1
|
Hamaï A, Drin G. Specificity of lipid transfer proteins: An in vitro story. Biochimie 2024; 227:85-110. [PMID: 39304019 DOI: 10.1016/j.biochi.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Lipids, which are highly diverse, are finely distributed between organelle membranes and the plasma membrane (PM) of eukaryotic cells. As a result, each compartment has its own lipid composition and molecular identity, which is essential for the functional fate of many proteins. This distribution of lipids depends on two main processes: lipid synthesis, which takes place in different subcellular regions, and the transfer of these lipids between and across membranes. This review will discuss the proteins that carry lipids throughout the cytosol, called LTPs (Lipid Transfer Proteins). More than the modes of action or biological roles of these proteins, we will focus on the in vitro strategies employed during the last 60 years to address a critical question: What are the lipid ligands of these LTPs? We will describe the extent to which these strategies, combined with structural data and investigations in cells, have made it possible to discover proteins, namely ORPs, Sec14, PITPs, STARDs, Ups/PRELIs, START-like, SMP-domain containing proteins, and bridge-like LTPs, which compose some of the main eukaryotic LTP families, and their lipid ligands. We will see how these approaches have played a central role in cell biology, showing that LTPs can connect distant metabolic branches, modulate the composition of cell membranes, and even create new subcellular compartments.
Collapse
Affiliation(s)
- Amazigh Hamaï
- Université Côte d'Azur, CNRS and Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, 660 route des lucioles, 06560, Valbonne Sophia Antipolis, France
| | - Guillaume Drin
- Université Côte d'Azur, CNRS and Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, 660 route des lucioles, 06560, Valbonne Sophia Antipolis, France.
| |
Collapse
|
2
|
Volpiana MW, Nenadic A, Beh CT. Regulation of yeast polarized exocytosis by phosphoinositide lipids. Cell Mol Life Sci 2024; 81:457. [PMID: 39560727 DOI: 10.1007/s00018-024-05483-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/01/2024] [Accepted: 10/18/2024] [Indexed: 11/20/2024]
Abstract
Phosphoinositides help steer membrane trafficking routes within eukaryotic cells. In polarized exocytosis, which targets vesicular cargo to sites of polarized growth at the plasma membrane (PM), the two phosphoinositides phosphatidylinositol 4-phosphate (PI4P) and its derivative phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) pave the pathway for vesicle transport from the Golgi to the PM. PI4P is a critical regulator of mechanisms that shape late Golgi membranes for vesicle biogenesis and release. Although enriched in vesicle membranes, PI4P is inexplicably removed from post-Golgi vesicles during their transit to the PM, which drives subsequent steps in exocytosis. At the PM, PI(4,5)P2 recruits effectors that establish polarized membrane sites for targeting the vesicular delivery of secretory cargo. The budding yeast Saccharomyces cerevisiae provides an elegant model to unravel the complexities of phosphoinositide regulation during polarized exocytosis. Here, we review how PI4P and PI(4,5)P2 promote yeast vesicle biogenesis, exocyst complex assembly and vesicle docking at polarized cortical sites, and suggest how these steps might impact related mechanisms of human disease.
Collapse
Affiliation(s)
- Matthew W Volpiana
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Aleksa Nenadic
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Christopher T Beh
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
3
|
Tanwar S, Kalra S, Bari VK. Insights into the role of sterol metabolism in antifungal drug resistance: a mini-review. Front Microbiol 2024; 15:1409085. [PMID: 39464401 PMCID: PMC11502366 DOI: 10.3389/fmicb.2024.1409085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/26/2024] [Indexed: 10/29/2024] Open
Abstract
Sterols are essential for eukaryotic cells and are crucial in cellular membranes' structure, function, fluidity, permeability, adaptability to environmental stressors, and host-pathogen interactions. Fungal sterol, such as ergosterol metabolism, involves several organelles, including the mitochondria, lipid droplets, endoplasmic reticulum, and peroxisomes that can be regulated mainly by feedback mechanisms and transcriptionally. The majority of sterol transport in yeast occurs via non-vesicular transport pathways mediated by lipid transfer proteins, which determine the quantity of sterol present in the cell membrane. Pathogenic fungi Candida, Aspergillus, and Cryptococcus species can cause a range of superficial to potentially fatal systemic and invasive infections that are more common in immunocompromised patients. There is a significant risk of morbidity and mortality from these infections, which are very difficult to cure. Several antifungal drugs with different modes of action have received clinical approval to treat fungal infections. Antifungal drugs targeting the ergosterol biosynthesis pathway are well-known for their antifungal activity; however, an imbalance in the regulation and transport of ergosterol could lead to resistance to antifungal therapy. This study summarizes how fungal sterol metabolism and regulation can modulate sterol-targeting antifungal drug resistance.
Collapse
|
4
|
Gaylord EA, Choy HL, Chen G, Briner SL, Doering TL. Sac1 links phosphoinositide turnover to cryptococcal virulence. mBio 2024; 15:e0149624. [PMID: 38953635 PMCID: PMC11323556 DOI: 10.1128/mbio.01496-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 07/04/2024] Open
Abstract
Cryptococcus neoformans is an environmentally acquired fungal pathogen that causes over 140,000 deaths per year. Cryptococcal infection occurs when infectious particles are deposited into the lung, where they encounter host phagocytic cells. C. neoformans may be engulfed by these phagocytes, an important step of infection that leads to outcomes ranging from termination of infection to cryptococcal dissemination. To study this critical process, we screened approximately 4,700 cryptococcal gene deletion mutants for altered uptake, using primary mouse and human phagocytic cells. Among the hits of these two screens, we identified 93 mutants with perturbed uptake in both systems, as well as others with differences in uptake by only one cell type. We further screened the hits for changes in thickness of the capsule, a protective polysaccharide layer around the cell which is an important cryptococcal virulence factor. The combination of our three screens yielded 45 mutants, including one lacking the phosphatidylinositol-4-phosphate phosphatase Sac1. In this work, we implicate Sac1 in both host cell uptake and capsule production. We found that sac1 mutants exhibit lipid trafficking defects, reductions in secretory system function, and changes in capsule size and composition. Many of these changes occur specifically in tissue culture media, highlighting the role of Sac1 phosphatase activity in responding to the stress of host-like conditions. Overall, these findings show how genome-scale screening can identify cellular factors that contribute to our understanding of cryptococcal biology and demonstrate the role of Sac1 in determining fungal virulence.IMPORTANCECryptococcus neoformans is a fungal pathogen with significant impact on global health. Cryptococcal cells inhaled from the environment are deposited into the lungs, where they first contact the human immune system. The interaction between C. neoformans and host cells is critical because this step of infection can determine whether the fungal cells die or proliferate within the human host. Despite the importance of this stage of infection, we have limited knowledge of cryptococcal factors that influence its outcome. In this study, we identify cryptococcal genes that affect uptake by both human and mouse cells. We also identify mutants with altered capsule, a protective coating that surrounds the cells to shield them from the host immune system. Finally, we characterize the role of one gene, SAC1, in these processes. Overall, this study contributes to our understanding of how C. neoformans interacts with and protects itself from host cells.
Collapse
Affiliation(s)
- Elizabeth A. Gaylord
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hau Lam Choy
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Guohua Chen
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sydney L. Briner
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tamara L. Doering
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Gaylord EA, Choy HL, Chen G, Briner SL, Doering TL. Sac1 links phosphoinositide turnover to cryptococcal virulence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576303. [PMID: 38293062 PMCID: PMC10827209 DOI: 10.1101/2024.01.18.576303] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Cryptococcus neoformans is an environmentally-acquired fungal pathogen that causes over 140,000 deaths per year. Cryptococcal infection occurs when infectious particles are deposited into the lung, where they encounter host phagocytic cells. C. neoformans may be engulfed by these phagocytes, an important step of infection that leads to outcomes ranging from termination of infection to cryptococcal dissemination. To study this critical process, we screened approximately 4,700 cryptococcal gene deletion mutants for altered uptake, using primary mouse and human phagocytic cells. Among the hits of these two screens, we identified 93 mutants with perturbed uptake in both systems, as well as others with differences in uptake by only one cell type. We further screened the hits for changes in thickness of the capsule, a protective polysaccharide layer around the cell which is an important cryptococcal virulence factor. The combination of our three screens yielded 45 mutants, including one lacking the phosphatidylinositol-4-phosphate phosphatase Sac1. In this work, we implicate Sac1 in both host cell uptake and capsule production. We found that sac1 mutants exhibit lipid trafficking defects, reductions in secretory system function, and changes in capsule size and composition. Many of these changes occur specifically in tissue culture media, highlighting the role of Sac1 phosphatase activity in responding to the stress of host-like conditions. Overall, these findings show how genome-scale screening can identify cellular factors that contribute to our understanding of cryptococcal biology and demonstrate the role of Sac1 in determining fungal virulence. IMPORTANCE Cryptococcus neoformans is a fungal pathogen with significant impact on global health. Cryptococcal cells inhaled from the environment are deposited into the lungs, where they first contact the human immune system. The interaction between C. neoformans and host cells is critical because this step of infection can determine whether the fungal cells die or proliferate within the human host. Despite the importance of this stage of infection, we have limited knowledge of cryptococcal factors that influence its outcome. In this study, we identify cryptococcal genes that affect uptake by both human and mouse cells. We also identify mutants with altered capsule, a protective coating that surrounds the cells to shield them from the host immune system. Finally, we characterize the role of one gene, SAC1 , in these processes. Overall, this study contributes to our understanding of how C. neoformans interacts with and protects itself from host cells.
Collapse
|
6
|
Panagiotou S, Tan KW, Nguyen PM, Müller A, Oqua AI, Tomas A, Wendt A, Eliasson L, Tengholm A, Solimena M, Idevall-Hagren O. OSBP-mediated PI(4)P-cholesterol exchange at endoplasmic reticulum-secretory granule contact sites controls insulin secretion. Cell Rep 2024; 43:113992. [PMID: 38536815 DOI: 10.1016/j.celrep.2024.113992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/07/2024] [Accepted: 03/07/2024] [Indexed: 04/28/2024] Open
Abstract
Insulin is packaged into secretory granules that depart the Golgi and undergo a maturation process that involves changes in the protein and lipid composition of the granules. Here, we show that insulin secretory granules form physical contacts with the endoplasmic reticulum and that the lipid exchange protein oxysterol-binding protein (OSBP) is recruited to these sites in a Ca2+-dependent manner. OSBP binding to insulin granules is positively regulated by phosphatidylinositol-4 (PI4)-kinases and negatively regulated by the PI4 phosphate (PI(4)P) phosphatase Sac2. Loss of Sac2 results in excess accumulation of cholesterol on insulin granules that is normalized when OSBP expression is reduced, and both acute inhibition and small interfering RNA (siRNA)-mediated knockdown of OSBP suppress glucose-stimulated insulin secretion without affecting insulin production or intracellular Ca2+ signaling. In conclusion, we show that lipid exchange at endoplasmic reticulum (ER)-granule contact sites is involved in the exocytic process and propose that these contacts act as reaction centers with multimodal functions during insulin granule maturation.
Collapse
Affiliation(s)
| | - Kia Wee Tan
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Phuoc My Nguyen
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Andreas Müller
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany; Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Affiong Ika Oqua
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Anna Wendt
- Department of Clinical Sciences, Lund University, Lund, Sweden; Lund University Diabetes Center (LUDC), Lund, Sweden
| | - Lena Eliasson
- Department of Clinical Sciences, Lund University, Lund, Sweden; Lund University Diabetes Center (LUDC), Lund, Sweden
| | - Anders Tengholm
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Michele Solimena
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany; Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | | |
Collapse
|
7
|
Fuggetta N, Rigolli N, Magdeleine M, Hamaï A, Seminara A, Drin G. Reconstitution of ORP-mediated lipid exchange coupled to PI4P metabolism. Proc Natl Acad Sci U S A 2024; 121:e2315493121. [PMID: 38408242 PMCID: PMC10927502 DOI: 10.1073/pnas.2315493121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/24/2024] [Indexed: 02/28/2024] Open
Abstract
Oxysterol-binding protein-related proteins (ORPs) play key roles in the distribution of lipids in eukaryotic cells by exchanging sterol or phosphatidylserine for PI4P between the endoplasmic reticulum (ER) and other cell regions. However, it is unclear how their exchange capacity is coupled to PI4P metabolism. To address this question quantitatively, we analyze the activity of a representative ORP, Osh4p, in an ER/Golgi interface reconstituted with ER- and Golgi-mimetic membranes functionalized with PI4P phosphatase Sac1p and phosphatidylinositol (PI) 4-kinase, respectively. Using real-time assays, we demonstrate that upon adenosine triphosphate (ATP) addition, Osh4p creates a sterol gradient between these membranes, relying on the spatially distant synthesis and hydrolysis of PI4P, and quantify how much PI4P is needed for this process. Then, we develop a quantitatively accurate kinetic model, validated by our data, and extrapolate this to estimate to what extent PI4P metabolism can drive ORP-mediated sterol transfer in cells. Finally, we show that Sec14p can support PI4P metabolism and Osh4p activity by transferring PI between membranes. This study establishes that PI4P synthesis drives ORP-mediated lipid exchange and that ATP energy is needed to generate intermembrane lipid gradients. Furthermore, it defines to what extent ORPs can distribute lipids in the cell and reassesses the role of PI-transfer proteins in PI4P metabolism.
Collapse
Affiliation(s)
- Nicolas Fuggetta
- Université Côte d’Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne06560, France
| | - Nicola Rigolli
- Department of Physics, École Normale Supérieure (LPENS), Paris75005, France
| | - Maud Magdeleine
- Université Côte d’Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne06560, France
| | - Amazigh Hamaï
- Université Côte d’Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne06560, France
| | - Agnese Seminara
- Malga, Department of Civil, Chemical and Environmental Engineering, University of Genoa, Genoa16145, Italy
| | - Guillaume Drin
- Université Côte d’Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne06560, France
| |
Collapse
|
8
|
Heckle LA, Kozminski KG. Osh-dependent and -independent Regulation of PI4P Levels During Polarized Growth of Saccharomyces cerevisiae. Mol Biol Cell 2023; 34:ar104. [PMID: 37556206 PMCID: PMC10559303 DOI: 10.1091/mbc.e23-03-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/03/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023] Open
Abstract
Polarized secretion facilitates polarized cell growth. For a secretory vesicle to dock at the plasma membrane, it must mature with a progressive association or dissociation of molecules that are, respectively, necessary for or inhibitory to vesicle docking, including an exchange of Rab GTPases. In current models, oxysterol-binding protein homologue 4 (Osh4p) establishes a phosphatidylinositol 4-phosphate (PI4P) gradient along the secretory trafficking pathway such that vesicles have higher PI4P levels after budding from the trans-Golgi relative to when vesicles arrive at the plasma membrane. In this study, using the lipid-binding domain P4M and live-cell imaging, we show that secretory vesicle-associated PI4P levels remain constant when vesicles traffic from the trans-Golgi to the plasma membrane. We also show that deletion of OSH4 does not alter vesicle-associated PI4P levels, though loss of any individual member of the OSH family or complete loss of OSH family function alters the intracellular distribution of PI4P. We propose a model in which the Rab GTPases Ypt32p and Sec4p remain associated with a secretory vesicle during trafficking, independent of PI4P levels and Osh4p. Together these data indicate the necessity of experiments revealing the location and timing of events required for vesicle maturation.
Collapse
Affiliation(s)
- Lindsay A. Heckle
- Department of Biology, University of Virginia, Charlottesville, VA 22904
| | - Keith G. Kozminski
- Department of Biology, University of Virginia, Charlottesville, VA 22904
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
9
|
Fuggetta N, Rigolli N, Magdeleine M, Seminara A, Drin G. Reconstitution of ORP-mediated lipid exchange process coupled to PI(4)P metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.551917. [PMID: 37577629 PMCID: PMC10418177 DOI: 10.1101/2023.08.04.551917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Lipid distribution in the eukaryotic cells depends on tight couplings between lipid transfer and lipid metabolism. Yet these couplings remain poorly described. Notably, it is unclear to what extent lipid exchangers of the OSBP-related proteins (ORPs) family, coupled to PI(4)P metabolism, contribute to the formation of sterol and phosphatidylserine gradient between the endoplasmic reticulum (ER) and other cell regions. To address this question, we have examined in vitro the activity of Osh4p, a representative ORP, between Golgi mimetic membranes in which PI(4)P is produced by a PI 4-kinase and ER mimetic membranes in which PI(4)P is hydrolyzed by the phosphatase Sac1p. Using quantitative, real-time assays, we demonstrate that Osh4p creates a sterol gradient between the two membranes by sterol/PI(4)P exchange as soon as a PI(4)P gradient is generated at this interface following ATP addition, and define how much PI(4)P must be synthesized for this process. Then, using a kinetic model supported by our in vitro data, we estimate to what extent PI(4)P metabolism can drive lipid transfer in cells. Finally, we show that Sec14p, by transferring phosphatidylinositol between membranes, can support the synthesis of PI(4)P and the creation of a sterol gradient by Osh4p. These results indicate to what extent ORPs, under the control of PI(4)P metabolism, can distribute lipids in the cell.
Collapse
Affiliation(s)
- Nicolas Fuggetta
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France
| | - Nicola Rigolli
- Laboratoire de Physique, École Normale Supérieure (LPENS), 75005 Paris, France
| | - Maud Magdeleine
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France
| | - Agnese Seminara
- Malga, Department of Civil, Chemical and Environmental Engineering, University of Genoa, Villa Cambiaso 1, 16145 Genoa, Italy
| | - Guillaume Drin
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France
| |
Collapse
|
10
|
Li X, Liu D, Griffis E, Novick P. Exploring the consequences of redirecting an exocytic Rab onto endocytic vesicles. Mol Biol Cell 2023; 34:ar38. [PMID: 36857153 PMCID: PMC10162416 DOI: 10.1091/mbc.e23-01-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Bidirectional vesicular traffic links compartments along the exocytic and endocytic pathways. Rab GTPases have been implicated in specifying the direction of vesicular transport. To explore this possibility, we sought to redirect an exocytic Rab, Sec4, onto endocytic vesicles by fusing the catalytic domain of the Sec4 GEF, Sec2, onto the CUE localization domain of Vps9, a GEF for the endocytic Rab Ypt51. The Sec2GEF-GFP-CUE construct localized to bright puncta predominantly near sites of polarized growth, and this localization was dependent on the ability of the CUE domain to bind to the ubiquitin moieties added to the cytoplasmic tails of proteins destined for endocytic internalization. Sec4 and Sec4 effectors were recruited to these puncta with various efficiencies. Cells expressing Sec2GEF-GFP-CUE grew surprisingly well and secreted protein at near-normal efficiency, implying that Golgi-derived secretory vesicles were delivered to polarized sites of cell growth despite the misdirection of Sec4 and its effectors. A low efficiency mechanism for localization of Sec2 to secretory vesicles that is independent of known cues might be responsible. In total, the results suggest that while Rabs may play a critical role in specifying the direction of vesicular transport, cells are remarkably tolerant of Rab misdirection.
Collapse
Affiliation(s)
- Xia Li
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0644
| | - Dongmei Liu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0644
| | - Eric Griffis
- Nikon Imaging Center, University of California, San Diego, La Jolla, CA 92093-0694
| | - Peter Novick
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0644
| |
Collapse
|
11
|
Li X, Liu D, Griffis E, Novick P. Exploring the consequences of redirecting an exocytic Rab onto endocytic vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527811. [PMID: 36798320 PMCID: PMC9934678 DOI: 10.1101/2023.02.09.527811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Bidirectional vesicular traffic links compartments along the exocytic and endocytic pathways. Rab GTPases have been implicated in specifying the direction of vesicular transport because anterograde vesicles are marked with a different Rab than retrograde vesicles. To explore this proposal, we sought to redirect an exocytic Rab, Sec4, onto endocytic vesicles by fusing the catalytic domain of the Sec4 GEF, Sec2, onto the CUE localization domain of Vps9, a GEF for the endocytic Rab, Ypt51. The Sec2GEF-GFP-CUE construct was found to localize to bright puncta predominantly near sites of polarized growth and this localization was strongly dependent upon the ability of the CUE domain to bind to the ubiquitin moieties added to the cytoplasmic tails of proteins destined for endocytic internalization. Sec4 and Sec4 effectors were recruited to these puncta with varying efficiency. The puncta appeared to consist of clusters of 80 nm vesicles and although the puncta are largely static, FRAP analysis suggests that traffic into and out of these clusters continues. Cells expressing Sec2GEF-GFP-CUE grew surprisingly well and secreted protein at near normal efficiency, implying that Golgi derived secretory vesicles were delivered to polarized sites of cell growth, where they tethered and fused with the plasma membrane despite the misdirection of Sec4 and its effectors. In total, the results suggest that while Rabs play a critical role in regulating vesicular transport, cells are remarkably tolerant of Rab misdirection.
Collapse
Affiliation(s)
- Xia Li
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California, United States
| | - Dongmei Liu
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California, United States
| | - Eric Griffis
- Nikon Imaging Center, University of California at San Diego, La Jolla, California, United States
| | - Peter Novick
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California, United States
| |
Collapse
|
12
|
Arabiotorre A, Formanowicz M, Bankaitis VA, Grabon A. Phosphatidylinositol-4-phosphate signaling regulates dense granule biogenesis and exocytosis in Toxoplasma gondii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523261. [PMID: 36712082 PMCID: PMC9882004 DOI: 10.1101/2023.01.09.523261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Phosphoinositide metabolism defines the foundation of a major signaling pathway that is conserved throughout the eukaryotic kingdom. The 4-OH phosphorylated phosphoinositides such as phosphatidylinositol-4-phosphate (PtdIns4P) and phosphatidylinositol-4,5-bisphosphate are particularly important molecules as these execute intrinsically essential activities required for the viability of all eukaryotic cells studied thus far. Using intracellular tachyzoites of the apicomplexan parasite Toxoplasma gondii as model for assessing primordial roles for PtdIns4P signaling, we demonstrate the presence of PtdIns4P pools in Golgi/trans-Golgi (TGN) system and in post-TGN compartments of the parasite. Moreover, we show that deficits in PtdIns4P signaling result in structural perturbation of compartments that house dense granule cargo with accompanying deficits in dense granule exocytosis. Taken together, the data report a direct role for PtdIns4P in dense granule biogenesis and exocytosis. The data further indicate that the biogenic pathway for secretion-competent dense granule formation in T. gondii is more complex than simple budding of fully matured dense granules from the TGN.
Collapse
Affiliation(s)
- Angela Arabiotorre
- Department of Cell Biology & Genetics, College of Medicine, Texas A&M Health Sciences Center, College Station, Texas 77843-1114, USA
| | - Megan Formanowicz
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843-2128
| | - Vytas A. Bankaitis
- Department of Cell Biology & Genetics, College of Medicine, Texas A&M Health Sciences Center, College Station, Texas 77843-1114, USA
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843-2128
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-2128
| | - Aby Grabon
- Department of Cell Biology & Genetics, College of Medicine, Texas A&M Health Sciences Center, College Station, Texas 77843-1114, USA
| |
Collapse
|
13
|
Basante-Bedoya MA, Bogliolo S, Garcia-Rodas R, Zaragoza O, Arkowitz RA, Bassilana M. Two distinct lipid transporters together regulate invasive filamentous growth in the human fungal pathogen Candida albicans. PLoS Genet 2022; 18:e1010549. [PMID: 36516161 PMCID: PMC9797089 DOI: 10.1371/journal.pgen.1010549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/28/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Flippases transport lipids across the membrane bilayer to generate and maintain asymmetry. The human fungal pathogen Candida albicans has 5 flippases, including Drs2, which is critical for filamentous growth and phosphatidylserine (PS) distribution. Furthermore, a drs2 deletion mutant is hypersensitive to the antifungal drug fluconazole and copper ions. We show here that such a flippase mutant also has an altered distribution of phosphatidylinositol 4-phosphate [PI(4)P] and ergosterol. Analyses of additional lipid transporters, i.e. the flippases Dnf1-3, and all the oxysterol binding protein (Osh) family lipid transfer proteins, i.e. Osh2-4 and Osh7, indicate that they are not critical for filamentous growth. However, deletion of Osh4 alone, which exchanges PI(4)P for sterol, in a drs2 mutant can bypass the requirement for this flippase in invasive filamentous growth. In addition, deletion of the lipid phosphatase Sac1, which dephosphorylates PI(4)P, in a drs2 mutant results in a synthetic growth defect, suggesting that Drs2 and Sac1 function in parallel pathways. Together, our results indicate that a balance between the activities of two putative lipid transporters regulates invasive filamentous growth, via PI(4)P. In contrast, deletion of OSH4 in drs2 does not restore growth on fluconazole, nor on papuamide A, a toxin that binds PS in the outer leaflet of the plasma membrane, suggesting that Drs2 has additional role(s) in plasma membrane organization, independent of Osh4. As we show that C. albicans Drs2 localizes to different structures, including the Spitzenkörper, we investigated if a specific localization of Drs2 is critical for different functions, using a synthetic physical interaction approach to restrict/stabilize Drs2 at the Spitzenkörper. Our results suggest that the localization of Drs2 at the plasma membrane is critical for C. albicans growth on fluconazole and papuamide A, but not for invasive filamentous growth.
Collapse
Affiliation(s)
| | | | - Rocio Garcia-Rodas
- Université Côte d’Azur, CNRS, INSERM, iBV, Parc Valrose, Nice, FRANCE
- Mycology Reference Laboratory, National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Madrid, Spain
| | - Oscar Zaragoza
- Mycology Reference Laboratory, National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Madrid, Spain
- Center for Biomedical Research in Network in Infectious Diseases (CIBERINFEC-CB21/13/00105), Health Institute Carlos III, Madrid, Spain
| | | | - Martine Bassilana
- Université Côte d’Azur, CNRS, INSERM, iBV, Parc Valrose, Nice, FRANCE
- * E-mail:
| |
Collapse
|
14
|
Creating and sensing asymmetric lipid distributions throughout the cell. Emerg Top Life Sci 2022; 7:7-19. [PMID: 36373850 DOI: 10.1042/etls20220028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022]
Abstract
A key feature of eukaryotic cells is the asymmetric distribution of lipids along their secretory pathway. Because of the biological significance of these asymmetries, it is crucial to define the mechanisms which create them. Extensive studies have led to the identification of lipid transfer proteins (LTPs) that work with lipid-synthesizing enzymes to carry lipids between two distinct membranes in a directional manner, and are thus able to create asymmetries in lipid distribution throughout the cell. These networks are often in contact sites where two organelle membranes are in close proximity for reasons we have only recently started to understand. A question is whether these networks transfer lipids en masse within the cells or adjust the lipid composition of organelle membranes. Finally, recent data have confirmed that some networks organized around LTPs do not generate lipid asymmetries between membranes but sense them and rectify the lipid content of the cell.
Collapse
|
15
|
Kadhim I, Begum N, King W, Xu L, Tang F. Up-regulation of Osh6 boosts an anti-aging membrane trafficking pathway toward vacuoles. MICROBIAL CELL (GRAZ, AUSTRIA) 2022; 9:145-157. [PMID: 35974810 PMCID: PMC9344199 DOI: 10.15698/mic2022.08.783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 06/09/2022] [Accepted: 06/18/2022] [Indexed: 11/30/2022]
Abstract
Members of the family of oxysterol-binding proteins mediate non-vesicular lipid transport between membranes and contribute to longevity in different manners. We previously found that a 2-fold up-regulation of Osh6, one of seven yeast oxysterol-binding proteins, remedies vacuolar morphology defects in mid-aged cells, partly down-regulates the target of rapamycin complex 1 (TORC1), and increases the replicative lifespan. At the molecular level, Osh6 transports phosphatidylserine (PS) and phosphatidylinositol-4-phosphate (PI4P) between the endoplasmic reticulum (ER) and the plasma membrane (PM). To decipher how an ER-PM working protein controls vacuolar morphology, we tested genetic interactions between OSH6 and DRS2, whose protein flips PS from the lumen to the cytosolic side of the Golgi, the organelle between ER and vacuoles in many pathways. Up-regulated OSH6 complemented vacuolar morphology of drs2Δ and enriched PI4P on the Golgi, indicating that Osh6 also works on the Golgi. This altered PI4P-enrichment led to a delay in the secretion of the proton ATPase Pma1 to the PM and a rerouting of Pma1 to vacuoles in a manner dependent on the trans-Golgi network (TGN) to late endosome (LE) trafficking pathway. Since the TGN-LE pathway controls endosomal and vacuolar TORC1, it may be the anti-aging pathway boosted by up-regulated Osh6.
Collapse
Affiliation(s)
- Ilham Kadhim
- Department of Biology, University of Arkansas, Little Rock, AR 72204, USA
| | - Nazneen Begum
- Department of Biology, University of Arkansas, Little Rock, AR 72204, USA
| | - William King
- Department of Biology, University of Arkansas, Little Rock, AR 72204, USA
| | - Licheng Xu
- Department of Biology, University of Arkansas, Little Rock, AR 72204, USA
| | - Fusheng Tang
- Department of Biology, University of Arkansas, Little Rock, AR 72204, USA
| |
Collapse
|
16
|
Chen MM, Yang SR, Wang J, Fang YL, Peng YL, Fan J. Fungal oxysterol-binding protein-related proteins promote pathogen virulence and activate plant immunity. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2125-2141. [PMID: 34864987 DOI: 10.1093/jxb/erab530] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
Oxysterol-binding protein-related proteins (ORPs) are a conserved class of lipid transfer proteins that are closely involved in multiple cellular processes in eukaryotes, but their roles in plant-pathogen interactions are mostly unknown. We show that transient expression of ORPs of Magnaporthe oryzae (MoORPs) in Nicotiana benthamina plants triggered oxidative bursts and cell death; treatment of tobacco Bright Yellow-2 suspension cells with recombinant MoORPs elicited the production of reactive oxygen species. Despite ORPs being normally described as intracellular proteins, we detected MoORPs in fungal culture filtrates and intercellular fluids from barley plants infected with the fungus. More importantly, infiltration of Arabidopsis plants with recombinant Arabidopsis or fungal ORPs activated oxidative bursts, callose deposition, and PR1 gene expression, and enhanced plant disease resistance, implying that ORPs may function as endogenous and exogenous danger signals triggering plant innate immunity. Extracellular application of fungal ORPs exerted an opposite impact on salicylic acid and jasmonic acid/ethylene signaling pathways. Brassinosteroid Insensitive 1-associated Kinase 1 was dispensable for the ORP-activated defense. Besides, simultaneous knockout of MoORP1 and MoORP3 abolished fungal colony radial growth and conidiation, whereas double knockout of MoORP1 and MoORP2 compromised fungal virulence on barley and rice plants. These observations collectively highlight the multifaceted role of MoORPs in the modulation of plant innate immunity and promotion of fungal development and virulence in M. oryzae.
Collapse
Affiliation(s)
- Meng-Meng Chen
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Si-Ru Yang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jian Wang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Ya-Li Fang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - You-Liang Peng
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Jun Fan
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
17
|
Arora A, Taskinen JH, Olkkonen VM. Coordination of inter-organelle communication and lipid fluxes by OSBP-related proteins. Prog Lipid Res 2022; 86:101146. [PMID: 34999137 DOI: 10.1016/j.plipres.2022.101146] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/10/2021] [Accepted: 01/03/2022] [Indexed: 12/31/2022]
Abstract
Oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) constitute one of the largest families of lipid-binding/transfer proteins (LTPs) in eukaryotes. The current view is that many of them mediate inter-organelle lipid transfer over membrane contact sites (MCS). The transfer occurs in several cases in a 'counter-current' fashion: A lipid such as cholesterol or phosphatidylserine (PS) is transferred against its concentration gradient driven by transport of a phosphoinositide in the opposite direction. In this way ORPs are envisioned to maintain the distinct organelle lipid compositions, with impacts on multiple organelle functions. However, the functions of ORPs extend beyond lipid homeostasis to regulation of processes such as cell survival, proliferation and migration. Important expanding areas of mammalian ORP research include their roles in viral and bacterial infections, cancers, and neuronal function. The yeast OSBP homologue (Osh) proteins execute multifaceted functions in sterol and glycerophospholipid homeostasis, post-Golgi vesicle transport, phosphatidylinositol-4-phosphate, sphingolipid and target of rapamycin (TOR) signalling, and cell cycle control. These observations identify ORPs as lipid transporters and coordinators of signals with an unforeseen variety of cellular processes. Understanding their activities not only enlightens the biology of the living cell but also allows their employment as targets of new therapeutic approaches for disease.
Collapse
Affiliation(s)
- Amita Arora
- Minerva Foundation Institute for Medical Research, and Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland
| | - Juuso H Taskinen
- Minerva Foundation Institute for Medical Research, and Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, and Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland.
| |
Collapse
|
18
|
Nakamura TS, Suda Y, Muneshige K, Fujieda Y, Okumura Y, Inoue I, Tanaka T, Takahashi T, Nakanishi H, Gao XD, Okada Y, Neiman AM, Tachikawa H. Suppression of Vps13 adaptor protein mutants reveals a central role for PI4P in regulating prospore membrane extension. PLoS Genet 2021; 17:e1009727. [PMID: 34407079 PMCID: PMC8372973 DOI: 10.1371/journal.pgen.1009727] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/20/2021] [Indexed: 01/19/2023] Open
Abstract
Vps13 family proteins are proposed to function in bulk lipid transfer between membranes, but little is known about their regulation. During sporulation of Saccharomyces cerevisiae, Vps13 localizes to the prospore membrane (PSM) via the Spo71–Spo73 adaptor complex. We previously reported that loss of any of these proteins causes PSM extension and subsequent sporulation defects, yet their precise function remains unclear. Here, we performed a genetic screen and identified genes coding for a fragment of phosphatidylinositol (PI) 4-kinase catalytic subunit and PI 4-kinase noncatalytic subunit as multicopy suppressors of spo73Δ. Further genetic and cytological analyses revealed that lowering PI4P levels in the PSM rescues the spo73Δ defects. Furthermore, overexpression of VPS13 and lowering PI4P levels synergistically rescued the defect of a spo71Δ spo73Δ double mutant, suggesting that PI4P might regulate Vps13 function. In addition, we show that an N-terminal fragment of Vps13 has affinity for the endoplasmic reticulum (ER), and ER-plasma membrane (PM) tethers localize along the PSM in a manner dependent on Vps13 and the adaptor complex. These observations suggest that Vps13 and the adaptor complex recruit ER-PM tethers to ER-PSM contact sites. Our analysis revealed that involvement of a phosphoinositide, PI4P, in regulation of Vps13, and also suggest that distinct contact site proteins function cooperatively to promote de novo membrane formation. Vps13 family proteins are conserved lipid transfer proteins that function at organelle contact sites and have been implicated in a number of different neurological diseases. In the yeast Saccharomyces cerevisiae, Vps13 is encoded by a single gene and is localized to various contact sites by interaction with different adaptor proteins and/or lipids, however its regulation is yet to be clarified. We have previously shown that during the developmental process of sporulation, Vps13 is recruited to de novo membrane structures called prospore membranes (PSMs) by a specific adaptor complex, and Vps13 and its adaptors are required for PSM extension. Here we reveal that loss of an adaptor can be overcome by lowering phosphatidylinositol-4-phosphate (PI4P) levels, either by inhibiting PI 4-kinase on the PSM or recruiting PI 4-phospatase to the PSM and that PI4P levels in the PSM affect Vps13 function. Further, we show that Vps13 forms endoplasmic reticulum (ER)-PSM contact sites, that ER-plasma membrane tethering proteins are recruited to ER-PSM contacts, and these proteins may function in conjunction with Vps13. Thus, our work shines light on both the mechanisms of intracellular remodeling and the function of this important class of lipid transfer proteins.
Collapse
Affiliation(s)
- Tsuyoshi S. Nakamura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Kanagawa, Japan
| | - Yasuyuki Suda
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, Ibaraki, Japan
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Saitama, Japan
| | - Kenji Muneshige
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuji Fujieda
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuuya Okumura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ichiro Inoue
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takayuki Tanaka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tetsuo Takahashi
- Laboratory of Glycobiology and Glycotechnology, Department of Applied Biochemistry, School of Engineering, Tokai University, Kanagawa, Japan
| | - Hideki Nakanishi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yasushi Okada
- Laboratory for Cell Dynamics Observation, Center for Biosystems Dynamics Research, RIKEN, Osaka, Japan
- Department of Physics and Universal Biology Institute, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Department of Physics, Universal Biology Institute, and the International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| | - Aaron M. Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Hiroyuki Tachikawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
19
|
Borchers AC, Langemeyer L, Ungermann C. Who's in control? Principles of Rab GTPase activation in endolysosomal membrane trafficking and beyond. J Cell Biol 2021; 220:212549. [PMID: 34383013 PMCID: PMC8366711 DOI: 10.1083/jcb.202105120] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
The eukaryotic endomembrane system consists of multiple interconnected organelles. Rab GTPases are organelle-specific markers that give identity to these membranes by recruiting transport and trafficking proteins. During transport processes or along organelle maturation, one Rab is replaced by another, a process termed Rab cascade, which requires at its center a Rab-specific guanine nucleotide exchange factor (GEF). The endolysosomal system serves here as a prime example for a Rab cascade. Along with endosomal maturation, the endosomal Rab5 recruits and activates the Rab7-specific GEF Mon1-Ccz1, resulting in Rab7 activation on endosomes and subsequent fusion of endosomes with lysosomes. In this review, we focus on the current idea of Mon1-Ccz1 recruitment and activation in the endolysosomal and autophagic pathway. We compare identified principles to other GTPase cascades on endomembranes, highlight the importance of regulation, and evaluate in this context the strength and relevance of recent developments in in vitro analyses to understand the underlying foundation of organelle biogenesis and maturation.
Collapse
Affiliation(s)
- Ann-Christin Borchers
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany
| | - Lars Langemeyer
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany
| | - Christian Ungermann
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany.,Center of Cellular Nanoanalytics Osnabrück (CellNanOs), Osnabrück University, Osnabrück, Germany
| |
Collapse
|
20
|
Borgese N, Iacomino N, Colombo SF, Navone F. The Link between VAPB Loss of Function and Amyotrophic Lateral Sclerosis. Cells 2021; 10:1865. [PMID: 34440634 PMCID: PMC8392409 DOI: 10.3390/cells10081865] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
The VAP proteins are integral adaptor proteins of the endoplasmic reticulum (ER) membrane that recruit a myriad of interacting partners to the ER surface. Through these interactions, the VAPs mediate a large number of processes, notably the generation of membrane contact sites between the ER and essentially all other cellular membranes. In 2004, it was discovered that a mutation (p.P56S) in the VAPB paralogue causes a rare form of dominantly inherited familial amyotrophic lateral sclerosis (ALS8). The mutant protein is aggregation-prone, non-functional and unstable, and its expression from a single allele appears to be insufficient to support toxic gain-of-function effects within motor neurons. Instead, loss-of-function of the single wild-type allele is required for pathological effects, and VAPB haploinsufficiency may be the main driver of the disease. In this article, we review the studies on the effects of VAPB deficit in cellular and animal models. Several basic cell physiological processes are affected by downregulation or complete depletion of VAPB, impinging on phosphoinositide homeostasis, Ca2+ signalling, ion transport, neurite extension, and ER stress. In the future, the distinction between the roles of the two VAP paralogues (A and B), as well as studies on motor neurons generated from induced pluripotent stem cells (iPSC) of ALS8 patients will further elucidate the pathogenic basis of p.P56S familial ALS, as well as of other more common forms of the disease.
Collapse
Affiliation(s)
- Nica Borgese
- CNR Institute of Neuroscience, Via Follereau 3, Bldg U28, 20854 Vedano al Lambro, Italy; (N.I.); (S.F.C.)
| | | | | | - Francesca Navone
- CNR Institute of Neuroscience, Via Follereau 3, Bldg U28, 20854 Vedano al Lambro, Italy; (N.I.); (S.F.C.)
| |
Collapse
|
21
|
Encinar Del Dedo J, Fernández-Golbano IM, Pastor L, Meler P, Ferrer-Orta C, Rebollo E, Geli MI. Coupled sterol synthesis and transport machineries at ER-endocytic contact sites. J Cell Biol 2021; 220:212484. [PMID: 34283201 PMCID: PMC8294947 DOI: 10.1083/jcb.202010016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 05/27/2021] [Accepted: 06/29/2021] [Indexed: 12/17/2022] Open
Abstract
Sterols are unevenly distributed within cellular membranes. How their biosynthetic and transport machineries are organized to generate heterogeneity is largely unknown. We previously showed that the yeast sterol transporter Osh2 is recruited to endoplasmic reticulum (ER)–endocytic contacts to facilitate actin polymerization. We now find that a subset of sterol biosynthetic enzymes also localizes at these contacts and interacts with Osh2 and the endocytic machinery. Following the sterol dynamics, we show that Osh2 extracts sterols from these subdomains, which we name ERSESs (ER sterol exit sites). Further, we demonstrate that coupling of the sterol synthesis and transport machineries is required for endocytosis in mother cells, but not in daughters, where plasma membrane loading with accessible sterols and endocytosis are linked to secretion.
Collapse
Affiliation(s)
| | | | - Laura Pastor
- Institute for Molecular Biology of Barcelona, Spanish Research Council, Barcelona, Spain
| | - Paula Meler
- Institute for Molecular Biology of Barcelona, Spanish Research Council, Barcelona, Spain
| | - Cristina Ferrer-Orta
- Institute for Molecular Biology of Barcelona, Spanish Research Council, Barcelona, Spain
| | - Elena Rebollo
- Institute for Molecular Biology of Barcelona, Spanish Research Council, Barcelona, Spain
| | - Maria Isabel Geli
- Institute for Molecular Biology of Barcelona, Spanish Research Council, Barcelona, Spain
| |
Collapse
|
22
|
Delfosse V, Bourguet W, Drin G. Structural and Functional Specialization of OSBP-Related Proteins. ACTA ACUST UNITED AC 2020. [DOI: 10.1177/2515256420946627] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Lipids are precisely distributed in the eukaryotic cell where they help to define organelle identity and function, in addition to their structural role. Once synthesized, many lipids must be delivered to other compartments by non-vesicular routes, a process that is undertaken by proteins called Lipid Transfer Proteins (LTPs). OSBP and the closely-related ORP and Osh proteins constitute a major, evolutionarily conserved family of LTPs in eukaryotes. Most of these target one or more subcellular regions, and membrane contact sites in particular, where two organelle membranes are in close proximity. It was initially thought that such proteins were strictly dedicated to sterol sensing or transport. However, over the last decade, numerous studies have revealed that these proteins have many more functions, and we have expanded our understanding of their mechanisms. In particular, many of them are lipid exchangers that exploit PI(4)P or possibly other phosphoinositide gradients to directionally transfer sterol or PS between two compartments. Importantly, these transfer activities are tightly coupled to processes such as lipid metabolism, cellular signalling and vesicular trafficking. This review describes the molecular architecture of OSBP/ORP/Osh proteins, showing how their specific structural features and internal configurations impart unique cellular functions.
Collapse
Affiliation(s)
- Vanessa Delfosse
- Centre de Biochimie Structurale, Inserm, CNRS, Univ Montpellier, Montpellier, France
| | - William Bourguet
- Centre de Biochimie Structurale, Inserm, CNRS, Univ Montpellier, Montpellier, France
| | - Guillaume Drin
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne, France
| |
Collapse
|
23
|
ORP/Osh mediate cross-talk between ER-plasma membrane contact site components and plasma membrane SNAREs. Cell Mol Life Sci 2020; 78:1689-1708. [PMID: 32734583 PMCID: PMC7904734 DOI: 10.1007/s00018-020-03604-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/06/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023]
Abstract
OSBP-homologous proteins (ORPs, Oshp) are lipid binding/transfer proteins. Several ORP/Oshp localize to membrane contacts between the endoplasmic reticulum (ER) and the plasma membrane, where they mediate lipid transfer or regulate lipid-modifying enzymes. A common way in which they target contacts is by binding to the ER proteins, VAP/Scs2p, while the second membrane is targeted by other interactions with lipids or proteins.We have studied the cross-talk of secretory SNARE proteins and their regulators with ORP/Oshp and VAPA/Scs2p at ER-plasma membrane contact sites in yeast and murine primary neurons. We show that Oshp-Scs2p interactions depend on intact secretory SNARE proteins, especially Sec9p. SNAP-25/Sec9p directly interact with ORP/Osh proteins and their disruption destabilized the ORP/Osh proteins, associated with dysfunction of VAPA/Scs2p. Deleting OSH1-3 in yeast or knocking down ORP2 in primary neurons reduced the oligomerization of VAPA/Scs2p and affected their multiple interactions with SNAREs. These observations reveal a novel cross-talk between the machineries of ER-plasma membrane contact sites and those driving exocytosis.
Collapse
|
24
|
Lipp NF, Ikhlef S, Milanini J, Drin G. Lipid Exchangers: Cellular Functions and Mechanistic Links With Phosphoinositide Metabolism. Front Cell Dev Biol 2020; 8:663. [PMID: 32793602 PMCID: PMC7385082 DOI: 10.3389/fcell.2020.00663] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/01/2020] [Indexed: 12/28/2022] Open
Abstract
Lipids are amphiphilic molecules that self-assemble to form biological membranes. Thousands of lipid species coexist in the cell and, once combined, define organelle identity. Due to recent progress in lipidomic analysis, we now know how lipid composition is finely tuned in different subcellular regions. Along with lipid synthesis, remodeling and flip-flop, lipid transfer is one of the active processes that regulates this intracellular lipid distribution. It is mediated by Lipid Transfer Proteins (LTPs) that precisely move certain lipid species across the cytosol and between the organelles. A particular subset of LTPs from three families (Sec14, PITP, OSBP/ORP/Osh) act as lipid exchangers. A striking feature of these exchangers is that they use phosphatidylinositol or phosphoinositides (PIPs) as a lipid ligand and thereby have specific links with PIP metabolism and are thus able to both control the lipid composition of cellular membranes and their signaling capacity. As a result, they play pivotal roles in cellular processes such as vesicular trafficking and signal transduction at the plasma membrane. Recent data have shown that some PIPs are used as energy by lipid exchangers to generate lipid gradients between organelles. Here we describe the importance of lipid counter-exchange in the cell, its structural basis, and presumed links with pathologies.
Collapse
Affiliation(s)
- Nicolas-Frédéric Lipp
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Valbonne, France
| | - Souade Ikhlef
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Valbonne, France
| | - Julie Milanini
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Valbonne, France
| | - Guillaume Drin
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Valbonne, France
| |
Collapse
|
25
|
Stalder D, Gershlick DC. Direct trafficking pathways from the Golgi apparatus to the plasma membrane. Semin Cell Dev Biol 2020; 107:112-125. [PMID: 32317144 PMCID: PMC7152905 DOI: 10.1016/j.semcdb.2020.04.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022]
Abstract
In eukaryotic cells, protein sorting is a highly regulated mechanism important for many physiological events. After synthesis in the endoplasmic reticulum and trafficking to the Golgi apparatus, proteins sort to many different cellular destinations including the endolysosomal system and the extracellular space. Secreted proteins need to be delivered directly to the cell surface. Sorting of secreted proteins from the Golgi apparatus has been a topic of interest for over thirty years, yet there is still no clear understanding of the machinery that forms the post-Golgi carriers. Most evidence points to these post-Golgi carriers being tubular pleomorphic structures that bud from the trans-face of the Golgi. In this review, we present the background studies and highlight the key components of this pathway, we then discuss the machinery implicated in the formation of these carriers, their translocation across the cytosol, and their fusion at the plasma membrane.
Collapse
Key Words
- ATP, adenosine triphosphate
- BFA, Brefeldin A
- CARTS, CARriers of the TGN to the cell Surface
- CI-MPR, cation-independent mannose-6 phosphate receptor
- Constitutive Secretion
- CtBP3/BARS, C-terminus binding protein 3/BFA adenosine diphosphate–ribosylated substrate
- ER, endoplasmic reticulum
- GPI-anchored proteins, glycosylphosphatidylinositol-anchored proteins
- GlcCer, glucosylceramidetol
- Golgi to plasma membrane sorting
- PAUF, pancreatic adenocarcinoma up-regulated factor
- PKD, Protein Kinase D
- RUSH, retention using selective hooks
- SBP, streptavidin-binding peptide
- SM, sphingomyelin
- SNARE, soluble N-ethylmaleimide sensitive fusion protein attachment protein receptor
- SPCA1, secretory pathway calcium ATPase 1
- Secretion
- TGN, trans-Golgi Network
- TIRF, total internal reflection fluorescence
- VSV, vesicular stomatitis virus
- pleomorphic tubular carriers
- post-Golgi carriers
- ts, temperature sensitive
Collapse
Affiliation(s)
- Danièle Stalder
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - David C Gershlick
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
26
|
Abstract
Lipids are distributed in a highly heterogeneous fashion in different cellular membranes. Only a minority of lipids achieve their final intracellular distribution through transport by vesicles. Instead, the bulk of lipid traffic is mediated by a large group of lipid transfer proteins (LTPs), which move small numbers of lipids at a time using hydrophobic cavities that stabilize lipid molecules outside membranes. Although the first LTPs were discovered almost 50 years ago, most progress in understanding these proteins has been made in the past few years, leading to considerable temporal and spatial refinement of our understanding of the function of these lipid transporters. The number of known LTPs has increased, with exciting discoveries of their multimeric assembly. Structural studies of LTPs have progressed from static crystal structures to dynamic structural approaches that show how conformational changes contribute to lipid handling at a sub-millisecond timescale. A major development has been the finding that many intracellular LTPs localize to two organelles at the same time, forming a shuttle, bridge or tube that links donor and acceptor compartments. The understanding of how different lipids achieve their final destination at the molecular level allows a better explanation of the range of defects that occur in diseases associated with lipid transport and distribution, opening up the possibility of developing therapies that specifically target lipid transfer.
Collapse
|
27
|
Nguyen PM, Gandasi NR, Xie B, Sugahara S, Xu Y, Idevall-Hagren O. The PI(4)P phosphatase Sac2 controls insulin granule docking and release. J Cell Biol 2019; 218:3714-3729. [PMID: 31533953 PMCID: PMC6829663 DOI: 10.1083/jcb.201903121] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/20/2019] [Accepted: 08/08/2019] [Indexed: 12/12/2022] Open
Abstract
Insulin granule biogenesis involves transport to, and stable docking at, the plasma membrane before priming and fusion. Defects in this pathway result in impaired insulin secretion and are a hallmark of type 2 diabetes. We now show that the phosphatidylinositol 4-phosphate phosphatase Sac2 localizes to insulin granules in a substrate-dependent manner and that loss of Sac2 results in impaired insulin secretion. Sac2 operates upstream of granule docking, since loss of Sac2 prevented granule tethering to the plasma membrane and resulted in both reduced granule density and number of exocytic events. Sac2 levels correlated positively with the number of docked granules and exocytic events in clonal β cells and with insulin secretion in human pancreatic islets, and Sac2 expression was reduced in islets from type 2 diabetic subjects. Taken together, we identified a phosphoinositide switch on the surface on insulin granules that is required for stable granule docking at the plasma membrane and impaired in human type 2 diabetes.
Collapse
Affiliation(s)
- Phuoc My Nguyen
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Nikhil R Gandasi
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Beichen Xie
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Sari Sugahara
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.,Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Yingke Xu
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
| | | |
Collapse
|
28
|
An electrostatic switching mechanism to control the lipid transfer activity of Osh6p. Nat Commun 2019; 10:3926. [PMID: 31477717 PMCID: PMC6718676 DOI: 10.1038/s41467-019-11780-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/01/2019] [Indexed: 02/01/2023] Open
Abstract
A central assumption is that lipid transfer proteins (LTPs) bind transiently to organelle membranes to distribute lipids in the eukaryotic cell. Osh6p and Osh7p are yeast LTPs that transfer phosphatidylserine (PS) from the endoplasmic reticulum (ER) to the plasma membrane (PM) via PS/phosphatidylinositol-4-phosphate (PI4P) exchange cycles. It is unknown how, at each cycle, they escape from the electrostatic attraction of the PM, highly anionic, to return to the ER. Using cellular and in vitro approaches, we show that Osh6p reduces its avidity for anionic membranes once it captures PS or PI4P, due to a molecular lid closing its lipid-binding pocket. Thus, Osh6p maintains its transport activity between ER- and PM-like membranes. Further investigations reveal that the lid governs the membrane docking and activity of Osh6p because it is anionic. Our study unveils how an LTP self-limits its residency time on membranes, via an electrostatic switching mechanism, to transfer lipids efficiently. Osh6p and Osh7p are yeast lipid transfer proteins (LTPs) that must transiently interact with membranes but how they escape from the electrostatic attraction of the plasma membrane is unclear. Here authors show that Osh6p reduces its avidity for anionic membranes once it captures PS or PI4P, due to a molecular lid closing its lipid-binding pocket.
Collapse
|
29
|
Genevini P, Colombo MN, Venditti R, Marcuzzo S, Colombo SF, Bernasconi P, De Matteis MA, Borgese N, Navone F. VAPB depletion alters neuritogenesis and phosphoinositide balance in motoneuron-like cells: relevance to VAPB-linked amyotrophic lateral sclerosis. J Cell Sci 2019; 132:jcs.220061. [PMID: 30745341 DOI: 10.1242/jcs.220061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 02/01/2019] [Indexed: 12/12/2022] Open
Abstract
VAPB and VAPA are ubiquitously expressed endoplasmic reticulum membrane proteins that play key roles in lipid exchange at membrane contact sites. A mutant, aggregation-prone, form of VAPB (P56S) is linked to a dominantly inherited form of amyotrophic lateral sclerosis; however, it has been unclear whether its pathogenicity is due to toxic gain of function, to negative dominance, or simply to insufficient levels of the wild-type protein produced from a single allele (haploinsufficiency). To investigate whether reduced levels of functional VAPB, independently from the presence of the mutant form, affect the physiology of mammalian motoneuron-like cells, we generated NSC34 clones, from which VAPB was partially or nearly completely depleted. VAPA levels, determined to be over fourfold higher than those of VAPB in untransfected cells, were unaffected. Nonetheless, cells with even partially depleted VAPB showed an increase in Golgi- and acidic vesicle-localized phosphatidylinositol-4-phosphate (PI4P) and reduced neurite extension when induced to differentiate. Conversely, the PI4 kinase inhibitors PIK93 and IN-10 increased neurite elongation. Thus, for long-term survival, motoneurons might require the full dose of functional VAPB, which may have unique function(s) that VAPA cannot perform.
Collapse
Affiliation(s)
- Paola Genevini
- Consiglio Nazionale delle Ricerche Neuroscience Institute and BIOMETRA Department, Università degli Studi di Milano, Milan 20129, Italy
| | - Maria Nicol Colombo
- Consiglio Nazionale delle Ricerche Neuroscience Institute and BIOMETRA Department, Università degli Studi di Milano, Milan 20129, Italy
| | | | - Stefania Marcuzzo
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico 'Carlo Besta', Milan 20133, Italy
| | - Sara Francesca Colombo
- Consiglio Nazionale delle Ricerche Neuroscience Institute and BIOMETRA Department, Università degli Studi di Milano, Milan 20129, Italy
| | - Pia Bernasconi
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico 'Carlo Besta', Milan 20133, Italy
| | - Maria Antonietta De Matteis
- Telethon Institute of Genetics and Medicine, Pozzuoli 80078, Italy.,Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80133, Italy
| | - Nica Borgese
- Consiglio Nazionale delle Ricerche Neuroscience Institute and BIOMETRA Department, Università degli Studi di Milano, Milan 20129, Italy
| | - Francesca Navone
- Consiglio Nazionale delle Ricerche Neuroscience Institute and BIOMETRA Department, Università degli Studi di Milano, Milan 20129, Italy
| |
Collapse
|
30
|
Del Bel LM, Griffiths N, Wilk R, Wei HC, Blagoveshchenskaya A, Burgess J, Polevoy G, Price JV, Mayinger P, Brill JA. The phosphoinositide phosphatase Sac1 regulates cell shape and microtubule stability in the developing Drosophila eye. Development 2018; 145:dev151571. [PMID: 29752385 PMCID: PMC6031321 DOI: 10.1242/dev.151571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 04/30/2018] [Indexed: 12/15/2022]
Abstract
Epithelial patterning in the developing Drosophila melanogaster eye requires the Neph1 homolog Roughest (Rst), an immunoglobulin family cell surface adhesion molecule expressed in interommatidial cells (IOCs). Here, using a novel temperature-sensitive (ts) allele, we show that the phosphoinositide phosphatase Sac1 is also required for IOC patterning. Sac1ts mutants have rough eyes and retinal patterning defects that resemble rst mutants. Sac1ts retinas exhibit elevated levels of phosphatidylinositol 4-phosphate (PI4P), consistent with the role of Sac1 as a PI4P phosphatase. Indeed, genetic rescue and interaction experiments reveal that restriction of PI4P levels by Sac1 is crucial for normal eye development. Rst is delivered to the cell surface in Sac1ts mutants. However, Sac1ts mutant IOCs exhibit severe defects in microtubule organization, associated with accumulation of Rst and the exocyst subunit Sec8 in enlarged intracellular vesicles upon cold fixation ex vivo Together, our data reveal a novel requirement for Sac1 in promoting microtubule stability and suggest that Rst trafficking occurs in a microtubule- and exocyst-dependent manner.
Collapse
Affiliation(s)
- Lauren M Del Bel
- Cell Biology Program, The Hospital for Sick Children, PGCRL Building, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Nigel Griffiths
- Cell Biology Program, The Hospital for Sick Children, PGCRL Building, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Ronit Wilk
- Cell Biology Program, The Hospital for Sick Children, PGCRL Building, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada
| | - Ho-Chun Wei
- Cell Biology Program, The Hospital for Sick Children, PGCRL Building, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, South Sciences Building Room 8166, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Anastasia Blagoveshchenskaya
- Division of Nephrology & Hypertension, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Rd., Portland, Oregon 97239-3098, USA
| | - Jason Burgess
- Cell Biology Program, The Hospital for Sick Children, PGCRL Building, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Gordon Polevoy
- Cell Biology Program, The Hospital for Sick Children, PGCRL Building, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada
| | - James V Price
- Department of Molecular Biology and Biochemistry, Simon Fraser University, South Sciences Building Room 8166, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Peter Mayinger
- Division of Nephrology & Hypertension, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Rd., Portland, Oregon 97239-3098, USA
| | - Julie A Brill
- Cell Biology Program, The Hospital for Sick Children, PGCRL Building, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| |
Collapse
|
31
|
Antonny B, Bigay J, Mesmin B. The Oxysterol-Binding Protein Cycle: Burning Off PI(4)P to Transport Cholesterol. Annu Rev Biochem 2018; 87:809-837. [PMID: 29596003 DOI: 10.1146/annurev-biochem-061516-044924] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To maintain an asymmetric distribution of ions across membranes, protein pumps displace ions against their concentration gradient by using chemical energy. Here, we describe a functionally analogous but topologically opposite process that applies to the lipid transfer protein (LTP) oxysterol-binding protein (OSBP). This multidomain protein exchanges cholesterol for the phosphoinositide phosphatidylinositol 4-phosphate [PI(4)P] between two apposed membranes. Because of the subsequent hydrolysis of PI(4)P, this counterexchange is irreversible and contributes to the establishment of a cholesterol gradient along organelles of the secretory pathway. The facts that some natural anti-cancer molecules block OSBP and that many viruses hijack the OSBP cycle for the formation of intracellular replication organelles highlight the importance and potency of OSBP-mediated lipid exchange. The architecture of some LTPs is similar to that of OSBP, suggesting that the principles of the OSBP cycle-burning PI(4)P for the vectorial transfer of another lipid-might be general.
Collapse
Affiliation(s)
- Bruno Antonny
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 7275, Université Côte d'Azur, 06560 Valbonne, France;
| | - Joëlle Bigay
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 7275, Université Côte d'Azur, 06560 Valbonne, France;
| | - Bruno Mesmin
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 7275, Université Côte d'Azur, 06560 Valbonne, France;
| |
Collapse
|
32
|
Del Bel LM, Brill JA. Sac1, a lipid phosphatase at the interface of vesicular and nonvesicular transport. Traffic 2018; 19:301-318. [PMID: 29411923 DOI: 10.1111/tra.12554] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 12/14/2022]
Abstract
The lipid phosphatase Sac1 dephosphorylates phosphatidylinositol 4-phosphate (PI4P), thereby holding levels of this crucial membrane signaling molecule in check. Sac1 regulates multiple cellular processes, including cytoskeletal organization, membrane trafficking and cell signaling. Here, we review the structure and regulation of Sac1, its roles in cell signaling and development and its links to health and disease. Remarkably, many of the diverse roles attributed to Sac1 can be explained by the recent discovery of its requirement at membrane contact sites, where its consumption of PI4P is proposed to drive interorganelle transfer of other cellular lipids, thereby promoting normal lipid homeostasis within cells.
Collapse
Affiliation(s)
- Lauren M Del Bel
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Julie A Brill
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
33
|
Kf de Campos M, Schaaf G. The regulation of cell polarity by lipid transfer proteins of the SEC14 family. CURRENT OPINION IN PLANT BIOLOGY 2017; 40:158-168. [PMID: 29017091 DOI: 10.1016/j.pbi.2017.09.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/07/2017] [Accepted: 09/11/2017] [Indexed: 06/07/2023]
Abstract
SEC14 lipid transfer proteins are important regulators of phospholipid metabolism. Structural, genetic and cell biological studies in yeast suggest that they help phosphatidylinositol (PtdIns)/phosphoinositide (PIP) kinases to overcome their intrinsic inefficiency to recognize membrane-embedded substrate, thereby playing a key role in PIP homeostasis. Genomes of higher plants encode a high number and diversity of SEC14 proteins, often in combination with other domains. The Arabidopsis SEC14-Nlj16 protein AtSFH1, an important regulator of root hair development, plays an important role in the establishment of PIP microdomains. Key to this mechanism is a highly specific interaction of the Nlj16 domain with PtdIns(4,5)P2 and an interaction-triggered oligomerization of the protein. Nlj16/PtdIns(4,5)P2 interaction depends on a polybasic motif similar to those identified in other regulatory proteins.
Collapse
Affiliation(s)
- Marília Kf de Campos
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, University of Bonn, Karlrobert-Kreiten-Strasse 13, 53115 Bonn, Germany.
| | - Gabriel Schaaf
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, University of Bonn, Karlrobert-Kreiten-Strasse 13, 53115 Bonn, Germany.
| |
Collapse
|
34
|
Stefan CJ, Trimble WS, Grinstein S, Drin G, Reinisch K, De Camilli P, Cohen S, Valm AM, Lippincott-Schwartz J, Levine TP, Iaea DB, Maxfield FR, Futter CE, Eden ER, Judith D, van Vliet AR, Agostinis P, Tooze SA, Sugiura A, McBride HM. Membrane dynamics and organelle biogenesis-lipid pipelines and vesicular carriers. BMC Biol 2017; 15:102. [PMID: 29089042 PMCID: PMC5663033 DOI: 10.1186/s12915-017-0432-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Discoveries spanning several decades have pointed to vital membrane lipid trafficking pathways involving both vesicular and non-vesicular carriers. But the relative contributions for distinct membrane delivery pathways in cell growth and organelle biogenesis continue to be a puzzle. This is because lipids flow from many sources and across many paths via transport vesicles, non-vesicular transfer proteins, and dynamic interactions between organelles at membrane contact sites. This forum presents our latest understanding, appreciation, and queries regarding the lipid transport mechanisms necessary to drive membrane expansion during organelle biogenesis and cell growth.
Collapse
Affiliation(s)
- Christopher J. Stefan
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT UK
| | - William S. Trimble
- Cell Biology Program, The Hospital for Sick Children and Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Sergio Grinstein
- Cell Biology Program, The Hospital for Sick Children and Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Guillaume Drin
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Karin Reinisch
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Pietro De Camilli
- Department of Neuroscience and Cell Biology, Howard Hughes Medical Institute, Kavli Institute for Neuroscience and Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, CT 06510 USA
| | | | | | | | - Tim P. Levine
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - David B. Iaea
- Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
| | - Frederick R. Maxfield
- Department of Biochemistry, Weill Cornell Medical College, 1300 York Ave, New York, NY 10065 USA
| | - Clare E. Futter
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Emily R. Eden
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Delphine Judith
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, London, UK
| | - Alexander R. van Vliet
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, London, UK
- Laboratory of Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Laboratory of Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Sharon A. Tooze
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, London, UK
| | - Ayumu Sugiura
- Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| | - Heidi M. McBride
- Montreal Neurological Institute, McGill University, 3801 University Avenue, Montreal, Quebec H3A 2B4 Canada
| |
Collapse
|
35
|
Smindak RJ, Heckle LA, Chittari SS, Hand MA, Hyatt DM, Mantus GE, Sanfelippo WA, Kozminski KG. Lipid-dependent regulation of exocytosis in S. cerevisiae by OSBP homolog (Osh) 4. J Cell Sci 2017; 130:3891-3906. [PMID: 28993464 DOI: 10.1242/jcs.205435] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 10/04/2017] [Indexed: 11/20/2022] Open
Abstract
Polarized exocytosis is an essential process in many organisms and cell types for correct cell division or functional specialization. Previous studies established that homologs of the oxysterol-binding protein (OSBP) in S. cerevisiae, which comprise the Osh protein family, are necessary for efficient polarized exocytosis by supporting a late post-Golgi step. We define this step as the docking of a specific sub-population of exocytic vesicles with the plasma membrane. In the absence of other Osh proteins, yeast Osh4p can support this process in a manner dependent upon two lipid ligands, PI4P and sterol. Osh6p, which binds PI4P and phosphatidylserine, is also sufficient to support polarized exocytosis, again in a lipid-dependent manner. These data suggest that Osh-mediated exocytosis depends upon lipid binding and exchange without a strict requirement for sterol. We propose a two-step mechanism for Osh protein-mediated regulation of polarized exocytosis by using Osh4p as a model. We describe a specific in vivo role for lipid binding by an OSBP-related protein (ORP) in the process of polarized exocytosis, guiding our understanding of where and how OSBP and ORPs may function in more complex organisms.
Collapse
Affiliation(s)
- Richard J Smindak
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Lindsay A Heckle
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Supraja S Chittari
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Marissa A Hand
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Dylan M Hyatt
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Grace E Mantus
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | | | - Keith G Kozminski
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA .,Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
36
|
Jackson CL, Walch L, Verbavatz JM. Lipids and Their Trafficking: An Integral Part of Cellular Organization. Dev Cell 2017; 39:139-153. [PMID: 27780039 DOI: 10.1016/j.devcel.2016.09.030] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An evolutionarily conserved feature of cellular organelles is the distinct phospholipid composition of their bounding membranes, which is essential to their identity and function. Within eukaryotic cells, two major lipid territories can be discerned, one centered on the endoplasmic reticulum and characterized by membranes with lipid packing defects, the other comprising plasma-membrane-derived organelles and characterized by membrane charge. We discuss how this cellular lipid organization is maintained, how lipid flux is regulated, and how perturbations in cellular lipid homeostasis can lead to disease.
Collapse
Affiliation(s)
- Catherine L Jackson
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France.
| | - Laurence Walch
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | - Jean-Marc Verbavatz
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| |
Collapse
|
37
|
Running up that hill: How to create cellular lipid gradients by lipid counter-flows. Biochimie 2016; 130:115-121. [DOI: 10.1016/j.biochi.2016.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/07/2016] [Indexed: 11/21/2022]
|
38
|
Abstract
Most functions of eukaryotic cells are controlled by cellular membranes, which are not static entities but undergo frequent budding, fission, fusion, and sculpting reactions collectively referred to as membrane dynamics. Consequently, regulation of membrane dynamics is crucial for cellular functions. A key mechanism in such regulation is the reversible recruitment of cytosolic proteins or protein complexes to specific membranes at specific time points. To a large extent this recruitment is orchestrated by phosphorylated derivatives of the membrane lipid phosphatidylinositol, known as phosphoinositides. The seven phosphoinositides found in nature localize to distinct membrane domains and recruit distinct effectors, thereby contributing strongly to the maintenance of membrane identity. Many of the phosphoinositide effectors are proteins that control membrane dynamics, and in this review we discuss the functions of phosphoinositides in membrane dynamics during exocytosis, endocytosis, autophagy, cell division, cell migration, and epithelial cell polarity, with emphasis on protein effectors that are recruited by specific phosphoinositides during these processes.
Collapse
Affiliation(s)
- Kay O Schink
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway; , .,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, N-0379 Oslo, Norway
| | - Kia-Wee Tan
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway; , .,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, N-0379 Oslo, Norway
| | - Harald Stenmark
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway; , .,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, N-0379 Oslo, Norway.,Centre of Molecular Inflammation Research, Faculty of Medicine, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| |
Collapse
|
39
|
Abstract
ASBTRACT Rab GTPases serve as master regulators of membrane traffic, each typically controlling several different aspects of a specific stage of membrane traffic by recruiting diverse effector proteins such as cytoskeletal motors, vesicle tethering proteins and regulators of SNARE complex assembly. Rabs, in turn, are regulated by specific guanine nucleotide exchange factors (GEFs), which catalyze the displacement of GDP and binding of GTP, as well as GTPase activating proteins (GAPs) that stimulate the slow intrinsic rate of GTP hydrolysis. Here I review our studies on the final stages of the yeast secretory pathway that have led us to propose that adjacent Rabs on a pathway are networked to one another through their regulators; specifically we have shown that the Rab, Ypt32, in its GTP-bound form recruits both Sec2, the GEF that activates the downstream Rab, Sec4, as well as Gyp1, the GAP that inactivates the upstream Rab, Ypt1. The postulated effect of these counter-current cascades is a programmed series of abrupt Rab transitions that lead to critical changes in the functional identity of the membrane as it flows along the exocytic pathway. Phosphoinositides also play key roles in the temporal and spatial regulation of membrane traffic. The Golgi pool of phosphatidylinositol 4-phosphate (PI(4)P) works in concert with Ypt32 to initially recruit Sec2, yet a subsequent drop in PI(4)P levels directs a regulatory switch in Sec2 function in which it binds to the Sec4 effector Sec15 generating a positive feedback loop. PI(4)P distribution together with Sec2 phosphorylation by a casein kinase determines when and where each regulatory circuit is used.
Collapse
Affiliation(s)
- Peter Novick
- a Department of Cellular and Molecular Medicine , University of California San Diego , La Jolla , CA , USA
| |
Collapse
|
40
|
New molecular mechanisms of inter-organelle lipid transport. Biochem Soc Trans 2016; 44:486-92. [DOI: 10.1042/bst20150265] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Indexed: 12/19/2022]
Abstract
Lipids are precisely distributed in cell membranes, along with associated proteins defining organelle identity. Because the major cellular lipid factory is the endoplasmic reticulum (ER), a key issue is to understand how various lipids are subsequently delivered to other compartments by vesicular and non-vesicular transport pathways. Efforts are currently made to decipher how lipid transfer proteins (LTPs) work either across long distances or confined to membrane contact sites (MCSs) where two organelles are at close proximity. Recent findings reveal that proteins of the oxysterol-binding protein related-proteins (ORP)/oxysterol-binding homology (Osh) family are not all just sterol transporters/sensors: some can bind either phosphatidylinositol 4-phosphate (PtdIns(4)P) and sterol or PtdIns(4)P and phosphatidylserine (PS), exchange these lipids between membranes, and thereby use phosphoinositide metabolism to create cellular lipid gradients. Lipid exchange is likely a widespread mechanism also utilized by other LTPs to efficiently trade lipids between organelle membranes. Finally, the discovery of more proteins bearing a lipid-binding module (SMP or START-like domain) raises new questions on how lipids are conveyed in cells and how the activities of different LTPs are coordinated.
Collapse
|
41
|
The counterflow transport of sterols and PI4P. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:940-951. [PMID: 26928592 DOI: 10.1016/j.bbalip.2016.02.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 02/03/2023]
Abstract
Cholesterol levels in intracellular membranes are constantly adjusted to match with specific organelle functions. Cholesterol is kept high in the plasma membrane (PM) because it is essential for its barrier function, while low levels are found in the endoplasmic reticulum (ER) where cholesterol mediates feedback control of its own synthesis by sterol-sensor proteins. The ER→Golgi→PM concentration gradient of cholesterol in mammalian cells, and ergosterol in yeast, appears to be sustained by specific intracellular transport processes, which are mostly mediated by lipid transfer proteins (LTPs). Here we review a recently described function of two LTPs, OSBP and its yeast homolog Osh4p, which consists in creating a sterol gradient between membranes by vectorial transport. OSBP also contributes to the formation of ER/Golgi membrane contact sites, which are important hubs for the transfer of several lipid species. OSBP and Osh4p organize a counterflow transport of lipids whereby sterols are exchanged for the phosphoinositide PI4P, which is used as a fuel to drive sterol transport. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.
Collapse
|
42
|
Monje-Galvan V, Klauda JB. Peripheral membrane proteins: Tying the knot between experiment and computation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1584-93. [PMID: 26903211 DOI: 10.1016/j.bbamem.2016.02.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/05/2016] [Accepted: 02/12/2016] [Indexed: 01/31/2023]
Abstract
Experimental biology has contributed to answer questions about the morphology of a system and how molecules organize themselves to maintain a healthy functional cell. Single-molecule techniques, optical and magnetic experiments, and fluorescence microscopy have come a long way to probe structural and dynamical information at multiple scales. However, some details are simply too small or the processes are too short-lived to detect by experiments. Computational biology provides a bridge to understand experimental results at the molecular level, makes predictions that have not been seen in vivo, and motivates new fields of research. This review focuses on the advances on peripheral membrane proteins (PMPs) studies; what is known about their interaction with membranes, their role in cell biology, and some limitations that both experiment and computation still have to overcome to gain better structural and functional understanding of these PMPs. As many recent reviews have acknowledged, interdisciplinary efforts between experiment and computation are needed in order to have useful models that lead future directions in the study of PMPs. We present new results of a case study on a PMP that behaves as an intricate machine controlling lipid homeostasis between cellular organelles, Osh4 in yeast Saccharomyces cerevisiae. Molecular dynamics simulations were run to examine the interaction between the protein and membrane models that reflect the lipid diversity of the endoplasmic reticulum and trans-Golgi membranes. Our study is consistent with experimental data showing several residues that interact to smaller or larger extent with the bilayer upon stable binding (~200 ns into the trajectory). We identified PHE239 as a key residue stabilizing the protein-membrane interaction along with two other binding regions, the ALPS-like motif and the β6-β7 loops in the mouth region of the protein. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.
Collapse
Affiliation(s)
- Viviana Monje-Galvan
- Department of Chemical and Biomolecular Engineering, College Park, MD 20742, USA
| | - Jeffery B Klauda
- Department of Chemical and Biomolecular Engineering, College Park, MD 20742, USA; Biophysics Program, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
43
|
Darbyson A, Ngsee JK. Oxysterol-binding protein ORP3 rescues the Amyotrophic Lateral Sclerosis-linked mutant VAPB phenotype. Exp Cell Res 2016; 341:18-31. [PMID: 26812496 DOI: 10.1016/j.yexcr.2016.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 01/21/2016] [Accepted: 01/22/2016] [Indexed: 12/13/2022]
Abstract
A mutation in VAPB causes a familial form of Amyotrophic Lateral Sclerosis. The mutant protein (VAPB-P56S) is aggregate prone and blocks retrograde traffic from the endoplasmic reticulum (ER) Golgi intermediate compartment (ERGIC) including trafficking to the nuclear envelope (NE). Here we report a morphological screen where overexpression of oxysterol binding protein-related protein-3 (ORP3) rescued the mutant VAPB phenotype. It resolved the mutant VAPB-induced membrane expansions, restored solubility of the mutant protein in non-ionic detergent, and restored trafficking of Emerin to the NE. Knockdown of ORP3 or VAPB increased the intracellular level of phosphatidylinositol 4-phosphate (PtdIns4P). Decreasing PtdIns4P levels by inhibiting its synthesis reduced the severity of the mutant VAPB-induced membrane expansions and restored Emerin trafficking to the NE. Thus, VAPB and its interacting partners cooperatively regulate protein trafficking through the ERGIC by modulating PtdIns4P levels.
Collapse
Affiliation(s)
- Angie Darbyson
- Ottawa Hospital Research Institute Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | - Johnny K Ngsee
- Ottawa Hospital Research Institute Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5.
| |
Collapse
|
44
|
Stalder D, Novick PJ. The casein kinases Yck1p and Yck2p act in the secretory pathway, in part, by regulating the Rab exchange factor Sec2p. Mol Biol Cell 2015; 27:686-701. [PMID: 26700316 PMCID: PMC4750927 DOI: 10.1091/mbc.e15-09-0651] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/17/2015] [Indexed: 12/04/2022] Open
Abstract
Sec2p is phosphorylated by the redundant casein kinases Yck1p and Yck2p. This promotes the interaction of Sec2p with the downstream effector, Sec15p, and contributes to Sec2p localization and function. Phosphorylation requires prior association of Sec2p with vesicles and reduction of the inhibitory Golgi lipid PI(4)P from the vesicle membrane. Sec2p is a guanine nucleotide exchange factor that activates Sec4p, the final Rab GTPase of the yeast secretory pathway. Sec2p is recruited to secretory vesicles by the upstream Rab Ypt32p acting in concert with phosphatidylinositol-4-phosphate (PI(4)P). Sec2p also binds to the Sec4p effector Sec15p, yet Ypt32p and Sec15p compete against each other for binding to Sec2p. We report here that the redundant casein kinases Yck1p and Yck2p phosphorylate sites within the Ypt32p/Sec15p binding region and in doing so promote binding to Sec15p and inhibit binding to Ypt32p. We show that Yck2p binds to the autoinhibitory domain of Sec2p, adjacent to the PI(4)P binding site, and that addition of PI(4)P inhibits Sec2p phosphorylation by Yck2p. Loss of Yck1p and Yck2p function leads to accumulation of an intracellular pool of the secreted glucanase Bgl2p, as well as to accumulation of Golgi-related structures in the cytoplasm. We propose that Sec2p is phosphorylated after it has been recruited to secretory vesicles and the level of PI(4)P has been reduced. This promotes Sec2p function by stimulating its interaction with Sec15p. Finally, Sec2p is dephosphorylated very late in the exocytic reaction to facilitate recycling.
Collapse
Affiliation(s)
- Danièle Stalder
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Peter J Novick
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
45
|
Kentala H, Weber-Boyvat M, Olkkonen VM. OSBP-Related Protein Family: Mediators of Lipid Transport and Signaling at Membrane Contact Sites. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 321:299-340. [PMID: 26811291 DOI: 10.1016/bs.ircmb.2015.09.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oxysterol-binding protein (OSBP) and its related protein homologs, ORPs, constitute a conserved family of lipid-binding/transfer proteins (LTPs) expressed ubiquitously in eukaryotes. The ligand-binding domain of ORPs accommodates cholesterol and oxysterols, but also glycerophospholipids, particularly phosphatidylinositol-4-phosphate (PI4P). ORPs have been implicated as intracellular lipid sensors or transporters. Most ORPs carry targeting determinants for the endoplasmic reticulum (ER) and non-ER organelle membrane. ORPs are located and function at membrane contact sites (MCSs), at which ER is closely apposed with other organelle limiting membranes. Such sites have roles in lipid transport and metabolism, control of Ca(2+) fluxes, and signaling events. ORPs are postulated either to transport lipids over MCSs to maintain the distinct lipid compositions of organelle membranes, or to control the activity of enzymes/protein complexes with functions in signaling and lipid metabolism. ORPs may transfer PI4P and another lipid class bidirectionally. Transport of PI4P followed by its hydrolysis would in this model provide the energy for transfer of the other lipid against its concentration gradient. Control of organelle lipid compositions by OSBP/ORPs is important for the life cycles of several pathogenic viruses. Targeting ORPs with small-molecular antagonists is proposed as a new strategy to combat viral infections. Several ORPs are reported to modulate vesicle transport along the secretory or endocytic pathways. Moreover, antagonists of certain ORPs inhibit cancer cell proliferation. Thus, ORPs are LTPs, which mediate interorganelle lipid transport and coordinate lipid signals with a variety of cellular regimes.
Collapse
Affiliation(s)
- Henriikka Kentala
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland
| | - Marion Weber-Boyvat
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland
| |
Collapse
|
46
|
Olkkonen VM. OSBP-Related Protein Family in Lipid Transport Over Membrane Contact Sites. Lipid Insights 2015; 8:1-9. [PMID: 26715851 PMCID: PMC4685180 DOI: 10.4137/lpi.s31726] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/03/2015] [Accepted: 09/06/2015] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence suggests that oxysterol-binding protein-related proteins (ORPs) localize at membrane contact sites, which are high-capacity platforms for inter-organelle exchange of small molecules and information. ORPs can simultaneously associate with the two apposed membranes and transfer lipids across the interbilayer gap. Oxysterol-binding protein moves cholesterol from the endoplasmic reticulum to trans-Golgi, driven by the retrograde transport of phosphatidylinositol-4-phosphate (PI4P). Analogously, yeast Osh6p mediates the transport of phosphatidylserine from the endoplasmic reticulum to the plasma membrane in exchange for PI4P, and ORP5 and -8 are suggested to execute similar functions in mammalian cells. ORPs may share the capacity to bind PI4P within their ligand-binding domain, prompting the hypothesis that bidirectional transport of a phosphoinositide and another lipid may be a common theme among the protein family. This model, however, needs more experimental support and does not exclude a function of ORPs in lipid signaling.
Collapse
Affiliation(s)
- Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland. ; Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland
| |
Collapse
|
47
|
Ungermann C. vCLAMPs—an intimate link between vacuoles and mitochondria. Curr Opin Cell Biol 2015; 35:30-6. [DOI: 10.1016/j.ceb.2015.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/20/2015] [Accepted: 03/26/2015] [Indexed: 11/26/2022]
|
48
|
Functional Analysis of Sterol Transporter Orthologues in the Filamentous Fungus Aspergillus nidulans. EUKARYOTIC CELL 2015; 14:908-21. [PMID: 26116213 DOI: 10.1128/ec.00027-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 06/24/2015] [Indexed: 11/20/2022]
Abstract
Polarized growth in filamentous fungi needs a continuous supply of proteins and lipids to the growing hyphal tip. One of the important membrane compounds in fungi is ergosterol. At the apical plasma membrane ergosterol accumulations, which are called sterol-rich plasma membrane domains (SRDs). The exact roles and formation mechanism of the SRDs remained unclear, although the importance has been recognized for hyphal growth. Transport of ergosterol to hyphal tips is thought to be important for the organization of the SRDs. Oxysterol binding proteins, which are conserved from yeast to human, are involved in nonvesicular sterol transport. In Saccharomyces cerevisiae seven oxysterol-binding protein homologues (OSH1 to -7) play a role in ergosterol distribution between closely located membranes independent of vesicle transport. We found five homologous genes (oshA to oshE) in the filamentous fungi Aspergillus nidulans. The functions of OshA-E were characterized by gene deletion and subcellular localization. Each gene-deletion strain showed characteristic phenotypes and different sensitivities to ergosterol-associated drugs. Green fluorescent protein-tagged Osh proteins showed specific localization in the late Golgi compartments, puncta associated with the endoplasmic reticulum, or diffusely in the cytoplasm. The genes expression and regulation were investigated in a medically important species Aspergillus fumigatus, as well as A. nidulans. Our results suggest that each Osh protein plays a role in ergosterol distribution at distinct sites and contributes to proper fungal growth.
Collapse
|
49
|
Stith BJ. Phospholipase C and D regulation of Src, calcium release and membrane fusion during Xenopus laevis development. Dev Biol 2015; 401:188-205. [PMID: 25748412 DOI: 10.1016/j.ydbio.2015.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/15/2015] [Accepted: 02/24/2015] [Indexed: 11/28/2022]
Abstract
This review emphasizes how lipids regulate membrane fusion and the proteins involved in three developmental stages: oocyte maturation to the fertilizable egg, fertilization and during first cleavage. Decades of work show that phosphatidic acid (PA) releases intracellular calcium, and recent work shows that the lipid can activate Src tyrosine kinase or phospholipase C during Xenopus fertilization. Numerous reports are summarized to show three levels of increase in lipid second messengers inositol 1,4,5-trisphosphate and sn 1,2-diacylglycerol (DAG) during the three different developmental stages. In addition, possible roles for PA, ceramide, lysophosphatidylcholine, plasmalogens, phosphatidylinositol 4-phosphate, phosphatidylinositol 5-phosphate, phosphatidylinositol 4,5-bisphosphate, membrane microdomains (rafts) and phosphatidylinositol 3,4,5-trisphosphate in regulation of membrane fusion (acrosome reaction, sperm-egg fusion, cortical granule exocytosis), inositol 1,4,5-trisphosphate receptors, and calcium release are discussed. The role of six lipases involved in generating putative lipid second messengers during fertilization is also discussed: phospholipase D, autotaxin, lipin1, sphingomyelinase, phospholipase C, and phospholipase A2. More specifically, proteins involved in developmental events and their regulation through lipid binding to SH3, SH4, PH, PX, or C2 protein domains is emphasized. New models are presented for PA activation of Src (through SH3, SH4 and a unique domain), that this may be why the SH2 domain of PLCγ is not required for Xenopus fertilization, PA activation of phospholipase C, a role for PA during the calcium wave after fertilization, and that calcium/calmodulin may be responsible for the loss of Src from rafts after fertilization. Also discussed is that the large DAG increase during fertilization derives from phospholipase D production of PA and lipin dephosphorylation to DAG.
Collapse
Affiliation(s)
- Bradley J Stith
- University of Colorado Denver, Department of Integrative Biology, Campus Box 171, PO Box 173364, Denver, CO 80217-3364, United States.
| |
Collapse
|