1
|
Xie X, Liu Y, Yang L, Zhang Z, Li H, Zhang W, Liu H, Wang H, Shao Z. Impaired LTB4-induced neutrophil chemotactic directionality in myelodysplastic neoplasms patients. Hematology 2025; 30:2483551. [PMID: 40170327 DOI: 10.1080/16078454.2025.2483551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 03/19/2025] [Indexed: 04/03/2025] Open
Abstract
OBJECTIVES Myelodysplastic neoplasm (MDS) patients are at a high risk of infections, contributing significantly to morbidity and mortality. While neutrophil dysfunction is considered a primary factor, specific functional defects remain elusive. METHODS We conducted a comprehensive study involving 90 participants, including controls and de novo MDS patients. We utilized the TAXIScan-FL system to evaluate neutrophil chemotaxis towards leukotriene B4 (LTB4). The global reactive oxygen species (ROS) production by neutrophils were measured by chemiluminescence assay, neutrophil alkaline phosphatase (NAP) was evaluated by enzymatic staining. RESULTS MDS patients, irrespective of absolute neutrophil count (ANC) levels, exhibited elevated empirical antimicrobial therapy (EAT) rate compared to controls. Neutrophil migration towards LTB4 was notably impaired, demonstrating reduced velocity and directionality. Interestingly, MDS patients with high ANC still displayed poor directionality and slower migration. MDS patients also had compromised ROS and NAP activity. A noteworthy correlation was observed between EAT rate and chemotactic directionality parameters. CONCLUSION MDS patients face a heightened risk of infection, potentially attributed to impaired neutrophil chemotactic speed and directionality, alongside compromised ROS and NAP activity. Notably, chemotactic directionality emerged as a pivotal factor correlated with antimicrobial therapy. These insights hold significant clinical implications for managing infections in MDS patients, underscoring the importance of targeting specific neutrophil defects for more effective therapeutic strategies.
Collapse
Affiliation(s)
- Xinyan Xie
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin, People's Republic of China
- Tianjin Institute of Hematology, Tianjin, People's Republic of China
| | - Yumei Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin, People's Republic of China
- Tianjin Institute of Hematology, Tianjin, People's Republic of China
| | - Liyan Yang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin, People's Republic of China
- Tianjin Institute of Hematology, Tianjin, People's Republic of China
| | - Zhe Zhang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin, People's Republic of China
- Tianjin Institute of Hematology, Tianjin, People's Republic of China
| | - Hongzhao Li
- Tianjin Children's Hospital, Tianjin, People's Republic of China
| | - Wei Zhang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin, People's Republic of China
- Tianjin Institute of Hematology, Tianjin, People's Republic of China
| | - Hong Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin, People's Republic of China
- Tianjin Institute of Hematology, Tianjin, People's Republic of China
| | - Huaquan Wang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin, People's Republic of China
- Tianjin Institute of Hematology, Tianjin, People's Republic of China
| | - Zonghong Shao
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin, People's Republic of China
- Tianjin Institute of Hematology, Tianjin, People's Republic of China
| |
Collapse
|
2
|
Ishida M, Uwamichi M, Nakajima A, Sawai S. Traveling-wave chemotaxis of neutrophil-like HL-60 cells. Mol Biol Cell 2025; 36:ar17. [PMID: 39718770 PMCID: PMC11809305 DOI: 10.1091/mbc.e24-06-0245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/19/2024] [Accepted: 12/09/2024] [Indexed: 12/25/2024] Open
Abstract
The question of how changes in chemoattractant concentration translate into the chemotactic response of immune cells serves as a paradigm for the quantitative understanding of how cells perceive and process temporal and spatial information. Here, using a microfluidic approach, we analyzed the migration of neutrophil-like HL-60 cells to a traveling wave of the chemoattractants N-formyl-methionyl-leucyl-phenylalanine (fMLP) and leukotriene B4 (LTB4). We found that under a pulsatile wave that travels at a speed of 95 and 170 µm/min, cells move forward in the front of the wave but slow down and randomly orient at the back due to temporal decrease in the attractant concentration. Under a slower wave, cells reorient and migrate at the back of the wave; thus, cell displacement is canceled out or even becomes negative as cells chase the receding wave. Fluorescence resonance energy transfer (FRET)-based analysis indicated that these patterns of movement correlated well with spatiotemporal changes in Cdc42 activity. Furthermore, pharmacological perturbations showed that (re)orientation in front and back of the wave had different susceptibility to Cdc42 and ROCK inhibition. These results suggest that pulsatile attractant waves may recruit or disperse neutrophils, depending on their speed and degree of cell polarization.
Collapse
Affiliation(s)
- Motohiko Ishida
- Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Masahito Uwamichi
- Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Akihiko Nakajima
- Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
- Research Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Satoshi Sawai
- Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
- Research Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
3
|
Korobkin JJD, Deordieva EA, Tesakov IP, Adamanskaya EIA, Boldova AE, Boldyreva AA, Galkina SV, Lazutova DP, Martyanov AA, Pustovalov VA, Novichkova GA, Shcherbina A, Panteleev MA, Sveshnikova AN. Dissecting thrombus-directed chemotaxis and random movement in neutrophil near-thrombus motion in flow chambers. BMC Biol 2024; 22:115. [PMID: 38764040 PMCID: PMC11552338 DOI: 10.1186/s12915-024-01912-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/08/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Thromboinflammation is caused by mutual activation of platelets and neutrophils. The site of thromboinflammation is determined by chemoattracting agents release by endothelium, immune cells, and platelets. Impaired neutrophil chemotaxis contributes to the pathogenesis of Shwachman-Diamond syndrome (SDS). In this hereditary disorder, neutrophils are known to have aberrant chemoattractant-induced F-actin properties. Here, we aim to determine whether neutrophil chemotaxis could be analyzed using our previously developed ex vivo assay of the neutrophils crawling among the growing thrombi. METHODS Adult and pediatric healthy donors, alongside with pediatric patients with SDS, were recruited for the study. Thrombus formation and granulocyte movement in hirudinated whole blood were visualized by fluorescent microscopy in fibrillar collagen-coated parallel-plate flow chambers. Alternatively, fibrinogen, fibronectin, vWF, or single tumor cells immobilized on coverslips were used. A computational model of chemokine distribution in flow chamber with a virtual neutrophil moving in it was used to analyze the observed data. RESULTS The movement of healthy donor neutrophils predominantly occurred in the direction and vicinity of thrombi grown on collagen or around tumor cells. For SDS patients or on coatings other than collagen, the movement was characterized by randomness and significantly reduced velocities. Increase in wall shear rates to 300-500 1/s led to an increase in the proportion of rolling neutrophils. A stochastic algorithm simulating leucocyte chemotaxis movement in the calculated chemoattractant field could reproduce the experimental trajectories of moving neutrophils for 72% of cells. CONCLUSIONS In samples from healthy donors, but not SDS patients, neutrophils move in the direction of large, chemoattractant-releasing platelet thrombi growing on collagen.
Collapse
Affiliation(s)
- Julia-Jessica D Korobkin
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina A Deordieva
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Ivan P Tesakov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
- Department of Oncology, Hematology, Immunology, and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Ekaterina-Iva A Adamanskaya
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Anna E Boldova
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Antonina A Boldyreva
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Sofia V Galkina
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Daria P Lazutova
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey A Martyanov
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
| | | | - Galina A Novichkova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Anna Shcherbina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Mikhail A Panteleev
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
| | - Anastasia N Sveshnikova
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia.
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.
- Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
4
|
Tian L, Lu J, Ng IOL. Extracellular vesicles and cancer stemness in hepatocellular carcinoma - is there a link? Front Immunol 2024; 15:1368898. [PMID: 38476233 PMCID: PMC10927723 DOI: 10.3389/fimmu.2024.1368898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly aggressive malignancy, with high recurrence rates and notorious resistance to conventional chemotherapy. Cancer stemness refers to the stem-cell-like phenotype of cancer cells and has been recognized to play important roles in different aspects of hepatocarcinogenesis. Small extracellular vesicles (sEVs) are small membranous particles secreted by cells that can transfer bioactive molecules, such as nucleic acids, proteins, lipids, and metabolites, to neighboring or distant cells. Recent studies have highlighted the role of sEVs in modulating different aspects of the cancer stemness properties of HCC. Furthermore, sEVs derived from diverse cellular sources, such as cancer cells, stromal cells, and immune cells, contribute to the maintenance of the cancer stemness phenotype in HCC. Through cargo transfer, specific signaling pathways are activated within the recipient cells, thus promoting the stemness properties. Additionally, sEVs can govern the secretion of growth factors from non-cancer cells to further maintain their stemness features. Clinically, plasma sEVs may hold promise as potential biomarkers for HCC diagnosis and treatment prediction. Understanding the underlying mechanisms by which sEVs promote cancer stemness in HCC is crucial, as targeting sEV-mediated communication may offer novel strategies in treatment and improve patient outcome.
Collapse
Affiliation(s)
- Lu Tian
- Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Pathology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jingyi Lu
- Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Irene Oi-Lin Ng
- Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Pathology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
5
|
Teymouri S, Pourhajibagher M, Bahador A. Exosomes: Friends or Foes in Microbial Infections? Infect Disord Drug Targets 2024; 24:e170124225730. [PMID: 38317472 DOI: 10.2174/0118715265264388231128045954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 02/07/2024]
Abstract
The use of new approaches is necessary to address the global issue of infections caused by drug-resistant pathogens. Antimicrobial photodynamic therapy (aPDT) is a promising approach that reduces the emergence of drug resistance, and no resistance has been reported thus far. APDT involves using a photosensitizer (PS), a light source, and oxygen. The mechanism of aPDT is that a specific wavelength of light is directed at the PS in the presence of oxygen, which activates the PS and generates reactive oxygen species (ROS), consequently causing damage to microbial cells. However, due to the PS's poor stability, low solubility in water, and limited bioavailability, it is necessary to employ drug delivery platforms to enhance the effectiveness of PS in photodynamic therapy (PDT). Exosomes are considered a desirable carrier for PS due to their specific characteristics, such as low immunogenicity, innate stability, and high ability to penetrate cells, making them a promising platform for drug delivery. Additionally, exosomes also possess antimicrobial properties, although in some cases, they may enhance microbial pathogenicity. As there are limited studies on the use of exosomes for drug delivery in microbial infections, this review aims to present significant points that can provide accurate insights.
Collapse
Affiliation(s)
- Samane Teymouri
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran
| |
Collapse
|
6
|
Tamás SX, Roux BT, Vámosi B, Dehne FG, Török A, Fazekas L, Enyedi B. A genetically encoded sensor for visualizing leukotriene B4 gradients in vivo. Nat Commun 2023; 14:4610. [PMID: 37528073 PMCID: PMC10393954 DOI: 10.1038/s41467-023-40326-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/22/2023] [Indexed: 08/03/2023] Open
Abstract
Leukotriene B4 (LTB4) is a potent lipid chemoattractant driving inflammatory responses during host defense, allergy, autoimmune and metabolic diseases. Gradients of LTB4 orchestrate leukocyte recruitment and swarming to sites of tissue damage and infection. How LTB4 gradients form and spread in live tissues to regulate these processes remains largely elusive due to the lack of suitable tools for monitoring LTB4 levels in vivo. Here, we develop GEM-LTB4, a genetically encoded green fluorescent LTB4 biosensor based on the human G-protein-coupled receptor BLT1. GEM-LTB4 shows high sensitivity, specificity and a robust fluorescence increase in response to LTB4 without affecting downstream signaling pathways. We use GEM-LTB4 to measure ex vivo LTB4 production of murine neutrophils. Transgenic expression of GEM-LTB4 in zebrafish allows the real-time visualization of both exogenously applied and endogenously produced LTB4 gradients. GEM-LTB4 thus serves as a broadly applicable tool for analyzing LTB4 dynamics in various experimental systems and model organisms.
Collapse
Affiliation(s)
- Szimonetta Xénia Tamás
- Department of Physiology, Semmelweis University, Faculty of Medicine, Tűzoltó utca 37-47, H-1094, Budapest, Hungary
- MTA-SE Lendület Tissue Damage Research Group, Hungarian Academy of Sciences and Semmelweis University, H-1094, Budapest, Hungary
- HCEMM-SE Inflammatory Signaling Research Group, Department of Physiology, Semmelweis University, H-1094, Budapest, Hungary
| | - Benoit Thomas Roux
- Department of Physiology, Semmelweis University, Faculty of Medicine, Tűzoltó utca 37-47, H-1094, Budapest, Hungary
- HCEMM-SE Inflammatory Signaling Research Group, Department of Physiology, Semmelweis University, H-1094, Budapest, Hungary
| | - Boldizsár Vámosi
- Department of Physiology, Semmelweis University, Faculty of Medicine, Tűzoltó utca 37-47, H-1094, Budapest, Hungary
| | - Fabian Gregor Dehne
- Department of Physiology, Semmelweis University, Faculty of Medicine, Tűzoltó utca 37-47, H-1094, Budapest, Hungary
- HCEMM-SE Inflammatory Signaling Research Group, Department of Physiology, Semmelweis University, H-1094, Budapest, Hungary
| | - Anna Török
- Department of Physiology, Semmelweis University, Faculty of Medicine, Tűzoltó utca 37-47, H-1094, Budapest, Hungary
- HCEMM-SE Inflammatory Signaling Research Group, Department of Physiology, Semmelweis University, H-1094, Budapest, Hungary
| | - László Fazekas
- Department of Physiology, Semmelweis University, Faculty of Medicine, Tűzoltó utca 37-47, H-1094, Budapest, Hungary
- MTA-SE Lendület Tissue Damage Research Group, Hungarian Academy of Sciences and Semmelweis University, H-1094, Budapest, Hungary
- HCEMM-SE Inflammatory Signaling Research Group, Department of Physiology, Semmelweis University, H-1094, Budapest, Hungary
| | - Balázs Enyedi
- Department of Physiology, Semmelweis University, Faculty of Medicine, Tűzoltó utca 37-47, H-1094, Budapest, Hungary.
- MTA-SE Lendület Tissue Damage Research Group, Hungarian Academy of Sciences and Semmelweis University, H-1094, Budapest, Hungary.
- HCEMM-SE Inflammatory Signaling Research Group, Department of Physiology, Semmelweis University, H-1094, Budapest, Hungary.
| |
Collapse
|
7
|
Pfister H. Neutrophil Extracellular Traps and Neutrophil-Derived Extracellular Vesicles: Common Players in Neutrophil Effector Functions. Diagnostics (Basel) 2022; 12:diagnostics12071715. [PMID: 35885618 PMCID: PMC9323717 DOI: 10.3390/diagnostics12071715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
Neutrophil granulocytes are a central component of the innate immune system. In recent years, they have gained considerable attention due to newly discovered biological effector functions and their involvement in various pathological conditions. They have been shown to trigger mechanisms that can either promote or inhibit the development of autoimmunity, thrombosis, and cancer. One mechanism for their modulatory effect is the release of extracellular vesicles (EVs), that trigger appropriate signaling pathways in immune cells and other target cells. In addition, activated neutrophils can release bactericidal DNA fibers decorated with proteins from neutrophil granules (neutrophil extracellular traps, NETs). While NETs are very effective in limiting pathogens, they can also cause severe damage if released in excess or cleared inefficiently. Since NETs and EVs share a variety of neutrophil molecules and initially act in the same microenvironment, differential biochemical and functional analysis is particularly challenging. This review focuses on the biochemical and functional parallels and the extent to which the overlapping spectrum of effector molecules has an impact on biological and pathological effects.
Collapse
Affiliation(s)
- Heiko Pfister
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center Munich, Technical University Munich, D-80636 Munich, Germany
| |
Collapse
|
8
|
The Role of Exosomes in Inflammatory Diseases and Tumor-Related Inflammation. Cells 2022; 11:cells11061005. [PMID: 35326456 PMCID: PMC8947057 DOI: 10.3390/cells11061005] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 01/27/2023] Open
Abstract
Inflammation plays a decisive role in inducing tumorigenesis, promoting tumor development, tumor invasion and migration. The interaction of cancer cells with their surrounding stromal cells and inflammatory cells further forms an inflammatory tumor microenvironment (TME). The large number of cells present within the TME, such as mesenchymal stem cells (MSCs), macrophages, neutrophils, etc., play different roles in the changing TME. Exosomes, extracellular vesicles released by various types of cells, participate in a variety of inflammatory diseases and tumor-related inflammation. As an important communication medium between cells, exosomes continuously regulate the inflammatory microenvironment. In this review, we focused on the role of exosomes in inflammatory diseases and tumor-related inflammation. In addition, we also summarized the functions of exosomes released by various cells in inflammatory diseases and in the TME during the transformation of inflammatory diseases to tumors. We discussed in depth the potential of exosomes as targets and tools to treat inflammatory diseases and tumor-related inflammation.
Collapse
|
9
|
Glaser KM, Mihlan M, Lämmermann T. Positive feedback amplification in swarming immune cell populations. Curr Opin Cell Biol 2021; 72:156-162. [PMID: 34500367 DOI: 10.1016/j.ceb.2021.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/07/2021] [Accepted: 07/28/2021] [Indexed: 11/28/2022]
Abstract
Several immune cell types (neutrophils, eosinophils, T cells, and innate-like lymphocytes) display coordinated migration patterns when a population, formed of individually responding cells, moves through inflamed or infected tissues. "Swarming" refers to the process in which a population of migrating leukocytes switches from random motility to highly directed chemotaxis to form local cell clusters. Positive feedback amplification underlies this behavior and results from intercellular communication in the immune cell population. We here highlight recent findings on neutrophil swarming from mouse models, zebrafish larvae, and in vitro platforms for human cells, which together advanced our understanding of the principles and molecular mechanisms that shape immune cell swarming.
Collapse
Affiliation(s)
- Katharina M Glaser
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany; International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Michael Mihlan
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Tim Lämmermann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| |
Collapse
|
10
|
Small extracellular vesicle-mediated bidirectional crosstalk between neutrophils and tumor cells. Cytokine Growth Factor Rev 2021; 61:16-26. [PMID: 34479816 DOI: 10.1016/j.cytogfr.2021.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/24/2021] [Indexed: 02/08/2023]
Abstract
Neutrophils are the first line of defense against tissue injury and play an important role in tumor progression. Tumor-associated neutrophils (TANs) mediate pro-tumor immunosuppressive activity and their infiltration into tumors is associated with poor outcome in a variety of malignant diseases. The tumor cell-neutrophil crosstalk is mediated by small extracellular vesicles (sEVs) also referred to as exosomes which represent a major mechanism for intercellular communication. This review will address the role of neutrophil-derived sEVs (NEX) in reprogramming the TME and on mechanisms that regulate the dual potential of NEX to promote tumor progression on one hand and suppress tumor growth on the other. Emerging data suggest that both, NEX and tumor-derived sEVs (TEX) carry complex molecular cargos which upon delivery to recipient cells in the tumor microenvironment (TME) modulate their behavior and reprogram them to mediate pro-inflammatory or immunosuppressive responses. Although it remains unknown how the balance between the often conflicting signaling of TEX and NEX is regulated, this review is an attempt to provide insights into mechanisms that underpin this complex bidirectional crosstalk. A better understanding of the signals NEX process or deliver in the TME might lead to the development of novel approaches to the control of tumor progression in the future.
Collapse
|
11
|
Hoogendijk AJ, Pourfarzad F, Aarts CEM, Tool ATJ, Hiemstra IH, Grassi L, Frontini M, Meijer AB, van den Biggelaar M, Kuijpers TW. Dynamic Transcriptome-Proteome Correlation Networks Reveal Human Myeloid Differentiation and Neutrophil-Specific Programming. Cell Rep 2020; 29:2505-2519.e4. [PMID: 31747616 DOI: 10.1016/j.celrep.2019.10.082] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/10/2019] [Accepted: 10/21/2019] [Indexed: 01/13/2023] Open
Abstract
Human neutrophilic granulocytes form the largest pool of innate immune cells for host defense against bacterial and fungal pathogens. The dynamic changes that accompany the metamorphosis from a proliferating myeloid progenitor cell in the bone marrow into a mature non-dividing polymorphonuclear blood cell have remained poorly defined. Using mass spectrometry-based quantitative proteomics combined with transcriptomic data, we report on the dynamic changes of five developmental stages in the bone marrow and blood. Integration of transcriptomes and proteome unveils highly dynamic and differential interactions between RNA and protein kinetics during human neutrophil development, which can be linked to functional maturation of typical end-stage blood neutrophil killing activities.
Collapse
Affiliation(s)
- Arie J Hoogendijk
- Department of Molecular and Cellular Hemostasis, Sanquin Research, Amsterdam, the Netherlands
| | - Farzin Pourfarzad
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Cathelijn E M Aarts
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Anton T J Tool
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Ida H Hiemstra
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Luigi Grassi
- Department of Haematology, University of Cambridge, Cambridge CB2 0PT, UK
| | - Mattia Frontini
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK; British Heart Foundation Centre of Excellence, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0QQ, UK
| | - Alexander B Meijer
- Department of Molecular and Cellular Hemostasis, Sanquin Research, Amsterdam, the Netherlands; Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | | | - Taco W Kuijpers
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands; Department of Paediatric Immunology and Infectious Diseases, Emma Children's Hospital, AUMC, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
12
|
Kassmer SH, Rodriguez D, De Tomaso AW. Evidence that ABC transporter-mediated autocrine export of an eicosanoid signaling molecule enhances germ cell chemotaxis in the colonial tunicate Botryllus schlosseri. Development 2020; 147:dev.184663. [PMID: 32665242 DOI: 10.1242/dev.184663] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 07/01/2020] [Indexed: 01/01/2023]
Abstract
The colonial ascidian Botryllus schlosseri regenerates the germline during repeated cycles of asexual reproduction. Germline stem cells (GSCs) circulate in the blood and migrate to new germline niches as they develop and this homing process is directed by a Sphigosine-1-Phosphate (S1P) gradient. Here, we find that inhibition of ABC transporter activity reduces migration of GSCs towards low concentrations of S1P in vitro In addition, inhibiting phospholipase A2 (PLA2) or lipoxygenase (Lox) blocks chemotaxis towards low concentrations of S1P. These effects can be rescued by addition of the 12-Lox product 12-S-HETE. Blocking ABC transporter, PLA2 or 12-Lox activity also inhibits homing of germ cells in vivo Using a live-imaging chemotaxis assay in a 3D matrix, we show that a shallow gradient of 12-S-HETE enhances chemotaxis towards low concentrations of S1P and stimulates motility. A potential homolog of the human receptor for 12-S-HETE, gpr31, is expressed on GSCs and differentiating vasa+ germ cells. These results suggest that 12-S-HETE might be an autocrine signaling molecule exported by ABC transporters that enhances chemotaxis in GSCs migrating towards low concentrations of S1P.
Collapse
Affiliation(s)
- Susannah H Kassmer
- Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Delany Rodriguez
- Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Anthony W De Tomaso
- Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
13
|
He R, Chen Y, Cai Q. The role of the LTB4-BLT1 axis in health and disease. Pharmacol Res 2020; 158:104857. [PMID: 32439596 DOI: 10.1016/j.phrs.2020.104857] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/03/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022]
Abstract
Leukotriene B4 (LTB4) is a major type of lipid mediator that is rapidly generated from arachidonic acid through sequential action of 5-lipoxygenase (5-LO), 5-lipoxygenase-activating protein (FLAP) and LTA4 hydrolase (LTA4H) in response to various stimuli. LTB4 is well known to be a chemoattractant for leukocytes, particularly neutrophils, via interaction with its high-affinity receptor BLT1. Extensive attention has been paid to the role of the LTB4-BLT1 axis in acute and chronic inflammatory diseases, such as infectious diseases, allergy, autoimmune diseases, and metabolic disease via mediating recruitment and/or activation of different types of inflammatory cells depending on different stages or the nature of inflammatory response. Recent studies also demonstrated that LTB4 acts on non-immune cells via BLT1 to initiate and/or amplify pathological inflammation in various tissues. In addition, emerging evidence reveals a complex role of the LTB4-BLT1 axis in cancer, either tumor-inhibitory or tumor-promoting, depending on the different target cells. In this review, we summarize both established understanding and the most recent progress in our knowledge about the LTB4-BLT1 axis in host defense, inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Rui He
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China.
| | - Yu Chen
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Qian Cai
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
14
|
Larabi A, Barnich N, Nguyen HTT. Emerging Role of Exosomes in Diagnosis and Treatment of Infectious and Inflammatory Bowel Diseases. Cells 2020; 9:cells9051111. [PMID: 32365813 PMCID: PMC7290936 DOI: 10.3390/cells9051111] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023] Open
Abstract
To communicate with each other, cells release exosomes that transfer their composition, including lipids, proteins and nucleic acids, to neighboring cells, thus playing a role in various pathophysiological processes. During an infection with pathogenic bacteria, such as adherent-invasive E. coli (AIEC) associated with Crohn disease, exosomes secreted by infected cells can have an impact on the innate immune responses of surrounding cells to infection. Furthermore, inflammation can be amplified via the exosomal shuttle during infection with pathogenic bacteria, which could contribute to the development of the associated disease. Since these vesicles can be released in various biological fluids, changes in exosomal content may provide a means for the identification of non-invasive biomarkers for infectious and inflammatory bowel diseases. Moreover, evidence suggests that exosomes could be used as vaccines to prime the immune system to recognize and kill invading pathogens, and as therapeutic components relieving intestinal inflammation. Here, we summarize the current knowledge on the role of exosomes in bacterial infections and highlight their potential use as biomarkers, vaccines and conveyers of therapeutic molecules in inflammatory bowel diseases.
Collapse
|
15
|
Wen L, Fan Z, Mikulski Z, Ley K. Imaging of the immune system - towards a subcellular and molecular understanding. J Cell Sci 2020; 133:133/5/jcs234922. [PMID: 32139598 DOI: 10.1242/jcs.234922] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Immune responses involve many types of leukocytes that traffic to the site of injury, recognize the insult and respond appropriately. Imaging of the immune system involves a set of methods and analytical tools that are used to visualize immune responses at the cellular and molecular level as they occur in real time. We will review recent and emerging technological advances in optical imaging, and their application to understanding the molecular and cellular responses of neutrophils, macrophages and lymphocytes. Optical live-cell imaging provides deep mechanistic insights at the molecular, cellular, tissue and organism levels. Live-cell imaging can capture quantitative information in real time at subcellular resolution with minimal phototoxicity and repeatedly in the same living cells or in accessible tissues of the living organism. Advanced FRET probes allow tracking signaling events in live cells. Light-sheet microscopy allows for deeper tissue penetration in optically clear samples, enriching our understanding of the higher-level organization of the immune response. Super-resolution microscopy offers insights into compartmentalized signaling at a resolution beyond the diffraction limit, approaching single-molecule resolution. This Review provides a current perspective on live-cell imaging in vitro and in vivo with a focus on the assessment of the immune system.
Collapse
Affiliation(s)
- Lai Wen
- Laboratory of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Zbigniew Mikulski
- Microscopy Core Facility, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA
| | - Klaus Ley
- Laboratory of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA .,Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
16
|
Xu P, Liu P, Zhou C, Shi Y, Wu Q, Yang Y, Li G, Hu G, Guo X. A Multi-Omics Study of Chicken Infected by Nephropathogenic Infectious Bronchitis Virus. Viruses 2019; 11:v11111070. [PMID: 31744152 PMCID: PMC6893681 DOI: 10.3390/v11111070] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/05/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022] Open
Abstract
Chicken gout resulting from nephropathogenic infectious bronchitis virus (NIBV) has become a serious kidney disease problem in chicken worldwide with alterations of the metabolic phenotypes in multiple metabolic pathways. To investigate the mechanisms in chicken responding to NIBV infection, we examined the global transcriptomic and metabolomic profiles of the chicken’s kidney using RNA-seq and GC–TOF/MS, respectively. Furthermore, we analyzed the alterations in cecal microorganism composition in chickens using 16S rRNA-seq. Integrated analysis of these three phenotypic datasets further managed to create correlations between the altered kidney transcriptomes and metabolome, and between kidney metabolome and gut microbiome. We found that 2868 genes and 160 metabolites were deferentially expressed or accumulated in the kidney during NIBV infection processes. These genes and metabolites were linked to NIBV-infection related processes, including immune response, signal transduction, peroxisome, purine, and amino acid metabolism. In addition, the comprehensive correlations between the kidney metabolome and cecal microbial community showed contributions of gut microbiota in the progression of NIBV-infection. Taken together, our research comprehensively describes the host responses during NIBV infection and provides new clues for further dissection of specific gene functions, metabolite affections, and the role of gut microbiota during chicken gout.
Collapse
Affiliation(s)
- Puzhi Xu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (P.X.); (P.L.); (C.Z.); (Q.W.); (Y.Y.); (G.L.)
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (P.X.); (P.L.); (C.Z.); (Q.W.); (Y.Y.); (G.L.)
| | - Changming Zhou
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (P.X.); (P.L.); (C.Z.); (Q.W.); (Y.Y.); (G.L.)
| | - Yan Shi
- School of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Qingpeng Wu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (P.X.); (P.L.); (C.Z.); (Q.W.); (Y.Y.); (G.L.)
| | - Yitian Yang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (P.X.); (P.L.); (C.Z.); (Q.W.); (Y.Y.); (G.L.)
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (P.X.); (P.L.); (C.Z.); (Q.W.); (Y.Y.); (G.L.)
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (P.X.); (P.L.); (C.Z.); (Q.W.); (Y.Y.); (G.L.)
- Correspondence: (G.H.); (X.G.)
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (P.X.); (P.L.); (C.Z.); (Q.W.); (Y.Y.); (G.L.)
- Correspondence: (G.H.); (X.G.)
| |
Collapse
|
17
|
Denning NL, Aziz M, Gurien SD, Wang P. DAMPs and NETs in Sepsis. Front Immunol 2019; 10:2536. [PMID: 31736963 PMCID: PMC6831555 DOI: 10.3389/fimmu.2019.02536] [Citation(s) in RCA: 413] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/11/2019] [Indexed: 12/21/2022] Open
Abstract
Sepsis is a deadly inflammatory syndrome caused by an exaggerated immune response to infection. Much has been focused on host response to pathogens mediated through the interaction of pathogen-associated molecular patterns (PAMPs) and pattern recognition receptors (PRRs). PRRs are also activated by host nuclear, mitochondrial, and cytosolic proteins, known as damage-associated molecular patterns (DAMPs) that are released from cells during sepsis. Some well described members of the DAMP family are extracellular cold-inducible RNA-binding protein (eCIRP), high mobility group box 1 (HMGB1), histones, and adenosine triphosphate (ATP). DAMPs are released from the cell through inflammasome activation or passively following cell death. Similarly, neutrophil extracellular traps (NETs) are released from neutrophils during inflammation. NETs are webs of extracellular DNA decorated with histones, myeloperoxidase, and elastase. Although NETs contribute to pathogen clearance, excessive NET formation promotes inflammation and tissue damage in sepsis. Here, we review DAMPs and NETs and their crosstalk in sepsis with respect to their sources, activation, release, and function. A clear grasp of DAMPs, NETs and their interaction is crucial for the understanding of the pathophysiology of sepsis and for the development of novel sepsis therapeutics.
Collapse
Affiliation(s)
- Naomi-Liza Denning
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States.,Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Monowar Aziz
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
| | - Steven D Gurien
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Ping Wang
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States.,Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States.,Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| |
Collapse
|
18
|
Saunders CA, Majumdar R, Molina Y, Subramanian BC, Parent CA. Genetic manipulation of PLB-985 cells and quantification of chemotaxis using the underagarose assay. Methods Cell Biol 2018; 149:31-56. [PMID: 30616826 DOI: 10.1016/bs.mcb.2018.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neutrophils are the most common leukocyte in human blood and are the first cells to respond to injury and infection. Improper neutrophil chemotaxis can have deleterious effects on human health, including autoimmune diseases, poor innate immune response, and cancer. Therefore, gaining a better understanding of the signaling pathways governing chemotactic responses in these cells is important. One of the main challenges of working with primary human neutrophils is their short lifespan (about 1 day), making genetic manipulations not feasible. PLB-985 cells, which are pluripotent hematopoietic cells that can easily be differentiated to neutrophil-like cells, are amenable to genetic manipulations, including the expression of fluorescently tagged proteins-of-interest (POI) and gene editing using the CRISPR/CAS9 system to delete genes-of-interest (GOI). The use of PLB-985 cells can therefore greatly facilitate our understanding of the molecular mechanisms governing neutrophil biology during chemotaxis and serve as a good system to complement results gained from pharmacological inhibition of primary neutrophils. To better study the role and localization of proteins during chemotaxis, the underagarose assay has become a widely used and quantitative assay for measuring several aspects of chemotaxis. The objective of this chapter is to provide protocols for (1) the generation of genetically altered PLB-985 cell lines, (2) the set-up of an underagarose chemotaxis assay, and (3) the analysis of cell movement in chemotactic gradients from an underagarose experiment.
Collapse
Affiliation(s)
- Cosmo A Saunders
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States
| | - Ritankar Majumdar
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States
| | - Yaniris Molina
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States; Cancer Research Summer Internship Program, Cancer Biology, University of Michigan, Ann Arbor, MI, United States
| | - Bhagawat C Subramanian
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Carole A Parent
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
19
|
Camley BA. Collective gradient sensing and chemotaxis: modeling and recent developments. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:223001. [PMID: 29644981 PMCID: PMC6252055 DOI: 10.1088/1361-648x/aabd9f] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cells measure a vast variety of signals, from their environment's stiffness to chemical concentrations and gradients; physical principles strongly limit how accurately they can do this. However, when many cells work together, they can cooperate to exceed the accuracy of any single cell. In this topical review, I will discuss the experimental evidence showing that cells collectively sense gradients of many signal types, and the models and physical principles involved. I also propose new routes by which experiments and theory can expand our understanding of these problems.
Collapse
Affiliation(s)
- Brian A Camley
- Departments of Physics & Astronomy and Biophysics, Johns Hopkins University, Baltimore, MD, United States of America
| |
Collapse
|