1
|
Lacouture C, Chaves B, Guipouy D, Houmadi R, Duplan-Eche V, Allart S, Destainville N, Dupré L. LFA-1 nanoclusters integrate TCR stimulation strength to tune T-cell cytotoxic activity. Nat Commun 2024; 15:407. [PMID: 38195629 PMCID: PMC10776856 DOI: 10.1038/s41467-024-44688-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 12/29/2023] [Indexed: 01/11/2024] Open
Abstract
T-cell cytotoxic function relies on the cooperation between the highly specific but poorly adhesive T-cell receptor (TCR) and the integrin LFA-1. How LFA-1-mediated adhesion may scale with TCR stimulation strength is ill-defined. Here, we show that LFA-1 conformation activation scales with TCR stimulation to calibrate human T-cell cytotoxicity. Super-resolution microscopy analysis reveals that >1000 LFA-1 nanoclusters provide a discretized platform at the immunological synapse to translate TCR engagement and density of the LFA-1 ligand ICAM-1 into graded adhesion. Indeed, the number of high-affinity conformation LFA-1 nanoclusters increases as a function of TCR triggering strength. Blockade of LFA-1 conformational activation impairs adhesion to target cells and killing. However, it occurs at a lower TCR stimulation threshold than lytic granule exocytosis implying that it licenses, rather than directly controls, the killing decision. We conclude that the organization of LFA-1 into nanoclusters provides a calibrated system to adjust T-cell killing to the antigen stimulation strength.
Collapse
Affiliation(s)
- Claire Lacouture
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
- Laboratoire de Physique Théorique, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Beatriz Chaves
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- Computational Modeling Group, Oswaldo Cruz Foundation (Fiocruz), Eusébio, Brazil
| | - Delphine Guipouy
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| | - Raïssa Houmadi
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| | - Valérie Duplan-Eche
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| | - Sophie Allart
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| | - Nicolas Destainville
- Laboratoire de Physique Théorique, Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Loïc Dupré
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France.
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Houston JP, Valentino S, Bitton A. Fluorescence Lifetime Measurements and Analyses: Protocols Using Flow Cytometry and High-Throughput Microscopy. Methods Mol Biol 2024; 2779:323-351. [PMID: 38526793 DOI: 10.1007/978-1-0716-3738-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
This chapter focuses on applications and protocols that involve the measurement of the fluorescence lifetime as an informative cytometric parameter. The timing of fluorescence decay has been well-studied for cell counting, sorting, and imaging. Therefore, provided herein is an overview of the techniques used, how they enhance cytometry protocols, and the modern techniques used for lifetime analysis. The background and theory behind fluorescence decay kinetic measurements in cells is first discussed followed by the history of the development of time-resolved flow cytometry. These sections are followed by a review of applications that benefit from the quantitative nature of fluorescence lifetimes as a photophysical trait. Lastly, perspectives on the modern ways in which the fluorescence lifetime is scanned at high throughputs which include high-speed microscopy and machine learning are provided.
Collapse
Affiliation(s)
- Jessica P Houston
- Department of Chemical & Materials Engineering, New Mexico State University, Las Cruces, NM, USA.
| | - Samantha Valentino
- Department of Chemical & Materials Engineering, New Mexico State University, Las Cruces, NM, USA
| | | |
Collapse
|
3
|
Bertolini M, Wong MS, Mendive-Tapia L, Vendrell M. Smart probes for optical imaging of T cells and screening of anti-cancer immunotherapies. Chem Soc Rev 2023; 52:5352-5372. [PMID: 37376918 PMCID: PMC10424634 DOI: 10.1039/d2cs00928e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Indexed: 06/29/2023]
Abstract
T cells are an essential part of the immune system with crucial roles in adaptive response and the maintenance of tissue homeostasis. Depending on their microenvironment, T cells can be differentiated into multiple states with distinct functions. This myriad of cellular activities have prompted the development of numerous smart probes, ranging from small molecule fluorophores to nanoconstructs with variable molecular architectures and fluorescence emission mechanisms. In this Tutorial Review, we summarize recent efforts in the design, synthesis and application of smart probes for imaging T cells in tumors and inflammation sites by targeting metabolic and enzymatic biomarkers as well as specific surface receptors. Finally, we briefly review current strategies for how smart probes are employed to monitor the response of T cells to anti-cancer immunotherapies. We hope that this Review may help chemists, biologists and immunologists to design the next generation of molecular imaging probes for T cells and anti-cancer immunotherapies.
Collapse
Affiliation(s)
- Marco Bertolini
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK.
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| | - Man Sing Wong
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK.
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| | - Lorena Mendive-Tapia
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK.
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| | - Marc Vendrell
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK.
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| |
Collapse
|
4
|
Hermans D, Houben E, Baeten P, Slaets H, Janssens K, Hoeks C, Hosseinkhani B, Duran G, Bormans S, Gowing E, Hoornaert C, Beckers L, Fung WK, Schroten H, Ishikawa H, Fraussen J, Thoelen R, de Vries HE, Kooij G, Zandee S, Prat A, Hellings N, Broux B. Oncostatin M triggers brain inflammation by compromising blood-brain barrier integrity. Acta Neuropathol 2022; 144:259-281. [PMID: 35666306 DOI: 10.1007/s00401-022-02445-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/06/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022]
Abstract
Oncostatin M (OSM) is an IL-6 family member which exerts neuroprotective and remyelination-promoting effects after damage to the central nervous system (CNS). However, the role of OSM in neuro-inflammation is poorly understood. Here, we investigated OSM's role in pathological events important for the neuro-inflammatory disorder multiple sclerosis (MS). We show that OSM receptor (OSMRβ) expression is increased on circulating lymphocytes of MS patients, indicating their elevated responsiveness to OSM signalling. In addition, OSM production by activated myeloid cells and astrocytes is increased in MS brain lesions. In experimental autoimmune encephalomyelitis (EAE), a preclinical model of MS, OSMRβ-deficient mice exhibit milder clinical symptoms, accompanied by diminished T helper 17 (Th17) cell infiltration into the CNS and reduced BBB leakage. In vitro, OSM reduces BBB integrity by downregulating the junctional molecules claudin-5 and VE-cadherin, while promoting secretion of the Th17-attracting chemokine CCL20 by inflamed BBB-endothelial cells and reactive astrocytes. Using flow cytometric fluorescence resonance energy transfer (FRET) quantification, we found that OSM-induced endothelial CCL20 promotes activation of lymphocyte function-associated antigen 1 (LFA-1) on Th17 cells. Moreover, CCL20 enhances Th17 cell adhesion to OSM-treated inflamed endothelial cells, which is at least in part ICAM-1 mediated. Together, these data identify an OSM-CCL20 axis, in which OSM contributes significantly to BBB impairment during neuro-inflammation by inducing permeability while recruiting Th17 cells via enhanced endothelial CCL20 secretion and integrin activation. Therefore, care should be taken when considering OSM as a therapeutic agent for treatment of neuro-inflammatory diseases such as MS.
Collapse
Affiliation(s)
- Doryssa Hermans
- University MS Center, Campus Diepenbeek, Diepenbeek, Belgium.,Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, UHasselt, Diepenbeek, Belgium
| | - Evelien Houben
- University MS Center, Campus Diepenbeek, Diepenbeek, Belgium.,Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, UHasselt, Diepenbeek, Belgium
| | - Paulien Baeten
- University MS Center, Campus Diepenbeek, Diepenbeek, Belgium.,Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, UHasselt, Diepenbeek, Belgium
| | - Helena Slaets
- University MS Center, Campus Diepenbeek, Diepenbeek, Belgium.,Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, UHasselt, Diepenbeek, Belgium
| | - Kris Janssens
- University MS Center, Campus Diepenbeek, Diepenbeek, Belgium.,Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, UHasselt, Diepenbeek, Belgium
| | - Cindy Hoeks
- University MS Center, Campus Diepenbeek, Diepenbeek, Belgium.,Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, UHasselt, Diepenbeek, Belgium
| | - Baharak Hosseinkhani
- University MS Center, Campus Diepenbeek, Diepenbeek, Belgium.,Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, UHasselt, Diepenbeek, Belgium
| | - Gayel Duran
- University MS Center, Campus Diepenbeek, Diepenbeek, Belgium.,Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, UHasselt, Diepenbeek, Belgium
| | - Seppe Bormans
- Institute for Materials Research (IMO), UHasselt, Diepenbeek, Belgium
| | - Elizabeth Gowing
- Centre de Recherche du CHUM (CRCHUM), Neuroimmunology Unit, Montreal, QC, Canada
| | - Chloé Hoornaert
- Centre de Recherche du CHUM (CRCHUM), Neuroimmunology Unit, Montreal, QC, Canada
| | - Lien Beckers
- University MS Center, Campus Diepenbeek, Diepenbeek, Belgium.,Department of Immunology and Infection, Biomedical Research Institute, UHasselt, Diepenbeek, Belgium
| | - Wing Ka Fung
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Horst Schroten
- Pediatric Infectious Diseases, Medical Faculty Mannheim, University Children's Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Judith Fraussen
- University MS Center, Campus Diepenbeek, Diepenbeek, Belgium.,Department of Immunology and Infection, Biomedical Research Institute, UHasselt, Diepenbeek, Belgium
| | - Ronald Thoelen
- Institute for Materials Research (IMO), UHasselt, Diepenbeek, Belgium
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Gijs Kooij
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Stephanie Zandee
- Centre de Recherche du CHUM (CRCHUM), Neuroimmunology Unit, Montreal, QC, Canada
| | - Alexandre Prat
- Centre de Recherche du CHUM (CRCHUM), Neuroimmunology Unit, Montreal, QC, Canada
| | - Niels Hellings
- University MS Center, Campus Diepenbeek, Diepenbeek, Belgium.,Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, UHasselt, Diepenbeek, Belgium
| | - Bieke Broux
- University MS Center, Campus Diepenbeek, Diepenbeek, Belgium. .,Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, UHasselt, Diepenbeek, Belgium. .,Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
5
|
Peerzade SAMA, Makarova N, Sokolov I. Ultrabright Fluorescent Silica Nanoparticles for Dual pH and Temperature Measurements. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1524. [PMID: 34207605 PMCID: PMC8228773 DOI: 10.3390/nano11061524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/29/2021] [Accepted: 06/05/2021] [Indexed: 11/22/2022]
Abstract
The mesoporous nature of silica nanoparticles provides a novel platform for the development of ultrabright fluorescent particles, which have organic molecular fluorescent dyes physically encapsulated inside the silica pores. The close proximity of the dye molecules, which is possible without fluorescence quenching, gives an advantage of building sensors using FRET coupling between the encapsulated dye molecules. Here we present the use of this approach to demonstrate the assembly of ultrabright fluorescent ratiometric sensors capable of simultaneous acidity (pH) and temperature measurements. FRET pairs of the temperature-responsive, pH-sensitive and reference dyes are physically encapsulated inside the silica matrix of ~50 nm particles. We demonstrate that the particles can be used to measure both the temperature in the biologically relevant range (20 to 50 °C) and pH within 4 to 7 range with the error (mean absolute deviation) of 0.54 °C and 0.09, respectively. Stability of the sensor is demonstrated. The sensitivity of the sensor ranges within 0.2-3% °C-1 for the measurements of temperature and 2-6% pH-1 for acidity.
Collapse
Affiliation(s)
| | - Nadezhda Makarova
- Department of Mechanical Engineering, Tufts University, Medford, MA 02155, USA;
| | - Igor Sokolov
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA;
- Department of Mechanical Engineering, Tufts University, Medford, MA 02155, USA;
- Department of Physics, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
6
|
Cai C, Sun H, Hu L, Fan Z. Visualization of integrin molecules by fluorescence imaging and techniques. ACTA ACUST UNITED AC 2021; 45:229-257. [PMID: 34219865 PMCID: PMC8249084 DOI: 10.32604/biocell.2021.014338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Integrin molecules are transmembrane αβ heterodimers involved in cell adhesion, trafficking, and signaling. Upon activation, integrins undergo dynamic conformational changes that regulate their affinity to ligands. The physiological functions and activation mechanisms of integrins have been heavily discussed in previous studies and reviews, but the fluorescence imaging techniques -which are powerful tools for biological studies- have not. Here we review the fluorescence labeling methods, imaging techniques, as well as Förster resonance energy transfer assays used to study integrin expression, localization, activation, and functions.
Collapse
Affiliation(s)
- Chen Cai
- Department of Immunology, School of Medicine, UConn Health, Farmington, 06030, USA
| | - Hao Sun
- Department of Medicine, University of California, San Diego, La Jolla, 92093, USA
| | - Liang Hu
- Cardiovascular Institute of Zhengzhou University, Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450051, China
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, Farmington, 06030, USA
| |
Collapse
|
7
|
Zhang X, Mariano CF, Ando Y, Shen K. Bioengineering tools for probing intracellular events in T lymphocytes. WIREs Mech Dis 2020; 13:e1510. [PMID: 33073545 DOI: 10.1002/wsbm.1510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 11/11/2022]
Abstract
T lymphocytes are the central coordinator and executor of many immune functions. The activation and function of T lymphocytes are mediated through the engagement of cell surface receptors and regulated by a myriad of intracellular signaling network. Bioengineering tools, including imaging modalities and fluorescent probes, have been developed and employed to elucidate the cellular events throughout the functional lifespan of T cells. A better understanding of these events can broaden our knowledge in the immune systems biology, as well as accelerate the development of effective diagnostics and immunotherapies. Here we review the commonly used and recently developed techniques and probes for monitoring T lymphocyte intracellular events, following the order of intracellular events in T cells from activation, signaling, metabolism to apoptosis. The techniques introduced here can be broadly applied to other immune cells and cell systems. This article is categorized under: Immune System Diseases > Molecular and Cellular Physiology Immune System Diseases > Biomedical Engineering Infectious Diseases > Biomedical Engineering.
Collapse
Affiliation(s)
- Xinyuan Zhang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Chelsea F Mariano
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Yuta Ando
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Keyue Shen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA.,USC Stem Cell, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
8
|
Ishizawa K, Togami K, Tada H, Chono S. Multiscale Live Imaging Using Förster Resonance Energy Transfer (FRET) for Evaluating the Biological Behavior of Nanoparticles as Drug Carriers. J Pharm Sci 2020; 109:3608-3616. [PMID: 32926888 DOI: 10.1016/j.xphs.2020.08.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/28/2020] [Accepted: 08/25/2020] [Indexed: 12/21/2022]
Abstract
To develop targeted drug delivery systems using nanoparticles for treating various diseases, the evaluation of nanoparticle behavior in biological environments is necessary. In the present study, the biological behavior of polymeric nanoparticles was directly traced in living mice and cells. The dissociation of nanoparticles was detected by Förster resonance energy transfer (FRET) imaging. DiR and DiD were encapsulated in the nanoparticles for near-infrared FRET imaging, and they were traced using in vivo FRET imaging and intravital FRET imaging at the whole-body and tissue scales, respectively. In vivo FRET imaging revealed that the nanoparticles dissociated over time following intravenous administration. Intravital FRET imaging revealed that the nanoparticles dissociated in the liver and blood vessels following intravenous administration. DiI and DiO were encapsulated in nanoparticles for FRET imaging using confocal microscopy, and they were traced using in vitro FRET imaging in HepG2 cells. In vitro FRET imaging revealed that the nanoparticles dissociated and released fluorescent dyes that distributed in the cell membrane. Finally, live imaging was performed using FRET at the whole-body, tissue, and cellular scales. This method is suitable for obtaining information regarding the biological kinetic properties of nanoparticles and their use in targeted drug delivery.
Collapse
Affiliation(s)
- Kiyomi Ishizawa
- Division of Pharmaceutics, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan
| | - Kohei Togami
- Division of Pharmaceutics, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan; Creation Research Institute of Life Science in KITA-no-DAICHI, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan
| | - Hitoshi Tada
- Division of Pharmaceutics, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan
| | - Sumio Chono
- Division of Pharmaceutics, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan; Creation Research Institute of Life Science in KITA-no-DAICHI, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan.
| |
Collapse
|
9
|
Fan Z, Kiosses WB, Sun H, Orecchioni M, Ghosheh Y, Zajonc DM, Arnaout MA, Gutierrez E, Groisman A, Ginsberg MH, Ley K. High-Affinity Bent β 2-Integrin Molecules in Arresting Neutrophils Face Each Other through Binding to ICAMs In cis. Cell Rep 2020; 26:119-130.e5. [PMID: 30605669 PMCID: PMC6625519 DOI: 10.1016/j.celrep.2018.12.038] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/09/2018] [Accepted: 12/07/2018] [Indexed: 01/13/2023] Open
Abstract
Leukocyte adhesion requires β2-integrin activation. Resting integrins exist in a bent-closed conformation-i.e., not extended (E-) and not high affinity (H-)-unable to bind ligand. Fully activated E+H+ integrin binds intercellular adhesion molecules (ICAMs) expressed on the opposing cell in trans. E-H- transitions to E+H+ through E+H- or through E-H+, which binds to ICAMs on the same cell in cis. Spatial patterning of activated integrins is thought to be required for effective arrest, but no high-resolution cell surface localization maps of activated integrins exist. Here, we developed Super-STORM by combining super-resolution microscopy with molecular modeling to precisely localize activated integrin molecules and identify the molecular patterns of activated integrins on primary human neutrophils. At the time of neutrophil arrest, E-H+ integrins face each other to form oriented (non-random) nanoclusters. To address the mechanism causing this pattern, we blocked integrin binding to ICAMs in cis, which significantly relieved the face-to-face orientation.
Collapse
Affiliation(s)
- Zhichao Fan
- Division of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA
| | - William Bill Kiosses
- Microscopy Core Facility, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA
| | - Hao Sun
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Marco Orecchioni
- Division of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA
| | - Yanal Ghosheh
- Division of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA
| | - Dirk M Zajonc
- Division of Immune Regulation, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA; Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - M Amin Arnaout
- Harvard Medical School, Boston, MA 02115, USA; Leukocyte Biology and Inflammation Program, Massachusetts General Hospital, Boston, MA 02114, USA; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Center for Regenerative Medicine, Medical Services, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Edgar Gutierrez
- Department of Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Alex Groisman
- Department of Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Mark H Ginsberg
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA; Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
10
|
Moore TI, Aaron J, Chew TL, Springer TA. Measuring Integrin Conformational Change on the Cell Surface with Super-Resolution Microscopy. Cell Rep 2019; 22:1903-1912. [PMID: 29444440 PMCID: PMC5851489 DOI: 10.1016/j.celrep.2018.01.062] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/19/2017] [Accepted: 01/19/2018] [Indexed: 02/08/2023] Open
Abstract
We use super-resolution interferometric photoactivation and localization microscopy (iPALM) and a constrained photoactivatable fluorescent protein integrin fusion to measure the displacement of the head of integrin lymphocyte function-associated 1 (LFA-1) resulting from integrin conformational change on the cell surface. We demonstrate that the distance of the LFA-1 head increases substantially between basal and ligand-engaged conformations, which can only be explained at the molecular level by integrin extension. We further demonstrate that one class of integrin antagonist maintains the bent conformation, while another antagonist class induces extension. Our molecular scale measurements on cell-surface LFA-1 are in excellent agreement with distances derived from crystallographic and electron microscopy structures of bent and extended integrins. Our distance measurements are also in excellent agreement with a previous model of LFA-1 bound to ICAM-1 derived from the orientation of LFA-1 on the cell surface measured using fluorescence polarization microscopy.
Collapse
Affiliation(s)
- Travis I Moore
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jesse Aaron
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Teng-Leong Chew
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Timothy A Springer
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Hyun YM, Choe YH, Park SA, Kim M. LFA-1 (CD11a/CD18) and Mac-1 (CD11b/CD18) distinctly regulate neutrophil extravasation through hotspots I and II. Exp Mol Med 2019; 51:1-13. [PMID: 30967528 PMCID: PMC6456621 DOI: 10.1038/s12276-019-0227-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/21/2018] [Accepted: 12/11/2018] [Indexed: 01/21/2023] Open
Abstract
Precise spatiotemporal regulation of leukocyte extravasation is key for generating an efficient immune response to injury or infection. The integrins LFA-1(CD11a/CD18) and Mac-1(CD11b/CD18) play overlapping roles in neutrophil migration because they bind the same as well as different ligands in response to extracellular signaling. Using two-photon intravital imaging and transmission electron microscopy, we observed the existence of preferred sites for neutrophil entrance into the endothelial cell monolayer and exit from the basement membrane and pericyte sheath during neutrophil extravasation, namely, hotspots I and II, by elucidating distinctive roles of LFA-1 and Mac-1. To penetrate the vascular endothelium, neutrophils must first penetrate the endothelial cell layer through hotspot I (i.e., the point of entry into the endothelium). Neutrophils frequently remain in the space between the endothelial cell layer and the basement membrane for a prolonged period (>20 min). Subsequently, neutrophils penetrate the basement membrane and pericyte sheath at hotspot II, which is the final stage of exiting the vascular endothelium. To further investigate the roles of LFA-1 and Mac-1, we newly generated LFA-1 FRET (CD11a-YFP/CD18-CFP) mice and Mac-1 FRET (CD11b-YFP/CD18-CFP) mice. Using both FRET mice, we were able to determine that LFA-1 and Mac-1 distinctly regulate the neutrophil extravasation cascade. Our data suggest that the vascular endothelium functions as a double-layered barrier in the steps of neutrophil extravasation. We propose that the harmonized regulation of neutrophil penetration through the endothelium via hotspots I and II may be critical for vascular homeostasis during inflammation.
Collapse
Affiliation(s)
- Young-Min Hyun
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Young Ho Choe
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang A Park
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
- School of Medicine, CHA University, Seongnam, South Korea
| | - Minsoo Kim
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
12
|
Perez DR, Sklar LA, Chigaev A. Clioquinol: To harm or heal. Pharmacol Ther 2019; 199:155-163. [PMID: 30898518 DOI: 10.1016/j.pharmthera.2019.03.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/14/2019] [Indexed: 12/13/2022]
Abstract
Clioquinol, one of the first mass-produced drugs, was considered safe and efficacious for many years. It was used as an antifungal and an antiprotozoal drug until it was linked to an outbreak of subacute myelo-optic neuropathy (SMON), a debilitating disease almost exclusively confined to Japan. Today, new information regarding clioquinol targets and its mechanism of action, as well as genetic variation (SNPs) in efflux transporters in the Japanese population, provide a unique interpretation of the existing phenomena. Further understanding of clioquinol's role in the inhibition of cAMP efflux and promoting apoptosis might offer promise for the treatment of cancer and/or neurodegenerative diseases. Here, we highlight recent developments in the field and discuss possible connections, hypotheses and perspectives in clioquinol-related research.
Collapse
Affiliation(s)
- Dominique R Perez
- University of New Mexico Center for Molecular Discovery, Albuquerque, NM 87131, USA; Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Larry A Sklar
- University of New Mexico Center for Molecular Discovery, Albuquerque, NM 87131, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA; Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Alexandre Chigaev
- University of New Mexico Center for Molecular Discovery, Albuquerque, NM 87131, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA; Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| |
Collapse
|
13
|
Sambrano J, Chigaev A, Nichani KS, Smagley Y, Sklar LA, Houston JP. Evaluating integrin activation with time-resolved flow cytometry. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-10. [PMID: 29992797 PMCID: PMC6232766 DOI: 10.1117/1.jbo.23.7.075004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/13/2018] [Indexed: 05/12/2023]
Abstract
Förster resonance energy transfer (FRET) continues to be a useful tool to study movement and interaction between proteins within living cells. When FRET as an optical technique is measured with flow cytometry, conformational changes of proteins can be rapidly measured cell-by-cell for the benefit of screening and profiling. We exploit FRET to study the extent of activation of α4β1 integrin dimers expressed on the surface of leukocytes. The stalk-like transmembrane heterodimers when not active lay bent and upon activation extend outward. Integrin extension is determined by changes in the distance of closest approach between an FRET donor and acceptor, bound at the integrin head and cell membrane, respectively. Time-resolved flow cytometry analysis revealed donor emission increases up to 17%, fluorescence lifetime shifts over 1.0 ns during activation, and FRET efficiencies of 37% and 26% corresponding to the inactive and active integrin state, respectively. Last, a graphical phasor analysis, including population clustering, gating, and formation of an FRET trajectory, added precision to a comparative analysis of populations undergoing FRET, partial donor recovery, and complete donor recovery. This work establishes a quantitative cytometric approach for profiling fluorescence donor decay kinetics during integrin conformational changes on a single-cell level.
Collapse
Affiliation(s)
- Jesus Sambrano
- New Mexico State University, Department of Chemical and Materials Engineering, Las Cruces, New Mexico, United States
| | - Alexandre Chigaev
- University of New Mexico, School of Medicine and Center for Molecular Discovery, Albuquerque, New Mexico, United States
| | - Kapil S. Nichani
- New Mexico State University, Department of Chemical and Materials Engineering, Las Cruces, New Mexico, United States
| | - Yelena Smagley
- University of New Mexico, School of Medicine and Center for Molecular Discovery, Albuquerque, New Mexico, United States
| | - Larry A. Sklar
- University of New Mexico, School of Medicine and Center for Molecular Discovery, Albuquerque, New Mexico, United States
| | - Jessica P. Houston
- New Mexico State University, Department of Chemical and Materials Engineering, Las Cruces, New Mexico, United States
- Address all correspondence to: Jessica P. Houston, E-mail:
| |
Collapse
|
14
|
Houston JP, Yang Z, Sambrano J, Li W, Nichani K, Vacca G. Overview of Fluorescence Lifetime Measurements in Flow Cytometry. Methods Mol Biol 2018; 1678:421-446. [PMID: 29071689 DOI: 10.1007/978-1-4939-7346-0_18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The focus of this chapter is time-resolved flow cytometry, which is broadly defined as the ability to measure the timing of fluorescence decay from excited fluorophores that pass through cytometers or high-throughput cell counting and cell sorting instruments. We focus on this subject for two main reasons: first, to discuss the nuances of hardware and software modifications needed for these measurements because currently, there are no widespread time-resolved cytometers nor a one-size-fits-all approach; and second, to summarize the application space for fluorescence lifetime-based cell counting/sorting owing to the recent increase in the number of investigators interested in this approach. Overall, this chapter is structured into three sections: (1) theory of fluorescence decay kinetics, (2) modern time-resolved flow cytometry systems, and (3) cell counting and sorting applications. These commentaries are followed by conclusions and discussion about new directions and opportunities for fluorescence lifetime measurements in flow cytometry.
Collapse
Affiliation(s)
- Jessica P Houston
- Department of Chemical & Materials Engineering, New Mexico State University, MSC, PO Box 30001, Las Cruces, NM, 88003, USA.
| | - Zhihua Yang
- Department of Chemical & Materials Engineering, New Mexico State University, MSC, PO Box 30001, Las Cruces, NM, 88003, USA
| | - Jesse Sambrano
- Department of Chemical & Materials Engineering, New Mexico State University, MSC, PO Box 30001, Las Cruces, NM, 88003, USA
| | - Wenyan Li
- Department of Chemical & Materials Engineering, New Mexico State University, MSC, PO Box 30001, Las Cruces, NM, 88003, USA
| | - Kapil Nichani
- Department of Chemical & Materials Engineering, New Mexico State University, MSC, PO Box 30001, Las Cruces, NM, 88003, USA
| | - Giacomo Vacca
- Kinetic River Corp., 897, Independence Avenue, Suite 4A, Mountain View, CA, 94043-2357, USA
| |
Collapse
|
15
|
Fan Z, McArdle S, Marki A, Mikulski Z, Gutierrez E, Engelhardt B, Deutsch U, Ginsberg M, Groisman A, Ley K. Neutrophil recruitment limited by high-affinity bent β2 integrin binding ligand in cis. Nat Commun 2016; 7:12658. [PMID: 27578049 PMCID: PMC5013657 DOI: 10.1038/ncomms12658] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 07/20/2016] [Indexed: 12/28/2022] Open
Abstract
Neutrophils are essential for innate immunity and inflammation and many neutrophil functions are β2 integrin-dependent. Integrins can extend (E(+)) and acquire a high-affinity conformation with an 'open' headpiece (H(+)). The canonical switchblade model of integrin activation proposes that the E(+) conformation precedes H(+), and the two are believed to be structurally linked. Here we show, using high-resolution quantitative dynamic footprinting (qDF) microscopy combined with a homogenous conformation-reporter binding assay in a microfluidic device, that a substantial fraction of β2 integrins on human neutrophils acquire an unexpected E(-)H(+) conformation. E(-)H(+) β2 integrins bind intercellular adhesion molecules (ICAMs) in cis, which inhibits leukocyte adhesion in vitro and in vivo. This endogenous anti-inflammatory mechanism inhibits neutrophil aggregation, accumulation and inflammation.
Collapse
Affiliation(s)
- Zhichao Fan
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle Drive, La Jolla, California 92037, USA
| | - Sara McArdle
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle Drive, La Jolla, California 92037, USA.,Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Alex Marki
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle Drive, La Jolla, California 92037, USA
| | - Zbigniew Mikulski
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle Drive, La Jolla, California 92037, USA
| | - Edgar Gutierrez
- Department of Physics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Britta Engelhardt
- Theodor Kocher Institute, University of Bern, 1 Freiestrasse, 3012 Bern, Switzerland
| | - Urban Deutsch
- Theodor Kocher Institute, University of Bern, 1 Freiestrasse, 3012 Bern, Switzerland
| | - Mark Ginsberg
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Alex Groisman
- Department of Physics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle Drive, La Jolla, California 92037, USA.,Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| |
Collapse
|
16
|
Carroll-Portillo A, Cannon JL, te Riet J, Holmes A, Kawakami Y, Kawakami T, Cambi A, Lidke DS. Mast cells and dendritic cells form synapses that facilitate antigen transfer for T cell activation. J Cell Biol 2015; 210:851-64. [PMID: 26304724 PMCID: PMC4555818 DOI: 10.1083/jcb.201412074] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 07/17/2015] [Indexed: 11/30/2022] Open
Abstract
Mast cells (MCs) and dendritic cells (DCs) form synapses that are dependent on MC activation and integrin engagement, and these direct interactions stimulate changes in the secretion profile of select cytokines and facilitate transfer of endosomal contents from activated MCs to DCs. Mast cells (MCs) produce soluble mediators such as histamine and prostaglandins that are known to influence dendritic cell (DC) function by stimulating maturation and antigen processing. Whether direct cell–cell interactions are important in modulating MC/DC function is unclear. In this paper, we show that direct contact between MCs and DCs occurs and plays an important role in modulating the immune response. Activation of MCs through FcεRI cross-linking triggers the formation of stable cell–cell interactions with immature DCs that are reminiscent of the immunological synapse. Direct cellular contact differentially regulates the secreted cytokine profile, indicating that MC modulation of DC populations is influenced by the nature of their interaction. Synapse formation requires integrin engagement and facilitates the transfer of internalized MC-specific antigen from MCs to DCs. The transferred material is ultimately processed and presented by DCs and can activate T cells. The physiological outcomes of the MC–DC synapse suggest a new role for intercellular crosstalk in defining the immune response.
Collapse
Affiliation(s)
- Amanda Carroll-Portillo
- Department of Pathology, The University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Judy L Cannon
- Department of Pathology, The University of New Mexico School of Medicine, Albuquerque, NM 87131 Department of Molecular Genetics and Microbiology, The University of New Mexico School of Medicine, Albuquerque, NM 87131 Cancer Research and Treatment Center, The University of New Mexico, Albuquerque, NM 87131
| | - Joost te Riet
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Anna Holmes
- Department of Pathology, The University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Yuko Kawakami
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Toshiaki Kawakami
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037 Laboratory for Allergic Disease, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama 230-0045, Japan
| | - Alessandra Cambi
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Diane S Lidke
- Department of Pathology, The University of New Mexico School of Medicine, Albuquerque, NM 87131 Cancer Research and Treatment Center, The University of New Mexico, Albuquerque, NM 87131
| |
Collapse
|