1
|
Schwarzenbach C, Rinke J, Vilar JB, Sallbach J, Tatsch L, Schmidt A, Schöneis A, Rasenberger B, Kaina B, Tomicic MT, Christmann M. Therapy-induced senescence of glioblastoma cells is determined by the p21 CIP1-CDK1/2 axis and does not require activation of DREAM. Cell Death Dis 2025; 16:357. [PMID: 40319068 PMCID: PMC12049523 DOI: 10.1038/s41419-025-07651-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 04/04/2025] [Accepted: 04/09/2025] [Indexed: 05/07/2025]
Abstract
Therapy-induced senescence (TIS) is a major challenge in cancer therapy as senescent cancer cells provoke local and systemic inflammation and might be the cause of recurrences. Elucidation of pathways leading to TIS is of utmost importance for establishing strategies to counteract this. Previously we have shown that temozolomide (TMZ), an alkylating drug used forefront in glioma therapy, causes majorly cellular senescence, which is triggered by the primary damage O6-methylguanine, activating the mismatch repair dependent ATR/ATM-CHK1/CHK2-p53 damage response pathway. The downstream pathways leading to TIS remained to be explored. Here, we show that TMZ-induced TIS in glioma cells does not require activation of the DREAM complex, but is bound on a G2-specific response. We show that the CDK inhibitor p21CIP1 does not interact with CDK4, but with CDK1 and CDK2 causing abrogation of the B-Myb and FOXM1-signaling pathway and subsequently arrest of cells in the G2-phase. The induced G2-arrest is incomplete as DNA synthesis can be resumed leading to endoreduplications. This process, which is inhibited by the CDK4-blocking drug palbociclib, is preceded by reactivation of the G1/S-specific E2F1-signaling pathway due to lack of functional DREAM activation. These findings provide an explanation for the polyploidization and giant cell phenotype of anticancer drug-induced senescent cells. Incomplete DREAM activation may also explain the observation that downregulation of DNA repair is a transient phenomenon, which goes along with the entrance of cells into the senescent state.
Collapse
Affiliation(s)
- Christian Schwarzenbach
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Justus Rinke
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Juliana B Vilar
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Jason Sallbach
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Larissa Tatsch
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Ariane Schmidt
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Anna Schöneis
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Birgit Rasenberger
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Bernd Kaina
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Maja T Tomicic
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - Markus Christmann
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
2
|
McPartland M, Ashcroft F, Wagner M. Plastic chemicals disrupt molecular circadian rhythms via adenosine 1 receptor in vitro. ENVIRONMENT INTERNATIONAL 2025; 198:109422. [PMID: 40179621 DOI: 10.1016/j.envint.2025.109422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/28/2025] [Accepted: 03/27/2025] [Indexed: 04/05/2025]
Abstract
The adenosine 1 receptor (A1R) is a G protein-coupled receptor that transduces signals to regulate sleep-wake cycles and circadian rhythms. Plastic products contain thousands of chemicals, known to disrupt physiological function. Recent research has demonstrated that some of these chemicals are also A1R agonists, however, the extent to which such activation propagates downstream and results in cellular alterations remains unknown. Thus, we investigate whether chemicals extracted from polyurethane (PUR) and polyvinyl chloride (PVC) plastics disrupt circadian rhythms via agonism of A1R. We confirm that plastic chemicals in both plastics activate A1R and inhibit intracellular cAMP in U2OS cells. Notably, this inhibition is comparable to that induced by the highly specific A1R agonist 2'-MeCCPA. To assess circadian disruption, we quantify temporal expression patterns of the clock genes PER2 and CRY2 at 4-h intervals over 48 h. Here, exposure to plastic chemicals shifts the phase in the oscillatory expression cycles of both clock genes by 9-17 min. Importantly, these effects are dose-dependent and reversible when A1R is inhibited by a pharmacological antagonist. This demonstrates that plastic chemicals can disrupt circadian processes by interfering with A1R signaling and suggests a novel mechanism by which these and other chemicals may contribute to non-communicable diseases.
Collapse
Affiliation(s)
- Molly McPartland
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway.
| | - Felicity Ashcroft
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Martin Wagner
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway.
| |
Collapse
|
3
|
Rega C, Tsitsa I, Roumeliotis TI, Krystkowiak I, Portillo M, Yu L, Vorhauser J, Pines J, Mansfeld J, Choudhary J, Davey NE. High resolution profiling of cell cycle-dependent protein and phosphorylation abundance changes in non-transformed cells. Nat Commun 2025; 16:2579. [PMID: 40089461 PMCID: PMC11910661 DOI: 10.1038/s41467-025-57537-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 02/24/2025] [Indexed: 03/17/2025] Open
Abstract
The cell cycle governs a precise series of molecular events, regulated by coordinated changes in protein and phosphorylation abundance, that culminates in the generation of two daughter cells. Here, we present a proteomic and phosphoproteomic analysis of the human cell cycle in hTERT-RPE-1 cells using deep quantitative mass spectrometry by isobaric labelling. By analysing non-transformed cells and improving the temporal resolution and coverage of key cell cycle regulators, we present a dataset of cell cycle-dependent protein and phosphorylation site oscillation that offers a foundational reference for investigating cell cycle regulation. These data reveal regulatory intricacies including proteins and phosphorylation sites exhibiting cell cycle-dependent oscillation, and proteins targeted for degradation during mitotic exit. Integrated with complementary resources, our data link cycle-dependent abundance dynamics to functional changes and are accessible through the Cell Cycle database (CCdb), an interactive web-based resource for the cell cycle community.
Collapse
Affiliation(s)
- Camilla Rega
- Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | - Ifigenia Tsitsa
- Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | | | | | - Maria Portillo
- Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | - Lu Yu
- Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | - Julia Vorhauser
- Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | - Jonathon Pines
- Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | - Jörg Mansfeld
- Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | - Jyoti Choudhary
- Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | - Norman E Davey
- Division of Cancer Biology, The Institute of Cancer Research, London, UK.
| |
Collapse
|
4
|
Haidar M, Mourier T, Salunke R, Kaushik A, Ben-Rached F, Mfarrej S, Pain A. Defining epitranscriptomic hallmarks at the host-parasite interface and their roles in virulence and disease progression in Theileria annulata-infected leukocytes. Biomed J 2025:100828. [PMID: 39798869 DOI: 10.1016/j.bj.2025.100828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 12/05/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025] Open
Abstract
Theileria parasites are known to induce the transformation of host bovine leukocytes, involved in rapid proliferation, evasion from apoptotic mechanisms, and increased dissemination. In this study, we reveal the involvement of m6A RNA modification in T. annulata infection-induced transformation of bovine leukocytes. We conducted m6A sequencing and bioinformatics analysis to map the mRNA methylation patterns of T. annulata-infected host leukocytes. We observe specific mRNA modifications for T. annulata-infected leukocytes and a strong correlation between the proliferation rate of the infected Leukocytes with m6A modifications We observe that the increased amounts of m6A seem to impact some cell cycle dynamics, potentially via modifications of E2F4 mRNA. Moreover, we further identify HIF-1α as a possible driver of these m6A RNA modifications that have clear relevance to cellular proliferation dynamics. Overall, our results provide insights into the role of m6A mRNA methylation in the molecular crosstalk between Theileria and their host leukocytes, emphasizing the critical role of mRNA methylation in host-parasite interaction.
Collapse
Affiliation(s)
- Malak Haidar
- Pathogen Genomics Group, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia; Biozentrum, University of Basel, 4056 Basel-Stadt, Switzerland.
| | - Tobias Mourier
- Pathogen Genomics Group, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Rahul Salunke
- Pathogen Genomics Group, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Abhinav Kaushik
- Pathogen Genomics Group, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Fathia Ben-Rached
- Pathogen Genomics Group, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Sara Mfarrej
- Pathogen Genomics Group, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Arnab Pain
- Pathogen Genomics Group, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia; International Institute for Zoonosis Control, GI-CoRE, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
5
|
Xiao J, Cao Y, Li X, Xu L, Wang Z, Huang Z, Mu X, Qu Y, Xu Y. Elucidation of Factors Affecting the Age-Dependent Cancer Occurrence Rates. Int J Mol Sci 2024; 26:275. [PMID: 39796131 PMCID: PMC11720044 DOI: 10.3390/ijms26010275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/24/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
Cancer occurrence rates exhibit diverse age-related patterns, and understanding them may shed new and important light on the drivers of cancer evolution. This study systematically analyzes the age-dependent occurrence rates of 23 carcinoma types, focusing on their age-dependent distribution patterns, the determinants of peak occurrence ages, and the significant difference between the two genders. According to the SEER reports, these cancer types have two types of age-dependent occurrence rate (ADOR) distributions, with most having a unimodal distribution and a few having a bimodal distribution. Our modeling analyses have revealed that (1) the first type can be naturally and simply explained using two age-dependent parameters: the total number of stem cell divisions in an organ from birth to the current age and the availability levels of bloodborne growth factors specifically needed by the cancer (sub)type, and (2) for the second type, the first peak is due to viral infection, while the second peak can be explained as in (1) for each cancer type. Further analyses indicate that (i) the iron level in an organ makes the difference between the male and female cancer occurrence rates, and (ii) the levels of sex hormones are the key determinants in the onset age of multiple cancer types. This analysis deepens our understanding of the dynamics of cancer evolution shared by diverse cancer types and provides new insights that are useful for cancer prevention and therapeutic strategies, thereby addressing critical gaps in the current paradigm of oncological research.
Collapse
Affiliation(s)
- Jun Xiao
- College of Computer Science and Technology, Jilin University, Changchun 130012, China; (J.X.); (X.L.); (Z.W.); (Z.H.)
- Systems Biology Laboratory for Metabolic Reprogramming, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.C.); (L.X.); (X.M.)
| | - Yangkun Cao
- Systems Biology Laboratory for Metabolic Reprogramming, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.C.); (L.X.); (X.M.)
- School of Artificial Intelligence, Jilin University, Changchun 130012, China
| | - Xuan Li
- College of Computer Science and Technology, Jilin University, Changchun 130012, China; (J.X.); (X.L.); (Z.W.); (Z.H.)
- Systems Biology Laboratory for Metabolic Reprogramming, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.C.); (L.X.); (X.M.)
| | - Long Xu
- Systems Biology Laboratory for Metabolic Reprogramming, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.C.); (L.X.); (X.M.)
| | - Zhihang Wang
- College of Computer Science and Technology, Jilin University, Changchun 130012, China; (J.X.); (X.L.); (Z.W.); (Z.H.)
- Systems Biology Laboratory for Metabolic Reprogramming, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.C.); (L.X.); (X.M.)
| | - Zhenyu Huang
- College of Computer Science and Technology, Jilin University, Changchun 130012, China; (J.X.); (X.L.); (Z.W.); (Z.H.)
- Systems Biology Laboratory for Metabolic Reprogramming, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.C.); (L.X.); (X.M.)
| | - Xuechen Mu
- Systems Biology Laboratory for Metabolic Reprogramming, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.C.); (L.X.); (X.M.)
- School of Mathematics, Jilin University, Changchun 130012, China
| | - Yinwei Qu
- College of Computer Science and Technology, Jilin University, Changchun 130012, China; (J.X.); (X.L.); (Z.W.); (Z.H.)
- Systems Biology Laboratory for Metabolic Reprogramming, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.C.); (L.X.); (X.M.)
| | - Ying Xu
- Systems Biology Laboratory for Metabolic Reprogramming, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.C.); (L.X.); (X.M.)
| |
Collapse
|
6
|
Copeland SE, Snow SM, Wan J, Matkowskyj KA, Halberg RB, Weaver BA. MAD1 upregulation sensitizes to inflammation-mediated tumor formation. PLoS Genet 2024; 20:e1011437. [PMID: 39374311 PMCID: PMC11486420 DOI: 10.1371/journal.pgen.1011437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/17/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
Mitotic Arrest Deficient 1 (gene name MAD1L1), an essential component of the mitotic spindle assembly checkpoint, is frequently overexpressed in colon cancer, which correlates with poor disease-free survival. MAD1 upregulation induces two phenotypes associated with tumor promotion in tissue culture cells-low rates of chromosomal instability (CIN) and destabilization of the tumor suppressor p53. Using CRISPR/Cas9 gene editing, we generated a novel mouse model by inserting a doxycycline (dox)-inducible promoter and HA tag into the endogenous mouse Mad1l1 gene, enabling inducible expression of HA-MAD1 following exposure to dox in the presence of the reverse tet transactivator (rtTA). A modest 2-fold overexpression of MAD1 in murine colon resulted in decreased p53 expression and increased mitotic defects consistent with CIN. After exposure to the colon-specific inflammatory agent dextran sulfate sodium (DSS), 31% of mice developed colon lesions, including a mucinous adenocarcinoma, while none formed in control animals. Lesion incidence was particularly high in male mice, 57% of which developed at least one hyperplastic polyp, adenoma or adenocarcinoma in the colon. Notably, mice expressing HA-MAD1 also developed lesions in tissues in which DSS is not expected to induce inflammation. These findings demonstrate that MAD1 upregulation is sufficient to promote colon tumorigenesis in the context of inflammation in immune-competent mice.
Collapse
Affiliation(s)
- Sarah E. Copeland
- Molecular and Cellular Pharmacology Graduate Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Santina M. Snow
- Cancer Biology Graduate Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Oncology/McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jun Wan
- Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kristina A. Matkowskyj
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Richard B. Halberg
- Department of Oncology/McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Beth A. Weaver
- Department of Oncology/McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
7
|
Pasello M, Laginestra MA, Manara MC, Landuzzi L, Ruzzi F, Maioli M, Pellegrini E, De Feo A, Lollini P, Scotlandi K. CD99 contributes to the EWS::FLI1 transcriptome by specifically affecting FOXM1-targets involved in the G2/M cell cycle phase, thus influencing the Ewing sarcoma genetic landscape. J Cell Commun Signal 2024; 18:e12047. [PMID: 39524141 PMCID: PMC11544636 DOI: 10.1002/ccs3.12047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 11/16/2024] Open
Abstract
Ewing sarcoma (EwS), a highly aggressive malignancy affecting children and young adults, is primarily driven by a distinctive oncogenic fusion, the EWSR1-ETS, whose activity is a key source of epigenetic and clinical heterogeneity. CD99 is constantly present in EwS cells, known to modulate the EwS genetic profile and tumor malignancy. However, the relevance of CD99 alone, or in association with EWSR1-ETS chimeras, is poorly understood. We explored the dynamic relationship between CD99 and EWS::FLI1, the main fusion observed in EwS, by means of model systems with inducible expression of either molecule. The transcriptomic dynamics of cells with or without expression of EWS::FLI1 or CD99 were analyzed and correlated with tumor cell growth. The CD99-associated EwS gene profile was found to have commonalities with the profile induced by EWS::FLI1, but also peculiar differences. Both EWS::FLI1 and CD99 are regulated targets of the DREAM complex, but the CD99 expression specifically impacted genes that are the targets of FOXM1 and are involved in the setting of the G2/M phase of the cell cycle. Most CD99-regulated FOXM1-targeted genes were found to correlate with bad prognosis in two public clinical datasets (R2 platform), further supporting the clinical relevance of CD99-mediated regulation of EwS gene expression.
Collapse
Affiliation(s)
- Michela Pasello
- Laboratory of Experimental OncologyIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | | | | | - Lorena Landuzzi
- Laboratory of Experimental OncologyIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Francesca Ruzzi
- Laboratory of Immunology and Biology of MetastasisDepartment of Medical and Surgical Sciences (DIMEC)University of BolognaBolognaItaly
| | - Margherita Maioli
- Department of PathologyIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Evelin Pellegrini
- Laboratory of Experimental OncologyIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Alessandra De Feo
- Laboratory of Experimental OncologyIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Pier‐Luigi Lollini
- Laboratory of Immunology and Biology of MetastasisDepartment of Medical and Surgical Sciences (DIMEC)University of BolognaBolognaItaly
| | - Katia Scotlandi
- Laboratory of Experimental OncologyIRCCS Istituto Ortopedico RizzoliBolognaItaly
| |
Collapse
|
8
|
Shibui Y, Kohashi K, Hino Y, Tamaki A, Kinoshita I, Yamamoto H, Nakashima Y, Tajiri T, Oda Y. Expression of Forkhead Box M1 and Anticancer Effects of FOXM1 Inhibition in Epithelioid Sarcoma. J Transl Med 2024; 104:102093. [PMID: 38857782 DOI: 10.1016/j.labinv.2024.102093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/09/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024] Open
Abstract
Epithelioid sarcoma (ES) is a rare aggressive sarcoma that, unlike most soft-tissue sarcomas, shows a tendency toward local recurrence and lymph node metastasis. Novel antitumor agents are needed for ES patients. Forkhead box transcription factor 1 (FOXM1) is a member of the Forkhead transcription factor family and is associated with multiple oncogenic functions; FOXM1 is known to be overexpressed and correlated with pathogenesis in various malignancies. In this study, we immunohistochemically analyzed FOXM1 expression levels and their clinical, clinicopathologic, and prognostic significance in 38 ES specimens. In addition, to investigate potential correlations between FOXM1 downregulation and oncologic characteristics, we treated ES cell lines with thiostrepton, a naturally occurring antibiotic that inhibits both small interfering RNA (siRNA) and FOXM1. In the analyses using ES samples, all 38 specimens were diagnosed as positive for FOXM1 by immunohistochemistry. We separated specimens into high (n = 19) and low (n = 19) FOXM1-protein expression groups by staining index score, and into large (n = 12), small (n = 25), and unknown (n = 1) tumor-size groups using a cutoff of 5 cm maximum diameter. Although there were significantly more samples with high FOXM1 expression in the large tumor group (P = .013), there were no significant differences with respect to age (P = 1.00), sex (P = .51), primary site of origin (P = .74), histologic subtypes (P = 1.00), depth (P = .74), or survival rate (P = .288) between the high and low FOXM1-protein expression groups. In the in vitro experiments using ES cell lines, FOXM1 siRNA and thiostrepton successfully downregulated FOXM1 mRNA and protein expression. Furthermore, downregulation of FOXM1 inhibited cell proliferation, drug resistance against chemotherapeutic agents, migration, and invasion and caused cell cycle arrest in the ES cell lines. Finally, cDNA microarray analysis data showed that FOXM1 regulated cIAP2, which is one of the apoptosis inhibitors activated by the TNFα-mediated NF-κB pathway. In conclusion, the FOXM1 gene may be a promising therapeutic target for ES.
Collapse
Affiliation(s)
- Yuichi Shibui
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Pediatric Surgery, Faculty of Medicine, University of Tsukuba Hospital, Ibaraki, Japan
| | - Kenichi Kohashi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Pathology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yuko Hino
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akihiko Tamaki
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Izumi Kinoshita
- Department of Pathology, Kokura Memorial Hospital, Fukuoka, Japan
| | - Hidetaka Yamamoto
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yasuharu Nakashima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuro Tajiri
- Department of Pediatric Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
9
|
Wu T, Hou H, Dey A, Bachu M, Chen X, Wisniewski J, Kudoh F, Chen C, Chauhan S, Xiao H, Pan R, Ozato K. Bromodomain protein BRD4 directs mitotic cell division of mouse fibroblasts by inhibiting DNA damage. iScience 2024; 27:109797. [PMID: 38993671 PMCID: PMC11237862 DOI: 10.1016/j.isci.2024.109797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/30/2023] [Accepted: 04/18/2024] [Indexed: 07/13/2024] Open
Abstract
Bromodomain protein BRD4 binds to acetylated histones to regulate transcription. BRD4 also drives cancer cell proliferation. However, the role of BRD4 in normal cell growth has remained unclear. Here, we investigated this question by using mouse embryonic fibroblasts with conditional Brd4 knockout (KO). We found that Brd4KO cells grow more slowly than wild type cells; they do not complete replication, fail to achieve mitosis, and exhibit extensive DNA damage throughout all cell cycle stages. BRD4 was required for expression of more than 450 cell cycle genes including genes encoding core histones and centromere/kinetochore proteins that are critical for genome replication and chromosomal segregation. Moreover, we show that many genes controlling R-loop formation and DNA damage response (DDR) require BRD4 for expression. Finally, BRD4 constitutively occupied genes controlling R-loop, DDR and cell cycle progression. In summary, BRD4 epigenetically marks above genes and serves as a master regulator of normal cell growth.
Collapse
Affiliation(s)
- Tiyun Wu
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Haitong Hou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Anup Dey
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mahesh Bachu
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
- Weill Cornell Medicine, Graduate School of Medical Sciences, 1300 York Avenue Box 65, New York, NY 10065, USA
| | - Xiongfong Chen
- CCR-SF Bioinformatics Group, Advanced Biomedical and Computational Sciences, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Jan Wisniewski
- Confocal Microscopy and Digital Imaging Facility, Experimental Immunology Branch, CCR, NCI NIH Bldg 10 Rm 4A05, Bethesda, MD 20892, USA
| | - Fuki Kudoh
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chao Chen
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
- Division of Hematology/Oncology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sakshi Chauhan
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hua Xiao
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard Pan
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keiko Ozato
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Schmidt A, Allmann S, Schwarzenbach C, Snyder P, Chen JX, Nagel G, Schöneis A, Rasenberger B, Beli P, Loewer A, Hofmann T, Tomicic M, Christmann M. The p21CIP1-CDK4-DREAM axis is a master regulator of genotoxic stress-induced cellular senescence. Nucleic Acids Res 2024; 52:6945-6963. [PMID: 38783095 PMCID: PMC11229375 DOI: 10.1093/nar/gkae426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/02/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Cellular senescence, a major driver of aging, can be stimulated by DNA damage, and is counteracted by the DNA repair machinery. Here we show that in p16INK4a-deficient cells, senescence induction by the environmental genotoxin B[a]P or ionizing radiation (IR) completely depends on p21CIP1. Immunoprecipitation-based mass spectrometry interactomics data revealed that during senescence induction and maintenance, p21CIP1 specifically inhibits CDK4 and thereby activates the DREAM complex. Genome-wide transcriptomics revealed striking similarities in the response induced by B[a]P and IR. Among the top 100 repressed genes 78 were identical between B[a]P and IR and 76 were DREAM targets. The DREAM complex transcriptionally silences the main proliferation-associated transcription factors E2F1, FOXM1 and B-Myb as well as multiple DNA repair factors. Knockdown of p21CIP1, E2F4 or E2F5 diminished both, repression of these factors and senescence. The transcriptional profiles evoked by B[a]P and IR largely overlapped with the profile induced by pharmacological CDK4 inhibition, further illustrating the role of CDK4 inhibition in genotoxic stress-induced senescence. Moreover, data obtained by live-cell time-lapse microscopy suggest the inhibition of CDK4 by p21CIP1 is especially important for arresting cells which slip through mitosis. Overall, we identified the p21CIP1/CDK4/DREAM axis as a master regulator of genotoxic stress-induced senescence.
Collapse
Affiliation(s)
- Ariane Schmidt
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | - Sebastian Allmann
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | - Christian Schwarzenbach
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | - Petra Snyder
- Department of Biology, Technical University Darmstadt, Schnittspahnstrasse 13, 64287 Darmstadt, Germany
| | - Jia-Xuan Chen
- Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany
| | - Georg Nagel
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | - Anna Schöneis
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | - Birgit Rasenberger
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | - Petra Beli
- Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany
| | - Alexander Loewer
- Department of Biology, Technical University Darmstadt, Schnittspahnstrasse 13, 64287 Darmstadt, Germany
| | - Thomas G Hofmann
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | - Maja T Tomicic
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | - Markus Christmann
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| |
Collapse
|
11
|
Brūmele B, Serova E, Lupp A, Suija M, Mutso M, Kurg R. Cross-Reactivity of N6AMT1 Antibodies with Aurora Kinase A: An Example of Antibody-Specific Non-Specificity. Antibodies (Basel) 2024; 13:33. [PMID: 38804301 PMCID: PMC11130794 DOI: 10.3390/antib13020033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 05/29/2024] Open
Abstract
Primary antibodies are one of the main tools used in molecular biology research. However, the often-occurring cross-reactivity of primary antibodies complicates accurate data analysis. Our results show that three commercial polyclonal antibodies raised against N-6 adenine-specific DNA methyltransferase 1 (N6AMT1) strongly cross-react with endogenous and recombinant mitosis-associated protein Aurora kinase A (AURKA). The cross-reactivity was verified through immunofluorescence, immunoblot, and immunoprecipitation assays combined with mass spectrometry. N6AMT1 and AURKA are evolutionarily conserved proteins that are vital for cellular processes. Both proteins share the motif ENNPEE, which is unique to only these two proteins. We suggest that N6AMT1 antibodies recognise this motif in N6AMT1 and AURKA proteins and exhibit an example of "specific" non-specificity. This serves as an example of the importance of controls and critical data interpretation in molecular biology research.
Collapse
Affiliation(s)
- Baiba Brūmele
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Evgeniia Serova
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Aleksandra Lupp
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Mihkel Suija
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Margit Mutso
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Reet Kurg
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| |
Collapse
|
12
|
Kong L, Jin X. Dysregulation of deubiquitination in breast cancer. Gene 2024; 902:148175. [PMID: 38242375 DOI: 10.1016/j.gene.2024.148175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Breast cancer (BC) is a highly frequent malignant tumor that poses a serious threat to women's health and has different molecular subtypes, histological subtypes, and biological features, which act by activating oncogenic factors and suppressing cancer inhibitors. The ubiquitin-proteasome system (UPS) is the main process contributing to protein degradation, and deubiquitinases (DUBs) are reverse enzymes that counteract this process. There is growing evidence that dysregulation of DUBs is involved in the occurrence of BC. Herein, we review recent research findings in BC-associated DUBs, describe their nature, classification, and functions, and discuss the potential mechanisms of DUB-related dysregulation in BC. Furthermore, we present the successful treatment of malignant cancer with DUB inhibitors, as well as analyzing the status of targeting aberrant DUBs in BC.
Collapse
Affiliation(s)
- Lili Kong
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo 315211, Zhejiang, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
13
|
Paczkó M, Vörös D, Szabó P, Jékely G, Szathmáry E, Szilágyi A. A neural network-based model framework for cell-fate decisions and development. Commun Biol 2024; 7:323. [PMID: 38486083 PMCID: PMC10940658 DOI: 10.1038/s42003-024-05985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 02/28/2024] [Indexed: 03/18/2024] Open
Abstract
Gene regulatory networks (GRNs) fulfill the essential function of maintaining the stability of cellular differentiation states by sustaining lineage-specific gene expression, while driving the progression of development. However, accounting for the relative stability of intermediate differentiation stages and their divergent trajectories remains a major challenge for models of developmental biology. Here, we develop an empirical data-based associative GRN model (AGRN) in which regulatory networks store multilineage stage-specific gene expression profiles as associative memory patterns. These networks are capable of responding to multiple instructive signals and, depending on signal timing and identity, can dynamically drive the differentiation of multipotent cells toward different cell state attractors. The AGRN dynamics can thus generate diverse lineage-committed cell populations in a robust yet flexible manner, providing an attractor-based explanation for signal-driven cell fate decisions during differentiation and offering a readily generalizable modelling tool that can be applied to a wide variety of cell specification systems.
Collapse
Affiliation(s)
- Mátyás Paczkó
- Institute of Evolution, HUN-REN Centre for Ecological Research, Konkoly-Thege M. út 29-33, 1121, Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary
| | - Dániel Vörös
- Institute of Evolution, HUN-REN Centre for Ecological Research, Konkoly-Thege M. út 29-33, 1121, Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary
| | - Péter Szabó
- Institute of Evolution, HUN-REN Centre for Ecological Research, Konkoly-Thege M. út 29-33, 1121, Budapest, Hungary
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road 4QD, EX4, Exeter, UK
| | - Eörs Szathmáry
- Institute of Evolution, HUN-REN Centre for Ecological Research, Konkoly-Thege M. út 29-33, 1121, Budapest, Hungary.
- Center for the Conceptual Foundations of Science, Parmenides Foundation, Hindenburgstr. 15, 82343, Pöcking, Germany.
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary.
| | - András Szilágyi
- Institute of Evolution, HUN-REN Centre for Ecological Research, Konkoly-Thege M. út 29-33, 1121, Budapest, Hungary
| |
Collapse
|
14
|
Litsios A, Grys BT, Kraus OZ, Friesen H, Ross C, Masinas MPD, Forster DT, Couvillion MT, Timmermann S, Billmann M, Myers C, Johnsson N, Churchman LS, Boone C, Andrews BJ. Proteome-scale movements and compartment connectivity during the eukaryotic cell cycle. Cell 2024; 187:1490-1507.e21. [PMID: 38452761 PMCID: PMC10947830 DOI: 10.1016/j.cell.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/01/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024]
Abstract
Cell cycle progression relies on coordinated changes in the composition and subcellular localization of the proteome. By applying two distinct convolutional neural networks on images of millions of live yeast cells, we resolved proteome-level dynamics in both concentration and localization during the cell cycle, with resolution of ∼20 subcellular localization classes. We show that a quarter of the proteome displays cell cycle periodicity, with proteins tending to be controlled either at the level of localization or concentration, but not both. Distinct levels of protein regulation are preferentially utilized for different aspects of the cell cycle, with changes in protein concentration being mostly involved in cell cycle control and changes in protein localization in the biophysical implementation of the cell cycle program. We present a resource for exploring global proteome dynamics during the cell cycle, which will aid in understanding a fundamental biological process at a systems level.
Collapse
Affiliation(s)
- Athanasios Litsios
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Benjamin T Grys
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Oren Z Kraus
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Helena Friesen
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Catherine Ross
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Myra Paz David Masinas
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Duncan T Forster
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Mary T Couvillion
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Stefanie Timmermann
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, Ulm 89081, Germany
| | - Maximilian Billmann
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Chad Myers
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nils Johnsson
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, Ulm 89081, Germany
| | | | - Charles Boone
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; RIKEN Center for Sustainable Resource Science, Wako 351-0198 Saitama, Japan.
| | - Brenda J Andrews
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
15
|
Yadav AK, Polasek-Sedlackova H. Quantity and quality of minichromosome maintenance protein complexes couple replication licensing to genome integrity. Commun Biol 2024; 7:167. [PMID: 38336851 PMCID: PMC10858283 DOI: 10.1038/s42003-024-05855-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Accurate and complete replication of genetic information is a fundamental process of every cell division. The replication licensing is the first essential step that lays the foundation for error-free genome duplication. During licensing, minichromosome maintenance protein complexes, the molecular motors of DNA replication, are loaded to genomic sites called replication origins. The correct quantity and functioning of licensed origins are necessary to prevent genome instability associated with severe diseases, including cancer. Here, we delve into recent discoveries that shed light on the novel functions of licensed origins, the pathways necessary for their proper maintenance, and their implications for cancer therapies.
Collapse
Affiliation(s)
- Anoop Kumar Yadav
- Department of Cell Biology and Epigenetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Hana Polasek-Sedlackova
- Department of Cell Biology and Epigenetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.
| |
Collapse
|
16
|
Otto J, Verwaayen A, Penners C, Hundertmark J, Lin C, Kallen C, Paffen D, Otto T, Berger H, Tacke F, Weiskirchen R, Nevzorova YA, Bartneck M, Trautwein C, Sonntag R, Liedtke C. Expression of Cyclin E1 in hepatic stellate cells is critical for the induction and progression of liver fibrosis and hepatocellular carcinoma in mice. Cell Death Dis 2023; 14:549. [PMID: 37620309 PMCID: PMC10449804 DOI: 10.1038/s41419-023-06077-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most severe malignancies with increasing incidence and limited treatment options. Typically, HCC develops during a multistep process involving chronic liver inflammation and liver fibrosis. The latter is characterized by the accumulation of extracellular matrix produced by Hepatic Stellate Cells (HSCs). This process involves cell cycle re-entry and proliferation of normally quiescent HSCs in an ordered sequence that is highly regulated by cyclins and associated cyclin-dependent kinases (CDKs) such as the Cyclin E1 (CCNE1)/CDK2 kinase complex. In the present study, we examined the role of Cyclin E1 (Ccne1) and Cdk2 genes in HSCs for liver fibrogenesis and hepatocarcinogenesis. To this end, we generated conditional knockout mice lacking Ccne1 or Cdk2 specifically in HSCs (Ccne1∆HSC or Cdk2∆HSC). Ccne1∆HSC mice showed significantly reduced liver fibrosis formation and attenuated HSC activation in the carbon tetrachloride (CCl4) model. In a combined model of fibrosis-driven hepatocarcinogenesis, Ccne1∆HSC mice revealed decreased HSC activation even after long-term observation and substantially reduced tumor load in the liver when compared to wild-type controls. Importantly, the deletion of Cdk2 in HSCs also resulted in attenuated liver fibrosis after chronic CCl4 treatment. Single-cell RNA sequencing revealed that only a small fraction of HSCs expressed Ccne1/Cdk2 at a distinct time point after CCl4 treatment. In summary, we provide evidence that Ccne1 expression in a small population of HSCs is sufficient to trigger extensive liver fibrosis and hepatocarcinogenesis in a Cdk2-dependent manner. Thus, HSC-specific targeting of Ccne1 or Cdk2 in patients with liver fibrosis and high risk for HCC development could be therapeutically beneficial.
Collapse
Affiliation(s)
- Julia Otto
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Anna Verwaayen
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Christian Penners
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Jana Hundertmark
- Charité - Universitätsmedizin Berlin, Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Cheng Lin
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Carina Kallen
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Daniela Paffen
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Tobias Otto
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Hilmar Berger
- Charité - Universitätsmedizin Berlin, Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Frank Tacke
- Charité - Universitätsmedizin Berlin, Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), University Hospital RWTH Aachen, Aachen, Germany
| | - Yulia A Nevzorova
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
| | - Matthias Bartneck
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany
| | - Christian Trautwein
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Roland Sonntag
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Christian Liedtke
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany.
| |
Collapse
|
17
|
Wu T, Hou H, Dey A, Bachu M, Chen X, Wisniewski J, Kudoh F, Chen C, Chauhan S, Xiao H, Pan R, Ozato K. BRD4 directs mitotic cell division by inhibiting DNA damage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.02.547436. [PMID: 37546888 PMCID: PMC10401944 DOI: 10.1101/2023.07.02.547436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
BRD4 binds to acetylated histones to regulate transcription and drive cancer cell proliferation. However, the role of BRD4 in normal cell growth remains to be elucidated. Here we investigated the question by using mouse embryonic fibroblasts with conditional Brd4 knockout (KO). We found that Brd4KO cells grow more slowly than wild type cells: they do not complete replication, fail to achieve mitosis, and exhibit extensive DNA damage throughout all cell cycle stages. BRD4 was required for expression of more than 450 cell cycle genes including genes encoding core histones and centromere/kinetochore proteins that are critical for genome replication and chromosomal segregation. Moreover, we show that many genes controlling R-loop formation and DNA damage response (DDR) require BRD4 for expression. Finally, BRD4 constitutively occupied genes controlling R-loop, DDR and cell cycle progression. We suggest that BRD4 epigenetically marks those genes and serves as a master regulator of normal cell growth.
Collapse
|
18
|
Khan MA, Khan P, Ahmad A, Fatima M, Nasser MW. FOXM1: A small fox that makes more tracks for cancer progression and metastasis. Semin Cancer Biol 2023; 92:1-15. [PMID: 36958703 PMCID: PMC10199453 DOI: 10.1016/j.semcancer.2023.03.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/21/2023] [Accepted: 03/20/2023] [Indexed: 03/25/2023]
Abstract
Transcription factors (TFs) are indispensable for the modulation of various signaling pathways associated with normal cell homeostasis and disease conditions. Among cancer-related TFs, FOXM1 is a critical molecule that regulates multiple aspects of cancer cells, including growth, metastasis, recurrence, and stem cell features. FOXM1 also impact the outcomes of targeted therapies, chemotherapies, and immune checkpoint inhibitors (ICIs) in various cancer types. Recent advances in cancer research strengthen the cancer-specific role of FOXM1, providing a rationale to target FOXM1 for developing targeted therapies. This review compiles the recent studies describing the pivotal role of FOXM1 in promoting metastasis of various cancer types. It also implicates the contribution of FOXM1 in the modulation of chemotherapeutic resistance, antitumor immune response/immunotherapies, and the potential of small molecule inhibitors of FOXM1.
Collapse
Affiliation(s)
- Md Arafat Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Aatiya Ahmad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mahek Fatima
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
19
|
Katzenellenbogen BS, Guillen VS, Katzenellenbogen JA. Targeting the oncogenic transcription factor FOXM1 to improve outcomes in all subtypes of breast cancer. Breast Cancer Res 2023; 25:76. [PMID: 37370117 DOI: 10.1186/s13058-023-01675-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
FOXM1 (Forkhead box M1) is an oncogenic transcription factor that is greatly upregulated in breast cancer and many other cancers where it promotes tumorigenesis, and cancer growth and progression. It is expressed in all subtypes of breast cancer and is the factor most associated with risk of poor patient survival, especially so in triple negative breast cancer (TNBC). Thus, new approaches to inhibiting FOXM1 and its activities, and combination therapies utilizing FOXM1 inhibitors in conjunction with known cancer drugs that work together synergistically, could improve cancer treatment outcomes. Targeting FOXM1 might prove especially beneficial in TNBC where few targeted therapies currently exist, and also in suppressing recurrent advanced estrogen receptor (ER)-positive and HER2-positive breast cancers for which treatments with ER or HER2 targeted therapies that were effective initially are no longer beneficial. We present these perspectives and future directions in the context of what is known about FOXM1, its regulation, and its key roles in promoting cancer aggressiveness and metastasis, while being absent or very low in most normal non-regenerating adult tissues. We discuss new inhibitors of FOXM1 and highlight FOXM1 as an attractive target for controlling drug-resistant and difficult-to-suppress breast cancers, and how blocking FOXM1 might improve outcomes for patients with all subtypes of breast cancer.
Collapse
Affiliation(s)
- Benita S Katzenellenbogen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Valeria Sanabria Guillen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - John A Katzenellenbogen
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
20
|
Todosenko N, Khlusov I, Yurova K, Khaziakhmatova O, Litvinova L. Signal Pathways and microRNAs in Osteosarcoma Growth and the Dual Role of Mesenchymal Stem Cells in Oncogenesis. Int J Mol Sci 2023; 24:ijms24108993. [PMID: 37240338 DOI: 10.3390/ijms24108993] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The major challenges in Osteosarcoma (OS) therapy are its heterogeneity and drug resistance. The development of new therapeutic approaches to overcome the major growth mechanisms of OS is urgently needed. The search for specific molecular targets and promising innovative approaches in OS therapy, including drug delivery methods, is an urgent problem. Modern regenerative medicine focuses on harnessing the potential of mesenchymal stem cells (MSCs) because they have low immunogenicity. MSCs are important cells that have received considerable attention in cancer research. Currently, new cell-based methods for using MSCs in medicine are being actively investigated and tested, especially as carriers for chemotherapeutics, nanoparticles, and photosensitizers. However, despite the inexhaustible regenerative potential and known anticancer properties of MSCs, they may trigger the development and progression of bone tumors. A better understanding of the complex cellular and molecular mechanisms of OS pathogenesis is essential to identify novel molecular effectors involved in oncogenesis. The current review focuses on signaling pathways and miRNAs involved in the development of OS and describes the role of MSCs in oncogenesis and their potential for antitumor cell-based therapy.
Collapse
Affiliation(s)
- Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Igor Khlusov
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 2, Moskovskii Trakt, 634050 Tomsk, Russia
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 2, Moskovskii Trakt, 634050 Tomsk, Russia
| |
Collapse
|
21
|
Roelofs PA, Timmermans MAM, Stefanovska B, den Boestert MA, van den Borne AWM, Balcioglu HE, Trapman AM, Harris RS, Martens JWM, Span PN. Aberrant APOBEC3B Expression in Breast Cancer Is Linked to Proliferation and Cell Cycle Phase. Cells 2023; 12:1185. [PMID: 37190094 PMCID: PMC10136826 DOI: 10.3390/cells12081185] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/15/2023] [Accepted: 04/15/2023] [Indexed: 05/17/2023] Open
Abstract
APOBEC3B (A3B) is aberrantly overexpressed in a subset of breast cancers, where it associates with advanced disease, poor prognosis, and treatment resistance, yet the causes of A3B dysregulation in breast cancer remain unclear. Here, A3B mRNA and protein expression levels were quantified in different cell lines and breast tumors and related to cell cycle markers using RT-qPCR and multiplex immunofluorescence imaging. The inducibility of A3B expression during the cell cycle was additionally addressed after cell cycle synchronization with multiple methods. First, we found that A3B protein levels within cell lines and tumors are heterogeneous and associate strongly with the proliferation marker Cyclin B1 characteristic of the G2/M phase of the cell cycle. Second, in multiple breast cancer cell lines with high A3B, expression levels were observed to oscillate throughout the cell cycle and again associate with Cyclin B1. Third, induction of A3B expression is potently repressed throughout G0/early G1, likely by RB/E2F pathway effector proteins. Fourth, in cells with low A3B, induction of A3B through the PKC/ncNF-κB pathway occurs predominantly in actively proliferating cells and is largely absent in cells arrested in G0. Altogether, these results support a model in which dysregulated A3B overexpression in breast cancer is the cumulative result of proliferation-associated relief from repression with concomitant pathway activation during the G2/M phase of the cell cycle.
Collapse
Affiliation(s)
- Pieter A. Roelofs
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, and Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mieke A. M. Timmermans
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Bojana Stefanovska
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, and Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Myrthe A. den Boestert
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Amber W. M. van den Borne
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Hayri E. Balcioglu
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Anita M. Trapman
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, and Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - John W. M. Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Paul N. Span
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
22
|
Zhang L, Cervantes MD, Pan S, Lindsley J, Dabney A, Kapler GM. Transcriptome analysis of the binucleate ciliate Tetrahymena thermophila with asynchronous nuclear cell cycles. Mol Biol Cell 2023; 34:rs1. [PMID: 36475712 PMCID: PMC9930529 DOI: 10.1091/mbc.e22-08-0326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tetrahymena thermophila harbors two functionally and physically distinct nuclei within a shared cytoplasm. During vegetative growth, the "cell cycles" of the diploid micronucleus and polyploid macronucleus are offset. Micronuclear S phase initiates just before cytokinesis and is completed in daughter cells before onset of macronuclear DNA replication. Mitotic micronuclear division occurs mid-cell cycle, while macronuclear amitosis is coupled to cell division. Here we report the first RNA-seq cell cycle analysis of a binucleated ciliated protozoan. RNA was isolated across 1.5 vegetative cell cycles, starting with a macronuclear G1 population synchronized by centrifugal elutriation. Using MetaCycle, 3244 of the 26,000+ predicted genes were shown to be cell cycle regulated. Proteins present in both nuclei exhibit a single mRNA peak that always precedes their macronuclear function. Nucleus-limited genes, including nucleoporins and importins, are expressed before their respective nucleus-specific role. Cyclin D and A/B gene family members exhibit different expression patterns that suggest nucleus-restricted roles. Periodically expressed genes cluster into seven cyclic patterns. Four clusters have known PANTHER gene ontology terms associated with G1/S and G2/M phase. We propose that these clusters encode known and novel factors that coordinate micro- and macronuclear-specific events such as mitosis, amitosis, DNA replication, and cell division.
Collapse
Affiliation(s)
- L. Zhang
- Department of Cell Biology and Genetics, Texas A&M University Health Science Center, College Station, TX 77840,Department of Statistics, Texas A&M University, College Station, TX 77843
| | - M. D. Cervantes
- Department of Cell Biology and Genetics, Texas A&M University Health Science Center, College Station, TX 77840
| | - S. Pan
- Department of Cell Biology and Genetics, Texas A&M University Health Science Center, College Station, TX 77840,Department of Statistics, Texas A&M University, College Station, TX 77843
| | - J. Lindsley
- Department of Cell Biology and Genetics, Texas A&M University Health Science Center, College Station, TX 77840
| | - A. Dabney
- Department of Statistics, Texas A&M University, College Station, TX 77843,*Address correspondence to: Geoffrey Kapler (); A. Dabney ()
| | - G. M. Kapler
- Department of Cell Biology and Genetics, Texas A&M University Health Science Center, College Station, TX 77840,*Address correspondence to: Geoffrey Kapler (); A. Dabney ()
| |
Collapse
|
23
|
Marchal C, Defossez PA, Miotto B. Context-dependent CpG methylation directs cell-specific binding of transcription factor ZBTB38. Epigenetics 2022; 17:2122-2143. [PMID: 36000449 DOI: 10.1080/15592294.2022.2111135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
DNA methylation on CpGs regulates transcription in mammals, both by decreasing the binding of methylation-repelled factors and by increasing the binding of methylation-attracted factors. Among the latter, zinc finger proteins have the potential to bind methylated CpGs in a sequence-specific context. The protein ZBTB38 is unique in that it has two independent sets of zinc fingers, which recognize two different methylated consensus sequences in vitro. Here, we identify the binding sites of ZBTB38 in a human cell line, and show that they contain the two methylated consensus sequences identified in vitro. In addition, we show that the distribution of ZBTB38 sites is highly unusual: while 10% of the ZBTB38 sites are also bound by CTCF, the other 90% of sites reside in closed chromatin and are not bound by any of the other factors mapped in our model cell line. Finally, a third of ZBTB38 sites are found upstream of long and active CpG islands. Our work therefore validates ZBTB38 as a methyl-DNA binder in vivo and identifies its unique distribution in the genome.
Collapse
Affiliation(s)
- Claire Marchal
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | | | - Benoit Miotto
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| |
Collapse
|
24
|
PCSK9 deficiency results in a specific shedding of excess LDLR in female mice only: Role of hepatic cholesterol. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159217. [PMID: 35985474 DOI: 10.1016/j.bbalip.2022.159217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/24/2022]
Abstract
PCSK9 promotes the lysosomal degradation of cell surface LDL receptor (LDLR). We analyzed how excess LDLR generated by PCSK9 deficiency is differently handled in male and female mice to possibly unveil the mechanism leading to the lower efficacy of PCSK9 mAb on LDL-cholesterol levels in women. Analysis of intact or ovariectomized PCSK9 knockout (KO) mice supplemented with placebo or 17β-estradiol (E2) demonstrated that female, but not male mice massively shed the soluble ectodomain of the LDLR in the plasma. Liver-specific PCSK9 KO or alirocumab-treated WT mice exhibit the same pattern. This shedding is distinct from the basal one and is inhibited by ZLDI-8, a metalloprotease inhibitor pointing at ADAM10/ADAM17. In PCSK9 KO female mice, ZLDI-8 raises by 80 % the LDLR liver content in a few hours. This specific shedding is likely cholesterol-dependent: it is prevented in PCSK9 KO male mice that exhibit low intra-hepatic cholesterol levels without activating SREBP-2, and enhanced by mevalonate or high cholesterol feeding, or by E2 known to stimulate cholesterol synthesis via the estrogen receptor-α. Liver transcriptomics demonstrates that critically low liver cholesterol in ovariectomized female or knockout male mice also hampers the cholesterol-dependent G2/M transition of the cell cycle. Finally, higher levels of shed LDLR were measured in the plasma of women treated with PCSK9 mAb. PCSK9 knockout female mice hormonally sustain cholesterol synthesis and shed excess LDLR, seemingly like women. In contrast, male mice rely on high surface LDLR to replenish their stocks, despite 80 % lower circulating LDL.
Collapse
|
25
|
dos Santos A, Ouellete G, Diorio C, Elowe S, Durocher F. Knockdown of CKAP2 Inhibits Proliferation, Migration, and Aggregate Formation in Aggressive Breast Cancer. Cancers (Basel) 2022; 14:cancers14153759. [PMID: 35954424 PMCID: PMC9367390 DOI: 10.3390/cancers14153759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/26/2022] Open
Abstract
Simple Summary Cancer is a complex disease where cells grow and divide in an uncontrolled manner. It is well established that its development and progression involve major alterations in the activity of mitotic regulators. In order to improve our understanding of the contribution of cell-cycle progression defects to the development of disease, the aim of this study is to identify genes relevant to the proper progression of mitosis that are deregulated in breast cancer. Our findings identified CKAP2 as an important mitotic regulator in BC tumors. Moreover, in vitro experiments showed that gene silencing of CKAP2 blocked cell growth, cell migration, and formation of cell aggregates. These results demonstrated the important role of CKAP2 in breast cancer tumor formation. Abstract Loss of mitotic regulation is commonly observed in cancer and is a major cause of whole-chromosome aneuploidy. The identification of genes that play a role in the proper progression of mitosis can help us to understand the development and evolution of this disease. Here, we generated a list of proteins implicated in mitosis that we used to probe a patient-derived breast cancer (BC) continuum gene-expression dataset generated by our group by human transcriptome analysis of breast lesions of varying aggressiveness (from normal to invasive). We identified cytoskeleton-associated protein 2 (CKAP2) as an important mitotic regulator in invasive BC. The results showed that CKAP2 is overexpressed in invasive BC tumors when compared with normal tissues, and highly expressed in all BC subtypes. Higher expression of CKAP2 is also related to a worse prognosis in overall survival and relapse-free survival in estrogen receptor (ER)-positive and human epidermal growth factor receptor type 2 (HER2)-negative BC patients. Knockdown of CKAP2 in SKBR3 cells impaired cell proliferation and cell migration and reduced aggregate formation in a 3D culture. Our results show the important role of CKAP2 in BC tumorigenesis, and its potential utility as a prognostic marker in BC.
Collapse
Affiliation(s)
- Alexsandro dos Santos
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada; (A.d.S.); (G.O.)
- Centre de Recherche sur le Cancer, CHU de Québec-Université Laval, Québec City, QC G1V 4G2, Canada;
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, L’ingénierie et les Applications des Protéines, Québec City, QC G1V 0A6, Canada
| | - Geneviève Ouellete
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada; (A.d.S.); (G.O.)
- Centre de Recherche sur le Cancer, CHU de Québec-Université Laval, Québec City, QC G1V 4G2, Canada;
| | - Caroline Diorio
- Centre de Recherche sur le Cancer, CHU de Québec-Université Laval, Québec City, QC G1V 4G2, Canada;
- Département de Médecine Sociale et Préventive, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Sabine Elowe
- Centre de Recherche sur le Cancer, CHU de Québec-Université Laval, Québec City, QC G1V 4G2, Canada;
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, L’ingénierie et les Applications des Protéines, Québec City, QC G1V 0A6, Canada
- Département de Pédiatrie, Faculté de Médecine, Université Laval et le Centre de recherche sur le Cancer de l’Université Laval, Québec City, QC G1R 2J6, Canada
- Correspondence: (S.E.); (F.D.)
| | - Francine Durocher
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada; (A.d.S.); (G.O.)
- Centre de Recherche sur le Cancer, CHU de Québec-Université Laval, Québec City, QC G1V 4G2, Canada;
- Correspondence: (S.E.); (F.D.)
| |
Collapse
|
26
|
Yang EJ, Park JH, Cho HJ, Hwang JA, Woo SH, Park CH, Kim SY, Park JT, Park SC, Hwang D, Lee YS. Co-inhibition of ATM and ROCK synergistically improves cell proliferation in replicative senescence by activating FOXM1 and E2F1. Commun Biol 2022; 5:702. [PMID: 35835838 PMCID: PMC9283421 DOI: 10.1038/s42003-022-03658-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 06/29/2022] [Indexed: 12/30/2022] Open
Abstract
The multifaceted nature of senescent cell cycle arrest necessitates the targeting of multiple factors arresting or promoting the cell cycle. We report that co-inhibition of ATM and ROCK by KU-60019 and Y-27632, respectively, synergistically increases the proliferation of human diploid fibroblasts undergoing replicative senescence through activation of the transcription factors E2F1 and FOXM1. Time-course transcriptome analysis identified FOXM1 and E2F1 as crucial factors promoting proliferation. Co-inhibition of the kinases ATM and ROCK first promotes the G2/M transition via FOXM1 activation, leading to accumulation of cells undergoing the G1/S transition via E2F1 activation. The combination of both inhibitors increased this effect more significantly than either inhibitor alone, suggesting synergism. Our results demonstrate a FOXM1- and E2F1-mediated molecular pathway enhancing cell cycle progression in cells with proliferative potential under replicative senescence conditions, and treatment with the inhibitors can be tested for senomorphic effect in vivo.
Collapse
Affiliation(s)
- Eun Jae Yang
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Ji Hwan Park
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Hyun-Ji Cho
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Jeong-A Hwang
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Seung-Hwa Woo
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Chi Hyun Park
- Department of Computer Science and Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sung Young Kim
- Department of Biochemistry, Konkuk University School of Medicine, Seoul, 05029, Korea
| | - Joon Tae Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Sang Chul Park
- Well Aging Research Center, Division of Biotechnology, DGIST, Daegu, 42988, Republic of Korea.
- The Future Life & Society Research Center, Advanced Institute of Aging Science, Chonnam National University, Gwangju, 61469, Republic of Korea.
| | - Daehee Hwang
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Young-Sam Lee
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea.
- Well Aging Research Center, Division of Biotechnology, DGIST, Daegu, 42988, Republic of Korea.
- New Biology Research Center, DGIST, Daegu, 42988, Republic of Korea.
| |
Collapse
|
27
|
Dihydrotanshinone I Enhances Cell Adhesion and Inhibits Cell Migration in Osteosarcoma U-2 OS Cells through CD44 and Chemokine Signaling. Molecules 2022; 27:molecules27123714. [PMID: 35744840 PMCID: PMC9231138 DOI: 10.3390/molecules27123714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 12/10/2022] Open
Abstract
In the screening of novel natural products against cancer using an in vitro cancer cell model, we recently found that tanshinones from a traditional Chinese medicine, the rhizome of Salvia miltiorrhiza Bunge (Danshen), had potent effects on cell proliferation and migration. Especially for human osteosarcoma U−2 OS cells, tanshinones significantly enhanced the cell adherence, implying a possible role in cell adhesion and cell migration inhibition. In this work, therefore, we aimed to provide a new insight into the possible molecule mechanisms of dihydrotanshinone I, which had the strongest effects on cell adhesion among several candidate tanshinones. RNA−sequencing-based transcriptome analysis and several biochemical experiments indicated that there were comprehensive signals involved in dihydrotanshinone I-treated U−2 OS cells, such as cell cycle, DNA replication, thermogenesis, tight junction, oxidative phosphorylation, adherens junction, and focal adhesion. First, dihydrotanshinone I could potently inhibit cell proliferation and induce cell cycle arrest in the G0/G1 phase by downregulating the expression of CDK4, CDK2, cyclin D1, and cyclin E1 and upregulating the expression of p21. Second, it could significantly enhance cell adhesion on cell plates and inhibit cell migration, involving the hyaluronan CD44−mediated CXCL8–PI3K/AKT–FOXO1, IL6–STAT3–P53, and EMT signaling pathways. Thus, the increased expression of CD44 and lengthened protrusions around the cell yielded a significant increase in cell adhesion. In summary, these results suggest that dihydrotanshinone I might be an interesting molecular therapy for enhancing human osteosarcoma U−2 OS cell adhesion and inhibiting cell migration and proliferation.
Collapse
|
28
|
Müller GA, Asthana A, Rubin SM. Structure and function of MuvB complexes. Oncogene 2022; 41:2909-2919. [PMID: 35468940 PMCID: PMC9201786 DOI: 10.1038/s41388-022-02321-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 11/08/2022]
Abstract
Proper progression through the cell-division cycle is critical to normal development and homeostasis and is necessarily misregulated in cancer. The key to cell-cycle regulation is the control of two waves of transcription that occur at the onset of DNA replication (S phase) and mitosis (M phase). MuvB complexes play a central role in the regulation of these genes. When cells are not actively dividing, the MuvB complex DREAM represses G1/S and G2/M genes. Remarkably, MuvB also forms activator complexes together with the oncogenic transcription factors B-MYB and FOXM1 that are required for the expression of the mitotic genes in G2/M. Despite this essential role in the control of cell division and the relationship to cancer, it has been unclear how MuvB complexes inhibit and stimulate gene expression. Here we review recent discoveries of MuvB structure and molecular interactions, including with nucleosomes and other chromatin-binding proteins, which have led to the first mechanistic models for the biochemical function of MuvB complexes.
Collapse
Affiliation(s)
- Gerd A Müller
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA.
| | - Anushweta Asthana
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
29
|
The human ion channel TRPM2 modulates cell survival in neuroblastoma through E2F1 and FOXM1. Sci Rep 2022; 12:6311. [PMID: 35428820 PMCID: PMC9012789 DOI: 10.1038/s41598-022-10385-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/05/2022] [Indexed: 12/15/2022] Open
Abstract
Transient receptor potential channel melastatin 2 (TRPM2) is highly expressed in cancer and has an essential function in preserving viability through maintenance of mitochondrial function and antioxidant response. Here, the role of TRPM2 in cell survival was examined in neuroblastoma cells with TRPM2 deletion with CRISPR technology. Viability was significantly decreased in TRPM2 knockout after doxorubicin treatment. RNA sequence analysis and RT-qPCR revealed reduced RNAs encoding master transcription regulators FOXM1 and E2F1/2 and downstream cell cycle targets including Cyclin B1, CDK1, PLK1, and CKS1. CHIP analysis demonstrated decreased FOXM1 binding to their promoters. Western blotting confirmed decreased expression, and increased expression of CDK inhibitor p21, a CKS1 target. In cells with TRPM2 deletion, cell cycle progression to S and G2/M phases was reduced after treatment with doxorubicin. RNA sequencing also identified decreased DNA repair proteins in cells with TRPM2 deletion after doxorubicin treatment, and DNA damage was increased. Wild type TRPM2, but not Ca2+-impermeable mutant E960D, restored live cell number and reconstituted expression of E2F1, FOXM1, and cell cycle/DNA repair proteins. FOXM1 expression alone restored viability. TRPM2 is a potential therapeutic target to reduce tumor proliferation and increase doxorubicin sensitivity through modulation of FOXM1, E2F1, and cell cycle/DNA repair proteins.
Collapse
|
30
|
Asthana A, Ramanan P, Hirschi A, Guiley KZ, Wijeratne TU, Shelansky R, Doody MJ, Narasimhan H, Boeger H, Tripathi S, Müller GA, Rubin SM. The MuvB complex binds and stabilizes nucleosomes downstream of the transcription start site of cell-cycle dependent genes. Nat Commun 2022; 13:526. [PMID: 35082292 PMCID: PMC8792015 DOI: 10.1038/s41467-022-28094-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/10/2022] [Indexed: 11/25/2022] Open
Abstract
The chromatin architecture in promoters is thought to regulate gene expression, but it remains uncertain how most transcription factors (TFs) impact nucleosome position. The MuvB TF complex regulates cell-cycle dependent gene-expression and is critical for differentiation and proliferation during development and cancer. MuvB can both positively and negatively regulate expression, but the structure of MuvB and its biochemical function are poorly understood. Here we determine the overall architecture of MuvB assembly and the crystal structure of a subcomplex critical for MuvB function in gene repression. We find that the MuvB subunits LIN9 and LIN37 function as scaffolding proteins that arrange the other subunits LIN52, LIN54 and RBAP48 for TF, DNA, and histone binding, respectively. Biochemical and structural data demonstrate that MuvB binds nucleosomes through an interface that is distinct from LIN54-DNA consensus site recognition and that MuvB increases nucleosome occupancy in a reconstituted promoter. We find in arrested cells that MuvB primarily associates with a tightly positioned +1 nucleosome near the transcription start site (TSS) of MuvB-regulated genes. These results support a model that MuvB binds and stabilizes nucleosomes just downstream of the TSS on its target promoters to repress gene expression. The MuvB protein complex regulates genes that are differentially expressed through the cell cycle, yet its precise molecular function has remained unclear. Here the authors reveal MuvB associates with the nucleosome adjacent to the transcription start site of cell-cycle genes and that the tight positioning of this nucleosome correlates with MuvB-dependent gene repression.
Collapse
Affiliation(s)
- Anushweta Asthana
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Parameshwaran Ramanan
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Alexander Hirschi
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Keelan Z Guiley
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Tilini U Wijeratne
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Robert Shelansky
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA, 95064, USA
| | - Michael J Doody
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA, 95064, USA
| | - Haritha Narasimhan
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Hinrich Boeger
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA, 95064, USA
| | - Sarvind Tripathi
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Gerd A Müller
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA.
| | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
31
|
Cosper PF, Copeland SE, Tucker JB, Weaver BA. Chromosome Missegregation as a Modulator of Radiation Sensitivity. Semin Radiat Oncol 2022; 32:54-63. [PMID: 34861996 PMCID: PMC8883596 DOI: 10.1016/j.semradonc.2021.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Chromosome missegregation over the course of multiple cell divisions, termed chromosomal instability (CIN), is a hallmark of cancer. Multiple causes of CIN have been identified, including defects in the mitotic checkpoint, altered kinetochore-microtubule dynamics, centrosome amplification, and ionizing radiation. Here we review the types, mechanisms, and cellular implications of CIN. We discuss the evidence that CIN can promote tumors, suppress them, or do neither, depending on the rates of chromosome missegregration and the cellular context. Very high rates of chromosome missegregation lead to cell death due to loss of essential chromosomes; thus elevating CIN above a tolerable threshold provides a mechanistic opportunity to promote cancer cell death. Lethal rates of CIN can be achieved by a single insult or through a combination of insults. Because ionizing radiation induces CIN, additional therapies that increase CIN may serve as useful modulators of radiation sensitivity. Ultimately, quantifying the intrinsic CIN in a tumor and modulating this level pharmacologically as well as with radiation may allow for a more rational, personalized radiation therapy prescription, thereby decreasing side effects and increasing local control.
Collapse
Affiliation(s)
- Pippa F. Cosper
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA,University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sarah E. Copeland
- Molecular & Cellular Pharmacology Graduate Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - John B. Tucker
- Cancer Biology Graduate Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Beth A. Weaver
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA,Department of Cellular and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA,Department of Oncology/McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53705, USA,Corresponding author: Beth A. Weaver, University of Wisconsin-Madison, 1111 Highland Ave, 6109 WIMR Tower 1, Madison, WI 53705-2275, Phone: 608-263-5309, Fax: 608-265-6905,
| |
Collapse
|
32
|
Krenning L, Sonneveld S, Tanenbaum M. Time-resolved single-cell sequencing identifies multiple waves of mRNA decay during the mitosis-to-G1 phase transition. eLife 2022; 11:71356. [PMID: 35103592 PMCID: PMC8806192 DOI: 10.7554/elife.71356] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 01/17/2022] [Indexed: 01/20/2023] Open
Abstract
Accurate control of the cell cycle is critical for development and tissue homeostasis, and requires precisely timed expression of many genes. Cell cycle gene expression is regulated through transcriptional and translational control, as well as through regulated protein degradation. Here, we show that widespread and temporally controlled mRNA decay acts as an additional mechanism for gene expression regulation during the cell cycle in human cells. We find that two waves of mRNA decay occur sequentially during the mitosis-to-G1 phase transition, and we identify the deadenylase CNOT1 as a factor that contributes to mRNA decay during this cell cycle transition. Collectively, our data show that, akin to protein degradation, scheduled mRNA decay helps to reshape cell cycle gene expression as cells move from mitosis into G1 phase.
Collapse
Affiliation(s)
- Lenno Krenning
- Oncode Institute, Hubrecht Institute – KNAW and University Medical Center UtrechtUtrechtNetherlands
| | - Stijn Sonneveld
- Oncode Institute, Hubrecht Institute – KNAW and University Medical Center UtrechtUtrechtNetherlands
| | - Marvin Tanenbaum
- Oncode Institute, Hubrecht Institute – KNAW and University Medical Center UtrechtUtrechtNetherlands
| |
Collapse
|
33
|
Zhao J, Liu B, Li X. A transcription factor signature predicts the survival of patients with adrenocortical carcinoma. PeerJ 2021; 9:e12433. [PMID: 34966575 PMCID: PMC8667743 DOI: 10.7717/peerj.12433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/13/2021] [Indexed: 12/26/2022] Open
Abstract
Background Adrenocortical carcinoma (ACC) is a rare endocrine cancer that manifests as abdominal masses and excessive steroid hormone levels and is associated with poor clinical outcomes. Transcription factors (TFs) deregulation is found to be involved in adrenocortical tumorigenesis and cancer progression. This study aimed to construct a TF-based prognostic signature for the prediction of survival of ACC patients. Methods The gene expression profile and clinical information for ACC patients were downloaded from The Cancer Genome Atlas (TCGA, training set) and Gene Expression Omnibus (GEO, validation set) datasets after obtained 1,639 human TFs from a previously published study. The univariate Cox regression analysis was applied to identify the survival-related TFs and the LASSO Cox regression was conducted to construct the TF signature based on these survival-associated TFs candidates. Then, multivariate analysis was used to reveal the independent prognostic factors. Furthermore, Gene Set Enrichment Analysis (GSEA) was performed to analyze the significance of the TFs constituting the prognostic signature. Results LASSO Cox regression and multivariate Cox regression identified a 13-TF prognostic signature comprised of CREB3L3, NR0B1, CENPA, FOXM1, E2F2, MYBL2, HOXC11, ZIC2, ZNF282, DNMT1, TCF3, ELK4, and KLF6. The risk score based on the TF signature could classify patients into low- and high-risk groups. Kaplan-Meier analyses showed that patients in the high-risk group had significantly shorter overall survival (OS) compared to the low-risk patients. Receiver operating characteristic (ROC) curves showed that the prognostic signature predicted the OS of ACC patients with good sensitivity and specificity both in the training set (AUC > 0.9) and the validation set (AUC > 0.7). Furthermore, the TF-risk score was an independent prognostic factor. Conclusions Taken together, we identified a 13-TF prognostic marker to predict OS in ACC patients.
Collapse
Affiliation(s)
- Jianyu Zhao
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Bo Liu
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaoping Li
- Department of Pediatrics Endocrinology, The First Hospital of Jilin University, Changchun, Jilin, China, Jilin, China
| |
Collapse
|
34
|
Zhang H, Dai S, Liang X, Li J, Chen Y. Mechanistic Insights into the Preference for Tandem Binding Sites in DNA Recognition by FOXM1. J Mol Biol 2021; 434:167426. [PMID: 34973238 DOI: 10.1016/j.jmb.2021.167426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/17/2022]
Abstract
FOXM1 is an essential proliferation-associated transcription factor that controls the activation of a number of cell cycle regulatory genes. Unlike other forkhead box (FOX) transcription factors, FOXM1 has been shown to prefer binding tandem regulatory DNA sites. However, the underlying reason for such preference is not clear. Here, we showed that the tandem DNA motif, named DIV2, is widely distributed in the promoter region of FOXM1 target genes. The binding of FOXM1 on the DIV2 site differs dramatically from other sites, which is in a highly cooperative fashion, with a much enhanced thermal stability and can be clearly detected by EMSA. The crystal structure of FOXM1 in complex with the DIV2 DNA reveals that the cooperative binding is likely to be driven by intermolecular protein-protein interactions (PPIs). Further half-site spacer insertion assays showed that FOXM1 can bind another site, DIV0, in a similar manner to the DIV2 site. Given the high occurrence of the DIV2 and DIV0 sites in FOXM1 target genes, our results suggest that FOXM1 prefers tandem DNA sites to enable cooperative DNA recognition, and such binding characteristics may further confer its specificity during transcriptional regulation.
Collapse
Affiliation(s)
- Huajun Zhang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shuyan Dai
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Xujun Liang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jun Li
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
35
|
Martín E, Vivori C, Rogalska M, Herrero-Vicente J, Valcárcel J. Alternative splicing regulation of cell-cycle genes by SPF45/SR140/CHERP complex controls cell proliferation. RNA (NEW YORK, N.Y.) 2021; 27:1557-1576. [PMID: 34544891 PMCID: PMC8594467 DOI: 10.1261/rna.078935.121] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/11/2021] [Indexed: 06/10/2023]
Abstract
The regulation of pre-mRNA processing has important consequences for cell division and the control of cancer cell proliferation, but the underlying molecular mechanisms remain poorly understood. We report that three splicing factors, SPF45, SR140, and CHERP, form a tight physical and functionally coherent complex that regulates a variety of alternative splicing events, frequently by repressing short exons flanked by suboptimal 3' splice sites. These comprise alternative exons embedded in genes with important functions in cell-cycle progression, including the G2/M key regulator FOXM1 and the spindle regulator SPDL1. Knockdown of either of the three factors leads to G2/M arrest and to enhanced apoptosis in HeLa cells. Promoting the changes in FOXM1 or SPDL1 splicing induced by SPF45/SR140/CHERP knockdown partially recapitulates the effects on cell growth, arguing that the complex orchestrates a program of alternative splicing necessary for efficient cell proliferation.
Collapse
Affiliation(s)
- Elena Martín
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| | - Claudia Vivori
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| | - Malgorzata Rogalska
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
| | - Jorge Herrero-Vicente
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| | - Juan Valcárcel
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
36
|
Scaling concepts in 'omics: Nuclear lamin-B scales with tumor growth and often predicts poor prognosis, unlike fibrosis. Proc Natl Acad Sci U S A 2021; 118:2112940118. [PMID: 34810266 DOI: 10.1073/pnas.2112940118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2021] [Indexed: 12/28/2022] Open
Abstract
Physicochemical principles such as stoichiometry and fractal assembly can give rise to characteristic scaling between components that potentially include coexpressed transcripts. For key structural factors within the nucleus and extracellular matrix, we discover specific gene-gene scaling exponents across many of the 32 tumor types in The Cancer Genome Atlas, and we demonstrate utility in predicting patient survival as well as scaling-informed machine learning (SIML). All tumors with adjacent tissue data show cancer-elevated proliferation genes, with some genes scaling with the nuclear filament LMNB1, including the transcription factor FOXM1 that we show directly regulates LMNB1 SIML shows that such regulated cancers cluster together with longer overall survival than dysregulated cancers, but high LMNB1 and FOXM1 in half of regulated cancers surprisingly predict poor survival, including for liver cancer. COL1A1 is also studied because it too increases in tumors, and a pan-cancer set of fibrosis genes shows substoichiometric scaling with COL1A1 but predicts patient outcome only for liver cancer-unexpectedly being prosurvival. Single-cell RNA-seq data show nontrivial scaling consistent with power laws from bulk RNA and protein analyses, and SIML segregates synthetic from contractile cancer fibroblasts. Our scaling approach thus yields fundamentals-based power laws relatable to survival, gene function, and experiments.
Collapse
|
37
|
Dong Q, Yang J, Gao J, Li F. Recent insights into mechanisms preventing ectopic centromere formation. Open Biol 2021; 11:210189. [PMID: 34493071 PMCID: PMC8424319 DOI: 10.1098/rsob.210189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The centromere is a specialized chromosomal structure essential for chromosome segregation. Centromere dysfunction leads to chromosome segregation errors and genome instability. In most eukaryotes, centromere identity is specified epigenetically by CENP-A, a centromere-specific histone H3 variant. CENP-A replaces histone H3 in centromeres, and nucleates the assembly of the kinetochore complex. Mislocalization of CENP-A to non-centromeric regions causes ectopic assembly of CENP-A chromatin, which has a devastating impact on chromosome segregation and has been linked to a variety of human cancers. How non-centromeric regions are protected from CENP-A misincorporation in normal cells is largely unexplored. Here, we review the most recent advances on the mechanisms underlying the prevention of ectopic centromere formation, and discuss the implications in human disease.
Collapse
Affiliation(s)
- Qianhua Dong
- Department of Biology, New York University, New York, NY 10003-6688, USA
| | - Jinpu Yang
- Department of Biology, New York University, New York, NY 10003-6688, USA
| | - Jinxin Gao
- Department of Biology, New York University, New York, NY 10003-6688, USA
| | - Fei Li
- Department of Biology, New York University, New York, NY 10003-6688, USA
| |
Collapse
|
38
|
Li Y, Liu M, Zhang Z, Deng L, Zhai Z, Liu H, Wang Y, Zhang C, Xiong J, Shi C. QSOX2 Is an E2F1 Target Gene and a Novel Serum Biomarker for Monitoring Tumor Growth and Predicting Survival in Advanced NSCLC. Front Cell Dev Biol 2021; 9:688798. [PMID: 34350181 PMCID: PMC8326667 DOI: 10.3389/fcell.2021.688798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
Background Quiescin Q6 sulfhydryl oxidase 2 (QSOX2), an enzyme that can be directly secreted into the extracellular space, is known to be associated with oxidative protein folding. However, whether QSOX2 is abnormally expressed in non-small cell lung cancer (NSCLC) and its role in tumor growth remains unclear. Methods Real-time quantitative PCR (qPCR), immunohistochemistry (IHC), bioinformatics analyses were applied to analyze the expression pattern and prognostic significance of QSOX2 in NSCLC. Xenografts model, enzyme-linked immunosorbent assays (ELISA), western blot analysis (WB), and IHC were preformed to examine in vivo tumor suppression and intracellular and extracellular expression of QSOX2. Flow cytometry, WB and qPCR analyses were used to elucidate the role of QSOX2 in cell cycle regulation. Chromatin immunoprecipitation assay (ChIP) assay and Dual-Luciferase reporter assay were employed to investigate transcriptional regulation of QSOX2 by E2F Transcription Factor 1 (E2F1). Results Quiescin sulfhydryl oxidase 2 was significantly overexpressed in NSCLC and associated with poor survival in advanced-stage patients. The intracellular and extracellular expression of QSOX2 by tumor cells markedly decreased after anti-cancer therapy in vitro, in vivo and in the clinic. Moreover, QSOX2 silencing in NSCLC cell lines resulted in inhibition of cancer cell proliferation, induction of apoptosis, and decreased expression of cell division-related genes (CENPF and NUSAP1) and Wnt pathway activators (PRRX2 and Nuc-β-catenin). Mechanistically, QSOX2 was expressed periodically during cell cycle and directly regulated by E2F1. Conclusions Our findings demonstrate that QSOX2 is directly regulated by E2F1 in the cell cycle, which is essential for the proliferation of NSCLC cells. Furthermore, QSOX2 is a prognostic indicator for NSCLC and may be developed into a biomarker for monitoring tumor burden and therapeutic progress.
Collapse
Affiliation(s)
- Yaqi Li
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Mei Liu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhuoxian Zhang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Libin Deng
- Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - ZhenYu Zhai
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hua Liu
- Department of Clinical Laboratory, The Fourth Affiliated Hospital, Nanchang University, Nanchang, China
| | - Yiting Wang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Cheng Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chao Shi
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
39
|
Integrative Functional Genomic Analysis of Molecular Signatures and Mechanistic Pathways in the Cell Cycle Underlying Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5552623. [PMID: 34336099 PMCID: PMC8290224 DOI: 10.1155/2021/5552623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/25/2021] [Indexed: 11/18/2022]
Abstract
Objective Alzheimer's disease (AD) is associated with cell cycle reentry of mature neurons that subsequently undergo degeneration. This study is aimed to identify key regulators of the cell cycle and their underlying pathways for developing optimal treatment of AD. Methods RNA sequencing data were profiled to screen for differentially expressed genes in the cell cycle. Correlation of created modules with AD phenotype was computed by weight gene correlation network analysis (WGCNA). Signature genes for trophic factor receptors were determined using Pearson correlation coefficient (PCC) analysis. Results Among the 13,679 background genes, 775 cell cycle genes and 77 trophic factor receptors were differentially expressed in AD versus nondementia controls. Four coexpression modules were constructed by WGCNA, among which the turquoise module had the strongest correlation with AD. According to PCC analysis, 10 signature trophic receptors most strongly interacting with cell cycle genes were filtered and subsequently displayed in the global regulatory network. Further cross-talking pathways of signature receptors, such as glutamatergic synapse, long-term potentiation, PI3K-Akt, and MAPK signaling pathways, were identified. Conclusions Our findings highlighted the mechanistic pathways of signature trophic receptors in cell cycle perturbation underlying AD pathogenesis, thereby providing new molecular targets for therapeutic intervention in AD.
Collapse
|
40
|
Gao C, Han Y, Bai L, Wang Y, Xue F. IK: A novel cell mitosis regulator that contributes to carcinogenesis. Cell Biochem Funct 2021; 39:854-859. [PMID: 34250629 DOI: 10.1002/cbf.3660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 11/12/2022]
Abstract
Carcinogenesis is characterized by abnormal regulation of cell growth and cell death. IK is a novel cell mitosis regulator that may contribute to carcinogenesis. Previous studies showed that the loss of IK expression resulted in cell mitotic arrest and even cell death. Besides, IK can also inhibit the interferon gamma (IFN-γ)-induced expression of human leukocyte antigen (HLA) class II antigen, which is associated with tumour immune microenvironment. To gain insight into the current research progress regarding IK, we conducted a review and searched the limited literature on IK using PubMed or Web of Science. In this review, we discussed the possible biological functions and mechanisms of IK in cancer and its immune microenvironment. Future perspectives of IK were also mentioned to explore its clinical significance.
Collapse
Affiliation(s)
- Chao Gao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, China
| | - Yanyan Han
- Department of Pathology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lu Bai
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Department of Gynecology and Obstetrics, Nankai University Affiliated Hospital (Tianjin Fourth Hospital), Tianjin, China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, China
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, China
| |
Collapse
|
41
|
Aquino Perez C, Burocziova M, Jenikova G, Macurek L. CK1-mediated phosphorylation of FAM110A promotes its interaction with mitotic spindle and controls chromosomal alignment. EMBO Rep 2021; 22:e51847. [PMID: 34080749 DOI: 10.15252/embr.202051847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/14/2021] [Accepted: 05/05/2021] [Indexed: 01/10/2023] Open
Abstract
Progression through the cell cycle is driven by cyclin-dependent kinases that control gene expression, orchestration of mitotic spindle, and cell division. To identify new regulators of the cell cycle, we performed transcriptomic analysis of human non-transformed cells expressing a fluorescent ubiquitination-based cell cycle indicator and identified 701 transcripts differentially expressed in G1 and G2 cells. Family with sequence similarity 110 member A (FAM110A) protein is highly expressed in G2 cells and localized at mitotic spindle and spindle poles during mitosis. Depletion of FAM110A impairs chromosomal alignment, delays metaphase-to-anaphase transition, and affects spindle positioning. Using mass spectrometry and immunoprecipitation, we identified casein kinase I (CK1) in complex with FAM110A during mitosis. CK1 phosphorylates the C-terminal domain of FAM110A in vitro, and inhibition of CK1 reduces phosphorylation of mitotic FAM110A. Wild-type FAM110A, but not the FAM110A-S252-S255A mutant deficient in CK1 phosphorylation, rescues the chromosomal alignment, duration of mitosis, and orientation of the mitotic spindle after depletion of endogenous FAM110A. We propose that CK1 regulates chromosomal alignment by phosphorylating FAM110A and promoting its interaction with mitotic spindle.
Collapse
Affiliation(s)
- Cecilia Aquino Perez
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Monika Burocziova
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Gabriela Jenikova
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Libor Macurek
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
42
|
Murlistyarini S, Aninda LP, Widyarti S, Endharti AT, Sardjono TW. Exosomes of Adipose-derived Stem Cells Conditioned Media Promotes Retinoblastoma and Forkhead-Box M1 Protein Expression. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: In the senescence process, the retinoblastoma (Rb) protein binds to E2F in hypophosphorylated conditions, preventing the cell to enter the S-phase in the cell cycle. Human Forkhead Box M1 (FOXM1) protein, key regulator G1/S and G2/M phases, decreases in the senescence process. Many studies have been carried out to reverse this system, one of which used exosomes of adipose-derived stem c ells conditioned media (ADSC-CM). These exosomes contain a variety of specific proteins which have pro-proliferation properties, however, little is known on the role of these exosomes toward the change of phosphorylated Rb and FOXM1.
AIM: This study aims to find out the involvement of exosomes of ADSC-CM on these two proteins on senescence human dermal fibroblasts (HDFs).
METHODS: In vitro experiment was undergone randomization sample and non-blinded pre-/post-test control group. The primary culture of senescent HDFs was transfected with exosomes of ADSC-CM; then, its effect on migration and senescence reversal was observed through analyzing Sa-β-gal, Rb, and FOXM1 protein expression.
RESULTS: The expression of Sa-β-gal was higher in the control group. Our result demonstrated the exosome of ADSC-CM significantly induced the expression of Rb and FOXM1 protein in senescent HDFs (p < 0.05).
CONCLUSION: It proved that exosomes of ADSC-CM could shift the senescent fibroblast into metabolically active cells.
Collapse
|
43
|
Bodrug T, Welsh KA, Hinkle M, Emanuele MJ, Brown NG. Intricate Regulatory Mechanisms of the Anaphase-Promoting Complex/Cyclosome and Its Role in Chromatin Regulation. Front Cell Dev Biol 2021; 9:687515. [PMID: 34109183 PMCID: PMC8182066 DOI: 10.3389/fcell.2021.687515] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/26/2021] [Indexed: 02/04/2023] Open
Abstract
The ubiquitin (Ub)-proteasome system is vital to nearly every biological process in eukaryotes. Specifically, the conjugation of Ub to target proteins by Ub ligases, such as the Anaphase-Promoting Complex/Cyclosome (APC/C), is paramount for cell cycle transitions as it leads to the irreversible destruction of cell cycle regulators by the proteasome. Through this activity, the RING Ub ligase APC/C governs mitosis, G1, and numerous aspects of neurobiology. Pioneering cryo-EM, biochemical reconstitution, and cell-based studies have illuminated many aspects of the conformational dynamics of this large, multi-subunit complex and the sophisticated regulation of APC/C function. More recent studies have revealed new mechanisms that selectively dictate APC/C activity and explore additional pathways that are controlled by APC/C-mediated ubiquitination, including an intimate relationship with chromatin regulation. These tasks go beyond the traditional cell cycle role historically ascribed to the APC/C. Here, we review these novel findings, examine the mechanistic implications of APC/C regulation, and discuss the role of the APC/C in previously unappreciated signaling pathways.
Collapse
Affiliation(s)
- Tatyana Bodrug
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kaeli A Welsh
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Megan Hinkle
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Michael J Emanuele
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Nicholas G Brown
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| |
Collapse
|
44
|
Masciale V, Banchelli F, Grisendi G, D’Amico R, Maiorana A, Stefani A, Morandi U, Dominici M, Aramini B. New Perspectives in Different Gene Expression Profiles for Early and Locally Advanced Non-Small Cell Lung Cancer Stem Cells. Front Oncol 2021; 11:613198. [PMID: 33868998 PMCID: PMC8047623 DOI: 10.3389/fonc.2021.613198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Lung cancer is one of the most common cancers in the world, causing over 1.7 million deaths in 2018. Thus far, no effective treatments against lung cancer for advanced stages have been found. For early stages, although surgery is considered the gold standard treatment, 30-55% of patients develop recurrence within the first 5 years of surgery. Our aim is to assess whether cancer stem cells (CSC) display overexpression of a pool of genes that were previously identified for adenocarcinoma recurrence in patients with early and locally advanced stages of non-small cell lung cancer (NSCLC). METHODS This cross-sectional study was carried out by harvesting surgical tumor specimens obtained from patients harboring early (I-II) and locally advanced (IIIA) stages of NSCLC. For each patient, cell sorting was performed to identify and isolate the ALDHhigh (CSC) and ALDHlow (cancer cells) populations. The mRNA expressions of 31 recurrence-related genes (target genes) in both ALDHhigh and ALDHlow populations were then assessed and compared. RESULTS Surgical specimens were obtained from 22 patients harboring NSCLC. Sixteen (51.6%) out of 31 recurrence-related genes were significantly overexpressed in ALDHhigh cells in the early stages and 9 (29.0%) were overexpressed in the locally advanced stages of NSCLC. Overall, the relative mRNA expressions for these recurrence-related genes were higher in early-stage patients. The average fold change, considering all 31 recurrence-related genes together, was 4.5 (95% CI = 3.1-6.3) in early-stage patients and 1.6 (95% CI = 1.2-2.2) in locally advanced-stage patients. CONCLUSIONS Our study represents the first attempt toward identifying genes associated with recurrence that are overexpressed in cancer stem cells in patients with early and locally advanced stages of NSCLC. This finding may contribute to the identification of new target therapies tailored for NSCLC stages.
Collapse
Affiliation(s)
- Valentina Masciale
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Federico Banchelli
- Center of Statistic, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Grisendi
- Division of Oncology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberto D’Amico
- Center of Statistic, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Antonino Maiorana
- Department of Medical and Surgical Sciences, Institute of Pathology, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandro Stefani
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Uliano Morandi
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Dominici
- Division of Oncology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Beatrice Aramini
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
45
|
GENAVOS: A New Tool for Modelling and Analyzing Cancer Gene Regulatory Networks Using Delayed Nonlinear Variable Order Fractional System. Symmetry (Basel) 2021. [DOI: 10.3390/sym13020295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Gene regulatory networks (GRN) are one of the etiologies associated with cancer. Their dysregulation can be associated with cancer formation and asymmetric cellular functions in cancer stem cells, leading to disease persistence and resistance to treatment. Systems that model the complex dynamics of these networks along with adapting to partially known real omics data are closer to reality and may be useful to understand the mechanisms underlying neoplastic phenomena. In this paper, for the first time, modelling of GRNs is performed using delayed nonlinear variable order fractional (VOF) systems in the state space by a new tool called GENAVOS. Although the tool uses gene expression time series data to identify and optimize system parameters, it also models possible epigenetic signals, and the results show that the nonlinear VOF systems have very good flexibility in adapting to real data. We found that GRNs in cancer cells actually have a larger delay parameter than in normal cells. It is also possible to create weak chaotic, periodic, and quasi-periodic oscillations by changing the parameters. Chaos can be associated with the onset of cancer. Our findings indicate a profound effect of time-varying orders on these networks, which may be related to a type of cellular epigenetic memory. By changing the delay parameter and the variable order functions (possible epigenetics signals) for a normal cell system, its behaviour becomes quite similar to the behaviour of a cancer cell. This work confirms the effective role of the miR-17-92 cluster as an epigenetic factor in the cancer cell cycle.
Collapse
|
46
|
Mahdessian D, Cesnik AJ, Gnann C, Danielsson F, Stenström L, Arif M, Zhang C, Le T, Johansson F, Schutten R, Bäckström A, Axelsson U, Thul P, Cho NH, Carja O, Uhlén M, Mardinoglu A, Stadler C, Lindskog C, Ayoglu B, Leonetti MD, Pontén F, Sullivan DP, Lundberg E. Spatiotemporal dissection of the cell cycle with single-cell proteogenomics. Nature 2021; 590:649-654. [PMID: 33627808 DOI: 10.1038/s41586-021-03232-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 01/12/2021] [Indexed: 01/31/2023]
Abstract
The cell cycle, over which cells grow and divide, is a fundamental process of life. Its dysregulation has devastating consequences, including cancer1-3. The cell cycle is driven by precise regulation of proteins in time and space, which creates variability between individual proliferating cells. To our knowledge, no systematic investigations of such cell-to-cell proteomic variability exist. Here we present a comprehensive, spatiotemporal map of human proteomic heterogeneity by integrating proteomics at subcellular resolution with single-cell transcriptomics and precise temporal measurements of individual cells in the cell cycle. We show that around one-fifth of the human proteome displays cell-to-cell variability, identify hundreds of proteins with previously unknown associations with mitosis and the cell cycle, and provide evidence that several of these proteins have oncogenic functions. Our results show that cell cycle progression explains less than half of all cell-to-cell variability, and that most cycling proteins are regulated post-translationally, rather than by transcriptomic cycling. These proteins are disproportionately phosphorylated by kinases that regulate cell fate, whereas non-cycling proteins that vary between cells are more likely to be modified by kinases that regulate metabolism. This spatially resolved proteomic map of the cell cycle is integrated into the Human Protein Atlas and will serve as a resource for accelerating molecular studies of the human cell cycle and cell proliferation.
Collapse
Affiliation(s)
- Diana Mahdessian
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Anthony J Cesnik
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden.,Department of Genetics, Stanford University, Stanford, CA, USA.,Chan Zuckerberg Biohub, San Francisco, San Francisco, CA, USA
| | - Christian Gnann
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden.,Chan Zuckerberg Biohub, San Francisco, San Francisco, CA, USA
| | - Frida Danielsson
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Lovisa Stenström
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Muhammad Arif
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Cheng Zhang
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Trang Le
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Fredric Johansson
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Rutger Schutten
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Anna Bäckström
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Ulrika Axelsson
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Peter Thul
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Nathan H Cho
- Chan Zuckerberg Biohub, San Francisco, San Francisco, CA, USA
| | - Oana Carja
- Department of Genetics, Stanford University, Stanford, CA, USA.,Chan Zuckerberg Biohub, San Francisco, San Francisco, CA, USA.,Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Mathias Uhlén
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Adil Mardinoglu
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden.,Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Charlotte Stadler
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Burcu Ayoglu
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | | | - Fredrik Pontén
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Devin P Sullivan
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Emma Lundberg
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden. .,Department of Genetics, Stanford University, Stanford, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
47
|
Sirtuin 5 Is Regulated by the SCF Cyclin F Ubiquitin Ligase and Is Involved in Cell Cycle Control. Mol Cell Biol 2021; 41:MCB.00269-20. [PMID: 33168699 DOI: 10.1128/mcb.00269-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/03/2020] [Indexed: 12/31/2022] Open
Abstract
The ubiquitin-proteasome system is essential for cell cycle progression. Cyclin F is a cell cycle-regulated substrate adapter F-box protein for the Skp1, CUL1, and F-box protein (SCF) family of E3 ubiquitin ligases. Despite its importance in cell cycle progression, identifying cyclin F-bound SCF complex (SCFCyclin F) substrates has remained challenging. Since cyclin F overexpression rescues a yeast mutant in the cdc4 gene, we considered the possibility that other genes that genetically modify cdc4 mutant lethality could also encode cyclin F substrates. We identified the mitochondrial and cytosolic deacylating enzyme sirtuin 5 (SIRT5) as a novel cyclin F substrate. SIRT5 has been implicated in metabolic processes, but its connection to the cell cycle is not known. We show that cyclin F interacts with and controls the ubiquitination, abundance, and stability of SIRT5. We show SIRT5 knockout results in a diminished G1 population and a subsequent increase in both S and G2/M. Global proteomic analyses reveal cyclin-dependent kinase (CDK) signaling changes congruent with the cell cycle changes in SIRT5 knockout cells. Together, these data demonstrate that SIRT5 is regulated by cyclin F and suggest a connection between SIRT5, cell cycle regulation, and metabolism.
Collapse
|
48
|
Pham TH, Page YL, Percevault F, Ferrière F, Flouriot G, Pakdel F. Apigenin, a Partial Antagonist of the Estrogen Receptor (ER), Inhibits ER-Positive Breast Cancer Cell Proliferation through Akt/FOXM1 Signaling. Int J Mol Sci 2021; 22:ijms22010470. [PMID: 33466512 PMCID: PMC7796491 DOI: 10.3390/ijms22010470] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022] Open
Abstract
Approximately 80% of breast cancer (BC) cases express the estrogen receptor (ER), and 30-40% of these cases acquire resistance to endocrine therapies over time. Hyperactivation of Akt is one of the mechanisms by which endocrine resistance is acquired. Apigenin (Api), a flavone found in several plant foods, has shown beneficial effects in cancer and chronic diseases. Here, we studied the therapeutic potential of Api in the treatment of ER-positive, endocrine therapy-resistant BC. To achieve this objective, we stably overexpressed the constitutively active form of the Akt protein in MCF-7 cells (named the MCF-7/Akt clone). The proliferation of MCF-7/Akt cells is partially independent of estradiol (E2) and exhibits an incomplete response to the anti-estrogen agent 4-hydroxytamoxifen, demonstrating the resistance of these cells to hormone therapy. Api exerts an antiproliferative effect on the MCF-7/Akt clone. Api inhibits the proliferative effect of E2 by inducing G2/M phase cell cycle arrest and apoptosis. Importantly, Api inhibits the Akt/FOXM1 signaling pathway by decreasing the expression of FOXM1, a key transcription factor involved in the cell cycle. Api also alters the expression of genes regulated by FOXM1, including cell cycle-related genes, particularly in the MCF-7/Akt clone. Together, our results strengthen the therapeutic potential of Api for the treatment of endocrine-resistant BC.
Collapse
|
49
|
Qiu S, An Z, Tan R, He PA, Jing J, Li H, Wu S, Xu Y. Understanding the unimodal distributions of cancer occurrence rates: it takes two factors for a cancer to occur. Brief Bioinform 2020; 22:6055138. [PMID: 33377150 PMCID: PMC8294564 DOI: 10.1093/bib/bbaa349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/19/2020] [Accepted: 11/01/2020] [Indexed: 12/25/2022] Open
Abstract
Data from the SEER reports reveal that the occurrence rate of a cancer type generally follows a unimodal distribution over age, peaking at an age that is cancer-type specific and ranges from 30+ through 70+. Previous studies attribute such bell-shaped distributions to the reduced proliferative potential in senior years but fail to explain why some cancers have their occurrence peak at 30+ or 40+. We present a computational model to offer a new explanation to such distributions. The model uses two factors to explain the observed age-dependent cancer occurrence rates: cancer risk of an organ and the availability level of the growth signals in circulation needed by a cancer type, with the former increasing and the latter decreasing with age. Regression analyses were conducted of known occurrence rates against such factors for triple negative breast cancer, testicular cancer and cervical cancer; and all achieved highly tight fitting results, which were also consistent with clinical, gene-expression and cancer-drug data. These reveal a fundamentally important relationship: while cancer is driven by endogenous stressors, it requires sufficient levels of exogenous growth signals to happen, hence suggesting the realistic possibility for treating cancer via cleaning out the growth signals in circulation needed by a cancer.
Collapse
Affiliation(s)
- Shuang Qiu
- Cancer Systems Biology Center, China-Japan Union Hospital of Jilin University
| | - Zheng An
- Cancer Systems Biology Center, China-Japan Union Hospital of Jilin University
| | - Renbo Tan
- Cancer Systems Biology Center, China-Japan Union Hospital of Jilin University
| | | | - Jingjing Jing
- China Medical University and Jilin University First Hospital
| | - Hongxia Li
- China Medical University and Jilin University First Hospital
| | | | - Ying Xu
- University of Georgia and Jilin University
| |
Collapse
|
50
|
Ponte I, Andrés M, Jordan A, Roque A. Towards understanding the Regulation of Histone H1 Somatic Subtypes with OMICs. J Mol Biol 2020; 433:166734. [PMID: 33279581 DOI: 10.1016/j.jmb.2020.166734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 10/22/2022]
Abstract
Histone H1 is involved in the regulation of chromatin higher-order structure and compaction. In humans, histone H1 is a multigene family with seven subtypes differentially expressed in somatic cells. Which are the regulatory mechanisms that determine the variability of the H1 complement is a long-standing biological question regarding histone H1. We have used a new approach based on the integration of OMICs data to address this issue. We have examined the 3D-chromatin structure, the binding of transcription factors (TFs), and the expression of somatic H1 genes in human cell lines, using data from public repositories, such as ENCODE. Analysis of Hi-C, ChIP-seq, and RNA-seq data, have revealed that transcriptional control has a greater impact on H1 regulation than previously thought. Somatic H1 genes located in topologically associated domains (TADs) show higher expression than in boundary regions. H1 genes are targeted by a variable number of transcription factors including cell cycle-related TFs, and tissue-specific TFs, suggesting a fine-tuned, subtype-specific transcriptional control. We describe, for the first time, that all H1 somatic subtypes are under transcriptional co-regulation. The replication-independent subtypes, which are encoded in different chromosomes isolated from other histone genes, are also co-regulated with the rest of the somatic H1 genes, indicating that transcriptional co-regulation extends beyond the histone cluster. Transcriptional control and transcriptional co-regulation explain, at least in part, the variability of H1 complement, the fluctuations of H1 subtypes during development, and also the compensatory effects observed, in model systems, after perturbation of one or more H1 subtypes.
Collapse
Affiliation(s)
- Inma Ponte
- Biochemistry and Molecular Biology Department, Bioscience Faculty, Autonomous University of Barcelona, Spain
| | - Marta Andrés
- Biochemistry and Molecular Biology Department, Bioscience Faculty, Autonomous University of Barcelona, Spain
| | - Albert Jordan
- Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Alicia Roque
- Biochemistry and Molecular Biology Department, Bioscience Faculty, Autonomous University of Barcelona, Spain.
| |
Collapse
|