1
|
Shi L, Nadjar-Boger E, Jafarinia H, Carlier A, Wolfenson H. YAP mediates apoptosis through failed integrin adhesion reinforcement. Cell Rep 2024; 43:113811. [PMID: 38393944 DOI: 10.1016/j.celrep.2024.113811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 12/26/2023] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Extracellular matrix (ECM) rigidity is a major effector of cell fate decisions. Whereas cell proliferation on stiff matrices, wherein Yes-associated protein (YAP) plays a pivotal role, is well documented, activation of apoptosis in response to soft matrices is poorly understood. Here, we show that YAP drives the apoptotic decision as well. We find that in cells on soft matrices, YAP is recruited to small adhesions, phosphorylated at the Y357 residue, and translocated into the nucleus, ultimately leading to apoptosis. In contrast, Y357 phosphorylation levels are dramatically low in large adhesions on stiff matrices. Furthermore, mild attenuation of actomyosin contractility allows adhesion growth on soft matrices, leading to reduced Y357 phosphorylation levels and resulting in cell growth. These findings indicate that failed adhesion reinforcement drives rigidity-dependent apoptosis through YAP and that this decision is not determined solely by ECM rigidity but rather by the balance between cellular forces and ECM rigidity.
Collapse
Affiliation(s)
- Lidan Shi
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Elisabeth Nadjar-Boger
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Hamidreza Jafarinia
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, 6200 MD Maastricht, the Netherlands
| | - Aurélie Carlier
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, 6200 MD Maastricht, the Netherlands
| | - Haguy Wolfenson
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel.
| |
Collapse
|
2
|
Yamashiro S, Rutkowski DM, Lynch KA, Liu Y, Vavylonis D, Watanabe N. Force transmission by retrograde actin flow-induced dynamic molecular stretching of Talin. Nat Commun 2023; 14:8468. [PMID: 38123541 PMCID: PMC10733299 DOI: 10.1038/s41467-023-44018-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Force transmission at integrin-based adhesions is important for cell migration and mechanosensing. Talin is an essential focal adhesion (FA) protein that links F-actin to integrins. F-actin constantly moves on FAs, yet how Talin simultaneously maintains the connection to F-actin and transmits forces to integrins remains unclear. Here we show a critical role of dynamic Talin unfolding in force transmission. Using single-molecule speckle microscopy, we found that the majority of Talin are bound only to either F-actin or the substrate, whereas 4.1% of Talin is linked to both structures via elastic transient clutch. By reconstituting Talin knockdown cells with Talin chimeric mutants, in which the Talin rod subdomains are replaced with the stretchable β-spectrin repeats, we show that the stretchable property is critical for force transmission. Simulations suggest that unfolding of the Talin rod subdomains increases in the linkage duration and work at FAs. This study elucidates a force transmission mechanism, in which stochastic molecular stretching bridges two cellular structures moving at different speeds.
Collapse
Affiliation(s)
- Sawako Yamashiro
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto, Japan.
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | | | - Kelli Ann Lynch
- Department of Physics, Lehigh University, Bethlehem, PA, USA
- University of South Florida, Tampa, FL, USA
| | - Ying Liu
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto, Japan
| | | | - Naoki Watanabe
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto, Japan
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
3
|
Dasgupta A, Ngo HT, Tschoerner D, Touret N, da Rocha-Azevedo B, Jaqaman K. Multiscale imaging and quantitative analysis of plasma membrane protein-cortical actin interplay. Biophys J 2023; 122:3798-3815. [PMID: 37571825 PMCID: PMC10541498 DOI: 10.1016/j.bpj.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/19/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023] Open
Abstract
The spatiotemporal organization of cell surface receptors is important for cell signaling. Cortical actin (CA), the subset of the actin cytoskeleton subjacent to the plasma membrane (PM), plays a large role in cell surface receptor organization. However, this has been shown largely through actin perturbation experiments, which raise concerns of nonspecific effects and preclude quantification of actin architecture and dynamics under unperturbed conditions. These limitations make it challenging to predict how changes in CA properties can affect receptor organization. To derive direct relationships between the architecture and dynamics of CA and the spatiotemporal organization of PM proteins, including cell surface receptors, we developed a multiscale imaging and computational analysis framework based on the integration of single-molecule imaging (SMI) of PM proteins and fluorescent speckle microscopy (FSM) of CA (combined: SMI-FSM) in the same live cell. SMI-FSM revealed differential relationships between PM proteins and CA based on the PM proteins' actin binding ability, diffusion type, and local CA density. Combining SMI-FSM with subcellular region analysis revealed differences in CA dynamics that were predictive of differences in PM protein mobility near ruffly cell edges versus closer to the cell center. SMI-FSM also highlighted the complexity of cell-wide actin perturbation, where we found that global changes in actin properties caused by perturbation were not necessarily reflected in the CA properties near PM proteins, and that the changes in PM protein properties upon perturbation varied based on the local CA environment. Given the widespread use of SMI as a method to study the spatiotemporal organization of PM proteins and the versatility of SMI-FSM, we expect it to be widely applicable to enable future investigation of the influence of CA architecture and dynamics on different PM proteins, especially in the context of actin-dependent cellular processes.
Collapse
Affiliation(s)
- Aparajita Dasgupta
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Huong-Tra Ngo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Deryl Tschoerner
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Nicolas Touret
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Bruno da Rocha-Azevedo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Khuloud Jaqaman
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas; Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
4
|
Zhang Q, Miyamoto A, Watanabe N. Protocol to generate fast-dissociating recombinant antibody fragments for multiplexed super-resolution microscopy. STAR Protoc 2023; 4:102523. [PMID: 37610875 PMCID: PMC10468357 DOI: 10.1016/j.xpro.2023.102523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/17/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023] Open
Abstract
Multiplexed high-density label super-resolution microscopy image reconstruction by integrating exchangeable single-molecule localization (IRIS) enables elucidating fine structures and molecular distribution in cells and tissues. However, fast-dissociating binders are required for individual targets. Here, we present a protocol for generating antibody-based IRIS probes from existing antibody sequences. We describe steps for retrieving antibody sequences from databases. We then detail the construction, purification, and evaluation of recombinant probes after site-directed mutagenesis at the base of complementarity-determining region loops. The protocol accelerates dissociation rates without compromising the binding specificity. For complete details on the use and execution of this protocol, please refer to Zhang et al. (2022).1.
Collapse
Affiliation(s)
- Qianli Zhang
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto 606-8501, Japan
| | - Akitoshi Miyamoto
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto 606-8501, Japan
| | - Naoki Watanabe
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto 606-8501, Japan; Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan.
| |
Collapse
|
5
|
Yamashiro S, Rutkowski DM, Ann Lynch K, Liu Y, Vavylonis D, Watanabe N. Force transmission by retrograde actin flow-induced dynamic molecular stretching of Talin. RESEARCH SQUARE 2023:rs.3.rs-3254213. [PMID: 37674715 PMCID: PMC10479399 DOI: 10.21203/rs.3.rs-3254213/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Force transmission at integrin-based adhesions is important for cell migration and mechanosensing. Talin is an essential focal adhesion (FA) protein that links F-actin to integrins. F-actin constantly moves on FAs, yet how Talin simultaneously maintains the connection to F-actin and transmits forces to integrins remains unclear. Here we show a critical role of dynamic Talin unfolding in force transmission. Using single-molecule speckle microscopy, we found that the majority of Talin are bound only to either F-actin or the substrate, whereas 4.1% of Talin is linked to both structures via elastic transient clutch. By reconstituting Talin knockdown cells with Talin chimeric mutants, in which the Talin rod subdomains are replaced with the stretchable β-spectrin repeats, we show that the stretchable property is critical for force transmission. Simulations suggest that unfolding of the Talin rod subdomains increases in the linkage duration and work at FAs. This study reveals a new mode of force transmission, in which stochastic molecular stretching bridges two cellular structures moving at different speeds.
Collapse
Affiliation(s)
- Sawako Yamashiro
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto Japan
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto Japan
| | | | - Kelli Ann Lynch
- Department of Physics, Lehigh University, Bethlehem, PA, USA
- University of South Florida, Tampa, FL, USA
| | - Ying Liu
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto Japan
| | | | - Naoki Watanabe
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto Japan
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto Japan
| |
Collapse
|
6
|
Dasgupta A, Ngo HT, Tschoerner D, Touret N, da Rocha-Azevedo B, Jaqaman K. Multiscale imaging and quantitative analysis of plasma membrane protein-cortical actin interplay. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.22.525112. [PMID: 36747866 PMCID: PMC9900770 DOI: 10.1101/2023.01.22.525112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The spatiotemporal organization of cell surface receptors is important for cell signaling. Cortical actin (CA), the subset of the actin cytoskeleton subjacent to the plasma membrane (PM), plays a large role in cell surface receptor organization. This was however shown largely through actin perturbation experiments, which raise concerns of nonspecific effects and preclude quantification of actin architecture and dynamics under unperturbed conditions. These limitations make it challenging to predict how changes in CA properties can affect receptor organization. To derive direct relationships between the architecture and dynamics of CA and the spatiotemporal organization of PM proteins, including cell surface receptors, we developed a multiscale imaging and computational analysis framework based on the integration of single-molecule imaging (SMI) of PM proteins and fluorescent speckle microscopy (FSM) of CA (combined: SMI-FSM) in the same live cell. SMI-FSM revealed differential relationships between PM proteins and CA based on the PM proteins’ actin binding ability, diffusion type and local CA density. It also highlighted the complexity of cell wide actin perturbation, where we found that global changes in actin properties caused by perturbation were not necessarily reflected in the CA properties near PM proteins, and the changes in PM protein properties upon perturbation varied based on the local CA environment. Given the widespread use of SMI as a method to study the spatiotemporal organization of PM proteins and the versatility of SMI-FSM, we expect it to be widely applicable to enable future investigation of the influence of CA architecture and dynamics on different PM proteins, especially in the context of actin-dependent cellular processes, such as cell migration. Significance Plasma membrane protein organization, an important factor for shaping cellular behaviors, is influenced by cortical actin, the subset of the actin cytoskeleton near the plasma membrane. Yet it is challenging to directly and quantitatively probe this influence. Here, we developed an imaging and analysis approach that combines single-molecule imaging, fluorescent speckle microscopy and computational statistical analysis to characterize and correlate the spatiotemporal organization of plasma membrane proteins and cortical actin. Our approach revealed different relationships between different proteins and cortical actin, and highlighted the complexity of interpreting cell wide actin perturbation experiments. We expect this approach to be widely used to study the influence of cortical actin on different plasma membrane components, especially in actin-dependent processes.
Collapse
Affiliation(s)
- Aparajita Dasgupta
- Department of Biophysics, University of Texas Southwestern Medical Center; Dallas, TX, USA
| | - Huong-Tra Ngo
- Department of Biophysics, University of Texas Southwestern Medical Center; Dallas, TX, USA
| | - Deryl Tschoerner
- Department of Biophysics, University of Texas Southwestern Medical Center; Dallas, TX, USA
| | - Nicolas Touret
- Department of Biochemistry, University of Alberta; Edmonton, AB, Canada
| | - Bruno da Rocha-Azevedo
- Department of Biophysics, University of Texas Southwestern Medical Center; Dallas, TX, USA
| | - Khuloud Jaqaman
- Department of Biophysics, University of Texas Southwestern Medical Center; Dallas, TX, USA
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center; Dallas, TX, USA
| |
Collapse
|
7
|
Zhang Q, Miyamoto A, Watanabe S, Arimori T, Sakai M, Tomisaki M, Kiuchi T, Takagi J, Watanabe N. Engineered fast-dissociating antibody fragments for multiplexed super-resolution microscopy. CELL REPORTS METHODS 2022; 2:100301. [PMID: 36313806 PMCID: PMC9606137 DOI: 10.1016/j.crmeth.2022.100301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/07/2022] [Accepted: 08/31/2022] [Indexed: 05/22/2023]
Abstract
Image reconstruction by integrating exchangeable single-molecule localization (IRIS) achieves multiplexed super-resolution imaging by high-density labeling with fast exchangeable fluorescent probes. However, previous methods to develop probes for individual targets required a great amount of time and effort. Here, we introduce a method for generating recombinant IRIS probes with a new mutagenesis strategy that can be widely applied to existing antibody sequences. Several conserved tyrosine residues at the base of complementarity-determining regions were identified as candidate sites for site-directed mutagenesis. With a high probability, mutations at candidate sites accelerated the off rate of recombinant antibody-based probes without compromising specific binding. We were able to develop IRIS probes from five monoclonal antibodies and three single-domain antibodies. We demonstrate multiplexed localization of endogenous proteins in primary neurons that visualizes small synaptic connections with high binding density. It is now practically feasible to generate fast-dissociating fluorescent probes for multitarget super-resolution imaging.
Collapse
Affiliation(s)
- Qianli Zhang
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto 606-8501, Japan
| | - Akitoshi Miyamoto
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto 606-8501, Japan
| | - Shin Watanabe
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto 606-8501, Japan
| | - Takao Arimori
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masanori Sakai
- Kyoto University Faculty of Engineering, Kyoto 606-8317, Japan
| | - Madoka Tomisaki
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto 606-8501, Japan
| | - Tai Kiuchi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Junichi Takagi
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naoki Watanabe
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto 606-8501, Japan
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| |
Collapse
|
8
|
Extraction of accurate cytoskeletal actin velocity distributions from noisy measurements. Nat Commun 2022; 13:4749. [PMID: 35963858 PMCID: PMC9376101 DOI: 10.1038/s41467-022-31583-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 06/23/2022] [Indexed: 11/09/2022] Open
Abstract
Dynamic remodeling of the actin cytoskeleton is essential for many cellular processes. Tracking the movement of individual actin filaments can in principle shed light on how this complex behavior arises at the molecular level. However, the information that can be extracted from these measurements is often limited by low signal-to-noise ratios. We developed a Bayesian statistical approach to estimate true, underlying velocity distributions from the tracks of individual actin-associated fluorophores with quantified localization uncertainties. We found that the motion of filamentous (F)-actin in fibroblasts and endothelial cells was better described by a statistical jump process than by models in which filaments undergo continuous, diffusive movement. In particular, a model with exponentially distributed jump length- and time-scales recapitulated actin filament velocity distributions measured for the cell cortex, integrin-based adhesions, and stress fibers, suggesting that a common physical model can potentially describe actin filament dynamics in a variety of cellular contexts.
Collapse
|
9
|
Holz D, Hall AR, Usukura E, Yamashiro S, Watanabe N, Vavylonis D. A mechanism with severing near barbed ends andannealing explains structure and dynamics of dendriticactin networks. eLife 2022; 11:69031. [PMID: 35670664 PMCID: PMC9252579 DOI: 10.7554/elife.69031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/04/2022] [Indexed: 11/13/2022] Open
Abstract
Single molecule imaging has shown that part of actin disassembles within a few seconds after incorporation into the dendritic filament network in lamellipodia, suggestive of frequent destabilization near barbed ends. To investigate the mechanisms behind network remodeling, we created a stochastic model with polymerization, depolymerization, branching, capping, uncapping, severing, oligomer diffusion, annealing, and debranching. We find that filament severing, enhanced near barbed ends, can explain the single molecule actin lifetime distribution, if oligomer fragments reanneal to free ends with rate constants comparable to in vitro measurements. The same mechanism leads to actin networks consistent with measured filament, end, and branch concentrations. These networks undergo structural remodeling, leading to longer filaments away from the leading edge, at the +/- 35𝑜 orientation pattern. Imaging of actin speckle lifetimes at sub-second resolution verifies frequent disassembly of newly-assembled actin. We thus propose a unified mechanism that fits a diverse set of basic lamellipodia phenomenology.
Collapse
Affiliation(s)
| | | | - Eiji Usukura
- Laboratory of Single-Molecule Cell Biology, Kyoto University
| | | | - Naoki Watanabe
- Laboratory of Single-Molecule Cell Biology, Kyoto University
| | | |
Collapse
|
10
|
Rutkowski DM, Vavylonis D. Discrete mechanical model of lamellipodial actin network implements molecular clutch mechanism and generates arcs and microspikes. PLoS Comput Biol 2021; 17:e1009506. [PMID: 34662335 PMCID: PMC8553091 DOI: 10.1371/journal.pcbi.1009506] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/28/2021] [Accepted: 09/30/2021] [Indexed: 01/03/2023] Open
Abstract
Mechanical forces, actin filament turnover, and adhesion to the extracellular environment regulate lamellipodial protrusions. Computational and mathematical models at the continuum level have been used to investigate the molecular clutch mechanism, calculating the stress profile through the lamellipodium and around focal adhesions. However, the forces and deformations of individual actin filaments have not been considered while interactions between actin networks and actin bundles is not easily accounted with such methods. We develop a filament-level model of a lamellipodial actin network undergoing retrograde flow using 3D Brownian dynamics. Retrograde flow is promoted in simulations by pushing forces from the leading edge (due to actin polymerization), pulling forces (due to molecular motors), and opposed by viscous drag in cytoplasm and focal adhesions. Simulated networks have densities similar to measurements in prior electron micrographs. Connectivity between individual actin segments is maintained by permanent and dynamic crosslinkers. Remodeling of the network occurs via the addition of single actin filaments near the leading edge and via filament bond severing. We investigated how several parameters affect the stress distribution, network deformation and retrograde flow speed. The model captures the decrease in retrograde flow upon increase of focal adhesion strength. The stress profile changes from compression to extension across the leading edge, with regions of filament bending around focal adhesions. The model reproduces the observed reduction in retrograde flow speed upon exposure to cytochalasin D, which halts actin polymerization. Changes in crosslinker concentration and dynamics, as well as in the orientation pattern of newly added filaments demonstrate the model's ability to generate bundles of filaments perpendicular (actin arcs) or parallel (microspikes) to the protruding direction.
Collapse
|
11
|
Li Y, Munro E. Filament-guided filament assembly provides structural memory of filament alignment during cytokinesis. Dev Cell 2021; 56:2486-2500.e6. [PMID: 34480876 DOI: 10.1016/j.devcel.2021.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/30/2021] [Accepted: 08/13/2021] [Indexed: 10/24/2022]
Abstract
During cytokinesis, animal cells rapidly remodel the equatorial cortex to build an aligned array of actin filaments called the contractile ring. Local reorientation of filaments by active equatorial compression is thought to underlie the emergence of filament alignment during ring assembly. Here, combining single molecule analysis and modeling in one-cell C. elegans embryos, we show that filaments turnover is far too fast for reorientation of individual filaments by equatorial compression to explain the observed alignment, even if favorably oriented filaments are selectively stabilized. By tracking single formin/CYK-1::GFP particles to monitor local filament assembly, we identify a mechanism that we call filament-guided filament assembly (FGFA), in which existing filaments serve as templates to orient the growth of new filaments. FGFA sharply increases the effective lifetime of filament orientation, providing structural memory that allows cells to build highly aligned filament arrays in response to equatorial compression, despite rapid turnover of individual filaments.
Collapse
Affiliation(s)
- Younan Li
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Edwin Munro
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA; Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA; Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
12
|
Tang Q, Schaks M, Koundinya N, Yang C, Pollard LW, Svitkina TM, Rottner K, Goode BL. WAVE1 and WAVE2 have distinct and overlapping roles in controlling actin assembly at the leading edge. Mol Biol Cell 2020; 31:2168-2178. [PMID: 32697617 PMCID: PMC7550694 DOI: 10.1091/mbc.e19-12-0705] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
SCAR/WAVE proteins and Arp2/3 complex assemble branched actin networks at the leading edge. Two isoforms of SCAR/WAVE, WAVE1 and WAVE2, reside at the leading edge, yet it has remained unclear whether they perform similar or distinct roles. Further, there have been conflicting reports about the Arp2/3-independent biochemical activities of WAVE1 on actin filament elongation. To investigate this in vivo, we knocked out WAVE1 and WAVE2 genes, individually and together, in B16-F1 melanoma cells. We demonstrate that WAVE1 and WAVE2 are redundant for lamellipodia formation and motility. However, there is a significant decrease in the rate of leading edge actin extension in WAVE2 KO cells, and an increase in WAVE1 KO cells. The faster rates of actin extension in WAVE1 KO cells are offset by faster retrograde flow, and therefore do not translate into faster lamellipodium protrusion. Thus, WAVE1 restricts the rate of actin extension at the leading edge, and appears to couple actin networks to the membrane to drive protrusion. Overall, these results suggest that WAVE1 and WAVE2 have redundant roles in promoting Arp2/3-dependent actin nucleation and lamellipodia formation, but distinct roles in controlling actin network extension and harnessing network growth to cell protrusion.
Collapse
Affiliation(s)
- Qing Tang
- Department of Biology, Brandeis University, Waltham, MA 02454
| | - Matthias Schaks
- Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany.,Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Neha Koundinya
- Department of Biology, Brandeis University, Waltham, MA 02454
| | - Changsong Yang
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Tatyana M Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Klemens Rottner
- Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany.,Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Bruce L Goode
- Department of Biology, Brandeis University, Waltham, MA 02454
| |
Collapse
|
13
|
Tilve S, Iweka CA, Bao J, Hawken N, Mencio CP, Geller HM. Phospholipid phosphatase related 1 (PLPPR1) increases cell adhesion through modulation of Rac1 activity. Exp Cell Res 2020; 389:111911. [PMID: 32061832 DOI: 10.1016/j.yexcr.2020.111911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/03/2020] [Accepted: 02/11/2020] [Indexed: 12/31/2022]
Abstract
Phospholipid Phosphatase-Related Protein Type 1 (PLPPR1) is a six-transmembrane protein that belongs to the family of plasticity-related gene proteins, which is a novel brain-specific subclass of the lipid phosphate phosphatase superfamily. PLPPR1-5 have prominent roles in synapse formation and axonal pathfinding. We found that PLPPR1 overexpression in the mouse neuroblastoma cell line (Neuro2a) results in increase in cell adhesion and reduced cell migration. During migration, these cells leave behind long fibrous looking extensions of the plasma membrane causing a peculiar phenotype. Cells expressing PLPPR1 showed decreased actin turnover and decreased disassembly of focal adhesions. PLPPR1 also reduced active Rac1, and expressing dominant negative Rac1 produced a similar phenotype to overexpression of PLPPR1. The PLPPR1-induced phenotype of long fibers was reversed by introducing constitutively active Rac1. In summary, we show that PLPPR1 decreases active Rac1 levels that leads to cascade of events which increases cell adhesion.
Collapse
Affiliation(s)
- Sharada Tilve
- Laboratory of Developmental Neurobiology, National Heart Lung and Blood Institute, NIH, Bethesda, MD, 20892, USA
| | - Chinyere Agbaegbu Iweka
- Laboratory of Developmental Neurobiology, National Heart Lung and Blood Institute, NIH, Bethesda, MD, 20892, USA; Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA
| | - Jonathan Bao
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Natalie Hawken
- Laboratory of Developmental Neurobiology, National Heart Lung and Blood Institute, NIH, Bethesda, MD, 20892, USA
| | - Caitlin P Mencio
- Laboratory of Developmental Neurobiology, National Heart Lung and Blood Institute, NIH, Bethesda, MD, 20892, USA
| | - Herbert M Geller
- Laboratory of Developmental Neurobiology, National Heart Lung and Blood Institute, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
14
|
Lacy MM, Baddeley D, Berro J. Single-molecule turnover dynamics of actin and membrane coat proteins in clathrin-mediated endocytosis. eLife 2019; 8:52355. [PMID: 31855180 PMCID: PMC6977972 DOI: 10.7554/elife.52355] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/18/2019] [Indexed: 12/22/2022] Open
Abstract
Actin dynamics generate forces to deform the membrane and overcome the cell’s high turgor pressure during clathrin-mediated endocytosis (CME) in yeast, but precise molecular details are still unresolved. Our previous models predicted that actin filaments of the endocytic meshwork continually polymerize and disassemble, turning over multiple times during an endocytic event, similar to other actin systems. We applied single-molecule speckle tracking in live fission yeast to directly measure molecular turnover within CME sites for the first time. In contrast with the overall ~20 s lifetimes of actin and actin-associated proteins in endocytic patches, we detected single-molecule residence times around 1 to 2 s, and similarly high turnover rates of membrane-associated proteins in CME. Furthermore, we find heterogeneous behaviors in many proteins’ motions. These results indicate that endocytic proteins turn over up to five times during the formation of an endocytic vesicle, and suggest revising quantitative models of force production.
Collapse
Affiliation(s)
- Michael M Lacy
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States.,Nanobiology Institute, Yale University, West Haven, United States.,Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, United States
| | - David Baddeley
- Nanobiology Institute, Yale University, West Haven, United States.,Department of Cell Biology, Yale University School of Medicine, New Haven, United States
| | - Julien Berro
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States.,Nanobiology Institute, Yale University, West Haven, United States.,Department of Cell Biology, Yale University School of Medicine, New Haven, United States
| |
Collapse
|
15
|
Lacy MM, Baddeley D, Berro J. Single-molecule turnover dynamics of actin and membrane coat proteins in clathrin-mediated endocytosis. eLife 2019; 8. [PMID: 31855180 DOI: 10.1101/617746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/18/2019] [Indexed: 05/20/2023] Open
Abstract
Actin dynamics generate forces to deform the membrane and overcome the cell's high turgor pressure during clathrin-mediated endocytosis (CME) in yeast, but precise molecular details are still unresolved. Our previous models predicted that actin filaments of the endocytic meshwork continually polymerize and disassemble, turning over multiple times during an endocytic event, similar to other actin systems. We applied single-molecule speckle tracking in live fission yeast to directly measure molecular turnover within CME sites for the first time. In contrast with the overall ~20 s lifetimes of actin and actin-associated proteins in endocytic patches, we detected single-molecule residence times around 1 to 2 s, and similarly high turnover rates of membrane-associated proteins in CME. Furthermore, we find heterogeneous behaviors in many proteins' motions. These results indicate that endocytic proteins turn over up to five times during the formation of an endocytic vesicle, and suggest revising quantitative models of force production.
Collapse
Affiliation(s)
- Michael M Lacy
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
- Nanobiology Institute, Yale University, West Haven, United States
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, United States
| | - David Baddeley
- Nanobiology Institute, Yale University, West Haven, United States
- Department of Cell Biology, Yale University School of Medicine, New Haven, United States
| | - Julien Berro
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
- Nanobiology Institute, Yale University, West Haven, United States
- Department of Cell Biology, Yale University School of Medicine, New Haven, United States
| |
Collapse
|
16
|
Sato Y, Kamijo K, Tsutsumi M, Murakami Y, Takahashi M. Nonmuscle myosin IIA and IIB differently suppress microtubule growth to stabilize cell morphology. J Biochem 2019; 167:25-39. [DOI: 10.1093/jb/mvz082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/22/2019] [Indexed: 12/21/2022] Open
Abstract
Abstract
Precise regulation of cytoskeletal dynamics is important in many fundamental cellular processes such as cell shape determination. Actin and microtubule (MT) cytoskeletons mutually regulate their stability and dynamics. Nonmuscle myosin II (NMII) is a candidate protein that mediates the actin–MT crosstalk. NMII regulates the stability and dynamics of actin filaments to control cell morphology. Additionally, previous reports suggest that NMII-dependent cellular contractility regulates MT dynamics, and MTs also control cell morphology; however, the detailed mechanism whereby NMII regulates MT dynamics and the relationship among actin dynamics, MT dynamics and cell morphology remain unclear. The present study explores the roles of two well-characterized NMII isoforms, NMIIA and NMIIB, on the regulation of MT growth dynamics and cell morphology. We performed RNAi and drug experiments and demonstrated the NMII isoform-specific mechanisms—NMIIA-dependent cellular contractility upregulates the expression of some mammalian diaphanous-related formin (mDia) proteins that suppress MT dynamics; NMIIB-dependent inhibition of actin depolymerization suppresses MT growth independently of cellular contractility. The depletion of either NMIIA or NMIIB resulted in the increase in cellular morphological dynamicity, which was alleviated by the perturbation of MT dynamics. Thus, the NMII-dependent control of cell morphology significantly relies on MT dynamics.
Collapse
Affiliation(s)
- Yuta Sato
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo Hokkaido, Japan
| | - Keiju Kamijo
- Division of Anatomy and Cell Biology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai Miyagi, Japan
| | - Motosuke Tsutsumi
- Research Institute for Electronic Science, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo Hokkaido, Japan
| | - Yota Murakami
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo Hokkaido, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo Hokkaido, Japan
| | - Masayuki Takahashi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo Hokkaido, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo Hokkaido, Japan
| |
Collapse
|
17
|
Koseki K, Taniguchi D, Yamashiro S, Mizuno H, Vavylonis D, Watanabe N. Lamellipodium tip actin barbed ends serve as a force sensor. Genes Cells 2019; 24:705-718. [PMID: 31514256 DOI: 10.1111/gtc.12720] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 09/04/2019] [Accepted: 09/04/2019] [Indexed: 01/31/2023]
Abstract
Cells change direction of migration by sensing rigidity of environment and traction force, yet its underlying mechanism is unclear. Here, we show that tip actin barbed ends serve as an active "force sensor" at the leading edge. We established a method to visualize intracellular single-molecule fluorescent actin through an elastic culture substrate. We found that immediately after cell edge stretch, actin assembly increased specifically at the lamellipodium tip. The rate of actin assembly increased with increasing stretch speed. Furthermore, tip actin polymerization remained elevated at the subsequent hold step, which was accompanied by a decrease in the load on the tip barbed ends. Stretch-induced tip actin polymerization was still observed without either the WAVE complex or Ena/VASP proteins. The observed relationships between forces and tip actin polymerization are consistent with a force-velocity relationship as predicted by the Brownian ratchet mechanism. Stretch caused extra membrane protrusion with respect to the stretched substrate and increased local tip polymerization by >5% of total cellular actin in 30 s. Our data reveal that augmentation of lamellipodium tip actin assembly is directly coupled to the load decrease, which may serve as a force sensor for directed cell protrusion.
Collapse
Affiliation(s)
- Kazuma Koseki
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Daisuke Taniguchi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sawako Yamashiro
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto, Japan
| | - Hiroaki Mizuno
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto, Japan
| | | | - Naoki Watanabe
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto, Japan
| |
Collapse
|
18
|
Yamashiro S, Watanabe N. Quantitative high-precision imaging of myosin-dependent filamentous actin dynamics. J Muscle Res Cell Motil 2019; 41:163-173. [PMID: 31313218 DOI: 10.1007/s10974-019-09541-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/10/2019] [Indexed: 12/20/2022]
Abstract
Over recent decades, considerable effort has been made to understand how mechanical stress applied to the actin network alters actin assembly and disassembly dynamics. However, there are conflicting reports concerning the issue both in vitro and in cells. In this review, we discuss concerns regarding previous quantitative live-cell experiments that have attempted to evaluate myosin regulation of filamentous actin (F-actin) turnover. In particular, we highlight an error-generating mechanism in quantitative live-cell imaging, namely convection-induced misdistribution of actin-binding probes. Direct observation of actin turnover at the single-molecule level using our improved electroporation-based Single-Molecule Speckle (eSiMS) microscopy technique overcomes these concerns. We introduce our recent single-molecule analysis that unambiguously demonstrates myosin-dependent regulation of F-actin stability in live cells. We also discuss the possible application of eSiMS microscopy in the analysis of actin remodeling in striated muscle cells.
Collapse
Affiliation(s)
- Sawako Yamashiro
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan. .,Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Naoki Watanabe
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
19
|
Kaneko N, Herranz-Pérez V, Otsuka T, Sano H, Ohno N, Omata T, Nguyen HB, Thai TQ, Nambu A, Kawaguchi Y, García-Verdugo JM, Sawamoto K. New neurons use Slit-Robo signaling to migrate through the glial meshwork and approach a lesion for functional regeneration. SCIENCE ADVANCES 2018; 4:eaav0618. [PMID: 30547091 PMCID: PMC6291311 DOI: 10.1126/sciadv.aav0618] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/11/2018] [Indexed: 06/09/2023]
Abstract
After brain injury, neural stem cell-derived neuronal precursors (neuroblasts) in the ventricular-subventricular zone migrate toward the lesion. However, the ability of the mammalian brain to regenerate neuronal circuits for functional recovery is quite limited. Here, using a mouse model for ischemic stroke, we show that neuroblast migration is restricted by reactive astrocytes in and around the lesion. To migrate, the neuroblasts use Slit1-Robo2 signaling to disrupt the actin cytoskeleton in reactive astrocytes at the site of contact. Slit1-overexpressing neuroblasts transplanted into the poststroke brain migrated closer to the lesion than did control neuroblasts. These neuroblasts matured into striatal neurons and efficiently regenerated neuronal circuits, resulting in functional recovery in the poststroke mice. These results suggest that the positioning of new neurons will be critical for functional neuronal regeneration in stem/progenitor cell-based therapies for brain injury.
Collapse
Affiliation(s)
- N. Kaneko
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - V. Herranz-Pérez
- Laboratory of Comparative Neurobiology, Instituto Cavanilles, Universidad de Valencia, CIBERNED, C/Catedrático José Beltrán, 2, Paterna, 46980 Valencia, Spain
- Predepartamental Unit of Medicine, Faculty of Health Sciences, Universitat Jaume I, Q-6250003-H Av. de Vicent Sos Baynat, s/n, 12071 Castelló de la Plana, Spain
| | - T. Otsuka
- Division of Cerebral Circuitry, National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - H. Sano
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
- Division of System Neurophysiology, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - N. Ohno
- Department of Anatomy, Division of Histology and Cell Biology, Jichi Medical University, School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - T. Omata
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - H. B. Nguyen
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Department of Anatomy, Faculty of Medicine, University of Medicine and Pharmacy (UMP), Ho Chi Minh City 700000, Vietnam
| | - T. Q. Thai
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - A. Nambu
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
- Division of System Neurophysiology, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Y. Kawaguchi
- Division of Cerebral Circuitry, National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - J. M. García-Verdugo
- Laboratory of Comparative Neurobiology, Instituto Cavanilles, Universidad de Valencia, CIBERNED, C/Catedrático José Beltrán, 2, Paterna, 46980 Valencia, Spain
| | - K. Sawamoto
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
- Division of Neural Development and Regeneration, National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
20
|
Yamashiro S, Taniguchi D, Tanaka S, Kiuchi T, Vavylonis D, Watanabe N. Convection-Induced Biased Distribution of Actin Probes in Live Cells. Biophys J 2018; 116:142-150. [PMID: 30558885 DOI: 10.1016/j.bpj.2018.11.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/02/2018] [Accepted: 11/16/2018] [Indexed: 11/20/2022] Open
Abstract
Fluorescent markers that bind endogenous target proteins are frequently employed for quantitative live-cell imaging. To visualize the actin cytoskeleton in live cells, several actin-binding probes have been widely used. Among them, Lifeact is the most popular probe with ideal properties, including fast exchangeable binding kinetics. Because of its fast kinetics, Lifeact is generally believed to distribute evenly throughout cellular actin structures. In this study, however, we demonstrate misdistribution of Lifeact toward the rear of lamellipodia where actin filaments continuously move inward along the retrograde flow. Similarly, phalloidin showed biased misdistribution toward the rear of lamellipodia in live cells. We show evidence of convection-induced misdistribution of actin probes by both experimental data and physical models. Our findings warn about the potential error arising from the use of target-binding probes in quantitative live imaging.
Collapse
Affiliation(s)
- Sawako Yamashiro
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Medicine, Kyoto Japan; Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto Japan.
| | - Daisuke Taniguchi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto Japan
| | - Soichiro Tanaka
- Laboratory of Single-Molecule Cell Biology, Tohoku University Graduate School of Life Sciences, Sendai, Miyagi, Japan
| | - Tai Kiuchi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto Japan
| | | | - Naoki Watanabe
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Medicine, Kyoto Japan; Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto Japan.
| |
Collapse
|
21
|
Watanabe N, Tohyama K, Yamashiro S. Mechanostress resistance involving formin homology proteins: G- and F-actin homeostasis-driven filament nucleation and helical polymerization-mediated actin polymer stabilization. Biochem Biophys Res Commun 2018; 506:323-329. [PMID: 30309655 DOI: 10.1016/j.bbrc.2018.09.189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 09/30/2018] [Indexed: 01/28/2023]
Abstract
The actin cytoskeleton has two faces. One side provides the relatively stable scaffold to maintain the shape of cell cortex fit to the organs. The other side rapidly changes morphology in response to extracellular stimuli including chemical signal and physical strain. Our series of studies employing single-molecule speckle analysis of actin have revealed diverse F-actin lifetimes spanning a range of seconds to minutes in live cells. The dynamic part of the actin turnover is tightly coupled with actin nucleation activities of formin homology proteins (formins), which serve as rapid and efficient F-actin restoration mechanisms in cells under physical stress. More recently, our two studies revealed stabilization of F-actin either by actomyosin contractile force or by helical rotation of processively-actin polymerizing diaphanous-related formin mDia1. These findings quantitatively explain our proposed anti-mechanostress cascade in that G-actin released from F-actin upon loss of tension triggers frequent nucleation and subsequent fast elongation of F-actin by formins. This formin-restored F-actin may become specifically stabilized over long distance by helical polymerization-mediated filament untwisting. In this review, we discuss how and to what extent formins-mediated F-actin restoration might confer mechanostress resistance to the cell. We also give thought to the possible involvement of helical polymerization-mediated filament untwisting in the formation of diverse actin architectures including chirality control.
Collapse
Affiliation(s)
- Naoki Watanabe
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Japan; Department of Pharmacology, Kyoto University Graduate School of Medicine, Japan.
| | - Kiyoshi Tohyama
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Japan
| | - Sawako Yamashiro
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Japan
| |
Collapse
|
22
|
Yamashiro S, Tanaka S, McMillen LM, Taniguchi D, Vavylonis D, Watanabe N. Myosin-dependent actin stabilization as revealed by single-molecule imaging of actin turnover. Mol Biol Cell 2018; 29:1941-1947. [PMID: 29847209 PMCID: PMC6232968 DOI: 10.1091/mbc.e18-01-0061] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
How mechanical stress applied to the actin network modifies actin turnover has attracted considerable attention. Actomyosin exerts the major force on the actin network, which has been implicated in actin stability regulation. However, direct monitoring of immediate changes in F-actin stability on alteration of actomyosin contraction has not been achieved. Here we reexamine myosin regulation of actin stability by using single-molecule speckle analysis of actin. To avoid possible errors attributable to actin-binding probes, we employed DyLight-labeled actin that distributes identical to F-actin in lamellipodia. We performed time-resolved analysis of the effect of blebbistatin on actin turnover. Blebbistatin enhanced actin disassembly in lamellipodia of fish keratocytes and lamellar of Xenopus XTC cells at an early stage of the inhibition, indicating that actomyosin contraction stabilizes cellular F-actin. In addition, our data show a previously unrecognized relationship between the actin network-driving force and the actin turnover rates in lamellipodia. These findings point to the power of direct viewing of molecular behavior in elucidating force regulation of actin filament turnover.
Collapse
Affiliation(s)
- Sawako Yamashiro
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto 606-8501, Japan.,Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Soichiro Tanaka
- Laboratory of Single-Molecule Cell Biology, Tohoku University Graduate School of Life Sciences, Sendai, Miyagi 980-8578, Japan
| | | | - Daisuke Taniguchi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | | | - Naoki Watanabe
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto 606-8501, Japan.,Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| |
Collapse
|
23
|
Helical rotation of the diaphanous-related formin mDia1 generates actin filaments resistant to cofilin. Proc Natl Acad Sci U S A 2018; 115:E5000-E5007. [PMID: 29760064 PMCID: PMC5984536 DOI: 10.1073/pnas.1803415115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The complex interplay between actin regulatory proteins facilitates the formation of diverse cellular actin structures. Formin homology proteins (formins) play an essential role in the formation of actin stress fibers and yeast actin cables, to which the major actin depolymerizing factor cofilin barely associates. In vitro, F-actin decorated with cofilin exhibits a marked increase in the filament twist. On the other hand, a mammalian formin mDia1 rotates along the long-pitch actin helix during processive actin elongation (helical rotation). Helical rotation may impose torsional force on F-actin in the opposite direction of the cofilin-induced twisting. Here, we show that helical rotation of mDia1 converts F-actin resistant to cofilin both in vivo and in vitro. F-actin assembled by mDia1 without rotational freedom became more resistant to the severing and binding activities of cofilin than freely rotatable F-actin. Electron micrographic analysis revealed untwisting of the long-pitch helix of F-actin elongating from mDia1 on tethering of both mDia1 and the pointed end side of the filament. In cells, single molecules of mDia1ΔC63, an activated mutant containing N-terminal regulatory domains, showed tethering to cell structures more frequently than autoinhibited wild-type mDia1 and mDia1 devoid of N-terminal domains. Overexpression of mDia1ΔC63 induced the formation of F-actin, which has prolonged lifetime and accelerates dissociation of cofilin. Helical rotation of formins may thus serve as an F-actin stabilizing mechanism by which a barbed end-bound molecule can enhance the stability of a filament over a long range.
Collapse
|
24
|
Skruber K, Read TA, Vitriol EA. Reconsidering an active role for G-actin in cytoskeletal regulation. J Cell Sci 2018; 131:131/1/jcs203760. [PMID: 29321224 DOI: 10.1242/jcs.203760] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Globular (G)-actin, the actin monomer, assembles into polarized filaments that form networks that can provide structural support, generate force and organize the cell. Many of these structures are highly dynamic and to maintain them, the cell relies on a large reserve of monomers. Classically, the G-actin pool has been thought of as homogenous. However, recent work has shown that actin monomers can exist in distinct groups that can be targeted to specific networks, where they drive and modify filament assembly in ways that can have profound effects on cellular behavior. This Review focuses on the potential factors that could create functionally distinct pools of actin monomers in the cell, including differences between the actin isoforms and the regulation of G-actin by monomer binding proteins, such as profilin and thymosin β4. Owing to difficulties in studying and visualizing G-actin, our knowledge over the precise role that specific actin monomer pools play in regulating cellular actin dynamics remains incomplete. Here, we discuss some of these unanswered questions and also provide a summary of the methodologies currently available for the imaging of G-actin.
Collapse
Affiliation(s)
- Kristen Skruber
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610, USA
| | - Tracy-Ann Read
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610, USA
| | - Eric A Vitriol
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
25
|
Ryan GL, Holz D, Yamashiro S, Taniguchi D, Watanabe N, Vavylonis D. Cell protrusion and retraction driven by fluctuations in actin polymerization: A two-dimensional model. Cytoskeleton (Hoboken) 2017; 74:490-503. [PMID: 28752950 PMCID: PMC5725282 DOI: 10.1002/cm.21389] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/19/2017] [Accepted: 07/24/2017] [Indexed: 12/23/2022]
Abstract
Animal cells that spread onto a surface often rely on actin-rich lamellipodial extensions to execute protrusion. Many cell types recently adhered on a two-dimensional substrate exhibit protrusion and retraction of their lamellipodia, even though the cell is not translating. Travelling waves of protrusion have also been observed, similar to those observed in crawling cells. These regular patterns of protrusion and retraction allow quantitative analysis for comparison to mathematical models. The periodic fluctuations in leading edge position of XTC cells have been linked to excitable actin dynamics using a one-dimensional model of actin dynamics, as a function of arc-length along the cell. In this work we extend this earlier model of actin dynamics into two dimensions (along the arc-length and radial directions of the cell) and include a model membrane that protrudes and retracts in response to the changing number of free barbed ends of actin filaments near the membrane. We show that if the polymerization rate at the barbed ends changes in response to changes in their local concentration at the leading edge and/or the opposing force from the cell membrane, the model can reproduce the patterns of membrane protrusion and retraction seen in experiment. We investigate both Brownian ratchet and switch-like force-velocity relationships between the membrane load forces and actin polymerization rate. The switch-like polymerization dynamics recover the observed patterns of protrusion and retraction as well as the fluctuations in F-actin concentration profiles. The model generates predictions for the behavior of cells after local membrane tension perturbations.
Collapse
Affiliation(s)
- Gillian L. Ryan
- Department of Physics, Kettering University, 1700 University Avenue, Flint MI 48504, United States
- Department of Physics, Lehigh University, 16 Memorial Drive East, Bethlehem PA 18105, United States
| | - Danielle Holz
- Department of Physics, Lehigh University, 16 Memorial Drive East, Bethlehem PA 18105, United States
| | - Sawako Yamashiro
- Department of Pharmacology, Kyoto University Faculty of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Daisuke Taniguchi
- Department of Pharmacology, Kyoto University Faculty of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Naoki Watanabe
- Department of Pharmacology, Kyoto University Faculty of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Dimitrios Vavylonis
- Department of Physics, Lehigh University, 16 Memorial Drive East, Bethlehem PA 18105, United States
| |
Collapse
|
26
|
Fujiwara I, Narita A. Keeping the focus on biophysics and actin filaments in Nagoya: A report of the 2016 "now in actin" symposium. Cytoskeleton (Hoboken) 2017; 74:450-464. [PMID: 28681410 DOI: 10.1002/cm.21384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 01/01/2023]
Abstract
Regulatory systems in living cells are highly organized, enabling cells to response to various changes in their environments. Actin polymerization and depolymerization are crucial to establish cytoskeletal networks to maintain muscle contraction, cell motility, cell division, adhesion, organism development and more. To share and promote the biophysical understanding of such mechanisms in living creatures, the "Now in Actin Study: -Motor protein research reaching a new stage-" symposium was organized at Nagoya University, Japan on 12 and 13, December 2016. The organizers invited emeritus professor of Nagoya and Osaka Universities Fumio Oosawa and leading scientists worldwide as keynote speakers, in addition to poster presentations on cell motility studies by many researchers. Studies employing various biophysical, biochemical, cell and molecular biological and mathematical approaches provided the latest understanding of mechanisms of cell motility functions driven by actin, microtubules, actin-binding proteins, and other motor proteins.
Collapse
Affiliation(s)
- Ikuko Fujiwara
- Frontier Research Institute for Materials Science, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555, Japan
| | - Akihiro Narita
- Structural Biology Research Center and Division of Biological Sciences, Graduate School of Science, Nagoya University, Furo-cho, Nagoya 464-8601, Japan
| |
Collapse
|
27
|
Yamashiro S, Watanabe N. Overview of Single-Molecule Speckle (SiMS) Microscopy and Its Electroporation-Based Version with Efficient Labeling and Improved Spatiotemporal Resolution. SENSORS 2017; 17:s17071585. [PMID: 28684722 PMCID: PMC5539652 DOI: 10.3390/s17071585] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 12/19/2022]
Abstract
Live-cell single-molecule imaging was introduced more than a decade ago, and has provided critical information on remodeling of the actin cytoskeleton, the motion of plasma membrane proteins, and dynamics of molecular motor proteins. Actin remodeling has been the best target for this approach because actin and its associated proteins stop diffusing when assembled, allowing visualization of single-molecules of fluorescently-labeled proteins in a state specific manner. The approach based on this simple principle is called Single-Molecule Speckle (SiMS) microscopy. For instance, spatiotemporal regulation of actin polymerization and lifetime distribution of actin filaments can be monitored directly by tracking actin SiMS. In combination with fluorescently labeled probes of various actin regulators, SiMS microscopy has contributed to clarifying the processes underlying recycling, motion and remodeling of the live-cell actin network. Recently, we introduced an electroporation-based method called eSiMS microscopy, with high efficiency, easiness and improved spatiotemporal precision. In this review, we describe the application of live-cell single-molecule imaging to cellular actin dynamics and discuss the advantages of eSiMS microscopy over previous SiMS microscopy.
Collapse
Affiliation(s)
- Sawako Yamashiro
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto 606-8501, Japan.
| | - Naoki Watanabe
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto 606-8501, Japan.
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan.
| |
Collapse
|
28
|
An Infrared Actin Probe for Deep-Cell Electroporation-Based Single-Molecule Speckle (eSiMS) Microscopy. SENSORS 2017; 17:s17071545. [PMID: 28671584 PMCID: PMC5539718 DOI: 10.3390/s17071545] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/18/2017] [Accepted: 06/22/2017] [Indexed: 11/26/2022]
Abstract
Single-molecule speckle (SiMS) microscopy is a powerful method to directly elucidate biochemical reactions in live cells. However, since the signal from an individual fluorophore is extremely faint, the observation area by epi-fluorescence microscopy is restricted to the thin cell periphery to reduce autofluorescence, or only molecules near the plasma membrane are visualized by total internal reflection fluorescence (TIRF) microscopy. Here, we introduce a new actin probe labeled with near infrared (NIR) emissive CF680R dye for easy-to-use, electroporation-based SiMS microscopy (eSiMS) for deep-cell observation. CF680R-labeled actin (CF680R-actin) incorporated into actin structures and showed excellent brightness and photostability suitable for single-molecule imaging. Importantly, the intensity of autofluorescence with respect to SiMS brightness was reduced to approximately 13% compared to DyLight 550-labeled actin (DL550-actin). CF680R-actin enabled the monitoring of actin SiMS in actomyosin bundles associated with adherens junctions (AJs) located at 3.5–4 µm above the basal surfaces of epithelial monolayers. These favorable properties of CF680R-actin extend the application of eSiMS to actin turnover and flow analyses in deep cellular structures.
Collapse
|
29
|
McMillen LM, Vavylonis D. Model of turnover kinetics in the lamellipodium: implications of slow- and fast- diffusing capping protein and Arp2/3 complex. Phys Biol 2016; 13:066009. [PMID: 27922825 DOI: 10.1088/1478-3975/13/6/066009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cell protrusion through polymerization of actin filaments at the leading edge of motile cells may be influenced by spatial gradients of diffuse actin and regulators. Here we study the distribution of two of the most important regulators, capping protein and Arp2/3 complex, which regulate actin polymerization in the lamellipodium through capping and nucleation of free barbed ends. We modeled their kinetics using data from prior single molecule microscopy experiments on XTC cells. These experiments have provided evidence for a broad distribution of diffusion coefficients of both capping protein and Arp2/3 complex. The slowly diffusing proteins appear as extended 'clouds' while proteins bound to the actin filament network appear as speckles that undergo retrograde flow. Speckle appearance and disappearance events correspond to assembly and dissociation from the actin filament network and speckle lifetimes correspond to the dissociation rate. The slowly diffusing capping protein could represent severed capped actin filament fragments or membrane-bound capping protein. Prior evidence suggests that slowly diffusing Apr2/3 complex associates with the membrane. We use the measured rates and estimates of diffusion coefficients of capping protein and Arp2/3 complex in a Monte Carlo simulation that includes particles in association with a filament network and diffuse in the cytoplasm. We consider two separate pools of diffuse proteins, representing fast and slowly diffusing species. We find a steady state with concentration gradients involving a balance of diffusive flow of fast and slow species with retrograde flow. We show that simulations of FRAP are consistent with prior experiments performed on different cell types. We provide estimates for the ratio of bound to diffuse complexes and calculate conditions where Arp2/3 complex recycling by diffusion may become limiting. We discuss the implications of slowly diffusing populations and suggest experiments to distinguish among mechanisms that influence long range transport.
Collapse
Affiliation(s)
- Laura M McMillen
- Department of Physics, Lehigh University, Bethlehem PA 18015, USA
| | | |
Collapse
|
30
|
Wang Y, Kanchanawong P. Three-dimensional Super Resolution Microscopy of F-actin Filaments by Interferometric PhotoActivated Localization Microscopy (iPALM). J Vis Exp 2016:54774. [PMID: 27929472 PMCID: PMC5226327 DOI: 10.3791/54774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Fluorescence microscopy enables direct visualization of specific biomolecules within cells. However, for conventional fluorescence microscopy, the spatial resolution is restricted by diffraction to ~ 200 nm within the image plane and > 500 nm along the optical axis. As a result, fluorescence microscopy has long been severely limited in the observation of ultrastructural features within cells. The recent development of super resolution microscopy methods has overcome this limitation. In particular, the advent of photoswitchable fluorophores enables localization-based super resolution microscopy, which provides resolving power approaching the molecular-length scale. Here, we describe the application of a three-dimensional super resolution microscopy method based on single-molecule localization microscopy and multiphase interferometry, called interferometric PhotoActivated Localization Microscopy (iPALM). This method provides nearly isotropic resolution on the order of 20 nm in all three dimensions. Protocols for visualizing the filamentous actin cytoskeleton, including specimen preparation and operation of the iPALM instrument, are described here. These protocols are also readily adaptable and instructive for the study of other ultrastructural features in cells.
Collapse
Affiliation(s)
- Yilin Wang
- Department of Biology, South University of Science and Technology of China, Shenzhen
| | - Pakorn Kanchanawong
- Mechanobiology Institute, Singapore; Department of Biomedical Engineering, National University of Singapore;
| |
Collapse
|
31
|
Ning W, Yu Y, Xu H, Liu X, Wang D, Wang J, Wang Y, Meng W. The CAMSAP3-ACF7 Complex Couples Noncentrosomal Microtubules with Actin Filaments to Coordinate Their Dynamics. Dev Cell 2016; 39:61-74. [PMID: 27693509 DOI: 10.1016/j.devcel.2016.09.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 05/14/2016] [Accepted: 09/02/2016] [Indexed: 10/20/2022]
Abstract
For adaptation to complex cellular functions, dynamic cytoskeletal networks are required. There are two major components of the cytoskeleton, microtubules and actin filaments, which form an intricate network maintaining an exquisite cooperation to build the physical basis for their cellular function. However, little is known about the molecular mechanism underlying their synergism. Here, we show that in Caco2 epithelial cells, noncentrosomal microtubules crosstalk with F-actin through their minus ends and contribute to the regulation of focal adhesion size and cell migration. We demonstrate that ACF7, a member of the spectraplakin family of cytoskeletal crosslinking proteins, interacts with Nezha (also called CAMSAP3) at the minus ends of noncentrosomal microtubules and anchors them to actin filaments. Those noncentrosomal microtubules cooperate with actin filaments through retrograde flow to keep their length and orientation perpendicular to the cell edge as well as regulate focal adhesion size and cell migration.
Collapse
Affiliation(s)
- Wenxiu Ning
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 3 Zhongguancun South Road, Haidian District, Beijing 100190, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yanan Yu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 3 Zhongguancun South Road, Haidian District, Beijing 100190, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Honglin Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 3 Zhongguancun South Road, Haidian District, Beijing 100190, China
| | - Xiaofei Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 3 Zhongguancun South Road, Haidian District, Beijing 100190, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Daiwei Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 3 Zhongguancun South Road, Haidian District, Beijing 100190, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Jing Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 3 Zhongguancun South Road, Haidian District, Beijing 100190, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 3 Zhongguancun South Road, Haidian District, Beijing 100190, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Wenxiang Meng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 3 Zhongguancun South Road, Haidian District, Beijing 100190, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
32
|
Internetwork competition for monomers governs actin cytoskeleton organization. Nat Rev Mol Cell Biol 2016; 17:799-810. [PMID: 27625321 DOI: 10.1038/nrm.2016.106] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cells precisely control the formation of dynamic actin cytoskeleton networks to coordinate fundamental processes, including motility, division, endocytosis and polarization. To support these functions, actin filament networks must be assembled, maintained and disassembled at the correct time and place, and with proper filament organization and dynamics. Regulation of the extent of filament network assembly and of filament network organization has been largely attributed to the coordinated activation of actin assembly factors through signalling cascades. Here, we discuss an intriguing model in which actin monomer availability is limiting and competition between homeostatic actin cytoskeletal networks for actin monomers is an additional crucial regulatory mechanism that influences the density and size of different actin networks, thereby contributing to the organization of the cellular actin cytoskeleton.
Collapse
|
33
|
Kiuchi T, Higuchi M, Takamura A, Maruoka M, Watanabe N. Multitarget super-resolution microscopy with high-density labeling by exchangeable probes. Nat Methods 2015; 12:743-6. [PMID: 26147917 DOI: 10.1038/nmeth.3466] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/08/2015] [Indexed: 01/19/2023]
Abstract
We have developed a multitarget super-resolution microscopy technique called image reconstruction by integrating exchangeable single-molecule localization (IRIS). IRIS uses protein fragment-based probes that directly associate with and dissociate from their targets over durations on the order of tens of milliseconds. By integrating single-molecule localization and sequential labeling, IRIS enables unprecedented labeling density along multiple cellular structures. IRIS can be used to discern the area-specific proximity between cytoskeletal components and focal adhesions within a single cell.
Collapse
Affiliation(s)
- Tai Kiuchi
- Department of Pharmacology, Kyoto University Faculty of Medicine, Kyoto, Japan
| | - Makio Higuchi
- Department of Pharmacology, Kyoto University Faculty of Medicine, Kyoto, Japan
| | - Akihiro Takamura
- Laboratory of Single-Molecule Cell Biology, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Masahiro Maruoka
- Laboratory of Single-Molecule Cell Biology, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Naoki Watanabe
- 1] Department of Pharmacology, Kyoto University Faculty of Medicine, Kyoto, Japan. [2] Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto, Japan
| |
Collapse
|
34
|
Kohno T, Ninomiya T, Kikuchi S, Konno T, Kojima T. Staurosporine induces formation of two types of extra-long cell protrusions: actin-based filaments and microtubule-based shafts. Mol Pharmacol 2015; 87:815-24. [PMID: 25680752 DOI: 10.1124/mol.114.096982] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Staurosporine (STS) has been known as a classic protein kinase C inhibitor and is a broad-spectrum inhibitor targeting over 250 protein kinases. In this study, we observed that STS treatment induced drastic morphologic changes, such as elongation of a very large number of nonbranched, actin-based long cell protrusions that reached up to 30 µm in an hour without caspase activation or PARP cleavage in fibroblasts and epithelial cells. These cell protrusions were elongated not only from the free cell edge but also from the cell-cell junctions. The elongation of STS-dependent protrusions was required for ATP hydrolysis and was dependent on myosin-X and fascin but independent of Cdc42 and VASP. Interestingly, in the presence of an actin polymerization inhibitor, namely, cytochalasin D, latrunculin A, or jasplakinolide, STS treatment induced excess tubulin polymerization, which resulted in the formation of many extra-long microtubule (MT)-based protrusions toward the outside of the cell. The unique MT-based protrusions were thick and linear compared with the STS-induced filaments or stationary filopodia. These protrusions, which were composed of microtubules, have been scarcely observed in cultured non-neuronal cells. Taken together, our findings revealed that STS-sensitive kinases are essential for the maintenance of normal cell morphology, and a common unidentified molecular mechanism is involved in the formation of the following two different types of protrusions: actin-based filaments and MT-based shafts.
Collapse
Affiliation(s)
- Takayuki Kohno
- Department of Cell Science, Research Institute for Frontier Medicine (T.Koh., T.Kon., T.Koj.), and Department of Anatomy, Sapporo Medical University, Sapporo, Japan (T.N., S.K.)
| | - Takafumi Ninomiya
- Department of Cell Science, Research Institute for Frontier Medicine (T.Koh., T.Kon., T.Koj.), and Department of Anatomy, Sapporo Medical University, Sapporo, Japan (T.N., S.K.)
| | - Shin Kikuchi
- Department of Cell Science, Research Institute for Frontier Medicine (T.Koh., T.Kon., T.Koj.), and Department of Anatomy, Sapporo Medical University, Sapporo, Japan (T.N., S.K.)
| | - Takumi Konno
- Department of Cell Science, Research Institute for Frontier Medicine (T.Koh., T.Kon., T.Koj.), and Department of Anatomy, Sapporo Medical University, Sapporo, Japan (T.N., S.K.)
| | - Takashi Kojima
- Department of Cell Science, Research Institute for Frontier Medicine (T.Koh., T.Kon., T.Koj.), and Department of Anatomy, Sapporo Medical University, Sapporo, Japan (T.N., S.K.)
| |
Collapse
|
35
|
Yamashiro S, Mizuno H, Watanabe N. An easy-to-use single-molecule speckle microscopy enabling nanometer-scale flow and wide-range lifetime measurement of cellular actin filaments. Methods Cell Biol 2015; 125:43-59. [DOI: 10.1016/bs.mcb.2014.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
36
|
Liu W, Liu X, Fangteng J, Wang S, Fang L, Shen H, Xiang S, Sun H, Yang B. Bioinspired polyethylene terephthalate nanocone arrays with underwater superoleophobicity and anti-bioadhesion properties. NANOSCALE 2014; 6:13845-13853. [PMID: 25303770 DOI: 10.1039/c4nr04471a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This paper presents a facile method to fabricate bioinspired polyethylene terephthalate (PET) nanocone arrays via colloidal lithography. The aspect ratio (AR) of the nanocones can be finely modulated ranging from 1 to 6 by regulating the etching time. The samples with the AR value of 6 can present underwater superoleophobicity with the underwater oil contact angle (OCA) of 171.8°. The as-prepared PET nanocone arrays perform anti-bioadhesion behavior, which inhibits the formation of the actin cytoskeleton when it used as the substrate for cell culture. Moreover, the oil wettability is temperature controlled after modifying the PET nanocone arrays with PNIPAAm film, and the oil wettability of the functionalized nanocone arrays can be transformed from the superoleophobic state with OCA about 151° to the oleophilic state with OCA about 25° reversibly. Due to the high-throughput, parallel fabrication and cost-efficiency of this method, it will be favourable for researchers to introduce oleophobic properties to various substrate and device surfaces. Due to the superoleophobicity and simple functionalizing properties, the PET nanocone arrays are very promising surfaces for anti-adhesion, self-cleaning and have potential applications in material, medical, and biological fields.
Collapse
Affiliation(s)
- Wendong Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Yamashiro S, Watanabe N. A new link between the retrograde actin flow and focal adhesions. J Biochem 2014; 156:239-48. [DOI: 10.1093/jb/mvu053] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
38
|
Oakes PW, Gardel ML. Stressing the limits of focal adhesion mechanosensitivity. Curr Opin Cell Biol 2014; 30:68-73. [PMID: 24998185 DOI: 10.1016/j.ceb.2014.06.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 01/09/2023]
Abstract
Focal adhesion assembly and maturation often occurs concomitantly with changes in force generated within the cytoskeleton or extracellular matrix. To coordinate focal adhesion dynamics with force, it has been suggested that focal adhesion dynamics are mechanosensitive. This review discusses current understanding of the regulation of focal adhesion assembly and force transmission, and the limits to which we can consider focal adhesion plaques as mechanosensitive entities.
Collapse
Affiliation(s)
- Patrick W Oakes
- James Franck Institute, Institute for Biophysical Dynamics and Physics Department, University of Chicago, Chicago, IL, United States
| | - Margaret L Gardel
- James Franck Institute, Institute for Biophysical Dynamics and Physics Department, University of Chicago, Chicago, IL, United States.
| |
Collapse
|