1
|
Martinez AL, Shannon MJ, Sloan T, Mace EM. CD56/NCAM mediates cell migration of human NK cells by promoting integrin-mediated adhesion turnover. Mol Biol Cell 2024; 35:ar64. [PMID: 38507235 PMCID: PMC11151098 DOI: 10.1091/mbc.e23-12-0463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 03/22/2024] Open
Abstract
Natural killer (NK) cells patrol tissue to mediate lysis of virally infected and tumorigenic cells. Human NK cells are typically identified by their expression of neural cell adhesion molecule (NCAM, CD56), yet despite its ubiquitous expression on NK cells, CD56 remains a poorly understood protein on immune cells. CD56 has been previously demonstrated to play roles in NK cell cytotoxic function and cell migration. Specifically, CD56-deficient NK cells have impaired cell migration on stromal cells and CD56 is localized to the uropod of NK cells migrating on stroma. Here, we show that CD56 is required for NK cell migration on ICAM-1 and is required for the establishment of persistent cell polarity and unidirectional actin flow. The intracellular domain of CD56 (NCAM-140) is required for its function and the loss of CD56 leads to enlarged actin foci and sequestration of phosphorylated Pyk2 accompanied by increased size and frequency of activated LFA-1 clusters. Together, these data identify a role for CD56 in regulating human NK cell migration through modulation of actin dynamics and integrin turnover.
Collapse
Affiliation(s)
- Amera L. Martinez
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10024
| | - Michael J. Shannon
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10024
| | | | - Emily M. Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10024
| |
Collapse
|
2
|
Sadhu RK, Luciano M, Xi W, Martinez-Torres C, Schröder M, Blum C, Tarantola M, Villa S, Penič S, Iglič A, Beta C, Steinbock O, Bodenschatz E, Ladoux B, Gabriele S, Gov NS. A minimal physical model for curvotaxis driven by curved protein complexes at the cell's leading edge. Proc Natl Acad Sci U S A 2024; 121:e2306818121. [PMID: 38489386 PMCID: PMC10963004 DOI: 10.1073/pnas.2306818121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 01/29/2024] [Indexed: 03/17/2024] Open
Abstract
Cells often migrate on curved surfaces inside the body, such as curved tissues, blood vessels, or highly curved protrusions of other cells. Recent in vitro experiments provide clear evidence that motile cells are affected by the curvature of the substrate on which they migrate, preferring certain curvatures to others, termed "curvotaxis." The origin and underlying mechanism that gives rise to this curvature sensitivity are not well understood. Here, we employ a "minimal cell" model which is composed of a vesicle that contains curved membrane protein complexes, that exert protrusive forces on the membrane (representing the pressure due to actin polymerization). This minimal-cell model gives rise to spontaneous emergence of a motile phenotype, driven by a lamellipodia-like leading edge. By systematically screening the behavior of this model on different types of curved substrates (sinusoidal, cylinder, and tube), we show that minimal ingredients and energy terms capture the experimental data. The model recovers the observed migration on the sinusoidal substrate, where cells move along the grooves (minima), while avoiding motion along the ridges. In addition, the model predicts the tendency of cells to migrate circumferentially on convex substrates and axially on concave ones. Both of these predictions are verified experimentally, on several cell types. Altogether, our results identify the minimization of membrane-substrate adhesion energy and binding energy between the membrane protein complexes as key players of curvotaxis in cell migration.
Collapse
Affiliation(s)
- Raj Kumar Sadhu
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Marine Luciano
- Department of Biochemistry, University of Geneva, Geneva4 CH-1211, Switzerland
- Mechanobiology & Biomaterials Group, Research Institute for Biosciences, Center of Innovation and Research in Materials and Polymers, University of Mons, MonsB-7000, Belgium
| | - Wang Xi
- Universite Paris Cite, CNRS, Institut Jacques Monod, ParisF-75013, France
| | | | - Marcel Schröder
- Department of Fluid Physics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Göttingen37077, Germany
| | - Christoph Blum
- Department of Fluid Physics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Göttingen37077, Germany
| | - Marco Tarantola
- Department of Fluid Physics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Göttingen37077, Germany
| | - Stefano Villa
- Department of Fluid Physics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Göttingen37077, Germany
| | - Samo Penič
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana1000, Slovenia
| | - Aleš Iglič
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana1000, Slovenia
| | - Carsten Beta
- Institute of Physics and Astronomy, University of Potsdam, Potsdam14476, Germany
- Nano Life Science Institute, Kanazawa University, Kanazawa920-1192, Japan
| | - Oliver Steinbock
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL32306-4390
| | - Eberhard Bodenschatz
- Department of Fluid Physics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Göttingen37077, Germany
| | - Benoît Ladoux
- Universite Paris Cite, CNRS, Institut Jacques Monod, ParisF-75013, France
| | - Sylvain Gabriele
- Mechanobiology & Biomaterials Group, Research Institute for Biosciences, Center of Innovation and Research in Materials and Polymers, University of Mons, MonsB-7000, Belgium
| | - Nir S. Gov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot7610001, Israel
| |
Collapse
|
3
|
Ma T, Liu X, Su H, Shi Q, He Y, Wu F, Gao C, Li K, Liang Z, Zhang D, Zhang X, Hu K, Li S, Wang L, Wang M, Yue S, Hong W, Chen X, Zhang J, Zheng L, Deng X, Wang P, Fan Y. Coupling of Perinuclear Actin Cap and Nuclear Mechanics in Regulating Flow-Induced Yap Spatiotemporal Nucleocytoplasmic Transport. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305867. [PMID: 38161226 PMCID: PMC10953556 DOI: 10.1002/advs.202305867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/10/2023] [Indexed: 01/03/2024]
Abstract
Mechanical forces, including flow shear stress, govern fundamental cellular processes by modulating nucleocytoplasmic transport of transcription factors like Yes-associated Protein (YAP). However, the underlying mechanical mechanism remains elusive. In this study, it is reported that unidirectional flow induces biphasic YAP transport with initial nuclear import, followed by nuclear export as actin cap formation and nuclear stiffening. Conversely, pathological oscillatory flow induces slight actin cap formation, nuclear softening, and sustained YAP nuclear localization. To elucidate the disparately YAP spatiotemporal distribution, a 3D mechanochemical model is developed, which integrates flow sensing, cytoskeleton organization, nucleus mechanotransduction, and YAP transport. The results unveiled that despite the significant localized nuclear stress imposed by the actin cap, its inherent stiffness counteracts the dispersed contractile stress exerted by conventional fibers on the nuclear membrane. Moreover, alterations in nuclear stiffness synergistically regulate nuclear deformation, thereby governing YAP transport. Furthermore, by expanding the single-cell model to a collective vertex framework, it is revealed that the irregularities in actin cap formation within individual cells have the potential to induce topological defects and spatially heterogeneous YAP distribution in the cellular monolayer. This work unveils a unified mechanism of flow-induced nucleocytoplasmic transport, providing a linkage between transcription factor localization and mechanical stimulation.
Collapse
Affiliation(s)
- Tianxiang Ma
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Xiao Liu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Haoran Su
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Qiusheng Shi
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Yuan He
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Fan Wu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Chenxing Gao
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Kexin Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Zhuqing Liang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Dongrui Zhang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Xing Zhang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Ke Hu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Shangyu Li
- Biomedical Pioneering Innovation Center (BIOPIC)Peking UniversityBeijing100871China
- Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China
| | - Li Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Min Wang
- Department of Gynecology and ObstetricsStrategic Support Force Medical CenterBeijing100101China
| | - Shuhua Yue
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Weili Hong
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Xun Chen
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Jing Zhang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Lisha Zheng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Xiaoyan Deng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Pu Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
- School of Engineering MedicineBeihang UniversityBeijing100083China
| |
Collapse
|
4
|
Quiles MT, Rodríguez-Contreras A, Guillem-Marti J, Punset M, Sánchez-Soto M, López-Cano M, Sabadell J, Velasco J, Armengol M, Manero JM, Arbós MA. Effect of Functionalization of Texturized Polypropylene Surface by Silanization and HBII-RGD Attachment on Response of Primary Abdominal and Vaginal Fibroblasts. Polymers (Basel) 2024; 16:667. [PMID: 38475352 DOI: 10.3390/polym16050667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Soft tissue defects, such as incisional hernia or pelvic organ prolapse, are prevalent pathologies characterized by a tissue microenvironment rich in fragile and dysfunctional fibroblasts. Precision medicine could improve their surgical repair, currently based on polymeric materials. Nonetheless, biomaterial-triggered interventions need first a better understanding of the cell-material interfaces that truly consider the patients' biology. Few tools are available to study the interactions between polymers and dysfunctional soft tissue cells in vitro. Here, we propose polypropylene (PP) as a matrix to create microscale surfaces w/wo functionalization with an HBII-RGD molecule, a fibronectin fragment modified to include an RGD sequence for promoting cell attachment and differentiation. Metal mold surfaces were roughened by shot blasting with aluminum oxide, and polypropylene plates were obtained by injection molding. HBII-RGD was covalently attached by silanization. As a proof of concept, primary abdominal and vaginal wall fasciae fibroblasts from control patients were grown on the new surfaces. Tissue-specific significant differences in cell morphology, early adhesion and cytoskeletal structure were observed. Roughness and biofunctionalization parameters exerted unique and combinatorial effects that need further investigation. We conclude that the proposed model is effective and provides a new framework to inform the design of smart materials for the treatment of clinically compromised tissues.
Collapse
Affiliation(s)
- Maria Teresa Quiles
- General Surgery Research Unit, Vall d'Hebron Research Institute (VHIR), Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
- Department of Basic Sciences, School of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Josep Trueta, s/n, 08195 Sant Cugat del Vallés, Spain
| | - Alejandra Rodríguez-Contreras
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department Materials Science and Engineering, Universitat Politècnica de Catalunya-Barcelona Tech (UPC), Escola d'Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Av. Eduard Maristany, 16, 08019 Barcelona, Spain
- Department Materials Science and Engineering, Universitat Politècnica de Catalunya-Barcelona Tech (UPC), Escola d'Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Av. D'Eduard Maristany, 16, 08019 Barcelona, Spain
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Jordi Guillem-Marti
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department Materials Science and Engineering, Universitat Politècnica de Catalunya-Barcelona Tech (UPC), Escola d'Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Av. Eduard Maristany, 16, 08019 Barcelona, Spain
- Department Materials Science and Engineering, Universitat Politècnica de Catalunya-Barcelona Tech (UPC), Escola d'Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Av. D'Eduard Maristany, 16, 08019 Barcelona, Spain
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Miquel Punset
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department Materials Science and Engineering, Universitat Politècnica de Catalunya-Barcelona Tech (UPC), Escola d'Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Av. Eduard Maristany, 16, 08019 Barcelona, Spain
- Department Materials Science and Engineering, Universitat Politècnica de Catalunya-Barcelona Tech (UPC), Escola d'Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Av. D'Eduard Maristany, 16, 08019 Barcelona, Spain
| | - Miguel Sánchez-Soto
- Department Materials Science and Engineering, Universitat Politècnica de Catalunya-Barcelona Tech (UPC), Escola d'Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Av. D'Eduard Maristany, 16, 08019 Barcelona, Spain
| | - Manuel López-Cano
- General Surgery Research Unit, Vall d'Hebron Research Institute (VHIR), Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
- Abdominal Wall Surgery Unit, Department of General Surgery, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Jordi Sabadell
- General Surgery Research Unit, Vall d'Hebron Research Institute (VHIR), Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
- Urogynecology and Pelvic Floor Unit, Department of Gynecology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Janice Velasco
- Department of Surgery, Hospital San Rafael, Germanes Hospitalàries, Passeig de la Vall d'Hebron, 107, 08035 Barcelona, Spain
| | - Manuel Armengol
- General Surgery Research Unit, Vall d'Hebron Research Institute (VHIR), Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
- Department of General Surgery, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Jose Maria Manero
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department Materials Science and Engineering, Universitat Politècnica de Catalunya-Barcelona Tech (UPC), Escola d'Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Av. Eduard Maristany, 16, 08019 Barcelona, Spain
- Department Materials Science and Engineering, Universitat Politècnica de Catalunya-Barcelona Tech (UPC), Escola d'Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Av. D'Eduard Maristany, 16, 08019 Barcelona, Spain
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Maria Antònia Arbós
- General Surgery Research Unit, Vall d'Hebron Research Institute (VHIR), Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
- Department of Basic Sciences, School of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Josep Trueta, s/n, 08195 Sant Cugat del Vallés, Spain
| |
Collapse
|
5
|
Banerjee T, Matsuoka S, Biswas D, Miao Y, Pal DS, Kamimura Y, Ueda M, Devreotes PN, Iglesias PA. A dynamic partitioning mechanism polarizes membrane protein distribution. Nat Commun 2023; 14:7909. [PMID: 38036511 PMCID: PMC10689845 DOI: 10.1038/s41467-023-43615-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023] Open
Abstract
The plasma membrane is widely regarded as the hub of the numerous signal transduction activities. Yet, the fundamental biophysical mechanisms that spatiotemporally compartmentalize different classes of membrane proteins remain unclear. Using multimodal live-cell imaging, here we first show that several lipid-anchored membrane proteins are consistently depleted from the membrane regions where the Ras/PI3K/Akt/F-actin network is activated. The dynamic polarization of these proteins does not depend upon the F-actin-based cytoskeletal structures, recurring shuttling between membrane and cytosol, or directed vesicular trafficking. Photoconversion microscopy and single-molecule measurements demonstrate that these lipid-anchored molecules have substantially dissimilar diffusion profiles in different regions of the membrane which enable their selective segregation. When these diffusion coefficients are incorporated into an excitable network-based stochastic reaction-diffusion model, simulations reveal that the altered affinity mediated selective partitioning is sufficient to drive familiar propagating wave patterns. Furthermore, normally uniform integral and lipid-anchored membrane proteins partition successfully when membrane domain-specific peptides are optogenetically recruited to them. We propose "dynamic partitioning" as a new mechanism that can account for large-scale compartmentalization of a wide array of lipid-anchored and integral membrane proteins during various physiological processes where membrane polarizes.
Collapse
Affiliation(s)
- Tatsat Banerjee
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Satomi Matsuoka
- Laboratory for Cell Signaling Dynamics, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
- Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Debojyoti Biswas
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yuchuan Miao
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Yoichiro Kamimura
- Laboratory for Cell Signaling Dynamics, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
| | - Masahiro Ueda
- Laboratory for Cell Signaling Dynamics, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
- Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Peter N Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Pablo A Iglesias
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
6
|
Martinez AL, Shannon MJ, Sloan T, Mace EM. CD56/NCAM mediates cell migration of human NK cells by promoting integrin-mediated adhesion turnover. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.567714. [PMID: 38045340 PMCID: PMC10690223 DOI: 10.1101/2023.11.21.567714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Natural killer (NK) cells patrol tissue to mediate lysis of virally infected and tumorigenic cells. Human NK cells are typically identified by their expression of neural cell adhesion molecule (NCAM, CD56), yet, despite its ubiquitous expression on NK cells, CD56 remains a poorly understand protein on immune cells. CD56 has been previously demonstrated to play roles in NK cell cytotoxic function and cell migration. Specifically, CD56-deficient NK cells have impaired cell migration on stromal cells and CD56 is localized to the uropod of NK cells migrating on stroma. Here, we show that CD56 is required for NK cell migration on ICAM-1 and is required for the establishment of persistent cell polarity and unidirectional actin flow. The intracellular domain of CD56 (NCAM-140) is required for its function, and the loss of CD56 leads to enlarged actin foci and sequestration of phosphorylated Pyk2, accompanied by increased size and frequency of activated LFA-1 clusters. Together, these data identify a role for CD56 in regulating human NK cell migration through modulation of actin dynamics and integrin turnover.
Collapse
Affiliation(s)
- Amera L Martinez
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York NY 10032
| | - Michael J Shannon
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York NY 10032
| | | | - Emily M Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York NY 10032
| |
Collapse
|
7
|
Mennona NJ, Sedelnikova A, Echchgadda I, Losert W. Filament displacement image analytics tool for use in investigating dynamics of dense microtubule networks. Phys Rev E 2023; 108:034411. [PMID: 37849213 DOI: 10.1103/physreve.108.034411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/24/2023] [Indexed: 10/19/2023]
Abstract
The fate and motion of cells is influenced by a variety of physical characteristics of their microenvironments. Traditionally, mechanobiology focuses on external mechanical phenomena such as cell movement and environmental sensing. However, cells are inherently dynamic, where internal waves and internal oscillations are a hallmark of living cells observed under a microscope. We propose that these internal mechanical rhythms provide valuable information about cell health. Therefore, it is valuable to capture the rhythms inside cells and quantify how drugs or physical interventions affect a cell's internal dynamics. One of the key dynamical entities inside cells is the microtubule network. Typically, microtubule dynamics are measured by end-protein tracking. In contrast, this paper introduces an easy-to-implement approach to measure the lateral motion of the microtubule filaments embedded within dense networks with (at least) confocal resolution image sequences. Our tool couples the computer vision algorithm Optical Flow with an anisotropic, rotating Laplacian of Gaussian filtering to characterize the lateral motion of dense microtubule networks. We then showcase additional image analytics used to understand the effect of microtubule orientation and regional location on lateral motion. We argue that our tool and these additional metrics provide a fuller picture of the active forcing environment within cells.
Collapse
Affiliation(s)
- Nicholas J Mennona
- Air Force Research Laboratory, Radio Frequency Bioeffects Branch, JBSA Fort Sam Houston, Texas 78234, USA
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
- Deptartment of Physics, University of Maryland, College Park, Maryland 20742, USA
| | - Anna Sedelnikova
- Science Applications International Corporation, JBSA Fort Sam Houston, Texas 78234, USA
| | - Ibtissam Echchgadda
- Air Force Research Laboratory, Radio Frequency Bioeffects Branch, JBSA Fort Sam Houston, Texas 78234, USA
| | - Wolfgang Losert
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
- Deptartment of Physics, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
8
|
Gu S, Bull A, Perry JK, Huang A, Hourwitz MJ, Abostate M, Fourkas JT, Korchevskiy AA, Wylie AG, Losert W. Excitable systems: A new perspective on the cellular impact of elongate mineral particles. ENVIRONMENTAL RESEARCH 2023; 230:115353. [PMID: 36702187 DOI: 10.1016/j.envres.2023.115353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/22/2023] [Indexed: 05/30/2023]
Abstract
We investigate how the geometry of elongate mineral particles (EMPs) in contact with cells influences esotaxis, a recently discovered mechanism of texture sensing. Esotaxis is based on cytoskeletal waves and oscillations that are nucleated, shaped, and steered by the texture of the surroundings. We find that all EMPs studied trigger an esotactic response in macrophages, and that this response dominates cytoskeletal activity in these immune cells. In contrast, epithelial cells show little to no esotactic response to the EMPs. These results are consistent with the distinct interactions of both cell types with ridged nanotopographies of dimensions comparable to those of asbestiform EMPs. Our findings raise the question of whether narrow, asbestiform EMPs may also dominate cytoskeletal activity in other types of immune cells that exhibit similar esotactic effects. These findings, together with prior studies of esotaxis, lead us to the hypothesis that asbestiform EMPs suppress the migration of immune cells and activate immune signaling, thereby outcompeting signals that would normally stimulate the immune system in nearby tissue.
Collapse
Affiliation(s)
- Shuyao Gu
- Department of Physics, University of Maryland, College Park, MD 20740, United States
| | - Abby Bull
- Department of Physics, University of Maryland, College Park, MD 20740, United States; Institute for Physical Science and Technology, University of Maryland, College Park, MD 20740, United States
| | - Jeneh K Perry
- CCDC Army Research Laboratory, Weapons and Material Research Directorate, 6300 Rodman Road, Aberdeen, Proving Ground, MD 21005, United States
| | - Amilee Huang
- Department of Biology, University of Maryland, College Park, MD 20740, United States
| | - Matt J Hourwitz
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20740, United States
| | - Mona Abostate
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20740, United States
| | - John T Fourkas
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20740, United States; Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20740, United States
| | - Andrey A Korchevskiy
- Chemistry & Industrial Hygiene, Inc., 5420 Ward Road, Suite 100, Arvada, CO 80002, United States
| | - Ann G Wylie
- Laboratory for Mineral Deposits Research, Department of Geology, University of Maryland, 8000 Regents Dr., College Park, MD 20742, United States
| | - Wolfgang Losert
- Department of Physics, University of Maryland, College Park, MD 20740, United States; Institute for Physical Science and Technology, University of Maryland, College Park, MD 20740, United States.
| |
Collapse
|
9
|
Mo Y, Wang K, Li L, Xing S, Ye S, Wen J, Duan X, Luo Z, Gou W, Chen T, Zhang YH, Guo C, Fan J, Chen L. Quantitative structured illumination microscopy via a physical model-based background filtering algorithm reveals actin dynamics. Nat Commun 2023; 14:3089. [PMID: 37248215 PMCID: PMC10227022 DOI: 10.1038/s41467-023-38808-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 05/12/2023] [Indexed: 05/31/2023] Open
Abstract
Despite the prevalence of superresolution (SR) microscopy, quantitative live-cell SR imaging that maintains the completeness of delicate structures and the linearity of fluorescence signals remains an uncharted territory. Structured illumination microscopy (SIM) is the ideal tool for live-cell SR imaging. However, it suffers from an out-of-focus background that leads to reconstruction artifacts. Previous post hoc background suppression methods are prone to human bias, fail at densely labeled structures, and are nonlinear. Here, we propose a physical model-based Background Filtering method for living cell SR imaging combined with the 2D-SIM reconstruction procedure (BF-SIM). BF-SIM helps preserve intricate and weak structures down to sub-70 nm resolution while maintaining signal linearity, which allows for the discovery of dynamic actin structures that, to the best of our knowledge, have not been previously monitored.
Collapse
Affiliation(s)
- Yanquan Mo
- State Key Laboratory of Membrane Biology, Center for Life Sciences, College of Future Technology, Peking University, Beijing, 100871, China
| | - Kunhao Wang
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Liuju Li
- State Key Laboratory of Membrane Biology, Center for Life Sciences, College of Future Technology, Peking University, Beijing, 100871, China
| | - Shijia Xing
- State Key Laboratory of Membrane Biology, Center for Life Sciences, College of Future Technology, Peking University, Beijing, 100871, China
| | - Shouhua Ye
- Guangzhou Computational Super-resolution Biotech Co., Ltd, Guangzhou, 510535, China
| | - Jiayuan Wen
- Guangzhou Computational Super-resolution Biotech Co., Ltd, Guangzhou, 510535, China
| | - Xinxin Duan
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ziying Luo
- Guangzhou Computational Super-resolution Biotech Co., Ltd, Guangzhou, 510535, China
| | - Wen Gou
- Chongqing Key Laboratory of Image Cognition, College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Tongsheng Chen
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Yu-Hui Zhang
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Changliang Guo
- State Key Laboratory of Membrane Biology, Center for Life Sciences, College of Future Technology, Peking University, Beijing, 100871, China
| | - Junchao Fan
- Chongqing Key Laboratory of Image Cognition, College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China.
| | - Liangyi Chen
- State Key Laboratory of Membrane Biology, Center for Life Sciences, College of Future Technology, Peking University, Beijing, 100871, China.
- PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, China.
- Beijing Academy of Artificial Intelligence, Beijing, 100871, China.
- National Biomedical Imaging Center, Beijing, 100871, China.
| |
Collapse
|
10
|
Yang Q, Miao Y, Banerjee P, Hourwitz MJ, Hu M, Qing Q, Iglesias PA, Fourkas JT, Losert W, Devreotes PN. Nanotopography modulates intracellular excitable systems through cytoskeleton actuation. Proc Natl Acad Sci U S A 2023; 120:e2218906120. [PMID: 37126708 PMCID: PMC10175780 DOI: 10.1073/pnas.2218906120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/21/2023] [Indexed: 05/03/2023] Open
Abstract
Cellular sensing of most environmental cues involves receptors that affect a signal-transduction excitable network (STEN), which is coupled to a cytoskeletal excitable network (CEN). We show that the mechanism of sensing of nanoridges is fundamentally different. CEN activity occurs preferentially on nanoridges, whereas STEN activity is constrained between nanoridges. In the absence of STEN, waves disappear, but long-lasting F-actin puncta persist along the ridges. When CEN is suppressed, wave propagation is no longer constrained by nanoridges. A computational model reproduces these experimental observations. Our findings indicate that nanotopography is sensed directly by CEN, whereas STEN is only indirectly affected due to a CEN-STEN feedback loop. These results explain why texture sensing is robust and acts cooperatively with multiple other guidance cues in complex, in vivo microenvironments.
Collapse
Affiliation(s)
- Qixin Yang
- Department of Physics, University of Maryland, College Park, MD20742
- Institute of Physical Science and Technology, University of Maryland, College Park, MD20742
| | - Yuchuan Miao
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD21205
| | - Parijat Banerjee
- Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD21218
| | - Matt J. Hourwitz
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD20742
| | - Minxi Hu
- School of Molecular Sciences, Arizona State University, Tempe, AZ85287
| | - Quan Qing
- Department of Physics, Arizona State University, Tempe, AZ85287
- Biodesign Institute, Arizona State University, Tempe, AZ85287
| | - Pablo A. Iglesias
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD21205
- Department of Electrical & Computer Engineering, Johns Hopkins University, Baltimore, MD21218
| | - John T. Fourkas
- Institute of Physical Science and Technology, University of Maryland, College Park, MD20742
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD20742
| | - Wolfgang Losert
- Department of Physics, University of Maryland, College Park, MD20742
- Institute of Physical Science and Technology, University of Maryland, College Park, MD20742
| | - Peter N. Devreotes
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD21205
| |
Collapse
|
11
|
Robitaille MC, Byers JM, Christodoulides JA, Raphael MP. Self-supervised machine learning for live cell imagery segmentation. Commun Biol 2022; 5:1162. [PMID: 36323790 PMCID: PMC9630527 DOI: 10.1038/s42003-022-04117-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] Open
Abstract
Segmenting single cells is a necessary process for extracting quantitative data from biological microscopy imagery. The past decade has seen the advent of machine learning (ML) methods to aid in this process, the overwhelming majority of which fall under supervised learning (SL) which requires vast libraries of pre-processed, human-annotated labels to train the ML algorithms. Such SL pre-processing is labor intensive, can introduce bias, varies between end-users, and has yet to be shown capable of robust models to be effectively utilized throughout the greater cell biology community. Here, to address this pre-processing problem, we offer a self-supervised learning (SSL) approach that utilizes cellular motion between consecutive images to self-train a ML classifier, enabling cell and background segmentation without the need for adjustable parameters or curated imagery. By leveraging motion, we achieve accurate segmentation that trains itself directly on end-user data, is independent of optical modality, outperforms contemporary SL methods, and does so in a completely automated fashion-thus eliminating end-user variability and bias. To the best of our knowledge, this SSL algorithm represents a first of its kind effort and has appealing features that make it an ideal segmentation tool candidate for the broader cell biology research community.
Collapse
Affiliation(s)
- Michael C Robitaille
- Materials Science and Technology Division, U.S. Naval Research Laboratory, Washington, DC, USA
| | - Jeff M Byers
- Materials Science and Technology Division, U.S. Naval Research Laboratory, Washington, DC, USA
| | | | - Marc P Raphael
- Materials Science and Technology Division, U.S. Naval Research Laboratory, Washington, DC, USA.
| |
Collapse
|
12
|
Wheatley BA, Rey-Suarez I, Hourwitz MJ, Kerr S, Shroff H, Fourkas JT, Upadhyaya A. Nanotopography modulates cytoskeletal organization and dynamics during T cell activation. Mol Biol Cell 2022; 33:ar88. [PMID: 35830602 PMCID: PMC9582624 DOI: 10.1091/mbc.e21-12-0601] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Exposure to MHC-antigen complexes on the surface of antigen-presenting cells (APCs) activates T cells, inducing the formation of the immune synapse (IS). Antigen detection at the APC surface is thus a critical step in the adaptive immune response. The physical properties of antigen-presenting surfaces encountered by T cells in vivo are believed to modulate T cell activation and proliferation. Although stiffness and ligand mobility influence IS formation, the effect of the complex topography of the APC surface on this process is not well understood. Here we investigate how nanotopography modulates cytoskeletal dynamics and signaling during the early stages of T cell activation using high-resolution fluorescence microscopy on nanofabricated surfaces with parallel nanoridges of different spacings. We find that although nanoridges reduce the maximum spread area as compared with cells on flat surfaces, the ridges enhance the accumulation of actin and the signaling kinase ZAP-70 at the IS. Actin polymerization is more dynamic in the presence of ridges, which influence the directionality of both actin flows and microtubule (MT) growth. Our results demonstrate that the topography of the activating surface exerts both global effects on T cell morphology and local changes in actin and MT dynamics, collectively influencing T cell signaling.
Collapse
Affiliation(s)
- Brittany A Wheatley
- Department of Integrative Structural and Computational Biology and.,Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL 33458
| | - Ivan Rey-Suarez
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742
| | - Matt J Hourwitz
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742
| | - Sarah Kerr
- Department of Physics, University of Colorado, Boulder, CO 80302
| | - Hari Shroff
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
| | - John T Fourkas
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742.,Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742.,Maryland Quantum Materials Center, University of Maryland, College Park, MD 20742
| | - Arpita Upadhyaya
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742.,Department of Physics, University of Maryland, College Park, MD 20742
| |
Collapse
|
13
|
Bull AL, Campanello L, Hourwitz MJ, Yang Q, Zhao M, Fourkas JT, Losert W. Actin Dynamics as a Multiscale Integrator of Cellular Guidance Cues. Front Cell Dev Biol 2022; 10:873567. [PMID: 35573675 PMCID: PMC9092214 DOI: 10.3389/fcell.2022.873567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/28/2022] [Indexed: 01/22/2023] Open
Abstract
Migrating cells must integrate multiple, competing external guidance cues. However, it is not well understood how cells prioritize among these cues. We investigate external cue integration by monitoring the response of wave-like, actin-polymerization dynamics, the driver of cell motility, to combinations of nanotopographies and electric fields in neutrophil-like cells. The electric fields provide a global guidance cue, and approximate conditions at wound sites in vivo. The nanotopographies have dimensions similar to those of collagen fibers, and act as a local esotactic guidance cue. We find that cells prioritize guidance cues, with electric fields dominating long-term motility by introducing a unidirectional bias in the locations at which actin waves nucleate. That bias competes successfully with the wave guidance provided by the bidirectional nanotopographies.
Collapse
Affiliation(s)
- Abby L. Bull
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, United States
- Department of Physics, University of Maryland, College Park, MD, United States
| | - Leonard Campanello
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, United States
- Department of Physics, University of Maryland, College Park, MD, United States
| | - Matt J. Hourwitz
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, United States
| | - Qixin Yang
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, United States
- Department of Physics, University of Maryland, College Park, MD, United States
| | - Min Zhao
- Institute for Regenerative Cures, Department of Ophthalmology and Vision Science, Department of Dermatology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - John T. Fourkas
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, United States
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, United States
| | - Wolfgang Losert
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, United States
- Department of Physics, University of Maryland, College Park, MD, United States
- *Correspondence: Wolfgang Losert,
| |
Collapse
|
14
|
Yang Q, Miao Y, Campanello LJ, Hourwitz MJ, Abubaker-Sharif B, Bull AL, Devreotes PN, Fourkas JT, Losert W. Cortical waves mediate the cellular response to electric fields. eLife 2022; 11:73198. [PMID: 35318938 PMCID: PMC8942472 DOI: 10.7554/elife.73198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
Electrotaxis, the directional migration of cells in a constant electric field, is important in regeneration, development, and wound healing. Electrotaxis has a slower response and a smaller dynamic range than guidance by other cues, suggesting that the mechanism of electrotaxis shares both similarities and differences with chemical-gradient-sensing pathways. We examine a mechanism centered on the excitable system consisting of cortical waves of biochemical signals coupled to cytoskeletal reorganization, which has been implicated in random cell motility. We use electro-fused giant Dictyostelium discoideum cells to decouple waves from cell motion and employ nanotopographic surfaces to limit wave dimensions and lifetimes. We demonstrate that wave propagation in these cells is guided by electric fields. The wave area and lifetime gradually increase in the first 10 min after an electric field is turned on, leading to more abundant and wider protrusions in the cell region nearest the cathode. The wave directions display 'U-turn' behavior upon field reversal, and this switch occurs more quickly on nanotopography. Our results suggest that electric fields guide cells by controlling waves of signal transduction and cytoskeletal activity, which underlie cellular protrusions. Whereas surface receptor occupancy triggers both rapid activation and slower polarization of signaling pathways, electric fields appear to act primarily on polarization, explaining why cells respond to electric fields more slowly than to other guidance cues.
Collapse
Affiliation(s)
- Qixin Yang
- Department of Physics, University of Maryland, College Park, United States.,Institute for Physical Science and Technology, University of Maryland, College Park, United States
| | - Yuchuan Miao
- Department of Cell Biology, Johns Hopkins University, Baltimore, United States
| | - Leonard J Campanello
- Department of Physics, University of Maryland, College Park, United States.,Institute for Physical Science and Technology, University of Maryland, College Park, United States
| | - Matt J Hourwitz
- Department of Chemistry & Biochemistry, University of Maryland, College Park, United States
| | | | - Abby L Bull
- Department of Physics, University of Maryland, College Park, United States.,Institute for Physical Science and Technology, University of Maryland, College Park, United States
| | - Peter N Devreotes
- Department of Cell Biology, Johns Hopkins University, Baltimore, United States
| | - John T Fourkas
- Institute for Physical Science and Technology, University of Maryland, College Park, United States.,Department of Chemistry & Biochemistry, University of Maryland, College Park, United States
| | - Wolfgang Losert
- Department of Physics, University of Maryland, College Park, United States.,Institute for Physical Science and Technology, University of Maryland, College Park, United States
| |
Collapse
|
15
|
Bhanja A, Rey-Suarez I, Song W, Upadhyaya A. Bidirectional feedback between BCR signaling and actin cytoskeletal dynamics. FEBS J 2021; 289:4430-4446. [PMID: 34124846 PMCID: PMC8669062 DOI: 10.1111/febs.16074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/24/2021] [Accepted: 06/14/2021] [Indexed: 11/30/2022]
Abstract
When B cells are exposed to antigens, they use their B-cell receptors (BCRs) to transduce this external signal into internal signaling cascades and uptake antigen, which activate transcriptional programs. Signaling activation requires complex cytoskeletal remodeling initiated by BCR signaling. The actin cytoskeletal remodeling drives B-cell morphological changes, such as spreading, protrusion, contraction, and endocytosis of antigen by mechanical forces, which in turn affect BCR signaling. Therefore, the relationship between the actin cytoskeleton and BCR signaling is a two-way feedback loop. These morphological changes represent the indirect ways by which the actin cytoskeleton regulates BCR signaling. Recent studies using high spatiotemporal resolution microscopy techniques have revealed that actin also can directly influence BCR signaling. Cortical actin networks directly affect BCR mobility, not only during the resting stage by serving as diffusion barriers, but also at the activation stage by altering BCR diffusivity through enhanced actin flow velocities. Furthermore, the actin cytoskeleton, along with myosin, enables B cells to sense the physical properties of its environment and generate and transmit forces through the BCR. Consequently, the actin cytoskeleton modulates the signaling threshold of BCR to antigenic stimulation. This review discusses the latest research on the relationship between BCR signaling and actin remodeling, and the research techniques. Exploration of the role of actin in BCR signaling will expand fundamental understanding of the relationship between cell signaling and the cytoskeleton and the mechanisms underlying cytoskeleton-related immune disorders and cancer.
Collapse
Affiliation(s)
- Anshuman Bhanja
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Ivan Rey-Suarez
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, USA
| | - Wenxia Song
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Arpita Upadhyaya
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, USA.,Department Physics, University of Maryland, College Park, MD, USA
| |
Collapse
|
16
|
Lee RM, Vitolo MI, Losert W, Martin SS. Distinct roles of tumor associated mutations in collective cell migration. Sci Rep 2021; 11:10291. [PMID: 33986306 PMCID: PMC8119502 DOI: 10.1038/s41598-021-89130-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/10/2021] [Indexed: 02/03/2023] Open
Abstract
Recent evidence suggests that groups of cells are more likely to form clinically dangerous metastatic tumors, emphasizing the importance of understanding mechanisms underlying collective behavior. The emergent collective behavior of migrating cell sheets in vitro has been shown to be disrupted in tumorigenic cells but the connection between this behavior and in vivo tumorigenicity remains unclear. We use particle image velocimetry to measure a multidimensional migration phenotype for genetically defined human breast epithelial cell lines that range in their in vivo behavior from non-tumorigenic to aggressively metastatic. By using cells with controlled mutations, we show that PTEN deletion enhances collective migration, while Ras activation suppresses it, even when combined with PTEN deletion. These opposing effects on collective migration of two mutations that are frequently found in patient tumors could be exploited in the development of novel treatments for metastatic disease. Our methods are based on label-free phase contrast imaging, and thus could easily be applied to patient tumor cells. The short time scales of our approach do not require potentially selective growth, and thus in combination with label-free imaging would allow multidimensional collective migration phenotypes to be utilized in clinical assessments of metastatic potential.
Collapse
Affiliation(s)
- Rachel M. Lee
- grid.411024.20000 0001 2175 4264Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201 USA ,grid.164295.d0000 0001 0941 7177Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742 USA
| | - Michele I. Vitolo
- grid.411024.20000 0001 2175 4264Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201 USA ,grid.411024.20000 0001 2175 4264Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Wolfgang Losert
- grid.411024.20000 0001 2175 4264Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201 USA ,grid.164295.d0000 0001 0941 7177Department of Physics, University of Maryland, College Park, MD 20742 USA
| | - Stuart S. Martin
- grid.411024.20000 0001 2175 4264Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201 USA ,grid.411024.20000 0001 2175 4264Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| |
Collapse
|
17
|
Lee RM, Campanello L, Hourwitz MJ, Alvarez P, Omidvar A, Fourkas JT, Losert W. Quantifying topography-guided actin dynamics across scales using optical flow. Mol Biol Cell 2020; 31:1753-1764. [PMID: 32023172 PMCID: PMC7521856 DOI: 10.1091/mbc.e19-11-0614] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The dynamic rearrangement of the actin cytoskeleton is an essential component of many mechanotransduction and cellular force generation pathways. Here we use periodic surface topographies with feature sizes comparable to those of in vivo collagen fibers to measure and compare actin dynamics for two representative cell types that have markedly different migratory modes and physiological purposes: slowly migrating epithelial MCF10A cells and polarizing, fast-migrating, neutrophil-like HL60 cells. Both cell types exhibit reproducible guidance of actin waves (esotaxis) on these topographies, enabling quantitative comparisons of actin dynamics. We adapt a computer-vision algorithm, optical flow, to measure the directions of actin waves at the submicron scale. Clustering the optical flow into regions that move in similar directions enables micron-scale measurements of actin-wave speed and direction. Although the speed and morphology of actin waves differ between MCF10A and HL60 cells, the underlying actin guidance by nanotopography is similar in both cell types at the micron and submicron scales.
Collapse
Affiliation(s)
- Rachel M Lee
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742.,University of Maryland School of Medicine, Baltimore, MD 21201
| | | | - Matt J Hourwitz
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742
| | - Phillip Alvarez
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742
| | - Ava Omidvar
- Department of Physics, University of Maryland, College Park, MD 20742
| | - John T Fourkas
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742.,Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742
| | - Wolfgang Losert
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742.,Department of Physics, University of Maryland, College Park, MD 20742.,University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|