1
|
Dendrite tapering actuates a self-organizing signaling circuit for stochastic filopodia initiation in neurons. Proc Natl Acad Sci U S A 2021; 118:2106921118. [PMID: 34686599 DOI: 10.1073/pnas.2106921118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 01/09/2023] Open
Abstract
How signaling units spontaneously arise from a noisy cellular background is not well understood. Here, we show that stochastic membrane deformations can nucleate exploratory dendritic filopodia, dynamic actin-rich structures used by neurons to sample its surroundings for compatible transcellular contacts. A theoretical analysis demonstrates that corecruitment of positive and negative curvature-sensitive proteins to deformed membranes minimizes the free energy of the system, allowing the formation of long-lived curved membrane sections from stochastic membrane fluctuations. Quantitative experiments show that once recruited, curvature-sensitive proteins form a signaling circuit composed of interlinked positive and negative actin-regulatory feedback loops. As the positive but not the negative feedback loop can sense the dendrite diameter, this self-organizing circuit determines filopodia initiation frequency along tapering dendrites. Together, our findings identify a receptor-independent signaling circuit that employs random membrane deformations to simultaneously elicit and limit formation of exploratory filopodia to distal dendritic sites of developing neurons.
Collapse
|
2
|
Pulikkottil VV, Somashekar BP, Bhalla US. Computation, wiring, and plasticity in synaptic clusters. Curr Opin Neurobiol 2021; 70:101-112. [PMID: 34509808 DOI: 10.1016/j.conb.2021.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 07/28/2021] [Accepted: 08/09/2021] [Indexed: 01/19/2023]
Abstract
Synaptic clusters on dendrites are extraordinarily compact computational building blocks. They contribute to key local computations through biophysical and biochemical signaling that utilizes convergence in space and time as an organizing principle. However, these computations can only arise in very special contexts. Dendritic cluster computations, their highly organized input connectivity, and the mechanisms for their formation are closely linked, yet these have not been analyzed as parts of a single process. Here, we examine these linkages. The sheer density of axonal and dendritic arborizations means that there are far more potential connections (close enough for a spine to reach an axon) than actual ones. We see how dendritic clusters draw upon electrical, chemical, and mechano-chemical signaling to implement the rules for formation of connections and subsequent computations. Crucially, the same mechanisms that underlie their functions also underlie their formation.
Collapse
Affiliation(s)
| | - Bhanu Priya Somashekar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Upinder S Bhalla
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.
| |
Collapse
|
3
|
Jayabal P, Zhou F, Lei X, Ma X, Blackman B, Weintraub ST, Houghton PJ, Shiio Y. NELL2-cdc42 signaling regulates BAF complexes and Ewing sarcoma cell growth. Cell Rep 2021; 36:109254. [PMID: 34233189 PMCID: PMC8312579 DOI: 10.1016/j.celrep.2021.109254] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/07/2021] [Accepted: 05/25/2021] [Indexed: 12/24/2022] Open
Abstract
BAF chromatin remodeling complexes play important roles in chromatin regulation and cancer. Here, we report that Ewing sarcoma cells are dependent on the autocrine signaling mediated by NELL2, a secreted glycoprotein that has been characterized as an axon guidance molecule. NELL2 uses Robo3 as the receptor to transmit critical growth signaling. NELL2 signaling inhibits cdc42 and upregulates BAF complexes and EWS-FLI1 transcriptional output. We demonstrate that cdc42 is a negative regulator of BAF complexes, inducing actin polymerization and complex disassembly. Furthermore, we identify NELL2highCD133highEWS-FLI1high and NELL2lowCD133lowEWS-FLI1low populations in Ewing sarcoma, which display phenotypes consistent with high and low NELL2 signaling, respectively. We show that NELL2, CD133, and EWS-FLI1 positively regulate each other and upregulate BAF complexes and cell proliferation in Ewing sarcoma. These results reveal a signaling pathway regulating critical chromatin remodeling complexes and cancer cell proliferation.
Collapse
Affiliation(s)
- Panneerselvam Jayabal
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Fuchun Zhou
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Xiufen Lei
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Xiuye Ma
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Barron Blackman
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center, San Antonio, TX 78229, USA; Mays Cancer Center, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Peter J Houghton
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX 78229, USA; Mays Cancer Center, The University of Texas Health Science Center, San Antonio, TX 78229, USA; Department of Molecular Medicine, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Yuzuru Shiio
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX 78229, USA; Department of Biochemistry and Structural Biology, The University of Texas Health Science Center, San Antonio, TX 78229, USA; Mays Cancer Center, The University of Texas Health Science Center, San Antonio, TX 78229, USA.
| |
Collapse
|
4
|
Johnson ME, Chen A, Faeder JR, Henning P, Moraru II, Meier-Schellersheim M, Murphy RF, Prüstel T, Theriot JA, Uhrmacher AM. Quantifying the roles of space and stochasticity in computer simulations for cell biology and cellular biochemistry. Mol Biol Cell 2021; 32:186-210. [PMID: 33237849 PMCID: PMC8120688 DOI: 10.1091/mbc.e20-08-0530] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/13/2020] [Accepted: 11/17/2020] [Indexed: 12/29/2022] Open
Abstract
Most of the fascinating phenomena studied in cell biology emerge from interactions among highly organized multimolecular structures embedded into complex and frequently dynamic cellular morphologies. For the exploration of such systems, computer simulation has proved to be an invaluable tool, and many researchers in this field have developed sophisticated computational models for application to specific cell biological questions. However, it is often difficult to reconcile conflicting computational results that use different approaches to describe the same phenomenon. To address this issue systematically, we have defined a series of computational test cases ranging from very simple to moderately complex, varying key features of dimensionality, reaction type, reaction speed, crowding, and cell size. We then quantified how explicit spatial and/or stochastic implementations alter outcomes, even when all methods use the same reaction network, rates, and concentrations. For simple cases, we generally find minor differences in solutions of the same problem. However, we observe increasing discordance as the effects of localization, dimensionality reduction, and irreversible enzymatic reactions are combined. We discuss the strengths and limitations of commonly used computational approaches for exploring cell biological questions and provide a framework for decision making by researchers developing new models. As computational power and speed continue to increase at a remarkable rate, the dream of a fully comprehensive computational model of a living cell may be drawing closer to reality, but our analysis demonstrates that it will be crucial to evaluate the accuracy of such models critically and systematically.
Collapse
Affiliation(s)
- M. E. Johnson
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218
| | - A. Chen
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218
| | - J. R. Faeder
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260
| | - P. Henning
- Institute for Visual and Analytic Computing, University of Rostock, 18055 Rostock, Germany
| | - I. I. Moraru
- Department of Cell Biology, Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT 06030
| | - M. Meier-Schellersheim
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - R. F. Murphy
- Computational Biology Department, Department of Biological Sciences, Department of Biomedical Engineering, Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA 15289
| | - T. Prüstel
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - J. A. Theriot
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195
| | - A. M. Uhrmacher
- Institute for Visual and Analytic Computing, University of Rostock, 18055 Rostock, Germany
| |
Collapse
|
5
|
Ding C, Emmenegger V, Schaffrath K, Feldmeyer D. Layer-Specific Inhibitory Microcircuits of Layer 6 Interneurons in Rat Prefrontal Cortex. Cereb Cortex 2021; 31:32-47. [PMID: 32829414 PMCID: PMC7727376 DOI: 10.1093/cercor/bhaa201] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/06/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
GABAergic interneurons in different cortical areas play important roles in diverse higher-order cognitive functions. The heterogeneity of interneurons is well characterized in different sensory cortices, in particular in primary somatosensory and visual cortex. However, the structural and functional properties of the medial prefrontal cortex (mPFC) interneurons have received less attention. In this study, a cluster analysis based on axonal projection patterns revealed four distinct clusters of L6 interneurons in rat mPFC: Cluster 1 interneurons showed axonal projections similar to Martinotti-like cells extending to layer 1, cluster 2 displayed translaminar projections mostly to layer 5, and cluster 3 interneuron axons were confined to the layer 6, whereas those of cluster 4 interneurons extend also into the white matter. Correlations were found between neuron location and axonal distribution in all clusters. Moreover, all cluster 1 L6 interneurons showed a monotonically adapting firing pattern with an initial high-frequency burst. All cluster 2 interneurons were fast-spiking, while neurons in cluster 3 and 4 showed heterogeneous firing patterns. Our data suggest that L6 interneurons that have distinct morphological and physiological characteristics are likely to innervate different targets in mPFC and thus play differential roles in the L6 microcircuitry and in mPFC-associated functions.
Collapse
Affiliation(s)
- Chao Ding
- Institute of Neuroscience and Medicine, INM-10 Function of Cortical Microcircuits Group, Research Centre Jülich, 52425 Jülich, Germany
| | - Vishalini Emmenegger
- Institute of Neuroscience and Medicine, INM-10 Function of Cortical Microcircuits Group, Research Centre Jülich, 52425 Jülich, Germany
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Kim Schaffrath
- Institute of Neuroscience and Medicine, INM-10 Function of Cortical Microcircuits Group, Research Centre Jülich, 52425 Jülich, Germany
- Department of Ophthalmology, RWTH Aachen University Hospital, Medical School, 52074 Aachen, Germany
| | - Dirk Feldmeyer
- Institute of Neuroscience and Medicine, INM-10 Function of Cortical Microcircuits Group, Research Centre Jülich, 52425 Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University Hospital, 52074 Aachen, Germany
- JARA-Translational Brain Medicine, 52074 Aachen, Germany
| |
Collapse
|
6
|
Senra D, Páez A, Gueron G, Bruno L, Guisoni N. Following the footprints of variability during filopodial growth. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:643-659. [PMID: 33141270 DOI: 10.1007/s00249-020-01473-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/06/2020] [Accepted: 10/19/2020] [Indexed: 01/09/2023]
Abstract
Filopodia are actin-built finger-like dynamic structures that protrude from the cell cortex. These structures can sense the environment and play key roles in migration and cell-cell interactions. The growth-retraction cycle of filopodia is a complex process exquisitely regulated by intra- and extra-cellular cues, whose nature remains elusive. Filopodia present wide variation in length, lifetime and growth rate. Here, we investigate the features of filopodia patterns in fixed prostate tumor cells by confocal microscopy. Analysis of almost a thousand filopodia suggests the presence of two different populations: one characterized by a narrow distribution of lengths and the other with a much more variable pattern with very long filopodia. We explore a stochastic model of filopodial growth which takes into account diffusion and reactions involving actin and the regulatory proteins formin and capping, and retrograde flow. Interestingly, we found an inverse dependence between the filopodial length and the retrograde velocity. This result led us to propose that variations in the retrograde velocity could explain the experimental lengths observed for these tumor cells. In this sense, one population involves a wider range of retrograde velocities than the other population, and also includes low values of this velocity. It has been hypothesized that cells would be able to regulate retrograde flow as a mechanism to control filopodial length. Thus, we propound that the experimental filopodia pattern is the result of differential retrograde velocities originated from heterogeneous signaling due to cell-substrate interactions or prior cell-cell contacts.
Collapse
Affiliation(s)
- Daniela Senra
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Universidad Nacional de La Plata, CONICET, La Plata, Argentina
| | - Alejandra Páez
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina
- CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), C1428EGA, Buenos Aires, Argentina
- Unidad de Transferencia Genética, Instituto de Oncología "Ángel H. Roffo", Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Geraldine Gueron
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina
- CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), C1428EGA, Buenos Aires, Argentina
| | - Luciana Bruno
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CONICET, Pabellón 2, Ciudad Universitaria (1428), Buenos Aires, Argentina
| | - Nara Guisoni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Universidad Nacional de La Plata, CONICET, La Plata, Argentina.
| |
Collapse
|
7
|
Bagonis MM, Fusco L, Pertz O, Danuser G. Automated profiling of growth cone heterogeneity defines relations between morphology and motility. J Cell Biol 2019; 218:350-379. [PMID: 30523041 PMCID: PMC6314545 DOI: 10.1083/jcb.201711023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 09/26/2018] [Accepted: 11/08/2018] [Indexed: 12/14/2022] Open
Abstract
Growth cones are complex, motile structures at the tip of an outgrowing neurite. They often exhibit a high density of filopodia (thin actin bundles), which complicates the unbiased quantification of their morphologies by software. Contemporary image processing methods require extensive tuning of segmentation parameters, require significant manual curation, and are often not sufficiently adaptable to capture morphology changes associated with switches in regulatory signals. To overcome these limitations, we developed Growth Cone Analyzer (GCA). GCA is designed to quantify growth cone morphodynamics from time-lapse sequences imaged both in vitro and in vivo, but is sufficiently generic that it may be applied to nonneuronal cellular structures. We demonstrate the adaptability of GCA through the analysis of growth cone morphological variation and its relation to motility in both an unperturbed system and in the context of modified Rho GTPase signaling. We find that perturbations inducing similar changes in neurite length exhibit underappreciated phenotypic nuance at the scale of the growth cone.
Collapse
Affiliation(s)
- Maria M Bagonis
- Departments of Bioinformatics and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Ludovico Fusco
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Olivier Pertz
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Gaudenz Danuser
- Departments of Bioinformatics and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
- Department of Cell Biology, Harvard Medical School, Boston, MA
| |
Collapse
|
8
|
Urbančič V, Butler R, Richier B, Peter M, Mason J, Livesey FJ, Holt CE, Gallop JL. Filopodyan: An open-source pipeline for the analysis of filopodia. J Cell Biol 2017; 216:3405-3422. [PMID: 28760769 PMCID: PMC5626553 DOI: 10.1083/jcb.201705113] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/28/2017] [Accepted: 07/06/2017] [Indexed: 02/07/2023] Open
Abstract
Filopodia have important sensory and mechanical roles in motile cells. The recruitment of actin regulators, such as ENA/VASP proteins, to sites of protrusion underlies diverse molecular mechanisms of filopodia formation and extension. We developed Filopodyan (filopodia dynamics analysis) in Fiji and R to measure fluorescence in filopodia and at their tips and bases concurrently with their morphological and dynamic properties. Filopodyan supports high-throughput phenotype characterization as well as detailed interactive editing of filopodia reconstructions through an intuitive graphical user interface. Our highly customizable pipeline is widely applicable, capable of detecting filopodia in four different cell types in vitro and in vivo. We use Filopodyan to quantify the recruitment of ENA and VASP preceding filopodia formation in neuronal growth cones, and uncover a molecular heterogeneity whereby different filopodia display markedly different responses to changes in the accumulation of ENA and VASP fluorescence in their tips over time.
Collapse
Affiliation(s)
- Vasja Urbančič
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, England, UK
- Department of Biochemistry, University of Cambridge, Cambridge, England, UK
| | - Richard Butler
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, England, UK
| | - Benjamin Richier
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, England, UK
- Department of Biochemistry, University of Cambridge, Cambridge, England, UK
| | - Manuel Peter
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, England, UK
- Department of Biochemistry, University of Cambridge, Cambridge, England, UK
| | - Julia Mason
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, England, UK
- Department of Biochemistry, University of Cambridge, Cambridge, England, UK
| | - Frederick J Livesey
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, England, UK
- Department of Biochemistry, University of Cambridge, Cambridge, England, UK
| | - Christine E Holt
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, England, UK
| | - Jennifer L Gallop
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, England, UK
- Department of Biochemistry, University of Cambridge, Cambridge, England, UK
| |
Collapse
|
9
|
Heckman CA, Pandey P, Cayer ML, Biswas T, Zhang Z, Boudreau NS. The tumor promoter-activated protein kinase Cs are a system for regulating filopodia. Cytoskeleton (Hoboken) 2017; 74:297-314. [PMID: 28481056 PMCID: PMC5575509 DOI: 10.1002/cm.21373] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 04/28/2017] [Accepted: 05/01/2017] [Indexed: 01/02/2023]
Abstract
Different protein kinase C (PKC) isoforms have distinct roles in regulating cell functions. The conventional (α, β, γ) and novel (δ, ɛ, η, θ) classes are targets of phorbol ester tumor promoters, which are surrogates of endogenous second messenger, diacylglycerol. The promoter-stimulated disappearance of filopodia was investigated by use of blocking peptides (BPs) that inhibit PKC maturation and/or docking. Filopodia were partially rescued by a peptide representing PKC ɛ hydrophobic sequence, but also by a myristoylated PKC α/β pseudosubstrate sequence, and an inhibitor of T-cell protein tyrosine phosphatase (TC-PTP). The ability to turn over filopodia was widely distributed among PKC isoforms. PKC α and η hydrophobic sequences enhanced filopodia in cells in the absence of tumor promoter treatment. With transcriptional knockdown of PKC α, the content of PKC ɛ predominated over other isoforms. PKC ɛ could decrease filopodia significantly in promoter-treated cells, and this was attributed to ruffling. The presence of PKC α counteracted the PKC ɛ-mediated enhancement of ruffling. The results showed that there were two mechanisms of filopodia downregulation. One operated in the steady-state and relied on PKC α and η. The other was stimulated by tumor promoters and relied on PKC ɛ. Cycles of protrusion and retraction are characteristic of filopodia and are essential for the cell to orient itself during chemotaxis and haptotaxis. By suppressing filopodia, PKC ɛ can create a long-term "memory" of an environmental signal that may act in nature as a mnemonic device to mark the direction of a repulsive signal.
Collapse
Affiliation(s)
- Carol A. Heckman
- Department of Biological SciencesBowling Green State UniversityLife Sciences Building Room 217Bowling GreenOhio43403
| | - Pratima Pandey
- Department of Biological SciencesBowling Green State UniversityLife Sciences Building Room 217Bowling GreenOhio43403
| | - Marilyn L. Cayer
- Center for Microscopy and MicroanalysisBowling Green State UniversityLife Sciences Building Room 217Bowling GreenOhio43403
| | - Tania Biswas
- Department of Biological SciencesBowling Green State UniversityLife Sciences Building Room 217Bowling GreenOhio43403
| | - Zhong‐Yin Zhang
- Department of Medicinal Chemistry and Molecular PharmacologyPurdue UniversityRobert E. Heine Pharmacy Building, Room 202A, 575 Stadium Mall DriveWest LafayetteIndiana47907
| | - Nancy S. Boudreau
- Department of Applied Statistics and Operations ResearchBowling Green State University344 Business Administration BuildingBowling GreenOhio43403
| |
Collapse
|
10
|
Saha T, Rathmann I, Galic M. A Graphical User Interface for Software-assisted Tracking of Protein Concentration in Dynamic Cellular Protrusions. J Vis Exp 2017. [PMID: 28745622 DOI: 10.3791/55653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Filopodia are dynamic, finger-like cellular protrusions associated with migration and cell-cell communication. In order to better understand the complex signaling mechanisms underlying filopodial initiation, elongation and subsequent stabilization or retraction, it is crucial to determine the spatio-temporal protein activity in these dynamic structures. To analyze protein function in filopodia, we recently developed a semi-automated tracking algorithm that adapts to filopodial shape-changes, thus allowing parallel analysis of protrusion dynamics and relative protein concentration along the whole filopodial length. Here, we present a detailed step-by-step protocol for optimized cell handling, image acquisition and software analysis. We further provide instructions for the use of optional features during image analysis and data representation, as well as troubleshooting guidelines for all critical steps along the way. Finally, we also include a comparison of the described image analysis software with other programs available for filopodia quantification. Together, the presented protocol provides a framework for accurate analysis of protein dynamics in filopodial protrusions using image analysis software.
Collapse
Affiliation(s)
- Tanumoy Saha
- DFG Cluster of Excellence 'Cells in Motion', (EXC 1003), Institute of Medical Physics and Biophysics, University of Muenster
| | - Isabel Rathmann
- DFG Cluster of Excellence 'Cells in Motion', (EXC 1003), Institute of Medical Physics and Biophysics, University of Muenster
| | - Milos Galic
- DFG Cluster of Excellence 'Cells in Motion', (EXC 1003), Institute of Medical Physics and Biophysics, University of Muenster;
| |
Collapse
|
11
|
Quantifying Filopodia in Cultured Astrocytes by an Algorithm. Neurochem Res 2017; 42:1795-1809. [PMID: 28243788 DOI: 10.1007/s11064-017-2193-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/06/2017] [Accepted: 01/24/2017] [Indexed: 10/20/2022]
Abstract
Astrocytes in vivo extend thin processes termed peripheral astrocyte processes (PAPs), in particular around synapses where they can mediate glia-neuronal communication. The relation of PAPs to synapses is not based on coincidence, but it is not clear which stimuli and mechanisms lead to their formation and are active during process extension/ retraction in response to neuronal activity. Also, the molecular basis of the extremely fine PAP morphology (often 50 to 100 nm) is not understood. These open questions can be best investigated under in vitro conditions studying glial filopodia. We have previously analyzed filopodial mechanisms (Lavialle et al. PNAS 108:12915) applying an automated method for filopodia morphometry, which is now described in greater detail. The Filopodia Specific Shape Factor (FSSF) developed integrates number and length of filopodia. It quantifies filopodia independent of overall astrocytic shape or size, which can be intricate in itself. The algorithm supplied here permits automated image processing and measurements using ImageJ. Cells have to be sampled in higher numbers to obtain significant results. We validate the FSSF, and characterize the systematic influence of thresholding and camera pixel grid on measurements. We provide exemplary results of substance-induced filopodia dynamics (glutamate, mGluR agonists, EGF), and show that filopodia formation is highly sensitive to medium pH (CO2) and duration of cell culture. Although the FSSF was developed to study astrocyte filopodia with focus on the perisynaptic glial sheath, we expect that this parameter can also be applied to neuronal growth cones, non-neural cell types, or cell lines.
Collapse
|