
- CERVO Brain Research Centre, Québec, Qc G1E 1T2, Canada
| | - Laurence Renaud
- Département de Neurosciences, Université de Montréal, Montréal, Qc H3C 3J7, Canada
- Groupe de recherche sur le système nerveux central, Université de Montréal, Montréal, Qc H3C 3J7, Canada
| | - Delphine Bohl
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| | - Stéphanie Millecamps
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| | - Christophe Verny
- Univ Angers, Equipe MitoLab, Unité MitoVasc, Inserm U1083, CNRS 6015, SFR ICAT, 49100 Angers, France
- Department of Neurology, Amyotrophic Lateral Sclerosis Center, University-Hospital of Angers, 49933 Angers, France
| | - Julien Cassereau
- Univ Angers, Equipe MitoLab, Unité MitoVasc, Inserm U1083, CNRS 6015, SFR ICAT, 49100 Angers, France
- Department of Neurology, Amyotrophic Lateral Sclerosis Center, University-Hospital of Angers, 49933 Angers, France
| | - Guy Lenaers
- Univ Angers, Equipe MitoLab, Unité MitoVasc, Inserm U1083, CNRS 6015, SFR ICAT, 49100 Angers, France
- Department of Neurology, Amyotrophic Lateral Sclerosis Center, University-Hospital of Angers, 49933 Angers, France
| | - Arnaud Chevrollier
- Univ Angers, Equipe MitoLab, Unité MitoVasc, Inserm U1083, CNRS 6015, SFR ICAT, 49100 Angers, France
| | - Anne-Marie Tassin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris Sud, Université Paris-Saclay, 91190 Gif sur Yvette, France
| | - Philippe Codron
- Univ Angers, Equipe MitoLab, Unité MitoVasc, Inserm U1083, CNRS 6015, SFR ICAT, 49100 Angers, France
- Neurobiology and neuropathology, University-Hospital of Angers, 49933 Angers, France
- Department of Neurology, Amyotrophic Lateral Sclerosis Center, University-Hospital of Angers, 49933 Angers, France
| |
Collapse
|
3
|
Song K, Jiang X, Xu X, Chen Y, Zhang J, Tian Y, Wang Q, Weng J, Liang Y, Ma W. Ste20-like kinase activity promotes meiotic resumption and spindle microtubule stability in mouse oocytes. Cell Prolif 2022; 56:e13391. [PMID: 36579845 PMCID: PMC10068952 DOI: 10.1111/cpr.13391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/30/2022] Open
Abstract
Ste20-like kinase (SLK) is involved in cell proliferation and migration in somatic cells. This study aims to explore SLK expression and function in mouse oocyte meiosis. Western blot, immunofluorescence, Co-immunoprecipitation, drug treatment, cRNA construct and in vitro transcription, microinjection of morpholino oilgo (MO) and cRNA were performed in oocytes. High and stable protein expression of SLK was detected in mouse oocyte meiosis, with dynamic distribution in the nucleus, chromosomes and spindle apparatus. SLK phosphorylation emerges around meiotic resumption and reaches a peak during metaphase I (MI) and metaphase II. SLK knockdown with MO or expression of kinase-dead SLK K63R dramatically delays meiotic resumption due to sequentially suppressed phosphorylation of Polo-like kinase 1 (Plk1) and cell division cycle 25C (CDC25C) and dephosphorylation of cyclin-dependent kinase 1 (CDK1). SLK depletion promotes ubiquitination-mediated degradation of paxillin, an antagonist to α-tubulin deacetylation, and thus destroys spindle assembly and chromosome alignment; these phenotypes can be substantially rescued by exogenous expression of SLK kinase active fragment. Additionally, exogenous SLK effectively promotes meiotic progression and spindle assembly in aging oocytes with reduced SLK. Collectively, this study reveals SLK is required for meiotic resumption and spindle assembly in mouse oocyte meiosis.
Collapse
Affiliation(s)
- Ke Song
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiuying Jiang
- Division of Sport Anatomy, School of Sport Science, Beijing Sport University, Beijing, China
| | - Xiangning Xu
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ye Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jiaqi Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ying Tian
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Qian Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jing Weng
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yuanjing Liang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wei Ma
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Ste20-like Kinase Is Critical for Inhibitory Synapse Maintenance and Its Deficiency Confers a Developmental Dendritopathy. J Neurosci 2021; 41:8111-8125. [PMID: 34400520 DOI: 10.1523/jneurosci.0352-21.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/18/2021] [Accepted: 05/29/2021] [Indexed: 11/21/2022] Open
Abstract
The size and structure of the dendritic arbor play important roles in determining how synaptic inputs of neurons are converted to action potential output. The regulatory mechanisms governing the development of dendrites, however, are insufficiently understood. The evolutionary conserved Ste20/Hippo kinase pathway has been proposed to play an important role in regulating the formation and maintenance of dendritic architecture. A key element of this pathway, Ste20-like kinase (SLK), regulates cytoskeletal dynamics in non-neuronal cells and is strongly expressed throughout neuronal development. However, its function in neurons is unknown. We show that, during development of mouse cortical neurons, SLK has a surprisingly specific role for proper elaboration of higher, ≥ third-order dendrites both in male and in female mice. Moreover, we demonstrate that SLK is required to maintain excitation-inhibition balance. Specifically, SLK knockdown caused a selective loss of inhibitory synapses and functional inhibition after postnatal day 15, whereas excitatory neurotransmission was unaffected. Finally, we show that this mechanism may be relevant for human disease, as dysmorphic neurons within human cortical malformations revealed significant loss of SLK expression. Overall, the present data identify SLK as a key regulator of both dendritic complexity during development and inhibitory synapse maintenance.SIGNIFICANCE STATEMENT We show that dysmorphic neurons of human epileptogenic brain lesions have decreased levels of the Ste20-like kinase (SLK). Decreasing SLK expression in mouse neurons revealed that SLK has essential functions in forming the neuronal dendritic tree and in maintaining inhibitory connections with neighboring neurons.
Collapse
|
5
|
Sohail M, Shkreta L, Toutant J, Rabea S, Babeu JP, Huard C, Coulombe-Huntington J, Delannoy A, Placet M, Geha S, Gendron FP, Boudreau F, Tyers M, Grierson DS, Chabot B. A novel class of inhibitors that target SRSF10 and promote p53-mediated cytotoxicity on human colorectal cancer cells. NAR Cancer 2021; 3:zcab019. [PMID: 34316707 PMCID: PMC8210162 DOI: 10.1093/narcan/zcab019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/22/2021] [Accepted: 05/04/2021] [Indexed: 01/07/2023] Open
Abstract
The elevated expression of the splicing regulator SRSF10 in metastatic colorectal cancer (CRC) stimulates the production of the pro-tumorigenic BCLAF1-L splice variant. We discovered a group of small molecules with an aminothiazole carboxamide core (GPS167, GPS192 and others) that decrease production of BCLAF1-L. While additional alternative splicing events regulated by SRSF10 are affected by GPS167/192 in HCT116 cells (e.g. in MDM4, WTAP, SLK1 and CLK1), other events are shifted in a SRSF10-independent manner (e.g. in MDM2, NAB2 and TRA2A). GPS167/192 increased the interaction of SRSF10 with the CLK1 and CLK4 kinases, leading us to show that GPS167/192 can inhibit CLK kinases preferentially impacting the activity of SRSF10. Notably, GPS167 impairs the growth of CRC cell lines and organoids, inhibits anchorage-independent colony formation, cell migration, and promotes cytoxicity in a manner that requires SRSF10 and p53. In contrast, GPS167 only minimally affects normal colonocytes and normal colorectal organoids. Thus, GPS167 reprograms the tumorigenic activity of SRSF10 in CRC cells to elicit p53-dependent apoptosis.
Collapse
Affiliation(s)
- Muhammad Sohail
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke. Sherbrooke, Quebec, Canada
| | - Lulzim Shkreta
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke. Sherbrooke, Quebec, Canada
| | - Johanne Toutant
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke. Sherbrooke, Quebec, Canada
| | - Safwat Rabea
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Jean-Philippe Babeu
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke. Sherbrooke, Quebec, Canada
| | - Caroline Huard
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | | | - Aurélie Delannoy
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke. Sherbrooke, Quebec, Canada
| | - Morgane Placet
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke. Sherbrooke, Quebec, Canada
| | - Sameh Geha
- Department of Pathology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche Clinique du CHUS, CIUSSS de l’Estrie, Sherbrooke, QC, Canada
| | - Fernand-Pierre Gendron
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke. Sherbrooke, Quebec, Canada
- Centre de Recherche Clinique du CHUS, CIUSSS de l’Estrie, Sherbrooke, QC, Canada
| | - François Boudreau
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke. Sherbrooke, Quebec, Canada
- Centre de Recherche Clinique du CHUS, CIUSSS de l’Estrie, Sherbrooke, QC, Canada
| | - Mike Tyers
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - David S Grierson
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Benoit Chabot
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke. Sherbrooke, Quebec, Canada
- Centre de Recherche Clinique du CHUS, CIUSSS de l’Estrie, Sherbrooke, QC, Canada
| |
Collapse
|
6
|
Garland B, Delisle S, Al-Zahrani KN, Pryce BR, Sabourin LA. The Ste20-like kinase - a Jack of all trades? J Cell Sci 2021; 134:261804. [PMID: 33961052 DOI: 10.1242/jcs.258269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Over the past 20 years, the Ste20-like kinase (SLK; also known as STK2) has emerged as a central regulator of cytoskeletal dynamics. Reorganization of the cytoskeleton is necessary for a plethora of biological processes including apoptosis, proliferation, migration, tissue repair and signaling. Several studies have also uncovered a role for SLK in disease progression and cancer. Here, we review the recent findings in the SLK field and summarize the various roles of SLK in different animal models and discuss the biochemical mechanisms regulating SLK activity. Together, these studies have revealed multiple roles for SLK in coupling cytoskeletal dynamics to cell growth, in muscle repair and in negative-feedback loops critical for cancer progression. Furthermore, the ability of SLK to regulate some systems appears to be kinase activity independent, suggesting that it may be an important scaffold for signal transduction pathways. These various findings reveal highly complex functions and regulation patterns of SLK in development and disease, making it a potential therapeutic target.
Collapse
Affiliation(s)
- Brennan Garland
- Ottawa Hospital Research Institute, Cancer Therapeutics, Ottawa, Ontario, K1H8L1, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H8L6, Canada
| | - Samuel Delisle
- Ottawa Hospital Research Institute, Cancer Therapeutics, Ottawa, Ontario, K1H8L1, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H8L6, Canada
| | - Khalid N Al-Zahrani
- Center for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G1X5, Canada
| | - Benjamin R Pryce
- Department of Pediatrics, Hollings Cancer Center, Medical University of South Carolina,Charleston, SC 29425, USA
| | - Luc A Sabourin
- Ottawa Hospital Research Institute, Cancer Therapeutics, Ottawa, Ontario, K1H8L1, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H8L6, Canada
| |
Collapse
|
7
|
Chen TY, Lin TC, Kuo PL, Chen ZR, Cheng HL, Chao YY, Syu JS, Lu FI, Wang CY. Septin 7 is a centrosomal protein that ensures S phase entry and microtubule nucleation by maintaining the abundance of p150 glued. J Cell Physiol 2020; 236:2706-2724. [PMID: 32869310 DOI: 10.1002/jcp.30037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/16/2022]
Abstract
Septins play important roles in regulating development and differentiation. Septin 7 (SEPT7) is a crucial component in orchestrating the septin core complex into highly ordered filamentous structures. Here, we showed that genetic depletion of SEPT7 or treatment with forchlorfenuron (FCF; a compound known to affect septin filament assembly) led to reduced the S phase entry in cell models and zebrafish embryos. In addition to colocalizing with actin filaments, SEPT7 resided in the centrosome, and SEPT7 depletion led to aberrant mitotic spindle pole formation. This mitotic defect was rescued in SEPT7-deficient cells by wild-type SEPT7, suggesting that SEPT7 maintained mitotic spindle poles. In addition, we observed disorganized microtubule nucleation and reduced cell migration with SEPT7 depletion. Furthermore, SEPT7 formed a complex with and maintained the abundance of p150glued , the component of centriole subdistal appendages. Depletion of p150glued resulted in a phenotype reminiscent of SEPT7-deficient cells, and overexpression of p150glued reversed the defective phenotypes. Thus, SEPT7 is a centrosomal protein that maintains proper cell proliferation and microtubule array formation via maintaining the abundance of p150glued .
Collapse
Affiliation(s)
- Ting-Yu Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Chien Lin
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pao-Lin Kuo
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Zi-Rong Chen
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.,The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Hui-Ling Cheng
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Ying Chao
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jhih-Siang Syu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Fu-I Lu
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.,The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Chia-Yih Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
8
|
Hu LYR, Kontrogianni-Konstantopoulos A. Proteomic Analysis of Myocardia Containing the Obscurin R4344Q Mutation Linked to Hypertrophic Cardiomyopathy. Front Physiol 2020; 11:478. [PMID: 32528308 PMCID: PMC7247546 DOI: 10.3389/fphys.2020.00478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/20/2020] [Indexed: 12/25/2022] Open
Abstract
Obscurin is a giant cytoskeletal protein with structural and regulatory roles encoded by the OBSCN gene. Recently, mutations in OBSCN were associated with the development of different forms of cardiomyopathies, including hypertrophic cardiomyopathy (HCM). We previously reported that homozygous mice carrying the HCM-linked R4344Q obscurin mutation develop arrhythmia by 1-year of age under sedentary conditions characterized by increased heart rate, frequent incidents of premature ventricular contractions, and episodes of spontaneous ventricular tachycardia. In an effort to delineate the molecular mechanisms that contribute to the observed arrhythmic phenotype, we subjected protein lysates prepared from left ventricles of 1-year old R4344Q and wild-type mice to comparative proteomics analysis using tandem mass spectrometry; raw data are available via ProteomeXchange with identifier PXD017314. We found that the expression levels of proteins involved in cardiac function and disease, cytoskeletal organization, electropotential regulation, molecular transport and metabolism were significantly altered. Moreover, phospho-proteomic evaluation revealed changes in the phosphorylation profile of Ca2+ cycling proteins, including sAnk1.5, a major binding partner of obscurin localized in the sarcoplasmic reticulum; notably, this is the first report indicating that sAnk1 undergoes phosphorylation. Taken together, our findings implicate obscurin in diverse cellular processes within the myocardium, which is consistent with its multiple binding partners, localization in different subcellular compartments, and disease association.
Collapse
Affiliation(s)
- Li-Yen R Hu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| | | |
Collapse
|
9
|
Woychyshyn B, Papillon J, Guillemette J, Navarro-Betancourt JR, Cybulsky AV. Genetic ablation of SLK exacerbates glomerular injury in adriamycin nephrosis in mice. Am J Physiol Renal Physiol 2020; 318:F1377-F1390. [PMID: 32308020 DOI: 10.1152/ajprenal.00028.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ste20-like kinase SLK is critical for embryonic development and may play an important role in wound healing, muscle homeostasis, cell migration, and tumor growth. Mice with podocyte-specific deletion of SLK show albuminuria and damage to podocytes as they age. The present study addressed the role of SLK in glomerular injury. We induced adriamycin nephrosis in 3- to 4-mo-old control and podocyte SLK knockout (KO) mice. Compared with control, SLK deletion exacerbated albuminuria and loss of podocytes, synaptopodin, and podocalyxin. Glomeruli of adriamycin-treated SLK KO mice showed diffuse increases in the matrix and sclerosis as well as collapse of the actin cytoskeleton. SLK can phosphorylate ezrin. The complex of phospho-ezrin, Na+/H+ exchanger regulatory factor 2, and podocalyxin in the apical domain of the podocyte is a key determinant of normal podocyte architecture. Deletion of SLK reduced glomerular ezrin and ezrin phosphorylation in adriamycin nephrosis. Also, deletion of SLK reduced the colocalization of ezrin and podocalyxin in the glomerulus. Cultured glomerular epithelial cells with KO of SLK showed reduced ezrin phosphorylation and podocalyxin expression as well as reduced F-actin. Thus, SLK deletion leads to podocyte injury as mice age and exacerbates injury in adriamycin nephrosis. The mechanism may at least in part involve ezrin phosphorylation as well as disruption of the cytoskeleton and podocyte apical membrane structure.
Collapse
Affiliation(s)
- Boyan Woychyshyn
- Departments of Medicine and Physiology, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Joan Papillon
- Departments of Medicine and Physiology, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Julie Guillemette
- Departments of Medicine and Physiology, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - José R Navarro-Betancourt
- Departments of Medicine and Physiology, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Andrey V Cybulsky
- Departments of Medicine and Physiology, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
10
|
Fokin Artem I, Zhapparova Olga N, Burakov Anton V, Nadezhdina Elena S. Centrosome-derived microtubule radial array, PCM-1 protein, and primary cilia formation. PROTOPLASMA 2019; 256:1361-1373. [PMID: 31079229 DOI: 10.1007/s00709-019-01385-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 04/16/2019] [Indexed: 06/09/2023]
Abstract
In animal cells, the centrosome nucleates and anchors microtubules (MT), forming their radial array. During interphase centrosome-derived MT, aster can either team up with other MT network or function in an autonomous manner. What is the function of the centrosome-derived MT aster? We suggested that it might play an important role in the formation of the primary cilium, the organelle obligatorily associated with the centrosome. PCM-1 (PeriCentriolar Matrix 1) protein, which participates in the organization of the primary cilium, is a part of pericentiolar satellites. They are transported to the centrosome along MTs by the motor protein dynein in a complex with its cofactor dynactin. Previously, we showed that SLK/LOSK phosphorylated the p150Glued subunit of dynactin, thus promoting its centrosomal targeting followed by its participation in the retention of microtubules. Here, we found that under the repression of SLK/LOSK activity, the PCM-1 protein lost its pericentrosomal localization and was being dispersed throughout the cytoplasm. Despite that the alanine and glutamine mutants of p150Glued had opposite effects on PCM-1 localization, they associated with PCM-1 to the same extent. The occurrence of primary cilia also significantly decreased when SLK/LOSK was repressed. These defects also correlated with a disturbance of the long-range transport in cells, whereas dynein-depending motility was intact. Treatment with the GSK-3β kinase inhibitor also resulted in the loss of the centrosome-derived MT aster, dispersion of PCM-1 over the cytoplasm, and reduction of primary cilia occurrence. Thus, kinases involved in the centrosome-derived MT aster regulation can indirectly control the formation of primary cilia in cells.
Collapse
Affiliation(s)
- I Fokin Artem
- A.N. Belozersky Institute for Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Vorobjevy Gory, 1 bld.73, Moscow, Russian Federation, 119991
| | - N Zhapparova Olga
- A.N. Belozersky Institute for Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Vorobjevy Gory, 1 bld.73, Moscow, Russian Federation, 119991
| | - V Burakov Anton
- A.N. Belozersky Institute for Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Vorobjevy Gory, 1 bld.73, Moscow, Russian Federation, 119991
| | - S Nadezhdina Elena
- Department of Cell Biology of Institute of Protein Research, Russian Academy of Science, Vavilova ul., 34, Moscow, Russian Federation, 117334.
| |
Collapse
|
11
|
Cybulsky AV, Papillon J, Guillemette J, Belkina N, Patino-Lopez G, Torban E. Ste20-like kinase, SLK, a novel mediator of podocyte integrity. Am J Physiol Renal Physiol 2017; 315:F186-F198. [PMID: 29187370 DOI: 10.1152/ajprenal.00238.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
SLK is essential for embryonic development and may play a key role in wound healing, tumor growth, and metastasis. Expression and activation of SLK are increased in kidney development and during recovery from ischemic acute kidney injury. Overexpression of SLK in glomerular epithelial cells/podocytes in vivo induces injury and proteinuria. Conversely, reduced SLK expression leads to abnormalities in cell adhesion, spreading, and motility. Tight regulation of SLK expression thus may be critical for normal renal structure and function. We produced podocyte-specific SLK-knockout mice to address the functional role of SLK in podocytes. Mice with podocyte-specific deletion of SLK showed reduced glomerular SLK expression and activity compared with control. Podocyte-specific deletion of SLK resulted in albuminuria at 4-5 mo of age in male mice and 8-9 mo in female mice, which persisted for up to 13 mo. At 11-12 mo, knockout mice showed ultrastructural changes, including focal foot process effacement and microvillous transformation of podocyte plasma membranes. Mean foot process width was approximately twofold greater in knockout mice compared with control. Podocyte number was reduced by 35% in knockout mice compared with control, and expression of nephrin, synaptopodin, and podocalyxin was reduced in knockout mice by 20-30%. In summary, podocyte-specific deletion of SLK leads to albuminuria, loss of podocytes, and morphological evidence of podocyte injury. Thus, SLK is essential to the maintenance of podocyte integrity as mice age.
Collapse
Affiliation(s)
- Andrey V Cybulsky
- Department of Medicine, McGill University Health Centre Research Institute, McGill University , Montreal, Quebec , Canada
| | - Joan Papillon
- Department of Medicine, McGill University Health Centre Research Institute, McGill University , Montreal, Quebec , Canada
| | - Julie Guillemette
- Department of Medicine, McGill University Health Centre Research Institute, McGill University , Montreal, Quebec , Canada
| | - Natalya Belkina
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health , Bethesda, Maryland
| | - Genaro Patino-Lopez
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health , Bethesda, Maryland
| | - Elena Torban
- Department of Medicine, McGill University Health Centre Research Institute, McGill University , Montreal, Quebec , Canada
| |
Collapse
|
12
|
Hannigan MM, Zagore LL, Licatalosi DD. Ptbp2 Controls an Alternative Splicing Network Required for Cell Communication during Spermatogenesis. Cell Rep 2017; 19:2598-2612. [PMID: 28636946 PMCID: PMC5543815 DOI: 10.1016/j.celrep.2017.05.089] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/04/2017] [Accepted: 05/25/2017] [Indexed: 01/12/2023] Open
Abstract
Alternative splicing has essential roles in development. Remarkably, spermatogenic cells express more alternatively spliced RNAs compared to most whole tissues; however, regulation of these RNAs remains unclear. Here, we characterize the alternative splicing landscape during spermatogenesis and reveal an essential function for the RNA-binding protein Ptbp2 in this highly regulated developmental program. We found that Ptbp2 controls a network of genes involved in cell adhesion, migration, and polarity, suggesting that splicing regulation by Ptbp2 is critical for germ cell communication with Sertoli cells (multifunctional somatic cells necessary for spermatogenesis). Indeed, Ptbp2 ablation in germ cells resulted in disorganization of the filamentous actin (F-actin) cytoskeleton in Sertoli cells, indicating that alternative splicing regulation is necessary for cellular crosstalk during germ cell development. Collectively, the data delineate an alternative splicing regulatory network essential for spermatogenesis, the splicing factor that controls it, and its biological importance in germ-Sertoli communication.
Collapse
Affiliation(s)
- Molly M Hannigan
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Leah L Zagore
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Donny D Licatalosi
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
13
|
Cybulsky AV, Guillemette J, Papillon J, Abouelazm NT. Regulation of Ste20-like kinase, SLK, activity: Dimerization and activation segment phosphorylation. PLoS One 2017; 12:e0177226. [PMID: 28475647 PMCID: PMC5419656 DOI: 10.1371/journal.pone.0177226] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/24/2017] [Indexed: 12/11/2022] Open
Abstract
The Ste20-like kinase, SLK, has diverse cellular functions. SLK mediates organ development, cell cycle progression, cytoskeletal remodeling, cytokinesis, and cell survival. Expression and activity of SLK are enhanced in renal ischemia-reperfusion injury, and overexpression of SLK was shown to induce apoptosis in cultured glomerular epithelial cells (GECs) and renal tubular cells, as well as GEC/podocyte injury in vivo. The SLK protein consists of a N-terminal catalytic domain and an extensive C-terminal domain, which contains coiled-coils. The present study addresses the regulation of SLK activity. Controlled dimerization of the SLK catalytic domain enhanced autophosphorylation of SLK at T183 and S189, which are located in the activation segment. The full-length ectopically- and endogenously-expressed SLK was also autophosphorylated at T183 and S189. Using ezrin as a model SLK substrate (to address exogenous kinase activity), we demonstrate that dimerized SLK 1–373 or full-length SLK can effectively induce activation-specific phosphorylation of ezrin. Mutations in SLK, including T183A, S189A or T193A reduced T183 or S189 autophosphorylation, and showed a greater reduction in ezrin phosphorylation. Mutations in the coiled-coil region of full-length SLK that impair dimerization, in particular I848G, significantly reduced ezrin phosphorylation and tended to reduce autophosphorylation of SLK at T183. In experimental membranous nephropathy in rats, proteinuria and GEC/podocyte injury were associated with increased glomerular SLK activity and ezrin phosphorylation. In conclusion, dimerization via coiled-coils and phosphorylation of T183, S189 and T193 play key roles in the activation and signaling of SLK, and provide targets for novel therapeutic approaches.
Collapse
Affiliation(s)
- Andrey V. Cybulsky
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
- * E-mail:
| | - Julie Guillemette
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Joan Papillon
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Nihad T. Abouelazm
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
14
|
Deletion of the Ste20-like kinase SLK in skeletal muscle results in a progressive myopathy and muscle weakness. Skelet Muscle 2017; 7:3. [PMID: 28153048 PMCID: PMC5288853 DOI: 10.1186/s13395-016-0119-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/26/2016] [Indexed: 12/16/2022] Open
Abstract
Background The Ste20-like kinase, SLK, plays an important role in cell proliferation and cytoskeletal remodeling. In fibroblasts, SLK has been shown to respond to FAK/Src signaling and regulate focal adhesion turnover through Paxillin phosphorylation. Full-length SLK has also been shown to be essential for embryonic development. In myoblasts, the overexpression of a dominant negative SLK is sufficient to block myoblast fusion. Methods In this study, we crossed the Myf5-Cre mouse model with our conditional SLK knockout model to delete SLK in skeletal muscle. A thorough analysis of skeletal muscle tissue was undertaken in order to identify defects in muscle development caused by the lack of SLK. Isometric force analysis was performed on adult knockout mice and compared to age-matched wild-type mice. Furthermore, cardiotoxin injections were performed followed by immunohistochemistry for myogenic markers to assess the efficiency muscle regeneration following SLK deletion. Results We show here that early deletion of SLK from the myogenic lineage does not markedly impair skeletal muscle development but delays the regenerative process. Interestingly, adult mice (~6 months) display an increase in the proportion of central nuclei and increased p38 activation. Furthermore, mice as young as 3 months old present with decreased force generation, suggesting that the loss of SLK impairs myofiber stability and function. Assessment of structural components revealed aberrant localization of focal adhesion proteins, such as FAK and paxillin. Our data show that the loss of SLK results in unstable myofibers resulting in a progressive myopathy. Additionally, the loss of SLK resulted in a delay in muscle regeneration following cardiotoxin injections. Conclusions Our results show that SLK is dispensable for muscle development and regeneration but is required for myofiber stability and optimal force generation. Electronic supplementary material The online version of this article (doi:10.1186/s13395-016-0119-1) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
Li J, Wang R, Gannon OJ, Rezey AC, Jiang S, Gerlach BD, Liao G, Tang DD. Polo-like Kinase 1 Regulates Vimentin Phosphorylation at Ser-56 and Contraction in Smooth Muscle. J Biol Chem 2016; 291:23693-23703. [PMID: 27662907 PMCID: PMC5095422 DOI: 10.1074/jbc.m116.749341] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/15/2016] [Indexed: 11/06/2022] Open
Abstract
Polo-like kinase 1 (Plk1) is a serine/threonine-protein kinase that has been implicated in mitosis, cytokinesis, and smooth muscle cell proliferation. The role of Plk1 in smooth muscle contraction has not been investigated. Here, stimulation with acetylcholine induced Plk1 phosphorylation at Thr-210 (an indication of Plk1 activation) in smooth muscle. Contractile stimulation also activated Plk1 in live smooth muscle cells as evidenced by changes in fluorescence resonance energy transfer signal of a Plk1 sensor. Moreover, knockdown of Plk1 in smooth muscle attenuated force development. Smooth muscle conditional knock-out of Plk1 also diminished contraction of mouse tracheal rings. Plk1 knockdown inhibited acetylcholine-induced vimentin phosphorylation at Ser-56 without affecting myosin light chain phosphorylation. Expression of T210A Plk1 inhibited the agonist-induced vimentin phosphorylation at Ser-56 and contraction in smooth muscle. However, myosin light chain phosphorylation was not affected by T210A Plk1. Ste20-like kinase (SLK) is a serine/threonine-protein kinase that has been implicated in spindle orientation and microtubule organization during mitosis. In this study knockdown of SLK inhibited Plk1 phosphorylation at Thr-210 and activation. Finally, asthma is characterized by airway hyperresponsiveness, which largely stems from airway smooth muscle hyperreactivity. Here, smooth muscle conditional knock-out of Plk1 attenuated airway resistance and airway smooth muscle hyperreactivity in a murine model of asthma. Taken together, these findings suggest that Plk1 regulates smooth muscle contraction by modulating vimentin phosphorylation at Ser-56. Plk1 activation is regulated by SLK during contractile activation. Plk1 contributes to the pathogenesis of asthma.
Collapse
Affiliation(s)
- Jia Li
- From the Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York 12208
| | - Ruping Wang
- From the Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York 12208
| | - Olivia J Gannon
- From the Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York 12208
| | - Alyssa C Rezey
- From the Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York 12208
| | - Sixin Jiang
- From the Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York 12208
| | - Brennan D Gerlach
- From the Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York 12208
| | - Guoning Liao
- From the Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York 12208
| | - Dale D Tang
- From the Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York 12208
| |
Collapse
|
16
|
Fokin AI, Klementeva TS, Nadezhdina ES, Burakov AV. SLK/LOSK kinase regulates cell motility independently of microtubule organization and Golgi polarization. Cytoskeleton (Hoboken) 2016; 73:83-92. [PMID: 26818812 DOI: 10.1002/cm.21276] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 10/16/2015] [Accepted: 01/20/2016] [Indexed: 12/31/2022]
Abstract
Cell motility is an essential complex process that requires actin and microtubule cytoskeleton reorganization and polarization. Such extensive rearrangement is closely related to cell polarization as a whole. The serine/threonine kinase SLK/LOSK is a potential regulator of cell motility, as it phosphorylates a series of cytoskeleton-bound proteins that collectively participate in the remodeling of migratory cell architecture. In this work, we report that SLK/LOSK is an indispensable regulator of cell locomotion that primarily acts through the small GTPase RhoA and the dynactin subunit p150(Glued). Both RhoA and dynactin affect cytoskeleton organization, polarization, and general cell locomotory activity to various extents. However, it seems that these events are independent of each other. Thus, SLK/LOSK kinase effectively functions as a switch that links all of the processes underlying cell motility to provide robust directional movement.
Collapse
Affiliation(s)
- Artem I Fokin
- A.N.Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory, Moscow, 119992, Russia
| | - Tatiana S Klementeva
- Institute of Protein Research of Russian Academy of Sciences, Moscow Region, Pushchino, Institutskaya Str, 4, 142290, Russia
| | - Elena S Nadezhdina
- A.N.Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory, Moscow, 119992, Russia.,Institute of Protein Research of Russian Academy of Sciences, Moscow Region, Pushchino, Institutskaya Str, 4, 142290, Russia
| | - Anton V Burakov
- A.N.Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory, Moscow, 119992, Russia
| |
Collapse
|
17
|
Jiang S, Tang DD. Plk1 regulates MEK1/2 and proliferation in airway smooth muscle cells. Respir Res 2015; 16:93. [PMID: 26242183 PMCID: PMC4531535 DOI: 10.1186/s12931-015-0257-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/25/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Polo-like kinase 1 (Plk1) is a serine/threonine protein kinase that has been implicated in the regulation of mitosis. In addition, the activation of mitogen-activated protein kinase (MAPK) is a key event in the early stage of the growth factor response. The role of Plk1 in MAPK phosphorylation in cells has not been investigated. METHODS Immunoblot analysis was used to evaluate Plk1 and MAPK phosphorylation in cells upon stimulation with platelet-derived growth factor (PDGF). We also generated stable Plk1 knockdown (KD) cells to assess the role of Plk1 in MAPK activation and cell proliferation. Furthermore, we used a non-phosphorylatable Plk1 mutant to determine the function of Plk1 phosphorylation in these processes. RESULTS Treatment with PDGF increased Plk1 phosphorylation at Thr-210 (an indication of Plk1 activation) in human airway smooth muscle cells. Plk1 KD attenuated the PDGF-induced phosphorylation of MEK1/2 and ERK1/2 as well as cell proliferation. However, phosphorylation of Raf-1 and AKT upon stimulation with PDGF was not reduced in Plk1 KD cells. Furthermore, the expression of T210A Plk1 (alanine substitution at Thr-210) inhibited the PDGF-stimulated MEK1/2 phosphorylation, ERK1/2 phosphorylation and cell proliferation. CONCLUSIONS Together, these findings suggest that Plk1 is activated upon growth factor stimulation, which may control the activation of MEK1/2 and ERK1/2, and smooth muscle cell proliferation.
Collapse
Affiliation(s)
- Sixin Jiang
- The Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, NY, 12208, USA.
| | - Dale D Tang
- The Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, NY, 12208, USA.
| |
Collapse
|
18
|
Chen TY, Syu JS, Han TY, Cheng HL, Lu FI, Wang CY. Cell Cycle-Dependent Localization of Dynactin Subunit p150gluedat Centrosome. J Cell Biochem 2015; 116:2049-60. [DOI: 10.1002/jcb.25160] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 03/06/2015] [Indexed: 02/01/2023]
Affiliation(s)
- Ting-Yu Chen
- Department of Cell Biology and Anatomy; College of Medicine; National Cheng Kung University; Tainan 701 Taiwan
| | - Jhih-Siang Syu
- Department of Cell Biology and Anatomy; College of Medicine; National Cheng Kung University; Tainan 701 Taiwan
| | - Tsung-Yu Han
- Institute of Biotechnology; National Cheng-Kung University; Tainan 701 Taiwan
| | - Hui-ling Cheng
- Department of Cell Biology and Anatomy; College of Medicine; National Cheng Kung University; Tainan 701 Taiwan
| | - Fu-I Lu
- Institute of Biotechnology; National Cheng-Kung University; Tainan 701 Taiwan
| | - Chia-Yih Wang
- Department of Cell Biology and Anatomy; College of Medicine; National Cheng Kung University; Tainan 701 Taiwan
- Institute of Basic Medical Sciences; College of Medicine; National Cheng Kung University; Tainan 701 Taiwan
| |
Collapse
|
19
|
Fokin AI, Brodsky IB, Burakov AV, Nadezhdina ES. Interaction of early secretory pathway and Golgi membranes with microtubules and microtubule motors. BIOCHEMISTRY (MOSCOW) 2014; 79:879-93. [DOI: 10.1134/s0006297914090053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|