1
|
Howard PG, Zou P, Zhang Y, Huang F, Tesic V, Wu CYC, Lee RHC. Serum/glucocorticoid regulated kinase 1 (SGK1) in neurological disorders: pain or gain. Exp Neurol 2024; 382:114973. [PMID: 39326820 PMCID: PMC11536509 DOI: 10.1016/j.expneurol.2024.114973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
Serum/Glucocorticoid Regulated Kinase 1 (SGK1), a serine/threonine kinase, is ubiquitous across a wide range of tissues, orchestrating numerous signaling pathways and associated with various human diseases. SGK1 has been extensively explored in diverse types of immune and inflammatory diseases, cardiovascular disorders, as well as cancer metastasis. These studies link SGK1 to cellular proliferation, survival, metabolism, membrane transport, and drug resistance. Recently, increasing research has focused on SGK1's role in neurological disorders, including a variety of neurodegenerative diseases (e.g., Alzheimer's disease, Huntington's disease and Parkinson's disease), brain injuries (e.g., cerebral ischemia and traumatic brain injury), psychiatric conditions (e.g., depression and drug addiction). SGK1 is emerging as an increasingly compelling therapeutic target across the spectrum of neurological disorders, supported by the availability of several effective agents. However, the conclusions of many studies observing the prevalence and function of SGK1 in neurological disorders are contradictory, necessitating a review of the SGK1 research within neurological disorders. Herein, we review recent literature on SGK1's primary functions within the nervous system and its impacts within different neurological disorders. We summarize significant findings, identify research gaps, and outline possible future research directions based on the current understanding of SGK1 to help further progress the understanding and treatment of neurological disorders.
Collapse
Affiliation(s)
- Peyton Grace Howard
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Peibin Zou
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Yulan Zhang
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Fang Huang
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Vesna Tesic
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Celeste Yin-Chieh Wu
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA.
| | - Reggie Hui-Chao Lee
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA; Department of Department of Cell Biology & Anatomy, Louisiana State University Health, Shreveport, LA, USA.
| |
Collapse
|
2
|
Chen X, Kang H, Xiao Y. The role of SGK1 in neurologic diseases: A friend or foe? IBRO Neurosci Rep 2024; 17:503-512. [PMID: 39737082 PMCID: PMC11683284 DOI: 10.1016/j.ibneur.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/05/2024] [Indexed: 01/01/2025] Open
Abstract
Serum and glucocorticoid-regulated kinase 1 (SGK1), a member of the AGC family of serine/threonine protein kinases, is one of the most conserved protein kinases in eukaryotic evolution. SGK1 is expressed to varying degrees in various types of cells throughout the body, and plays an important role in hypertension, ion channels, oxidative stress, neurological disorders, and cardiovascular regulation. In recent years, a number of scholars have devoted themselves to the study of the role and function of SGK1 in neurological diseases. Therefore, this article reviews the role of SGK1 in Alzheimer's disease, Parkinson's disease, epilepsy, stroke and other neurological diseases in recent years, and puts forward some insights on the role of SGK1 in neurological diseases and its relationship with disease activities.
Collapse
Affiliation(s)
- Xiuze Chen
- Department of Biotechnology, Basic Medical School, Guangdong Medical University, Dongguan 523808, China
| | - Haixian Kang
- Department of Biotechnology, Basic Medical School, Guangdong Medical University, Dongguan 523808, China
| | - Yechen Xiao
- Department of Biotechnology, Basic Medical School, Guangdong Medical University, Dongguan 523808, China
- Shunde Women and Children's Hospital of Guangdong Medical University, Foshan 528300, China
| |
Collapse
|
3
|
Shukla M, Chugh D, Ganesh S. Neuromuscular junction dysfunction in Lafora disease. Dis Model Mech 2024; 17:dmm050905. [PMID: 39301689 PMCID: PMC11512103 DOI: 10.1242/dmm.050905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024] Open
Abstract
Lafora disease (LD), a fatal neurodegenerative disorder, is caused by mutations in the EPM2A gene encoding laforin phosphatase or NHLRC1 gene encoding malin ubiquitin ligase. LD symptoms include epileptic seizures, ataxia, dementia and cognitive decline. Studies on LD have primarily concentrated on the pathophysiology in the brain. A few studies have reported motor symptoms, muscle weakness and muscle atrophy. Intriguingly, skeletal muscles are known to accumulate Lafora polyglucosan bodies. Using laforin-deficient mice, an established model for LD, we demonstrate that LD pathology correlated with structural and functional impairments in the neuromuscular junction (NMJ). Specifically, we found impairment in NMJ transmission, which coincided with altered expression of NMJ-associated genes and reduced motor endplate area, fragmented junctions and loss of fully innervated junctions at the NMJ. We also observed a reduction in alpha-motor neurons in the lumbar spinal cord, with significant presynaptic morphological alterations. Disorganised myofibrillar patterns, slight z-line streaming and muscle atrophy were also evident in LD animals. In summary, our study offers insight into the neuropathic and myopathic alterations leading to motor deficits in LD.
Collapse
Affiliation(s)
- Monica Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Deepti Chugh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Subramaniam Ganesh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
- Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology, Kanpur 208016, India
- Gangwal School of Medical Sciences and Technology, Indian Institute of Technology, Kanpur 208016, India
| |
Collapse
|
4
|
Glycogen overload transforms the liver. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1939-1941. [PMID: 36514217 PMCID: PMC10157623 DOI: 10.3724/abbs.2022172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
5
|
Sinha P, Verma B, Ganesh S. Age-Dependent Reduction in the Expression Levels of Genes Involved in Progressive Myoclonus Epilepsy Correlates with Increased Neuroinflammation and Seizure Susceptibility in Mouse Models. Mol Neurobiol 2022; 59:5532-5548. [PMID: 35732865 DOI: 10.1007/s12035-022-02928-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/14/2022] [Indexed: 11/28/2022]
Abstract
Brain aging is characterized by a gradual decline in cellular homeostatic processes, thereby losing the ability to respond to physiological stress. At the anatomical level, the aged brain is characterized by degenerating neurons, proteinaceous plaques and tangles, intracellular deposition of glycogen, and elevated neuroinflammation. Intriguingly, such age-associated changes are also seen in neurodegenerative disorders suggesting that an accelerated aging process could be one of the contributory factors for the disease phenotype. Amongst these, the genetic forms of progressive myoclonus epilepsy (PME), resulting from loss-of-function mutations in genes, manifest symptoms that are common to age-associated disorders, and genes mutated in PME are involved in the cellular homeostatic processes. Intriguingly, the incidence and/or onset of epileptic seizures are known to increase with age, suggesting that physiological changes in the aged brain might contribute to increased susceptibility to seizures. We, therefore, hypothesized that the expression level of genes implicated in PME might decrease with age, thereby leading to a compromised neuronal response towards physiological stress and hence neuroinflammation in the aging brain. Using mice models, we demonstrate here that the expression level of PME genes shows an inverse correlation with age, neuroinflammation, and compromised heat shock response. We further show that the pharmacological suppression of neuroinflammation ameliorates seizure susceptibility in aged animals as well as in animal models for a PME. Taken together, our results indicate a functional role for the PME genes in normal brain aging and that neuroinflammation could be a major contributory player in susceptibility to seizures.
Collapse
Affiliation(s)
- Priyanka Sinha
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh, Kanpur, 208016, India
| | - Bhupender Verma
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh, Kanpur, 208016, India
| | - Subramaniam Ganesh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh, Kanpur, 208016, India. .,Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| |
Collapse
|
6
|
Abstract
BACKGROUND The serum and glucocorticoid-induced kinase-1 (SGK1) belonging to the AGC protein kinase family phosphorylates serine and threonine residues of target proteins. It regulates numerous ion channels and transporters and promotes survival under cellular stress. Unique to SGK1 is a tight control at transcriptional and post-transcriptional levels. SGK1 regulates multiple signal transduction pathways related to tumor development. Several studies have reported that SGK1 is upregulated in different types of human malignancies and induces resistance against inhibitors, drugs, and targeted therapies. RESULTS AND CONCLUSION This review highlights the cellular functions of SGK1, its crucial role in cancer development, and clinical insights for SGK1 targeted therapies. Furthermore, the role of SGK1-mediated autophagy as a potential therapeutic target for cancer has been discussed.
Collapse
|
7
|
Sinha P, Verma B, Ganesh S. Trehalose Ameliorates Seizure Susceptibility in Lafora Disease Mouse Models by Suppressing Neuroinflammation and Endoplasmic Reticulum Stress. Mol Neurobiol 2021; 58:1088-1101. [PMID: 33094475 DOI: 10.1007/s12035-020-02170-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 10/14/2020] [Indexed: 12/20/2022]
Abstract
Lafora disease (LD) is one of the progressive and fatal forms of a neurodegenerative disorder and is characterized by teenage-onset myoclonic seizures. Neuropathological changes in LD include the formation of abnormal glycogen as Lafora bodies, gliosis, and neuroinflammation. LD is caused by defects in the gene coding for phosphatase (laforin) or ubiquitin ligase (malin). Mouse models of LD, developed by targeted disruption of these two genes, develop most symptoms of LD and show increased susceptibility to induced seizures. Studies on mouse models also suggest that defective autophagy might contribute to LD etiology. In an attempt to understand the specific role of autophagy in LD pathogenesis, in this study, we fed LD animals with trehalose, an inducer of autophagy, for 3 months and looked at its effect on the neuropathology and seizure susceptibility. We demonstrate here that trehalose ameliorates gliosis, neuroinflammation, and endoplasmic reticulum stress and reduces susceptibility to induced seizures in LD animals. However, trehalose did not affect the formation of Lafora bodies, suggesting the epileptic phenotype in LD could be either secondary to or independent of Lafora bodies. Taken together, our results suggest that autophagy inducers can be considered as potential therapeutic molecules for Lafora disease.
Collapse
Affiliation(s)
- Priyanka Sinha
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Bhupender Verma
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Subramaniam Ganesh
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, India.
| |
Collapse
|
8
|
Mason JA, Cockfield JA, Pape DJ, Meissner H, Sokolowski MT, White TC, Valentín López JC, Liu J, Liu X, Martínez-Reyes I, Chandel NS, Locasale JW, Schafer ZT. SGK1 signaling promotes glucose metabolism and survival in extracellular matrix detached cells. Cell Rep 2021; 34:108821. [PMID: 33730592 DOI: 10.1016/j.celrep.2021.108821] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 12/30/2020] [Accepted: 02/12/2021] [Indexed: 12/29/2022] Open
Abstract
Loss of integrin-mediated attachment to extracellular matrix (ECM) proteins can trigger a variety of cellular changes that affect cell viability. Foremost among these is the activation of anoikis, caspase-mediated cell death induced by ECM detachment. In addition, loss of ECM attachment causes profound alterations in cellular metabolism, which can lead to anoikis-independent cell death. Here, we describe a surprising role for serum and glucocorticoid kinase-1 (SGK1) in the promotion of energy production when cells are detached. Our data demonstrate that SGK1 activation is necessary and sufficient for ATP generation during ECM detachment and anchorage-independent growth. More specifically, SGK1 promotes a substantial elevation in glucose uptake because of elevated GLUT1 transcription. In addition, carbon flux into the pentose phosphate pathway (PPP) is necessary to accommodate elevated glucose uptake and PPP-mediated glyceraldehyde-3-phosphate (G3P) is necessary for ATP production. Thus, our data show SGK1 as master regulator of glucose metabolism and cell survival during ECM-detached conditions.
Collapse
Affiliation(s)
- Joshua A Mason
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jordan A Cockfield
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Daniel J Pape
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Hannah Meissner
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Michael T Sokolowski
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Taylor C White
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - José C Valentín López
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Juan Liu
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xiaojing Liu
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Navdeep S Chandel
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jason W Locasale
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Zachary T Schafer
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
9
|
Sinha P, Verma B, Ganesh S. Dexamethasone-induced activation of heat shock response ameliorates seizure susceptibility and neuroinflammation in mouse models of Lafora disease. Exp Neurol 2021; 340:113656. [PMID: 33639210 DOI: 10.1016/j.expneurol.2021.113656] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/26/2021] [Accepted: 02/21/2021] [Indexed: 11/29/2022]
Abstract
Heat shock response (HSR) is a conserved cytoprotective pathway controlled by the master transcriptional regulator, the heat shock factor 1 (HSF1), that activates the expression of heat shock proteins (HSPs). HSPs, as chaperones, play essential roles in minimizing stress-induced damages and restoring proteostasis. Therefore, compromised HSR is thought to contribute to neurodegenerative disorders. Lafora disease (LD) is a fatal form of neurodegenerative disorder characterized by the accumulation of abnormal glycogen as Lafora bodies in neurons and other tissues. The symptoms of LD include progressive myoclonus epilepsy, dementia, and cognitive deficits. LD is caused by the defects in the gene coding laforin phosphatase or the malin ubiquitin ligase. Laforin and malin are known to work upstream of HSF1 and are essential for the activation of HSR. Herein, we show that mice deficient for laforin or malin show reduced levels of HSF1 and their targets in their brain tissues, suggesting compromised HSR; this could contribute to the neuropathology in LD. Intriguingly, treatment of LD animals with dexamethasone, a synthetic glucocorticoid analogue, partially restored the levels of HSF1 and its targets. Dexamethasone treatment was also able to ameliorate the neuroinflammation and susceptibility to induced seizures in the LD animals. However, dexamethasone treatment did not show a significant effect on Lafora bodies or autophagy defects. Taken together, the present study establishes a role for HSR in seizure susceptibility and neuroinflammation and dexamethasone as a potential antiepileptic agent, suitable for further studies in LD.
Collapse
Affiliation(s)
- Priyanka Sinha
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Bhupender Verma
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Subramaniam Ganesh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India.
| |
Collapse
|
10
|
Sang Y, Kong P, Zhang S, Zhang L, Cao Y, Duan X, Sun T, Tao Z, Liu W. SGK1 in Human Cancer: Emerging Roles and Mechanisms. Front Oncol 2021; 10:608722. [PMID: 33542904 PMCID: PMC7851074 DOI: 10.3389/fonc.2020.608722] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
Serum and glucocorticoid-induced protein kinase 1 (SGK1) is a member of the "AGC" subfamily of protein kinases, which shares structural and functional similarities with the AKT family of kinases and displays serine/threonine kinase activity. Aberrant expression of SGK1 has profound cellular consequences and is closely correlated with human cancer. SGK1 is considered a canonical factor affecting the expression and signal transduction of multiple genes involved in the genesis and development of many human cancers. Abnormal expression of SGK1 has been found in tissue and may hopefully become a useful indicator of cancer progression. In addition, SGK1 acts as a prognostic factor for cancer patient survival. This review systematically summarizes and discusses the role of SGK1 as a diagnostic and prognostic biomarker of diverse cancer types; focuses on its essential roles and functions in tumorigenesis, cancer cell proliferation, apoptosis, invasion, metastasis, autophagy, metabolism, and therapy resistance and in the tumor microenvironment; and finally summarizes the current understanding of the regulatory mechanisms of SGK1 at the molecular level. Taken together, this evidence highlights the crucial role of SGK1 in tumorigenesis and cancer progression, revealing why it has emerged as a potential target for cancer therapy.
Collapse
Affiliation(s)
- Yiwen Sang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Piaoping Kong
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shizhen Zhang
- The Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingyu Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Cao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiuzhi Duan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Sun
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihua Tao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Weiwei Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
11
|
Abstract
Macroautophagy/autophagy is an intracellular degradative pathway that is often induced as a pro-survival process for cells under stress. A few recent reports establish the role of the glycogen metabolic pathway in neuronal cell survival in conditions such as oxidative stress and hypoxia, and the possible link between glycogen synthesis and autophagy induction. This commentary highlights the emerging role of GYS (glycogen synthase) in neuronal autophagy and stress response.
Collapse
Affiliation(s)
- Akanksha Onkar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur , Kanpur, India
| | - Deepashree Sheshadri
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur , Kanpur, India
| | - Subramaniam Ganesh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur , Kanpur, India
| |
Collapse
|
12
|
Maestro I, Boya P, Martinez A. Serum- and glucocorticoid-induced kinase 1, a new therapeutic target for autophagy modulation in chronic diseases. Expert Opin Ther Targets 2020; 24:231-243. [PMID: 32067528 DOI: 10.1080/14728222.2020.1730328] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Autophagy, a basic cellular degradation pathway essential for survival, is altered both in aging and in many chronic human diseases, including infections, cancer, heart disease, and neurodegeneration. Identifying new therapeutic targets for the control and modulation of autophagy events is therefore of utmost importance in drug discovery. Serum and glucocorticoid activated kinase 1 (SGK1), known for decades for its role in ion channel modulation, is now known to act as a switch for autophagy homeostasis, and has emerged as a novel and important therapeutic target likely to attract considerable research attention in the coming years.Areas covered: In this general review of SGK1 we describe the kinase's structure and its roles in physiological and pathological contexts. We also discuss small-molecule modulators of SGK1 activity. These modulators are of particular interest to medicinal chemists and pharmacists seeking to develop more potent and selective drug candidates for SGK1, which, despite its key role in autophagy, remains relatively understudied.Expert opinion: The main future challenges in this area are (i) deciphering the role of SGK1 in selective autophagy processes (e.g. mitophagy, lipophagy, and aggrephagy); (ii) identifying selective allosteric modulators of SGK1 with specific biological functions; and (iii) conducting first-in-man clinical studies.
Collapse
Affiliation(s)
- Inés Maestro
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
| | - Patricia Boya
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
| | - Ana Martinez
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
13
|
Palhegyi AM, Seranova E, Dimova S, Hoque S, Sarkar S. Biomedical Implications of Autophagy in Macromolecule Storage Disorders. Front Cell Dev Biol 2019; 7:179. [PMID: 31555645 PMCID: PMC6742707 DOI: 10.3389/fcell.2019.00179] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/19/2019] [Indexed: 12/20/2022] Open
Abstract
An imbalance between the production and clearance of macromolecules such as proteins, lipids and carbohydrates can lead to a category of diseases broadly known as macromolecule storage disorders. These include, but not limited to, neurodegenerative diseases such as Alzheimer’s, Parkinson’s and Huntington’s disease associated with accumulation of aggregation-prone proteins, Lafora and Pompe disease associated with glycogen accumulation, whilst lipid accumulation is characteristic to Niemann-Pick disease and Gaucher disease. One of the underlying factors contributing to the build-up of macromolecules in these storage disorders is the intracellular degradation pathway called autophagy. This process is the primary clearance route for unwanted macromolecules, either via bulk non-selective degradation, or selectively via aggrephagy, glycophagy and lipophagy. Since autophagy plays a vital role in maintaining cellular homeostasis, cell viability and human health, malfunction of this process could be detrimental. Indeed, defective autophagy has been reported in a number of macromolecule storage disorders where autophagy is impaired at distinct stages, such as at the level of autophagosome formation, autophagosome maturation or improper lysosomal degradation of the autophagic cargo. Of biomedical relevance, autophagy is regulated by multiple signaling pathways that are amenable to chemical perturbations by small molecules. Induction of autophagy has been shown to improve cell viability and exert beneficial effects in experimental models of various macromolecule storage disorders where the lysosomal functionality is not overtly compromised. In this review, we will discuss the role of autophagy in certain macromolecule storage disorders and highlight the potential therapeutic benefits of autophagy enhancers in these pathological conditions.
Collapse
Affiliation(s)
- Adina Maria Palhegyi
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | - Elena Seranova
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | - Simona Dimova
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | - Sheabul Hoque
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | - Sovan Sarkar
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
14
|
Huang W, Cheng C, Shan W, Ding Z, Liu F, Lu W, He W, Xu J, Yin Z. Knockdown of SGK1 alleviates the IL‐1β‐induced chondrocyte anabolic and catabolic imbalance by activating FoxO1‐mediated autophagy in human chondrocytes. FEBS J 2019; 287:94-107. [PMID: 31330080 DOI: 10.1111/febs.15009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/11/2019] [Accepted: 07/19/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Wei Huang
- Department of Orthopaedics The First Affiliated Hospital of Anhui Medical University Hefei China
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine University of Science and Technology of China Hefei China
| | - Chao Cheng
- Department of Orthopaedics The First Affiliated Hospital of Anhui Medical University Hefei China
| | - Wen‐Shan Shan
- Department of Orthopaedics The First Affiliated Hospital of Anhui Medical University Hefei China
| | - Zhen‐Fei Ding
- Department of Orthopaedics The First Affiliated Hospital of Anhui Medical University Hefei China
| | - Fu‐En Liu
- Department of Orthopaedics The First Affiliated Hospital of Anhui Medical University Hefei China
| | - Wei Lu
- Department of Orthopaedics The First Affiliated Hospital of Anhui Medical University Hefei China
| | - Wei He
- School of Basic Medical Sciences Anhui Medical University Hefei China
| | - Jie‐Gou Xu
- School of Basic Medical Sciences Anhui Medical University Hefei China
| | - Zong‐Sheng Yin
- Department of Orthopaedics The First Affiliated Hospital of Anhui Medical University Hefei China
| |
Collapse
|
15
|
PLPP/CIN-mediated NEDD4-2 S448 dephosphorylation regulates neuronal excitability via GluA1 ubiquitination. Cell Death Dis 2019; 10:545. [PMID: 31320629 PMCID: PMC6639327 DOI: 10.1038/s41419-019-1781-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/11/2019] [Accepted: 06/28/2019] [Indexed: 12/21/2022]
Abstract
Neuronal precursor cell expressed developmentally downregulated 4-2 (NEDD4-2) is an E3 ubiquitin ligase to regulate ion transport by controlling cellular trafficking/endocytosis and lysosomal degradation of ion channels and transporters. Thus, NEDD4-2 is relevant to neuronal excitability and epileptic encephalopathies in human patients. However, the regulatory molecules for NEDD4-2 dephosphorylation have been still elusive. Here, we demonstrate that pyridoxal-5′-phosphate phosphatase/chronophin (PLPP/CIN) specifically dephosphorylated NEDD4-2 serine (S) 448 site. PLPP/CIN deletion inhibited NEDD4-2 ubiquitination, and diminished the responsiveness of α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid receptor (AMPAR) by facilitating NEDD4-2-mediated ubiquitination of GluA1 subunit under physiological condition. PLPP/CIN overexpression reversed these effects. These PLPP/CIN-mediated processes were required for the increased seizure severity and its progression in response to kainic acid (KA). Therefore, we suggest the novel function of PLPP/CIN as a NEDD4-2 phosphatase, which may be a potential therapeutic target for NEDD4-2-associated diseases as well as various neurological and psychiatric disorders, including epilepsy.
Collapse
|
16
|
Lee KY, Jewett KA, Chung HJ, Tsai NP. Loss of fragile X protein FMRP impairs homeostatic synaptic downscaling through tumor suppressor p53 and ubiquitin E3 ligase Nedd4-2. Hum Mol Genet 2019; 27:2805-2816. [PMID: 29771335 DOI: 10.1093/hmg/ddy189] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/09/2018] [Indexed: 12/23/2022] Open
Abstract
Synaptic scaling allows neurons to homeostatically readjust synaptic strength upon chronic neural activity perturbations. Although altered synaptic scaling has been implicated to underlie imbalanced brain excitability in neurological disorders such as autism spectrum disorders and epilepsy, the molecular dysregulation and restoration of synaptic scaling in those diseases have not been demonstrated. Here, we showed that the homeostatic synaptic downscaling is absent in the hippocampal neurons of Fmr1 KO mice, the mouse model of the most common inherited autism, fragile X syndrome (FXS). We found that the impaired homeostatic synaptic downscaling in Fmr1 KO neurons is caused by loss-of-function dephosphorylation of an epilepsy-associated ubiquitin E3 ligase, neural precursor cell expressed developmentally down-regulated gene 4-2, Nedd4-2. Such dephosphorylation of Nedd4-2 is surprisingly caused by abnormally stable tumor suppressor p53 and subsequently destabilized kinase Akt. Dephosphorylated Nedd4-2 fails to elicit 14-3-3-dependent ubiquitination and down-regulation of the GluA1 subunit of AMPA receptor, and therefore impairs synaptic downscaling. Most importantly, using a pharmacological inhibitor of p53, Nedd4-2 phosphorylation, GluA1 ubiquitination and synaptic downscaling are all restored in Fmr1 KO neurons. Together, our results discover a novel cellular mechanism underlying synaptic downscaling, and demonstrate the dysregulation and successful restoration of this mechanism in the FXS mouse model.
Collapse
Affiliation(s)
- Kwan Young Lee
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology
| | - Kathryn A Jewett
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology
| | - Hee Jung Chung
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Nien-Pei Tsai
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
17
|
Alkhater RA, Wang P, Ruggieri A, Israelian L, Walker S, Scherer SW, Smith ML, Minassian BA. Dominant LMAN2L mutation causes intellectual disability with remitting epilepsy. Ann Clin Transl Neurol 2019; 6:807-811. [PMID: 31020005 PMCID: PMC6469342 DOI: 10.1002/acn3.727] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/28/2018] [Accepted: 01/02/2019] [Indexed: 11/16/2022] Open
Abstract
Mis‐secreted glycoproteins (LGI1, reelin) are emerging causes of epilepsy. LMAN2L belongs to a glycoprotein secretion chaperone family. One recessive LMAN2L missense mutation predicted to impair the chaperone's interaction with glycoproteins was reported in a family with intellectual disability (ID) and remitting epilepsy. We describe four members of a family with autosomal dominant inheritance of a similar phenotype. We show that they segregate a NM_001142292.1:c.1073delT mutation that eliminates LMAN2L's endoplasmic reticulum retention signal and mislocalizes the protein from that compartment to the plasma membrane. LMAN2L mislocalization, like impaired glycoprotein interaction, disturbs brain development, including generation of developmentally restricted epilepsy.
Collapse
Affiliation(s)
- Reem A Alkhater
- Program in Genetics and Genome Biology The Hospital for Sick Children Toronto Ontario Canada.,Johns' Hopkins Aramco Healthcare Dhahran Saudi Arabia
| | - Peixiang Wang
- Program in Genetics and Genome Biology The Hospital for Sick Children Toronto Ontario Canada
| | - Alessandra Ruggieri
- Neuromuscular Diseases and Neuroimmunology Unit Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Lori Israelian
- Program in Genetics and Genome Biology The Hospital for Sick Children Toronto Ontario Canada
| | - Susan Walker
- Program in Genetics and Genome Biology The Hospital for Sick Children Toronto Ontario Canada
| | - Stephen W Scherer
- Program in Genetics and Genome Biology The Hospital for Sick Children Toronto Ontario Canada
| | - Mary Lou Smith
- Department of Psychology University of Toronto Mississauga Mississauga Ontario Canada.,Neurosciences and Mental Health Program The Hospital for Sick Children Toronto Ontario Canada
| | - Berge A Minassian
- Program in Genetics and Genome Biology The Hospital for Sick Children Toronto Ontario Canada.,Institute of Medical Sciences University of Toronto 1 King's College Circle Toronto Ontario Canada.,Department of Pediatrics Division of Neurology and Program in Neurosciences Children's Health University of Texas Southwestern Dallas Texas
| |
Collapse
|
18
|
Bhat S, Ganesh S. New discoveries in progressive myoclonus epilepsies: a clinical outlook. Expert Rev Neurother 2018; 18:649-667. [DOI: 10.1080/14737175.2018.1503949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Shweta Bhat
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Subramaniam Ganesh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| |
Collapse
|
19
|
Lafora Disease: A Ubiquitination-Related Pathology. Cells 2018; 7:cells7080087. [PMID: 30050012 PMCID: PMC6116066 DOI: 10.3390/cells7080087] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 11/17/2022] Open
Abstract
Lafora disease (LD, OMIM254780) is a rare and fatal form of progressive myoclonus epilepsy (PME). Among PMEs, LD is unique because of the rapid neurological deterioration of the patients and the appearance in brain and peripheral tissues of insoluble glycogen-like (polyglucosan) inclusions, named Lafora bodies (LBs). LD is caused by mutations in the EPM2A gene, encoding the dual phosphatase laforin, or the EPM2B gene, encoding the E3-ubiquitin ligase malin. Laforin and malin form a functional complex that is involved in the regulation of glycogen synthesis. Thus, in the absence of a functional complex glycogen accumulates in LBs. In addition, it has been suggested that the laforin-malin complex participates in alternative physiological pathways, such as intracellular protein degradation, oxidative stress, and the endoplasmic reticulum unfolded protein response. In this work we review the possible cellular functions of laforin and malin with a special focus on their role in the ubiquitination of specific substrates. We also discuss here the pathological consequences of defects in laforin or malin functions, as well as the therapeutic strategies that are being explored for LD.
Collapse
|
20
|
|
21
|
Rai A, Mishra R, Ganesh S. Suppression of leptin signaling reduces polyglucosan inclusions and seizure susceptibility in a mouse model for Lafora disease. Hum Mol Genet 2018; 26:4778-4785. [PMID: 28973665 DOI: 10.1093/hmg/ddx357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 09/12/2017] [Indexed: 01/10/2023] Open
Abstract
Lafora disease (LD) represents a fatal form of neurodegenerative disorder characterized by the presence of abnormally large number of polyglucosan bodies-called the Lafora bodies-in neurons and other tissues of the affected patients. The disease is caused by defects in the EPM2A gene coding for a protein phosphatase (laforin) or the NHLRC1 gene coding for an ubiquitin ligase (malin). Studies have shown that inhibition of glycogen synthesis in the brain could prevent the formation of Lafora bodies in the neurons and reduce seizure susceptibility in laforin-deficient mouse, an established animal model for LD. Since increased glucose uptake is thought to underlie increased glycogen in LD, and since the adipocyte hormone leptin is known to positively regulate the glucose uptake in neurons, we reasoned that blocking leptin signaling might reduce the neuronal glucose uptake and ameliorate the LD pathology. We demonstrate here that mice that were deficient for both laforin and leptin receptor showed a reduction in the glycogen level, Lafora bodies and gliosis in the brain, and displayed reduced susceptibility to induced seizures as compared to animals that were deficient only for laforin. Thus, blocking leptin signaling could be a one of the effective therapeutic strategies in LD.
Collapse
Affiliation(s)
- Anupama Rai
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Rohit Mishra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Subramaniam Ganesh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| |
Collapse
|
22
|
Parihar R, Rai A, Ganesh S. Lafora disease: from genotype to phenotype. J Genet 2018; 97:611-624. [PMID: 30027899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The progressive myoclonic epilepsy of Lafora or Lafora disease (LD) is a neurodegenerative disorder characterized by recurrent seizures and cognitive deficits. With typical onset in the late childhood or early adolescence, the patients show progressive worsening of the disease symptoms, leading to death in about 10 years. It is an autosomal recessive disorder caused by the loss-of-function mutations in the EPM2A gene, coding for a protein phosphatase (laforin) or the NHLRC1 gene coding for an E3 ubiquitin ligase (malin). LD is characterized by the presence of abnormally branched water insoluble glycogen inclusions known as Lafora bodies in the neurons and other tissues, suggesting a role for laforin and malin in glycogen metabolic pathways. Mouse models of LD, developed by targeted disruption of the Epm2a or Nhlrc1 gene, recapitulated most of the symptoms and pathological features as seen in humans, and have offered insight into the pathomechanisms. Besides the formation of Lafora bodies in the neurons in the presymptomatic stage, the animal models have also demonstrated perturbations in the proteolytic pathways, such as ubiquitin proteasome system and autophagy, and inflammatory response. This review attempts to provide a comprehensive coverage on the genetic defects leading to the LD in humans, on the functional properties of the laforin and malin proteins, and on how defects in any one of these two proteins result in a clinically similar phenotype. We also discuss the disease pathologies as revealed by the studies on the animal models and, finally, on the progress with therapeutic attempts albeit in the animal models.
Collapse
Affiliation(s)
- Rashmi Parihar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208 016, India.
| | | | | |
Collapse
|
23
|
Rai A, Singh PK, Singh V, Kumar V, Mishra R, Thakur AK, Mahadevan A, Shankar SK, Jana NR, Ganesh S. Glycogen synthase protects neurons from cytotoxicity of mutant huntingtin by enhancing the autophagy flux. Cell Death Dis 2018; 9:201. [PMID: 29422655 PMCID: PMC5833817 DOI: 10.1038/s41419-017-0190-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 12/11/2022]
Abstract
Healthy neurons do not store glycogen while they do possess the machinery for the glycogen synthesis albeit at an inactive state. Neurons in the degenerating brain, however, are known to accumulate glycogen, although its significance was not well understood. Emerging reports present contrasting views on neuronal glycogen synthesis; a few reports demonstrate a neurotoxic effect of glycogen while a few others suggest glycogen to be neuroprotective. Thus, the specific role of glycogen and glycogen synthase in neuronal physiology is largely unexplored. Using cellular and animal models of Huntington's disease, we show here that the overexpression of cytotoxic mutant huntingtin protein induces glycogen synthesis in the neurons by activating glycogen synthase and the overexpressed glycogen synthase protected neurons from the cytotoxicity of the mutant huntingtin. Exposure of neuronal cells to proteasomal blockade and oxidative stress also activate glycogen synthase to induce glycogen synthesis and to protect against stress-induced neuronal death. We show that the glycogen synthase plays an essential and inductive role in the neuronal autophagic flux, and helps in clearing the cytotoxic huntingtin aggregate. We also show that the increased neuronal glycogen inhibits the aggregation of mutant huntingtin, and thus could directly contribute to its clearance. Finally, we demonstrate that excessive autophagy flux is the molecular basis of cell death caused by the activation of glycogen synthase in unstressed neurons. Taken together, our results thus provide a novel function for glycogen synthase in proteolytic processes and offer insight into the role of glycogen synthase and glycogen in both survival and death of the neurons.
Collapse
Affiliation(s)
- Anupama Rai
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, India
| | - Pankaj Kumar Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, India
- Institut de Génétique et de Biologie Moléculaire et Cellulare (IGBMC), Illkirch, France
| | - Virender Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, India
| | | | - Rohit Mishra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, India
| | - Ashwani Kumar Thakur
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neuroscience, Bengaluru, 560029, India
| | - Susarla Krishna Shankar
- Department of Neuropathology, National Institute of Mental Health and Neuroscience, Bengaluru, 560029, India
| | | | - Subramaniam Ganesh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, India.
| |
Collapse
|
24
|
Zhu L, Su F, Xu Y, Zou Q. Network-based method for mining novel HPV infection related genes using random walk with restart algorithm. Biochim Biophys Acta Mol Basis Dis 2017; 1864:2376-2383. [PMID: 29197659 DOI: 10.1016/j.bbadis.2017.11.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/03/2017] [Accepted: 11/26/2017] [Indexed: 12/27/2022]
Abstract
The human papillomavirus (HPV), a common virus that infects the reproductive tract, may lead to malignant changes within the infection area in certain cases and is directly associated with such cancers as cervical cancer, anal cancer, and vaginal cancer. Identification of novel HPV infection related genes can lead to a better understanding of the specific signal pathways and cellular processes related to HPV infection, providing information for the development of more efficient therapies. In this study, several novel HPV infection related genes were predicted by a computation method based on the known genes involved in HPV infection from HPVbase. This method applied the algorithm of random walk with restart (RWR) to a protein-protein interaction (PPI) network. The candidate genes were further filtered by the permutation and association tests. These steps eliminated genes occupying special positions in the PPI network and selected key genes with strong associations to known HPV infection related genes based on the interaction confidence and functional similarity obtained from published databases, such as STRING, gene ontology (GO) terms and KEGG pathways. Our study identified 104 novel HPV infection related genes, a number of which were confirmed to relate to the infection processes and complications of HPV infection, as reported in the literature. These results demonstrate the reliability of our method in identifying HPV infection related genes. This article is part of a Special Issue entitled: Accelerating Precision Medicine through Genetic and Genomic Big Data Analysis edited by Yudong Cai & Tao Huang.
Collapse
Affiliation(s)
- Liucun Zhu
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Fangchu Su
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - YaoChen Xu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Quan Zou
- School of Computer Science and Technology, TianJin University, Tianjin 300350, China.
| |
Collapse
|
25
|
Liu W, Wang X, Liu Z, Wang Y, Yin B, Yu P, Duan X, Liao Z, Chen Y, Liu C, Li X, Dai Y, Tao Z. SGK1 inhibition induces autophagy-dependent apoptosis via the mTOR-Foxo3a pathway. Br J Cancer 2017; 117:1139-1153. [PMID: 29017179 PMCID: PMC5674106 DOI: 10.1038/bjc.2017.293] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/19/2017] [Accepted: 08/01/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Although inhibition of SGK1 has been shown to delay cancer progression, the underlying mechanisms have not yet been elucidated. METHODS We investigated the cellular responses to GSK650394 treatment and SGK1 silencing (or overexpression) in human prostate cancer (PCa) cell lines and PC3 xenografts by flow cytometry, western blotting, immunofluorescence, transmission electron microscopy and immunohistochemistry. RESULTS In the present study, we demonstrated that SGK1 inhibition, mediated by either GSK650394 or SGK1 shRNA, induced G2/M arrest, apoptosis and autophagy. Furthermore, 3MA-mediated autophagy inhibition attenuated SGK1 inhibition-induced apoptosis, suggesting that induction of autophagy precedes apoptosis. Moreover, ectopic expression of SGK1 significantly attenuated the GSK650394-induced effects. Suppression of mTOR and Foxo3a phosphorylation is critical for blockade of SGK1-induced autophagy and apoptosis, at least partially via pFoxo3a (S253)-LC3 and pFoxo3a (S253)-p27 interactions. Dual inhibition of mTOR and SGK1 enhances autophagy activation and leads to synergistic cytocidal effects in PCa cells. CONCLUSIONS In summary, our findings show that SGK1 inhibition exhibits significant antitumour effects against PCa in vitro and in vivo. This study uncovered a novel mechanism of SGK1 inhibition in PCa, which is mediated, at least in part, by inducing autophagy-dependent apoptosis via the mTOR-Foxo3a pathway.
Collapse
Affiliation(s)
- Weiwei Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xuchu Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhenping Liu
- Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yiyun Wang
- Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Binbin Yin
- Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Pan Yu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xiuzhi Duan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhaoping Liao
- Department of Blood Transfusion, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yuhua Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Chunhua Liu
- Department of Blood Transfusion, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xiang Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yibei Dai
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhihua Tao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
26
|
Jain N, Rai A, Mishra R, Ganesh S. Loss of malin, but not laforin, results in compromised autophagic flux and proteasomal dysfunction in cells exposed to heat shock. Cell Stress Chaperones 2017; 22:307-315. [PMID: 27975203 PMCID: PMC5352594 DOI: 10.1007/s12192-016-0754-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 12/04/2016] [Accepted: 12/05/2016] [Indexed: 11/29/2022] Open
Abstract
Heat stress to a cell leads to the activation of heat shock response, which is required for the management of misfolded and unfolded proteins. Macroautophagy and proteasome-mediated degradation are the two cellular processes that degrade polyubiquitinated, misfolded proteins. Contrasting pieces of evidence exist on the effect of heat stress on the activation of the above-mentioned degradative pathways. Laforin phosphatase and malin E3 ubiquitin ligase, the two proteins defective in Lafora neurodegenerative disorder, are involved in cellular stress response pathways and are required for the activation of heat shock transcription factor - the heat shock factor 1 (HSF1) - and, consequently, for cellular protection under heat shock. While the role of laforin and malin in the proteolytic pathways is well established, their role in cellular recovery from heat shock was not explored. To address this, we investigated autophagic flux, proteasomal activity, and the level of polyubiquitinated proteins in Neuro2a cells partially silenced for laforin or malin protein and exposed to heat shock. We found that heat shock was able to induce autophagic flux, proteasomal activity and reduce the polyubiquitinated proteins load in the laforin-silenced cells but not in the malin-deficient cells. Loss of malin leads to reduced proteasomal activity in the heat-shocked cells. Taken together, our results suggest a distinct mode of action for laforin and malin in the heat shock-induced proteolytic processes.
Collapse
Affiliation(s)
- Navodita Jain
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, India
| | - Anupama Rai
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, India
| | - Rohit Mishra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, India
| | - Subramaniam Ganesh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, India.
| |
Collapse
|
27
|
Gan J, Qu Y, Li J, Zhao F, Mu D. An evaluation of the links between microRNA, autophagy, and epilepsy. Rev Neurosci 2016; 26:225-37. [PMID: 25719305 DOI: 10.1515/revneuro-2014-0062] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/05/2014] [Indexed: 11/15/2022]
Abstract
Epilepsy is a serious chronic neurologic disorder characterized by recurrent unprovoked seizures resulting from abnormal and highly synchronous neuronal discharges within the brain. Small noncoding RNAs, called microRNAs, play vital roles in epileptogenesis, with potential contributions as valuable biomarkers and targets for the treatment of epilepsy. To maintain cellular homeostasis, cellular components, such as organelles, proteins, protein complexes/oligomers, and pathogens, are delivered to the lysosome for degradation through a process called autophagy, which plays either a protective or a harmful role under epileptic stress. Several autophagic mechanisms have been implicated in epileptogenesis, including the mammalian target of rapamycin pathway, aberrant substrate accumulation, and the formation of epileptic networks. In addition, the regulation of autophagy through microRNAs (miRNAs) represents a novel posttranscriptional regulatory mechanism through 'autophagamiRNAs'. The correlation between autophagy and miRNA has increased our understanding of the underlying pathogenesis of human diseases. Here, we review the current findings regarding the correlations between miRNA, autophagy, and epilepsy to provide a solid foundation for further examination of the miRNA-autophagy pathway involved in epilepsy pathophysiology.
Collapse
|
28
|
Jain N, Mishra R, Ganesh S. FoxO3a-mediated autophagy is down-regulated in the laforin deficient mice, an animal model for Lafora progressive myoclonus epilepsy. Biochem Biophys Res Commun 2016; 474:321-327. [DOI: 10.1016/j.bbrc.2016.04.094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 04/17/2016] [Indexed: 01/15/2023]
|
29
|
Yao Y, Jiang Q, Jiang L, Wu J, Zhang Q, Wang J, Feng H, Zang P. Lnc-SGK1 induced by Helicobacter pylori infection and highsalt diet promote Th2 and Th17 differentiation in human gastric cancer by SGK1/Jun B signaling. Oncotarget 2016; 7:20549-60. [PMID: 26942879 PMCID: PMC4991474 DOI: 10.18632/oncotarget.7823] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/14/2016] [Indexed: 01/05/2023] Open
Abstract
Serum and glucocorticoid-inducible kinase (SGK) 1can be triggered in several malignancies. Most research on SGK1has focused on its role in cancer cells, and we sought to investigate its potential upstream non-coding RNA nominated as Lnc-SGK1, and their expression and diagnostic value in T cells in human gastric cancer (GC). Excessive expression of Lnc-SGK1 and SGK1 were observed in T cell either within the tumor or peripheral T cells, and furthermore associated with Helicobacter pylori infection and high-salt diet (HSD). Within T cells, Helicobacter pylori (Hp) infection and high-salt dietcan up-regulated SGK1 expression and in turn enhance expression of Lnc-SGK1 through JunB activation. And expression of Lnc-SGK1 can further enhance transcription of SGK1 through cis regulatory mode. Lnc-SGK1 can induce Th2 and Th17 and reduce Th1 differentiation via SGK1/JunB signaling. Serum Lnc-SGK1 expression in combination with H. pylori infection and/or HSD in T cells was associated with poor prognosis of GC patients, and could be an ideal diagnostic index in human GC.
Collapse
Affiliation(s)
- Yongliang Yao
- Department of Clinical Laboratory, The First People's Hospital of Kunshan, Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Qingbo Jiang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
| | - Lixing Jiang
- Department of Clinical Laboratory, Wujin Hospital Affiliated to Jiangsu University, Changzhou, Jiangsu, China
| | - Jianhong Wu
- Department of Clinical Laboratory, The First People's Hospital of Kunshan, Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Qinghui Zhang
- Department of Clinical Laboratory, The First People's Hospital of Kunshan, Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Jianjun Wang
- Department of Clinical Laboratory, The First People's Hospital of Kunshan, Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Huang Feng
- Department of Clinical Laboratory, The First People's Hospital of Kunshan, Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Panpan Zang
- Department of Clinical Laboratory, The First People's Hospital of Kunshan, Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| |
Collapse
|
30
|
|
31
|
Wang P, Israelian L, Xue Y, Song S, Attisano L, Minassian BA. SGK1 (glucose transport), dishevelled2 (wnt signaling), LC3/p62 (autophagy) and p53 (apoptosis) proteins are unaltered in Lafora disease. THE ALL RESULTS JOURNALS. BIOL 2016; 7:28-33. [PMID: 29152446 PMCID: PMC5693254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Glycogen forms through the concerted actions of glycogen synthase (GS) which elongates glycogen strands, and glycogen branching enzyme (GBE). Lafora disease (LD) is a fatal neurodegenerative epilepsy that results from neuronal accumulation of hyperphosphorylated glycogen with excessively long strands (called polyglucosans). There is no GBE deficiency in LD. Instead, the disease is caused by loss-of-function mutations in the EPM2A or EPM2B genes, encoding, respectively, a phosphatase, laforin, and an E3 ubiquiting ligase, malin. A number of experimentally derived hypotheses have been published to explain LD, including: The SGK1 hypothesis - Phosphorylated SGK1 (pSGK1) raises cellular glucose uptake and levels, which would activate GS. Based on observing increased pSGK1 in LD mice it was proposed that raised pSGK1 leads to polyglucosan generation through GS hyperactivation. The Dishevelled2 hypothesis - Downregulating malin in cell culture was reported to increase levels of dishevelled2, which through the wnt/glycogen synthase kinase-3 pathway would likewise overactivate GS. The Autophagic defect hypothesis - Polyglucosans may be natural byproducts of normal glycogen metabolism. LD mice were reported to be autophagy-defective. LD would arise from failed autophagy leading to failed polyglucosan clearance. Finally, the p53 hypothesis - laforin and malin were reported to downregulate p53, their absence leading to increased p53, which would activate apoptosis, leading to the neurodegeneration of LD. In the present work we repeat key experiments that underlie these four hypotheses. We are unable to confirm increased pSGK1, dishevelled2, or p53 in LD mice, nor the reported autophagic defects. Our work does not support the above hypotheses in understanding this unique and severe form of epilepsy.
Collapse
Affiliation(s)
- Peixiang Wang
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lori Israelian
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, 1 King’s College Circle, Toronto, ON, Canada
| | - Yunlin Xue
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Siyuan Song
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Liliana Attisano
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Berge A. Minassian
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, 1 King’s College Circle, Toronto, ON, Canada
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
32
|
Romá-Mateo C, Aguado C, García-Giménez JL, Knecht E, Sanz P, Pallardó FV. Oxidative stress, a new hallmark in the pathophysiology of Lafora progressive myoclonus epilepsy. Free Radic Biol Med 2015; 88:30-41. [PMID: 25680286 DOI: 10.1016/j.freeradbiomed.2015.01.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/16/2015] [Accepted: 01/28/2015] [Indexed: 12/12/2022]
Abstract
Lafora disease (LD; OMIM 254780, ORPHA501) is a devastating neurodegenerative disorder characterized by the presence of glycogen-like intracellular inclusions called Lafora bodies and caused, in most cases, by mutations in either the EPM2A or the EPM2B gene, encoding respectively laforin, a phosphatase with dual specificity that is involved in the dephosphorylation of glycogen, and malin, an E3-ubiquitin ligase involved in the polyubiquitination of proteins related to glycogen metabolism. Thus, it has been reported that laforin and malin form a functional complex that acts as a key regulator of glycogen metabolism and that also plays a crucial role in protein homeostasis (proteostasis). Regarding this last function, it has been shown that cells are more sensitive to ER stress and show defects in proteasome and autophagy activities in the absence of a functional laforin-malin complex. More recently, we have demonstrated that oxidative stress accompanies these proteostasis defects and that various LD models show an increase in reactive oxygen species and oxidative stress products together with a dysregulated antioxidant enzyme expression and activity. In this review we discuss possible connections between the multiple defects in protein homeostasis present in LD and oxidative stress.
Collapse
Affiliation(s)
- Carlos Romá-Mateo
- Fundación Investigación Clinico de Valencia, Instituto de Investigación Sanitaria, Valencia, Spain; Department of Physiology, School of Medicine and Dentistry, University of Valencia, E46010 Valencia, Spain
| | - Carmen Aguado
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Valencia, Spain; Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - José Luis García-Giménez
- Fundación Investigación Clinico de Valencia, Instituto de Investigación Sanitaria, Valencia, Spain; Department of Physiology, School of Medicine and Dentistry, University of Valencia, E46010 Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Valencia, Spain
| | - Erwin Knecht
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Valencia, Spain; Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Pascual Sanz
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Valencia, Spain; Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Federico V Pallardó
- Fundación Investigación Clinico de Valencia, Instituto de Investigación Sanitaria, Valencia, Spain; Department of Physiology, School of Medicine and Dentistry, University of Valencia, E46010 Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Valencia, Spain.
| |
Collapse
|
33
|
Upadhyay M, Gupta S, Bhadauriya P, Ganesh S. Lafora disease proteins laforin and malin negatively regulate the HIPK2-p53 cell death pathway. Biochem Biophys Res Commun 2015; 464:106-11. [PMID: 26102034 DOI: 10.1016/j.bbrc.2015.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 06/02/2015] [Indexed: 01/05/2023]
Abstract
Lafora disease (LD) is an autosomal recessive, progressive, and fatal form of a neurodegenerative disorder characterized by the presence of Lafora polyglucosan bodies. LD is caused by defects in either the laforin protein phosphatase or the malin E3 ubiquitin ligase. Laforin and malin were shown play key roles in proteolytic processes, unfolded stress response, and glycogen metabolism. Therefore, the LD proteins laforin and malin are thought to function as pro-survival factors and their loss thus could result in neurodegeneration. To understand the molecular pathway leading to the cell death in LD, in the present study, we investigated the possible role of LD proteins in the p53-mediated cell death pathway. We show that loss of laforin or malin results in the increased level and activity of p53, both in cellular and animal models of LD, and that this is primarily due to the increased levels of Hipk2, a proapoptotic activator of p53. Overexpression of laforin or malin confers protection against Hipk2-mediated cell death by targeting the Hipk2 to the cytoplasmic compartment. Taken together, our study strengthens the notion that laforin and malin are pro-survival factors, and that the activation of Hipk2-p53 cell death pathway might underlie neurodegeneration in LD.
Collapse
Affiliation(s)
- Mamta Upadhyay
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Smriti Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Pratibha Bhadauriya
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Subramaniam Ganesh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India; Center of Excellence for Chemical Biology, Indian Institute of Technology, Kanpur, India.
| |
Collapse
|
34
|
Durhuus JA, Desler C, Rasmussen LJ. Mitochondria in Health and Disease – 3rd Annual Conference of Society for Mitochondrial Research and Medicine – 19–20 December 2013 — Bengaluru, India. Mitochondrion 2015; 20:7-12. [DOI: 10.1016/j.mito.2014.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/11/2014] [Accepted: 10/16/2014] [Indexed: 01/02/2023]
|