1
|
Gralewska P, Biegała Ł, Gajek A, Szymczak-Pajor I, Marczak A, Śliwińska A, Rogalska A. Olaparib Combined with DDR Inhibitors Effectively Prevents EMT and Affects miRNA Regulation in TP53-Mutated Epithelial Ovarian Cancer Cell Lines. Int J Mol Sci 2025; 26:693. [PMID: 39859407 PMCID: PMC11766100 DOI: 10.3390/ijms26020693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Epithelial ovarian cancer (EOC) remains a leading cause of gynecologic cancer mortality. Despite advances in treatment, metastatic progression and resistance to standard therapies significantly worsen patient outcomes. Epithelial-mesenchymal transition (EMT) is a critical process in metastasis, enabling cancer cells to gain invasive and migratory capabilities, often driven by changing miRNA expression involved in the regulation of pathological processes like drug resistance. Targeted therapies like PARP inhibitors (PARPi) have improved outcomes, particularly in BRCA-mutated and DNA repair-deficient tumors; however, resistance and limited efficacy in advanced stages remain challenges. Recent studies highlight the potential synergy of PARPi with DNA damage response (DDR) inhibitors, such as ATR and CHK1 inhibitors, which disrupt cancer cell survival pathways under stress. This study investigated the combined effects of olaparib with ATR and CHK1 inhibitors (ATRi and CHK1i) on migration, invasion, and EMT-related protein expression and miRNA expression in ovarian cancer cell lines OV-90 and SKOV-3. The results demonstrated enhanced cytotoxicity, inhibition of migration and invasion, and modulation of miRNAs linked to metastasis. These findings suggest that combination therapies targeting DNA repair and cell cycle pathways may offer a novel, more effective approach to managing advanced EOC and reducing metastatic spread.
Collapse
Affiliation(s)
- Patrycja Gralewska
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland; (P.G.); (Ł.B.); (A.G.); (A.M.)
| | - Łukasz Biegała
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland; (P.G.); (Ł.B.); (A.G.); (A.M.)
| | - Arkadiusz Gajek
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland; (P.G.); (Ł.B.); (A.G.); (A.M.)
| | - Izabela Szymczak-Pajor
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Street, 92-213 Lodz, Poland; (I.S.-P.); (A.Ś.)
| | - Agnieszka Marczak
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland; (P.G.); (Ł.B.); (A.G.); (A.M.)
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Street, 92-213 Lodz, Poland; (I.S.-P.); (A.Ś.)
| | - Aneta Rogalska
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland; (P.G.); (Ł.B.); (A.G.); (A.M.)
| |
Collapse
|
2
|
Zha Z, Ge F, Li N, Zhang S, Wang C, Gong F, Miao J, Chen W. Effects of Na V1.5 and Rac1 on the Epithelial-Mesenchymal Transition in Breast Cancer. Cell Biochem Biophys 2024:10.1007/s12013-024-01625-x. [PMID: 39673684 DOI: 10.1007/s12013-024-01625-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2024] [Indexed: 12/16/2024]
Abstract
Breast cancer is a disease that seriously endangers the health of women. However, it is difficult to treat due to the emergence of metastasis and drug resistance. Exploring the metastasis mechanism of breast cancer is helpful to aim for the appropriate target. The epithelial-mesenchymal transition (EMT) is an important mechanism of breast cancer metastasis. Sodium channel 1.5(NaV1.5) and the GTPase Rac1 are factors related to the degree of malignancy of breast tumors. The expression of NaV1.5 and the activation of Rac1 are both involved in EMT. In addition, NaV1.5 can change the plasma membrane potential (Vm) by promoting the inflow of Na+ to depolarize the cell membrane, induce the activation of Rac1 and produce a cascade of reactions that lead to EMT in breast cancer cells; this sequence of events further induces the movement, migration and invasion of tumor cells and affects the prognosis of breast cancer patients. In this paper, the roles of NaV1.5 and Rac1 in EMT-mediated breast cancer progression were reviewed.
Collapse
Affiliation(s)
- Zhuocen Zha
- First-Class Discipline Team of Kunming Medical University, Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
- Oncology department, Guizhou Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guiyang, Guizhou, 550000, China
| | - Fei Ge
- Department of Breast Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Na Li
- First-Class Discipline Team of Kunming Medical University, Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Shijun Zhang
- First-Class Discipline Team of Kunming Medical University, Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Chenxi Wang
- First-Class Discipline Team of Kunming Medical University, Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Fuhong Gong
- First-Class Discipline Team of Kunming Medical University, Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Jingge Miao
- First-Class Discipline Team of Kunming Medical University, Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Wenlin Chen
- First-Class Discipline Team of Kunming Medical University, Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China.
| |
Collapse
|
3
|
Hosseini Farzad S, Lashkarboloki M, Mowla SJ, Soltani BM. LncRNA DANCR-V1 is a novel regulator of Wnt/β-catenin and TGF-β1/SMAD signaling pathways in colorectal cancer: an in vitro and in silico study. Mol Biol Rep 2024; 52:36. [PMID: 39643825 DOI: 10.1007/s11033-024-10128-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/19/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND DANCR is an oncogenic lncRNA associated with advanced colorectal cancer, one of the most common malignancies worldwide. This lncRNA has a new variant, DANCR-V1, whose function is not yet understood. In this study, we aimed to evaluate the expression pattern of DANCR-V1 and its regulatory mechanism in colorectal cancer. METHOD AND RESULT Bioinformatics analysis and RT-qPCR showed that DANCR-V1 expression was higher in colorectal cancer tissues than in normal pairs obtained from microarray data and 20 samples, respectively. LncRNA subcellular localization and hsa-miR-222 binding sites were predicted using bioinformatics tools. Dual luciferase assays confirmed that miR-222-mediated downregulation of DANCR-V1 through its targeting, and RT-qPCR showed that overexpression of miR-222 decreased the level of DANCR-V1. Functionally, Wnt/β-catenin and TGF-β1/SMAD-related genes changed under DANCR-V1 overexpression in the SW480 cell line, while their expression was reversed following miR-222 overexpression. Finally, at the cellular level, overexpression of DANCR-V1 elevated the proliferation and migration rates of SW480 cells, as determined using flow cytometry, western blotting and scratch assays. CONCLUSION Our data suggest that DANCR-V1 is a novel transcript variant that has crucial crosstalk with miR-222 via negative feedback and plays a critical role in colorectal cancer progression through Wnt/β-catenin and TGF-β1/SMAD signaling modulation.
Collapse
Affiliation(s)
- Sana Hosseini Farzad
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mina Lashkarboloki
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Javad Mowla
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahram M Soltani
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
4
|
Yang QQ, Jin J, Sun J, Zhang L, Tang JB, Zhou YL. Simultaneous targeting of TGF-β1/PD-L1 via a hydrogel-nanoparticle system to remodel the ECM and immune microenvironment for limiting adhesion formation. Acta Biomater 2024:S1742-7061(24)00635-4. [PMID: 39481625 DOI: 10.1016/j.actbio.2024.10.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 09/20/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Adhesion seriously affects the recovery of tendon gliding function. Our group previously found that inhibition of TGF-β1, which is closely related to adhesion formation, effectively attenuated adhesions but did not eliminate them, suggesting that there may be other mechanisms involved in adhesion formation. In this study, we considered that uncontrolled and excessively proliferating fibroblasts undergo immune escape, which aggravates the deposition of extracellular matrix during the adhesion formation. We found that the expression of the immune checkpoint PD-L1 was significantly elevated after injury and may be involved in adhesion formation. Therefore, we intended to silence both TGF-β1 and PD-L1 to improve the immune advantage in the microenvironment after flexor tendon injury to further reduce adhesion. We constructed the nanoparticle/TGF-β1 or/and PD-L1 siRNAs complexes and verified their high biocompatibility and high transfection efficiency. We found that CD8+T cells had a greater killing effect on the excessively proliferating cells that were transfected with nanoparticle/TGF-β1 or/and PD-L1 siRNAs. The hydrogel-nanoparticle/TGF-β1 or/and PD-L1 siRNAs system could effectively improve the gliding function of the tendons without weakening the mechanical properties in injured rat FDL tendon and chicken FDP tendon models. In addition, the potential of CD8+T cells to encircle the adhesion cells on the tendon surface was observed, which resulted in increased levels of cell apoptosis. Thus, our study confirmed that combined knockdown of TGF-β1 and PD-L1 could activate immunodominance after flexor tendon repair and provided a potential treatment to limit adhesion formation and improve gliding function. STATEMENT OF SIGNIFICANCE: Adhesion seriously affects the recovery of tendon gliding function. TGF-β1 is related to adhesion formation as it regulates the production of extracellular matrix. We found that excessively proliferated fibroblasts might undergo immune escape, which aggravated the deposition of extracellular matrix. Therefore, we constructed a hydrogel-nanoparticle/TGF-β1 and PD-L1 siRNAs system for silencing TGF-β1 and PD-L1 to improve the immune advantage in the microenvironment after tendon injury. This system could improve the gliding function of tendons without weakening the mechanical property and increase the killing effect of CD8+T cells. Combined knockdown of TGF-β1 and PD-L1 could activate immunodominance after tendon repair and provide a potential treatment to limit adhesion formation.
Collapse
Affiliation(s)
- Qian Qian Yang
- Hand Surgery Research Center, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Jing Jin
- Hand Surgery Research Center, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Jie Sun
- Hand Surgery Research Center, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Luzhong Zhang
- Hand Surgery Research Center, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Jin Bo Tang
- Hand Surgery Research Center, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| | - You Lang Zhou
- Hand Surgery Research Center, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| |
Collapse
|
5
|
Lei ZN, Teng QX, Koya J, Liu Y, Chen Z, Zeng L, Chen ZS, Fang S, Wang J, Liu Y, Pan Y. The correlation between cancer stem cells and epithelial-mesenchymal transition: molecular mechanisms and significance in cancer theragnosis. Front Immunol 2024; 15:1417201. [PMID: 39403386 PMCID: PMC11471544 DOI: 10.3389/fimmu.2024.1417201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/06/2024] [Indexed: 01/03/2025] Open
Abstract
The connections between cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT) is critical in cancer initiation, progression, metastasis, and therapy resistance, making it a focal point in cancer theragnosis. This review provides a panorama of associations and regulation pathways between CSCs and EMT, highlighting their significance in cancer. The molecular mechanisms underlined EMT are thoroughly explored, including the involvement of key transcription factors and signaling pathways. In addition, the roles of CSCs and EMT in tumor biology and therapy resistance, is further examined in this review. The clinical implications of CSCs-EMT interplay are explored, including identifying mesenchymal-state CSC subpopulations using advanced research methods and developing targeted therapies such as inhibitors and combination treatments. Overall, understanding the reciprocal relationship between EMT and CSCs holds excellent potential for informing the development of personalized therapies and ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Zi-Ning Lei
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Jagadish Koya
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Yangruiyu Liu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zizhou Chen
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Leli Zeng
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Shuo Fang
- Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
- Department of Oncology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jinxiang Wang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yuchen Liu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
- Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yihang Pan
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
- Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
6
|
Giarratana AO, Prendergast CM, Salvatore MM, Capaccione KM. TGF-β signaling: critical nexus of fibrogenesis and cancer. J Transl Med 2024; 22:594. [PMID: 38926762 PMCID: PMC11201862 DOI: 10.1186/s12967-024-05411-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
The transforming growth factor-beta (TGF-β) signaling pathway is a vital regulator of cell proliferation, differentiation, apoptosis, and extracellular matrix production. It functions through canonical SMAD-mediated processes and noncanonical pathways involving MAPK cascades, PI3K/AKT, Rho-like GTPases, and NF-κB signaling. This intricate signaling system is finely tuned by interactions between canonical and noncanonical pathways and plays key roles in both physiologic and pathologic conditions including tissue homeostasis, fibrosis, and cancer progression. TGF-β signaling is known to have paradoxical actions. Under normal physiologic conditions, TGF-β signaling promotes cell quiescence and apoptosis, acting as a tumor suppressor. In contrast, in pathological states such as inflammation and cancer, it triggers processes that facilitate cancer progression and tissue remodeling, thus promoting tumor development and fibrosis. Here, we detail the role that TGF-β plays in cancer and fibrosis and highlight the potential for future theranostics targeting this pathway.
Collapse
Affiliation(s)
- Anna O Giarratana
- Northwell Health - Peconic Bay Medical Center, 1 Heroes Way, Riverhead, NY, 11901, USA.
| | | | - Mary M Salvatore
- Department of Radiology, Columbia University, New York, NY, 11032, USA
| | | |
Collapse
|
7
|
Park JH, Hothi P, de Lomana ALG, Pan M, Calder R, Turkarslan S, Wu WJ, Lee H, Patel AP, Cobbs C, Huang S, Baliga NS. Gene regulatory network topology governs resistance and treatment escape in glioma stem-like cells. SCIENCE ADVANCES 2024; 10:eadj7706. [PMID: 38848360 PMCID: PMC11160475 DOI: 10.1126/sciadv.adj7706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 05/03/2024] [Indexed: 06/09/2024]
Abstract
Poor prognosis and drug resistance in glioblastoma (GBM) can result from cellular heterogeneity and treatment-induced shifts in phenotypic states of tumor cells, including dedifferentiation into glioma stem-like cells (GSCs). This rare tumorigenic cell subpopulation resists temozolomide, undergoes proneural-to-mesenchymal transition (PMT) to evade therapy, and drives recurrence. Through inference of transcriptional regulatory networks (TRNs) of patient-derived GSCs (PD-GSCs) at single-cell resolution, we demonstrate how the topology of transcription factor interaction networks drives distinct trajectories of cell-state transitions in PD-GSCs resistant or susceptible to cytotoxic drug treatment. By experimentally testing predictions based on TRN simulations, we show that drug treatment drives surviving PD-GSCs along a trajectory of intermediate states, exposing vulnerability to potentiated killing by siRNA or a second drug targeting treatment-induced transcriptional programs governing nongenetic cell plasticity. Our findings demonstrate an approach to uncover TRN topology and use it to rationally predict combinatorial treatments that disrupt acquired resistance in GBM.
Collapse
Affiliation(s)
| | - Parvinder Hothi
- Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, USA
| | | | - Min Pan
- Institute for Systems Biology, Seattle, WA, USA
| | | | | | - Wei-Ju Wu
- Institute for Systems Biology, Seattle, WA, USA
| | - Hwahyung Lee
- Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, USA
| | - Anoop P. Patel
- Department of Neurosurgery, Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Charles Cobbs
- Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, USA
| | - Sui Huang
- Institute for Systems Biology, Seattle, WA, USA
| | - Nitin S. Baliga
- Institute for Systems Biology, Seattle, WA, USA
- Departments of Microbiology, Biology, and Molecular Engineering Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
8
|
Stojnev S, Conic I, Ristic Petrovic A, Petkovic I, Radic M, Krstic M, Jankovic Velickovic L. The Association of Death Receptors and TGF-β1 Expression in Urothelial Bladder Cancer and Their Prognostic Significance. Biomedicines 2024; 12:1123. [PMID: 38791085 PMCID: PMC11117556 DOI: 10.3390/biomedicines12051123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Death receptor signalization that triggers the extrinsic apoptotic pathway and TGF-β1 have important roles in urothelial carcinogenesis, with a complex interplay between them. The aim of this research was to assess the association of death receptors DR4, DR5, and FAS as well as TGF-β1 immunohistochemical expression with the clinicopathological characteristics of urothelial bladder cancer (UBC) and to evaluate their prognostic significance. The decrease or loss of death receptors' expression was significantly associated with muscle-invasive tumors, while non-invasive UBC often retains the expression of death receptors, which are mutually strongly linked. High DR4 expression is a marker of low-grade tumors and UBC associated with exposition to known carcinogens. Conversely, TGF-β1 was significantly associated with high tumor grade and advanced stage. High expression of DR4 and FAS indicates longer overall survival. High TGF-β1 signifies an inferior outcome and is an independent predictor of adverse prognosis in UBC patients. This study reveals the expression profile of death receptors in UBC and their possible interconnection with TGF-β1 and indicates independent prognostic significance of high FAS and TGF-β1 expression in UBC, which may contribute to deciphering the enigma of UBC heterogeneity in light of the rapid development of novel and effective therapeutic approaches, including targeting of the TRAIL-induced apoptotic pathway.
Collapse
Affiliation(s)
- Slavica Stojnev
- Center for Pathology, University Clinical Center Nis, 18000 Nis, Serbia
- Department of Pathology, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Irena Conic
- Clinic of Oncology, University Clinical Center Nis, 18000 Nis, Serbia; (I.C.)
- Department of Oncology, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Ana Ristic Petrovic
- Center for Pathology, University Clinical Center Nis, 18000 Nis, Serbia
- Department of Pathology, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Ivan Petkovic
- Clinic of Oncology, University Clinical Center Nis, 18000 Nis, Serbia; (I.C.)
- Department of Oncology, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Milica Radic
- Clinic of Oncology, University Clinical Center Nis, 18000 Nis, Serbia; (I.C.)
- Department of Oncology, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Miljan Krstic
- Center for Pathology, University Clinical Center Nis, 18000 Nis, Serbia
- Department of Pathology, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Ljubinka Jankovic Velickovic
- Center for Pathology, University Clinical Center Nis, 18000 Nis, Serbia
- Department of Pathology, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| |
Collapse
|
9
|
Zhang Y, Zhang Y, Hu A, Meng F, Cui P, Li T, Cui G. Mesenchymal stem cells derived from CHIR99021 and TGF‑β induction remained on the colicomentum and improved cardiac function of a rat model of acute myocardium infarction. Exp Ther Med 2024; 27:182. [PMID: 38515646 PMCID: PMC10952379 DOI: 10.3892/etm.2024.12470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/17/2024] [Indexed: 03/23/2024] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) have been regarded as a potential stem cell source for cell therapy. However, the production of cells with mesenchymal potential from hiPSCs through spontaneous differentiation is time consuming and laborious. In the present study, the combined use of the GSK-3 inhibitor CHIR99021 and TGF-β was used to obtain mesenchymal stem cell (MSC)-like cells from hiPSCs. During the induction process, the transcription of epithelial-mesenchymal transition (EMT)-related genes N-cadherin and Vimentin in the transformed cells was upregulated, whereas the transcription of E-cadherin and pluripotency-related transcription factors SOX2, OCT4 and NANOG did not change significantly. This indicated that whilst cells were pluripotent, EMT was initiated by the upregulation of transcription of EMT promoting genes. Both SMAD-dependent and independent signalling pathways were significantly activated by the combined induction treatment compared with the single factor induction. The hiPSC-derived MSC-like cells (hiPSC-MSCs) expressed MSC-related markers and acquired osteogenic, chondrogenic and adipogenic differentiation potentials. After being injected into the peritoneal cavity of rats, the hiPSC-MSCs secreted angiogenic and immune-regulatory factors and remained on the colicomentum for 3 weeks. Within an 11-week period, four intraperitoneal hiPSC-MSC injections (1x107 cells/injection) into acute myocardial infarction (AMI) model rats significantly increased the left ventricular ejection fraction, left ventricular fractional shortening and angiogenesis and significantly reduced scar size and the extent of apoptosis in the infarcted area compared with that of the control PBS injection. Symptoms of hiPSC-MSC-induced immune reaction or tumour formation were not observed over the course of the experiment in the hiSPC-MSC treated rats. In conclusion, the CHIR99021 and TGF-β combined induction was a rapid and effective method to obtain MSC-like cells from hiPSCs and multiple high dose intraperitoneal injections of hiPSC-derived MSCs were safe and effective at restoring cardiac function in an AMI rat model.
Collapse
Affiliation(s)
- Yusen Zhang
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Yanmin Zhang
- Central Laboratory, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Azhen Hu
- Shenzhen Key Laboratory of Drug Addiction and Safe Medication, Shenzhen PKU-HKUST Medical Centre, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Fanhua Meng
- Reproductive Medical Centre, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Peng Cui
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Tianshi Li
- Department of Plastic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Guanghui Cui
- Central Laboratory, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| |
Collapse
|
10
|
Wang G, Dong R, Zhao H, Ye N, Wang J, Cheng J, Shi X, Luo L, Zhang T. The role of ERp29/FOS/EMT pathway in excessive apoptosis of placental trophoblast cells in intrahepatic cholestasis of pregnancy. Placenta 2024; 148:20-30. [PMID: 38346375 DOI: 10.1016/j.placenta.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/17/2024] [Accepted: 01/31/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Abnormal bile acid metabolism leading to changes in placental function during pregnancy. To determine whether endoplasmic reticulum protein 29 (ERp29) can mediate the pregnancy effects of cholestasis by altering the level of trophoblast cell apoptosis. METHODS ERp29 in serum of 66 intrahepatic cholestasis of pregnancy (ICP) pregnant women and 74 healthy were detected by ELISA. Subcutaneous injection of ethinyl estradiol (E2) was used to induce ICP in pregnant rats. Taurocholic acid (TCA) was used to simulate the ICP environment, and TGF-β1 was added to induce the epithelial mesenchymal transformation (EMT) process. The scratch, migration, and invasion test were used to detect the EMT process. ERp29 overexpression/knockdown vector were constructed and transfected to verify the role of ERp29 in the EMT process. Downstream gene was obtained through RNA-seq. RESULTS Compared with the healthy pregnant women, the expression levels of ERp29 in serum of ICP pregnancy women were significantly increased (P < 0.001). ERp29 in the placenta tissue of the ICP pregnant rats increased significantly, and the level of apoptosis increased. The placental tissues of the ICP had high expression of E-cadherin and low expression of N-cadherin, snail1, vimentin. After HTR-8/SVneo cells were induced by TCA, EMT was inhibited, while the ERp29 increased. Cell and animal experiments showed that, knockdown of ERp29 reduced the inhibition of EMT, the ICP progress was alleviated. Overexpression of FOS salvaged the inhibitory effects of ERp29 on cell EMT. DISCUSSION The high level of ERp29 in placental trophoblast cells reduced FOS mRNA levels, inhibited the EMT process and aggravated the occurrence and development of ICP.
Collapse
Affiliation(s)
- Gaoying Wang
- Affiliated Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China
| | - Ruirui Dong
- Affiliated Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China
| | - Haijian Zhao
- Department of General Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223001, China
| | - Ningzhen Ye
- Affiliated Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China
| | - Jing Wang
- Affiliated Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China
| | - Jing Cheng
- Affiliated Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China
| | - Xinrui Shi
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Liang Luo
- Wuxi No.2 People's Hospital, Jiangnan University Medical Center, Jiangnan University, Wuxi, 214000, China.
| | - Ting Zhang
- Affiliated Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China.
| |
Collapse
|
11
|
Li G, Li R, Wang W, Sun M, Wang X. DDX27 regulates oral squamous cell carcinoma development through targeting CSE1L. Life Sci 2024; 340:122479. [PMID: 38301874 DOI: 10.1016/j.lfs.2024.122479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/03/2024]
Abstract
THE HEADINGS AIMS DEAD-box helicase 27 (DDX27), a member of the DEAD-Box nucleic acid helicase family, holds an elusive role in oral squamous cell carcinoma (OSCC). This study aims to unravel the regulatory functions of DDX27 in OSCC and explore its downstream targets. MATERIALS AND METHODS A commercial oral squamous cell carcinoma (OSCC) tissue microarray (TMA) was utilized. We analyzed differentially expressed genes in OSCC through the GEO database. Target gene silencing was achieved using the shRNA-mediated lentivirus method. Coexpedia analysis identified co-expressed genes associated with DDX27. Additionally, a Co-Immunoprecipitation (Co-IP) experiment confirmed the protein interaction between DDX27 and CSE1L. Xenograft tumor models were employed to evaluate DDX27's role in OSCC tumor formation. KEY FINDINGS Elevated DDX27 expression in OSCC correlated with a higher pathological grade. DDX27 knockdown resulted in decreased cell proliferation, increased apoptosis, inhibited cell migration, and induced G2/M phase cell cycle arrest, as well as impaired tumor outgrowth. Coexpedia analysis identified STAU1, NELFCD, and CSE1L as top co-expressed genes. Lentiviral vectors targeting STAU1, NELFCD, and CSE1L revealed that silencing CSE1L significantly impaired cell growth, indicating it as a downstream target of DDX27. Cell rescue experiments demonstrated that increased DDX27 levels ameliorated cell proliferation, attenuated apoptosis, and CSE1L depletion blocked cell development induced by DDX27 overexpression. SIGNIFICANCES This study highlighted DDX27 as a potential therapeutic target for OSCC treatment, shedding light on its crucial role in OSCC development. Targeting DDX27 or its downstream effector, CSE1L, holds promise for innovative OSCC therapies.
Collapse
Affiliation(s)
- Guanghui Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, No.1, East Jian She Road, Zhengzhou 450000, Henan Province, China
| | - Ran Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, No.1, East Jian She Road, Zhengzhou 450000, Henan Province, China
| | - Weiyan Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, No.1, East Jian She Road, Zhengzhou 450000, Henan Province, China
| | - Minglei Sun
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, No.1, East Jian She Road, Zhengzhou 450000, Henan Province, China.
| | - Xi Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, No.1, East Jian She Road, Zhengzhou 450000, Henan Province, China.
| |
Collapse
|
12
|
Li Z, Yang J, Chen L, Chen P, Liu C, Long X, Chen B, Long J. Moscatilin Reverses EMT Progression and its Resulting Enhanced Invasion and Migration by Affecting the TGF-β Signaling Pathway in Bladder Cancer. Anticancer Agents Med Chem 2024; 24:1074-1084. [PMID: 38808719 DOI: 10.2174/0118715206307769240522075729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/28/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Bladder cancer metastasis is an essential process in the progression of muscle-invasive bladder cancer. EMT plays a crucial role in facilitating the spread of cancer cells. Identifying compounds that can inhibit these abilities of cancer cells is a significant international endeavor. OBJECTIVE To explore the migration and invasion effect of Moscatilin on the bladder and clarify the mechanism of action Methods: The anti-bladder cancer effect of Moscatilin was observed by a cell proliferation experiment. The migration and invasion of bladder cancer cells inhibited by Moscatilin were detected by Transwell and Wound healing. The effects of Moscatilin on EMT-related proteins E-cadherin, N-cadherin, Snail1, Vimentin, and TGF-β signaling pathways were detected by Western blot, and nucleic acid levels were verified by qPCR. RESULTS Our study revealed that Moscatilin reduced the viability of bladder cancer cells in vitro and impeded their migration and invasion in experimental settings. Furthermore, we observed that Moscatilin decreased the activation levels of active proteins, specifically Smad3, Samd2, and MMP2. Additionally, we found that moscatilin significantly reduced the expression level of TGF-β and was also capable of reversing the overexpression effect of TGF-β. Treatment with Moscatilin also led to significant inhibition of interstitial cell markers Ncadherin and Snail1, which are associated with EMT. CONCLUSION These findings indicate that Moscatilin impedes the migration and invasion of bladder cancer cells by influencing cell survival, modulating TGF-β/Smad signaling, and inhibiting EMT.
Collapse
Affiliation(s)
- Zhihao Li
- College of Pharmacy, Chengdu University, Chengdu, China
| | - Jin Yang
- Clinical Medical College and Affiliated Hospital, Chengdu University, Chengdu, China
| | - Lin Chen
- Clinical Medical College and Affiliated Hospital, Chengdu University, Chengdu, China
| | - Pei Chen
- Clinical Medical College and Affiliated Hospital, Chengdu University, Chengdu, China
| | - Chenhuan Liu
- Clinical Medical College and Affiliated Hospital, Chengdu University, Chengdu, China
| | - Xiaoming Long
- Clinical Medical College and Affiliated Hospital, Chengdu University, Chengdu, China
| | - Bo Chen
- Clinical Medical College and Affiliated Hospital, Chengdu University, Chengdu, China
| | - Jun Long
- Clinical Medical College and Affiliated Hospital, Chengdu University, Chengdu, China
| |
Collapse
|
13
|
Huang Y, Zhang L, Tan L, Zhang C, Li X, Wang P, Gao L, Zhao C. Interleukin-22 Inhibits Apoptosis of Gingival Epithelial Cells Through TGF-β Signaling Pathway During Periodontitis. Inflammation 2023; 46:1871-1886. [PMID: 37310646 DOI: 10.1007/s10753-023-01847-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/18/2023] [Accepted: 05/29/2023] [Indexed: 06/14/2023]
Abstract
Periodontitis is a chronic inflammatory disease characterized by the destruction of tooth-supporting tissues. The gingival epithelium is the first barrier of periodontal tissue against oral pathogens and harmful substances. The structure and function of epithelial lining are essential for maintaining the integrity of the epithelial barrier. Abnormal apoptosis can lead to the decrease of functional keratinocytes and break homeostasis in gingival epithelium. Interleukin-22 is a cytokine that plays an important role in epithelial homeostasis in intestinal epithelium, inducing proliferation and inhibiting apoptosis, but its role in gingival epithelium is poorly understood. In this study, we investigated the effect of interleukin-22 on apoptosis of gingival epithelial cells during periodontitis. Interleukin-22 topical injection and Il22 gene knockout were performed in experimental periodontitis mice. Human gingival epithelial cells were co-cultured with Porphyromonas gingivalis with interleukin-22 treatment. We found that interleukin-22 inhibited apoptosis of gingival epithelial cells during periodontitis in vivo and in vitro, decreasing Bax expression and increasing Bcl-xL expression. As for the underlying mechanisms, we found that interleukin-22 reduced the expression of TGF-β receptor type II and inhibited the phosphorylation of Smad2 in gingival epithelial cells during periodontitis. Blockage of TGF-β receptors attenuated apoptosis induced by Porphyromonas gingivalis and increased Bcl-xL expression stimulated by interleukin-22. These results confirmed the inhibitory effect of interleukin-22 on apoptosis of gingival epithelial cells and revealed the involvement of TGF-β signaling pathway in gingival epithelial cell apoptosis during periodontitis.
Collapse
Affiliation(s)
- Yina Huang
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, No.56, Lingyuanxi Road, Yuexiu District, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Lu Zhang
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, No.56, Lingyuanxi Road, Yuexiu District, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Lingping Tan
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, No.56, Lingyuanxi Road, Yuexiu District, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Chi Zhang
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, No.56, Lingyuanxi Road, Yuexiu District, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Xiting Li
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, No.56, Lingyuanxi Road, Yuexiu District, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Panpan Wang
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, No.56, Lingyuanxi Road, Yuexiu District, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Li Gao
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, No.56, Lingyuanxi Road, Yuexiu District, Guangzhou, 510055, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.
| | - Chuanjiang Zhao
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, No.56, Lingyuanxi Road, Yuexiu District, Guangzhou, 510055, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
14
|
Ebrahimi N, Hakimzadeh A, Bozorgmand F, Speed S, Manavi MS, Khorram R, Farahani K, Rezaei-Tazangi F, Mansouri A, Hamblin MR, Aref AR. Role of non-coding RNAs as new therapeutic targets in regulating the EMT and apoptosis in metastatic gastric and colorectal cancers. Cell Cycle 2023; 22:2302-2323. [PMID: 38009668 PMCID: PMC10730205 DOI: 10.1080/15384101.2023.2286804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 05/11/2023] [Accepted: 08/01/2023] [Indexed: 11/29/2023] Open
Abstract
Colorectal cancer (CRC) and gastric cancer (GC), are the two most common cancers of the gastrointestinal tract, and are serious health concerns worldwide. The discovery of more effective biomarkers for early diagnosis, and improved patient prognosis is important. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), can regulate cellular processes such as apoptosis and the epithelial-mesenchymal transition (EMT) leading to progression and resistance of GC and CRC tumors. Moreover these pathways (apoptosis and EMT) may serve as therapeutic targets, to prevent metastasis, and to overcome drug resistance. A subgroup of ncRNAs is common to both GC and CRC tumors, suggesting that they might be used as biomarkers or therapeutic targets. In this review, we highlight some ncRNAs that can regulate EMT and apoptosis as two opposite mechanisms in cancer progression and metastasis in GC and CRC. A better understanding of the biological role of ncRNAs could open up new avenues for the development of personalized treatment plans for GC and CRC patients.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Ali Hakimzadeh
- Department of Medical Biotechnologies, University of Siena, Tuscany, Italy
| | - Farima Bozorgmand
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Sepehr Speed
- Medical Campus, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | | | - Roya Khorram
- Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kobra Farahani
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Atena Mansouri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Reza Aref
- Xsphera Biosciences, Translational Medicine group, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Hussen BM, Hidayat HJ, Abdullah SR, Mohamadtahr S, Rasul MF, Samsami M, Taheri M. Role of long non-coding RNAs and TGF-β signaling in the regulation of breast cancer pathogenesis and therapeutic targets. Cytokine 2023; 170:156351. [PMID: 37657235 DOI: 10.1016/j.cyto.2023.156351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023]
Abstract
The cytokine known as transforming growth factor (TGF) is essential for cell development, differentiation, and apoptosis in BC. TGF-β dysregulation can either promote or inhibit tumor development, and it is a key signaling pathway in BC spread. A recently identified family of ncRNAs known as lncRNAs has received a great deal of effort and is an important regulator of many cellular processes, including transcription of genes, chromatin remodeling, progression of the cell cycle, and posttranscriptional processing. Furthermore, both TGF-β signaling and lncRNAs serve as important early-stage biomarkers for BC diagnosis and prognosis and also play a significant role in BC drug resistance. According to recent studies, lncRNAs can regulate TGF-β by modulating its cofactors in BC. However, the particular functions of lncRNAs and the TGF-β pathway in controlling BC progression are not well understood yet. This review explores the lncRNAs' functional properties in BC as tumor suppressors or oncogenes in the regulation of genes, with a focus on dysregulated TGF-β signaling. Further, we emphasize the functional roles of lncRNAs and TGF-β pathway in the progression of BC to discover new treatment strategies and better comprehend the fundamental cellular pathways.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq; Department of Biomedical Sciences, Cihan University-Erbil, Erbil, Kurdistan Region 44001, Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Snur Rasool Abdullah
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Sayran Mohamadtahr
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Mohammad Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Junjie L, Cheng G, Kangkang L, Yu L, Zhiyao Y, Xudong W, Xianmei Z, Xiaomin L. Citrus alkaline extracts improve LPS-induced pulmonary fibrosis via epithelial mesenchymal transition signals. Chin Med 2023; 18:62. [PMID: 37248506 DOI: 10.1186/s13020-023-00766-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/11/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is a serious life threatening clinical critical illness. ARDS-related pulmonary fibrosis is a common complication of ARDS. The occurrence of early pulmonary fibrosis indicates a higher incidence and mortality of multiple organ failure. LPS-induced ARDS-related pulmonary fibrosis model in mice was established in this study. And we have explored the anti-pulmonary fibrosis effects and molecular mechanisms of the Citrus Alkaline Extracts (CAE) in vivo and in vitro. METHODS Pulmonary fibrosis mouse model and lung epithelial cell injury model were established in this study. H&E, Masson and Sirius Red staining were used to estimate lung tissue damage. Immunohistochemistry and western blotting were used to analyze proteins expression. Protein-protein interaction was observed by Co-Immunoprecipitation. Systemic impact of CAE on signaling pathway was examined by RNA-seq. RESULTS Through H&E, Masson and Sirius Red staining, it was convincingly indicated that therapeutic administration of CAE alleviated lung injury and fibrosis, while pretreated administration of CAE showed weak improvement. In vitro experiments showed that CAE had dual regulation to E-cadherin and N-cadherin, the important indicators of epithelial-mesenchymal transition (EMT). And it was further demonstrated that CAE reversed TGF-β1-induced EMT mainly through Wnt/β-catenin, Stat3/6 and COX2/PGE2 signals. Through RNA-Seq, we discovered important mechanisms by which CAE exerts its therapeutic effect. And network pharmacology analysis demonstrated core potential targets of CAE in EMT. CONCLUSION Thus, this study provides new therapeutic effects of CAE in anti-fibrosis, and offers potential mechanisms for CAE in LPS-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Li Junjie
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Gu Cheng
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210004, China
| | - Luo Kangkang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Li Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Yuan Zhiyao
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Wu Xudong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
| | - Zhou Xianmei
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210004, China.
| | - Lu Xiaomin
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210004, China.
| |
Collapse
|
17
|
Xia T, Lei H, Wang J, He Y, Wang H, Gao L, Qi T, Xiong X, Liu L, Zhu Y. Identification of an ergosterol derivative with anti-melanoma effect from the sponge-derived fungus Pestalotiopsis sp. XWS03F09. Front Microbiol 2022; 13:1008053. [PMCID: PMC9608767 DOI: 10.3389/fmicb.2022.1008053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
It is difficult to treat malignant melanoma because of its high malignancy. New and effective therapies for treating malignant melanoma are urgently needed. Ergosterols are known for specific biological activities and have received widespread attention in cancer therapy. Here, LH-1, a kind of ergosterol from the secondary metabolites of the marine fungus Pestalotiopsis sp., was extracted, isolated, purified, and further investigated the biological activities against melanoma. In vitro experiments, the anti-proliferation effect on tumor cells was detected by MTT and colony formation assay, and the anti-metastatic effect on tumor cells was investigated by wound healing assay and transwell assay. Subcutaneous xenograft models, histopathology, and immunohistochemistry have been used to verify the anti-tumor, toxic, and side effect in vivo. Besides, the anti-tumor mechanism of LH-1 was studied by mRNA sequencing. In vitro, LH-1 could inhibit the proliferation and migration of melanoma cells A375 and B16-F10 in a dose-dependent manner and promote tumor cell apoptosis through the mitochondrial apoptosis pathway. In vivo assays confirmed that LH-1 could suppress melanoma growth by inducing cell apoptosis and reducing cell proliferation, and it did not have any notable toxic effects on normal tissues. LH-1 may play an anti-melanoma role by upregulating OBSCN gene expression. These findings suggest that LH-1 may be a potential for the treatment of melanoma.
Collapse
Affiliation(s)
- Tong Xia
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hui Lei
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jianv Wang
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yijing He
- Department of Science and Technology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hailan Wang
- School of Public Health, Southwest Medical University, Luzhou, China
| | - Lanyang Gao
- Department of Science and Technology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tingting Qi
- Department of Clinical Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xia Xiong
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Xia Xiong,
| | - Li Liu
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Li Liu,
| | - Yongxia Zhu
- Department of Clinical Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Yongxia Zhu,
| |
Collapse
|
18
|
Chen M, Wu C, Fu Z, Liu S. ICAM1 promotes bone metastasis via integrin-mediated TGF-β/EMT signaling in triple-negative breast cancer. Cancer Sci 2022; 113:3751-3765. [PMID: 35969372 DOI: 10.1111/cas.15532] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/20/2022] [Accepted: 08/02/2022] [Indexed: 11/26/2022] Open
Abstract
Bone-related events caused by breast cancer bone metastasis substantially compromise the survival and quality of life of patients. Because triple-negative breast cancer (TNBC) lacks hormone receptors and Her2-targeted therapeutic options, progress in the treatment of TNBC bone metastasis has been very slow. Intercellular adhesion molecule 1 (ICAM1) is highly expressed in various cancers and plays an important role in tumorigenesis and metastasis. However, the effect and mechanism of ICAM1 in TNBC bone metastasis are still unknown. We found that ICAM1 was highly expressed in TNBC and correlated with prognosis in TNBC patients. Cell lines with high expression of ICAM1 exhibited enhanced bone metastasis in tumor-bearing mice, and silencing ICAM1 expression significantly inhibited bone metastasis in mice. ICAM1 interacted with integrins to activate the epithelial-to-mesenchymal transition (EMT) program through TGF-β/SMAD signaling, ultimately enhancing cell invasiveness. Therefore, the findings of the present study provide a strong rationale for the application of ICAM1-targeted therapy in TNBC patients with bone metastasis.
Collapse
Affiliation(s)
- Mingcang Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Chunyu Wu
- Department of Breast Surgery (Integrated Traditional and Western Medicine), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Sheng Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
19
|
Han Y, Wong FC, Wang D, Kahlert C. An In Silico Analysis Reveals an EMT-Associated Gene Signature for Predicting Recurrence of Early-Stage Lung Adenocarcinoma. Cancer Inform 2022; 21:11769351221100727. [PMID: 35645555 PMCID: PMC9133999 DOI: 10.1177/11769351221100727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/27/2022] [Indexed: 01/06/2023] Open
Abstract
Background: The potential micrometastasis tends to cause recurrence of lung adenocarcinoma (LUAD) after surgical resection and consequently leads to an increase in the mortality risk. Compelling evidence has suggested the underlying mechanisms of tumor metastasis could involve the activation of an epithelial-mesenchymal transition (EMT) program. Hence, the objective of this study was to develop an EMT-associated gene signature for predicting the recurrence of early-stage LUAD. Methods: The mRNA expression data of patients with early-stage LUAD were downloaded from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) available databases. Gene Set Variation Analysis (GSVA) was first performed to provide an assessment of EMT phenotype, whereas Weighted Gene Co-expression Network Analysis (WGCNA) was constructed to determine EMT-associated key modules and genes. Based on the genes, a novel EMT-associated signature for predicting the recurrence of early-stage LUAD was identified using a least absolute shrinkage and selection operator (LASSO) algorithm and a stepwise Cox proportional hazards regression model. Kaplan-Meier survival analysis, receiver operating characteristic (ROC) curves and Cox regression analyses were used to estimate the performance of the identified gene signature. Results: GSVA revealed diverse EMT states in the early-stage LUAD. Further correlation analyses showed that the EMT states presented high correlations with several hallmarks of cancers, tumor purity, tumor microenvironment cells, and immune checkpoint genes. More importantly, Kaplan-Meier survival analyses indicated that patients with high EMT scores had worse recurrence-free survival (RFS) and overall survival (OS) than those with low EMT scores. A novel 5-gene signature ( AGL, ECM1, ENPP1, SNX7, and TSPAN12) was established based on the EMT-associated genes from WGCNA and this signature successfully predicted that the high-risk patients had a higher recurrence rate compared with the low-risk patients. In further analyses, the signature represented robust prognostic values in 2 independent validation cohorts (GEO and TCGA datasets) and a combined GEO cohort as evaluated by Kaplan-Meier survival ( P-value < .0001) and ROC analysis (AUC = 0.781). Moreover, the signature was corroborated to be independent of clinical factors by univariate and multivariate Cox regression analyses. Interestingly, the combination of the signature-based recurrence risk and tumor-node-metastasis (TNM) stage showed a superior predictive ability on the recurrence of patients with early-stage LUAD. Conclusion: Our study suggests that patients with early-stage LUAD exhibit diverse EMT states that play a vital role in tumor recurrence. The novel and promising EMT-associated 5-gene signature identified and validated in this study may be applied to predict the recurrence of early-stage LUAD, facilitating risk stratification, recurrence monitoring, and individualized management for the patients after surgical resection.
Collapse
Affiliation(s)
- Yi Han
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Fang Cheng Wong
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Di Wang
- Department of Respiratory Medicine, Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Christoph Kahlert
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
20
|
Yang Y, Ye WL, Zhang RN, He XS, Wang JR, Liu YX, Wang Y, Yang XM, Zhang YJ, Gan WJ. The Role of TGF- β Signaling Pathways in Cancer and Its Potential as a Therapeutic Target. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6675208. [PMID: 34335834 PMCID: PMC8321733 DOI: 10.1155/2021/6675208] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 06/22/2021] [Indexed: 02/08/2023]
Abstract
The transforming growth factor-β (TGF-β) signaling pathway mediates various biological functions, and its dysregulation is closely related to the occurrence of malignant tumors. However, the role of TGF-β signaling in tumorigenesis and development is complex and contradictory. On the one hand, TGF-β signaling can exert antitumor effects by inhibiting proliferation or inducing apoptosis of cancer cells. On the other hand, TGF-β signaling may mediate oncogene effects by promoting metastasis, angiogenesis, and immune escape. This review summarizes the recent findings on molecular mechanisms of TGF-β signaling. Specifically, this review evaluates TGF-β's therapeutic potential as a target by the following perspectives: ligands, receptors, and downstream signaling. We hope this review can trigger new ideas to improve the current clinical strategies to treat tumors related to the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Yun Yang
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Wen-Long Ye
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Ruo-Nan Zhang
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
- Department of Pathology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Xiao-Shun He
- Department of Pathology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Jing-Ru Wang
- Department of Pathology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Yu-Xuan Liu
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Yi Wang
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Xue-Mei Yang
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
- Department of Pathology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Yu-Juan Zhang
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Wen-Juan Gan
- Department of Pathology, Dushu Lake Hospital Affiliated of Soochow University, Soochow University, Suzhou 215124, China
| |
Collapse
|
21
|
Tang C, Mo X, Niu Q, Wahafu A, Yang X, Qui M, Ivanov AA, Du Y, Fu H. Hypomorph mutation-directed small-molecule protein-protein interaction inducers to restore mutant SMAD4-suppressed TGF-β signaling. Cell Chem Biol 2021; 28:636-647.e5. [PMID: 33326750 PMCID: PMC10053325 DOI: 10.1016/j.chembiol.2020.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 10/05/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023]
Abstract
Tumor suppressor genes represent a major class of oncogenic drivers. However, direct targeting of loss-of-function tumor suppressors remains challenging. To address this gap, we explored a variant-directed chemical biology approach to reverse the lost function of tumor suppressors using SMAD4 as an example. SMAD4, a central mediator of the TGF-β pathway, is recurrently mutated in many tumors. Here, we report the development of a TR-FRET technology that recapitulated the dynamic differential interaction of SMAD4 and SMAD4R361H with SMAD3 and identified Ro-31-8220, a bisindolylmaleimide derivative, as a SMAD4R361H/SMAD3 interaction inducer. Ro-31-8220 reactivated the dormant SMAD4R361H-mediated transcriptional activity and restored TGF-β-induced tumor suppression activity in SMAD4 mutant cancer cells. Thus, demonstration of Ro-31-8220 as a SMAD4R361H/SMAD3 interaction inducer illustrates a general strategy to reverse the lost function of tumor suppressors with hypomorph mutations and supports a systematic approach to develop small-molecule protein-protein interaction (PPI) molecular glues for biological insights and therapeutic discovery.
Collapse
Affiliation(s)
- Cong Tang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shannxi 710061, P.R.China
| | - Xiulei Mo
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Qiankun Niu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Alafate Wahafu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shannxi 710061, P.R.China
| | - Xuan Yang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Min Qui
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Andrey A Ivanov
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Haian Fu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Hematology and Medical Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
22
|
Breunig M, Merkle J, Wagner M, Melzer MK, Barth TFE, Engleitner T, Krumm J, Wiedenmann S, Cohrs CM, Perkhofer L, Jain G, Krüger J, Hermann PC, Schmid M, Madácsy T, Varga Á, Griger J, Azoitei N, Müller M, Wessely O, Robey PG, Heller S, Dantes Z, Reichert M, Günes C, Bolenz C, Kuhn F, Maléth J, Speier S, Liebau S, Sipos B, Kuster B, Seufferlein T, Rad R, Meier M, Hohwieler M, Kleger A. Modeling plasticity and dysplasia of pancreatic ductal organoids derived from human pluripotent stem cells. Cell Stem Cell 2021; 28:1105-1124.e19. [PMID: 33915078 DOI: 10.1016/j.stem.2021.03.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 12/22/2020] [Accepted: 03/09/2021] [Indexed: 12/14/2022]
Abstract
Personalized in vitro models for dysplasia and carcinogenesis in the pancreas have been constrained by insufficient differentiation of human pluripotent stem cells (hPSCs) into the exocrine pancreatic lineage. Here, we differentiate hPSCs into pancreatic duct-like organoids (PDLOs) with morphological, transcriptional, proteomic, and functional characteristics of human pancreatic ducts, further maturing upon transplantation into mice. PDLOs are generated from hPSCs inducibly expressing oncogenic GNAS, KRAS, or KRAS with genetic covariance of lost CDKN2A and from induced hPSCs derived from a McCune-Albright patient. Each oncogene causes a specific growth, structural, and molecular phenotype in vitro. While transplanted PDLOs with oncogenic KRAS alone form heterogenous dysplastic lesions or cancer, KRAS with CDKN2A loss develop dedifferentiated pancreatic ductal adenocarcinomas. In contrast, transplanted PDLOs with mutant GNAS lead to intraductal papillary mucinous neoplasia-like structures. Conclusively, PDLOs enable in vitro and in vivo studies of pancreatic plasticity, dysplasia, and cancer formation from a genetically defined background.
Collapse
Affiliation(s)
- Markus Breunig
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Jessica Merkle
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Martin Wagner
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Michael K Melzer
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany; Department of Urology, Ulm University, Ulm, Germany
| | | | - Thomas Engleitner
- Institute of Molecular Oncology and Functional Genomics, Center for Translational Cancer Research and Department of Medicine II, School of Medicine, Technical University of Munich, Munich, Germany
| | - Johannes Krumm
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Sandra Wiedenmann
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany; Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christian M Cohrs
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Zentrum München at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, Neuherberg, Germany; Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Lukas Perkhofer
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Gaurav Jain
- Institute of Molecular Oncology and Functional Genomics, Center for Translational Cancer Research and Department of Medicine II, School of Medicine, Technical University of Munich, Munich, Germany
| | - Jana Krüger
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Patrick C Hermann
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Maximilian Schmid
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Tamara Madácsy
- First Department of Internal Medicine, University of Szeged, Szeged, Hungary; MTA-SZTE Momentum Epithelial Cell Signalling and Secretion Research Group, University of Szeged, Szeged, Hungary
| | - Árpád Varga
- First Department of Internal Medicine, University of Szeged, Szeged, Hungary; MTA-SZTE Momentum Epithelial Cell Signalling and Secretion Research Group, University of Szeged, Szeged, Hungary
| | - Joscha Griger
- Institute of Molecular Oncology and Functional Genomics, Center for Translational Cancer Research and Department of Medicine II, School of Medicine, Technical University of Munich, Munich, Germany
| | - Ninel Azoitei
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Martin Müller
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Oliver Wessely
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland, OH 44195, USA
| | - Pamela G Robey
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Sandra Heller
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Zahra Dantes
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Maximilian Reichert
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | | | | | - Florian Kuhn
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - József Maléth
- First Department of Internal Medicine, University of Szeged, Szeged, Hungary; MTA-SZTE Momentum Epithelial Cell Signalling and Secretion Research Group, University of Szeged, Szeged, Hungary; HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary
| | - Stephan Speier
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Zentrum München at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, Neuherberg, Germany; Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Stefan Liebau
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Bence Sipos
- Department of Internal Medicine VIII, University Hospital Tübingen, Tübingen, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany; Bavarian Biomolecular Mass Spectrometry Center (BayBioMS), Technical University of Munich, Freising, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, Center for Translational Cancer Research and Department of Medicine II, School of Medicine, Technical University of Munich, Munich, Germany
| | - Matthias Meier
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Meike Hohwieler
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Alexander Kleger
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany.
| |
Collapse
|
23
|
GAS5 regulates viability and apoptosis in TGF-β1-stimulated bronchial epithelial cells by regulating miR-217/HDAC4 axis. Genes Genomics 2021; 43:837-846. [PMID: 33864612 DOI: 10.1007/s13258-021-01092-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/26/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Asthma is a serious respiratory disease that affects the physical and mental health of children. Airway epithelial apoptosis concomitantly mediated by transforming growth factor-β1 (TGF-β1) is a crucial component of asthma pathogenesis. LncRNA growth Arrest Specific 5 (GAS5), microRNA-217 (miR-217) and Histone deacetylase 4 (HDAC4) shown a close relationship with TGF-β1-induced injury of airway epithelial. However, the mechanism underlying TGF-β1-induced injury of airway epithelial in asthma still needs to be investigated. OBJECTIVE We aimed to investigate the effect and underlying mechanism of GAS5/miR-217/HDAC4 axis in TGF-β1-stimulated bronchial epithelial cells. METHODS The levels of were detected by quantitative real-time polymerase chain reaction (RT-qPCR). All protein levels were determined by western blot. Cell viability and apoptosis rate were assessed by Methyl thiazolyl tetrazolium (MTT) and Flow cytometry, respectively. The targeting relationship between miR-217 and GAS5 or HDAC4 was examined with dual-luciferase reporter assay. RESULTS TGF-β1, GAS5, HDAC4 were up-regulated, while miR-217 was down-regulated in bronchial mucosal tissues of asthmatic children and TGF-β1-treated BEAS-2B cells. TGF-β1 could reduce cell viability and induce apoptosis, while these effects could be reversed by downregulation of GAS5 or HDAC4. Mechanically, GAS5 acted as a sponge for miR-217 to regulate the expression of HDAC4. Furthermore, overexpression of HDAC4 rescued the effects of GAS5 knockdown on viability and apoptosis of TGF-β1-induced BEAS-2B cells. GAS5 knockdown induced cell viability and hampered cell apoptosis in TGF-β1-stimulated BEAS-2B cells by regulating the miR-217/HDAC4 axis. CONCLUSIONS The lncRNA GAS5/miR-217/HDAC4 axis played an important role in regulating TGF-β1-induced bronchial epithelial cells injury, thus contributing to asthma.
Collapse
|
24
|
Mandal M, Ghosh B, Rajput M, Chatterjee J. Impact of intercellular connectivity on epithelial mesenchymal transition plasticity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118784. [DOI: 10.1016/j.bbamcr.2020.118784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/14/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022]
|
25
|
Mishan MA, Khazeei Tabari MA, Zargari M, Bagheri A. MicroRNAs in the anticancer effects of celecoxib: A systematic review. Eur J Pharmacol 2020; 882:173325. [PMID: 32615181 DOI: 10.1016/j.ejphar.2020.173325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023]
Abstract
Cyclooxygenase-2 (COX-2) is known as an important enzyme in the inflammation process that has tumorigenesis function in various cancers through the induction of epithelial-to-mesenchymal transition (EMT), cell proliferation, migration, and invasion that lead to metastasis. Celecoxib is a nonsteroidal anti-inflammatory drug (NSAID) that can selectively target COX-2, suppress downstream pathways, and finally lead to anticancer potentiality. microRNAs (miRNAs), as a class of small noncoding RNAs, play pivotal roles in cancers through the tumor-suppressive or oncogenic effects, by post-transcriptional regulation of their target genes. In this regard, shreds of evidence have shown that, COX-2 reveals its action through miRNA regulation. So, in this systematic review, we aimed to highlight the tumorigenic role of COX-2 in cancer development and the therapeutic effects of celecoxib, as a selective COX-2 drug, through the regulation of miRNAs.
Collapse
Affiliation(s)
- Mohammad Amir Mishan
- Ocular Tissue Engineering Research Center, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran; USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehryar Zargari
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abouzar Bagheri
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
26
|
Tanabe S, Quader S, Cabral H, Ono R. Interplay of EMT and CSC in Cancer and the Potential Therapeutic Strategies. Front Pharmacol 2020; 11:904. [PMID: 32625096 PMCID: PMC7311659 DOI: 10.3389/fphar.2020.00904] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/03/2020] [Indexed: 02/05/2023] Open
Abstract
The mechanism of epithelial-mesenchymal transition (EMT) consists of the cellular phenotypic transition from epithelial to mesenchymal status. The cells exhibiting EMT exist in cancer stem cell (CSC) population, which is involved in drug resistance. CSCs demonstrating EMT feature remain after cancer treatment, which leads to drug resistance, recurrence, metastasis and malignancy of cancer. In this context, the recent advance of nanotechnology in the medical application has ascended the possibility to target CSCs using nanomedicines. In this review article, we focused on the mechanism of CSCs and EMT, especially into the signaling pathways in EMT, regulation of EMT and CSCs by microRNAs and nanomedicine-based approaches to target CSCs.
Collapse
Affiliation(s)
- Shihori Tanabe
- Division of Risk Assessment, Center for Biological Safety and Research (CBSR), National Institute of Health Science (NIHS), Kawasaki, Japan
| | - Sabina Quader
- Innovation Centre of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki, Japan
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Ryuichi Ono
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research (CBSR), National Institute of Health Science (NIHS), Kawasaki, Japan
| |
Collapse
|
27
|
ATBF1 Participates in Dual Functions of TGF-β via Regulation of Gene Expression and Protein Translocalization. Biomolecules 2020; 10:biom10050807. [PMID: 32456355 PMCID: PMC7277730 DOI: 10.3390/biom10050807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/15/2020] [Accepted: 05/22/2020] [Indexed: 11/16/2022] Open
Abstract
TGF-β is a critical cytokine to regulate multiple pathophysiological functions. For tumor development and progression, TGF-β was reported to play dual functions as a tumor suppressor and epithelial-mesenchymal transition (EMT) inducer. The mechanism of the TGF-β signaling pathway is essential for TGF-β/Smad-targeted therapy in clinic. Here, ATBF1 was demonstrated to participate in dual functions of TGF-β via different ways. On one hand, ATBF1 expression level was associated with EMT and migration induced by TGF-β. After TGF-β treatment, ATBF1 expression was reduced in a dose- and time-dependent manner, along with the alteration of cell morphology and EMT marker expression. Knockdown of ATBF1 by siRNA further promoted EMT progression and cell migration. On the other hand, ATBF1 localization was associated with cell proliferation inhibited by TGF-β. The number of cells with nucleus localization of ATBF1 in TGF-β activation group was much higher than that in control group. After that, knockdown of ATBF1 by siRNA rescued the inhibition of cell proliferation affected by TGF-β. These data revealed that ATBF1 is a key gene for the dual roles of TGF-β, which may contribute to future therapy.
Collapse
|
28
|
Zhang X, Zhang J, Zhou H, Liu G, Li Q. Rho kinase mediates transforming growth factor-β1-induced vasculogenic mimicry formation: involvement of the epithelial-mesenchymal transition and cancer stemness activity. Acta Biochim Biophys Sin (Shanghai) 2020; 52:411-420. [PMID: 32296834 DOI: 10.1093/abbs/gmaa014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/05/2020] [Accepted: 01/20/2020] [Indexed: 01/23/2023] Open
Abstract
Vasculogenic mimicry (VM), a newly defined pattern of tumor blood supply, has been identified in several malignant tumors, including hepatocellular carcinoma (HCC). Rho kinase (ROCK) plays an important role in various types of cancers. However, whether ROCK participates in transforming growth factor-β1 (TGF-β1)-induced VM formation is unclear. Here, we evaluated the role of ROCK in TGF-β1-induced VM formation in HCC. Our findings showed that the TGF-β1/ROCK signaling pathway is involved in VM formation by inducing the epithelial-mesenchymal transition. Furthermore, TGF-β1 and ROCK were found to play distinct roles in the cancer stem cell phenotype during VM formation. These results provide insights into potential antitumor therapies for inhibiting VM by targeting the TGF-β1/ROCK signaling pathway in HCC.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Shanghai 200080, PR China
| | - Jigang Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Shanghai 200080, PR China
| | - Heming Zhou
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Shanghai 200080, PR China
| | - Gaolin Liu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Shanghai 200080, PR China
| | - Qin Li
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Shanghai 200080, PR China
| |
Collapse
|
29
|
Pu Y, Liu YQ, Zhou Y, Qi YF, Liao SP, Miao SK, Zhou LM, Wan LH. Dual role of RACK1 in airway epithelial mesenchymal transition and apoptosis. J Cell Mol Med 2020; 24:3656-3668. [PMID: 32064783 PMCID: PMC7131927 DOI: 10.1111/jcmm.15061] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/04/2020] [Accepted: 01/21/2020] [Indexed: 02/05/2023] Open
Abstract
Airway epithelial apoptosis and epithelial mesenchymal transition (EMT) are two crucial components of asthma pathogenesis, concomitantly mediated by TGF‐β1. RACK1 is the downstream target gene of TGF‐β1 shown to enhancement in asthma mice in our previous study. Balb/c mice were sensitized twice and challenged with OVA every day for 7 days. Transformed human bronchial epithelial cells, BEAS‐2B cells were cultured and exposed to recombinant soluble human TGF‐β1 to induced apoptosis (30 ng/mL, 72 hours) and EMT (10 ng/mL, 48 hours) in vitro, respectively. siRNA and pharmacological inhibitors were used to evaluate the regulation of RACK1 protein in apoptosis and EMT. Western blotting analysis and immunostaining were used to detect the protein expressions in vivo and in vitro. Our data showed that RACK1 protein levels were significantly increased in OVA‐challenged mice, as well as TGF‐β1‐induced apoptosis and EMT of BEAS‐2B cells. Knockdown of RACK1 (siRACK1) significantly inhibited apoptosis and decreased TGF‐β1 up‐regulated EMT related protein levels (N‐cadherin and Snail) in vitro via suppression of JNK and Smad3 activation. Moreover, siSmad3 or siJNK impaired TGF‐β1‐induced N‐cadherin and Snail up‐regulation in vitro. Importantly, JNK gene silencing (siERK) also impaired the regulatory effect of TGF‐β1 on Smad3 activation. Our present data demonstrate that RACK1 is a concomitant regulator of TGF‐β1 induces airway apoptosis and EMT via JNK/Smad/Snail signalling axis. Our findings may provide a new insight into understanding the regulation mechanism of RACK1 in asthma pathogenesis.
Collapse
Affiliation(s)
- Yue Pu
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Yuan-Qi Liu
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Yan Zhou
- Department of Intensive Care Unit, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Yi-Fan Qi
- Grade 2015, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Shi-Ping Liao
- Functional Laboratory, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Shi-Kun Miao
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Li-Ming Zhou
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Li-Hong Wan
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| |
Collapse
|
30
|
Sun X, Sun Y, Jiang P, Qi G, Chen X. Crosstalk between endothelial cell-specific calpain inhibition and the endothelial-mesenchymal transition via the HSP90/Akt signaling pathway. Biomed Pharmacother 2020; 124:109822. [PMID: 31958767 DOI: 10.1016/j.biopha.2020.109822] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/28/2019] [Accepted: 12/29/2019] [Indexed: 12/15/2022] Open
Abstract
HYPOTHESIS The role of non-cardiomyocytes in cardiac remodeling and fibrosis has not been totally understood until now. This study investigated if endothelial cell (EC)-specific calpain participates in myocardial endothelial injury via the endothelial- mesenchymal transition (EndMT) and in cardiac fibroblasts during cell proliferation, thereby contributing to cardiac fibrosis eventually. METHODS in vitro cultured mouse cardiac ECs were induced with transforming growth factor (TGF)-β1 (10 ng/ml) and calpain inhibitor III (20 μM) or Akt inhibitor (LY294002, 20 μM). Isolated cardiac fibroblasts were induced by TGF-β1 and an HSP90 inhibitor (17AAG, 20 μM), and EndMT were analysed. Capn4-knockout (KO) specific to ECs of mice was generated. We induced the pathological process mimicking cardiac hypertrophy and fibrosis in both Capn4-KO mice and their wild-type littermates. The histological analysis was used to measure cardiomyocyte size and collagen contained in the heart. The immunofluorescence analysis was performed to demonstrate that the ECs went through the EndMT, transforming mesenchymal cells into fibroblasts and myofibroblasts. RESULTS Capn4 deletion specific to ECs abrogated activity of both calpain 1 and calpain 2 in ECs, lowered the volume of cardiac collagen and cardiomyocytes size, and ameliorated myocardial dysfunction in the isoproterenol-treated cardiac fibrosis model. An ex vivo analysis of cardiomyocytes by Evans Blue staining revealed that isoproterenol increased cell death compared with the control, and Capn4-KO alleviated this result. Inhibiting calpain in cultured cardiac microvascular endothelial cells (MCECs) reversed the EndMT process, which was induced by TGF-β1. Overexpression of calpastatin decreased the pathological EndMT process, showing that the cultured MCECs have more mesenchymal markers, such as α-smooth muscle actin (SMA), and fewer endothelial markers, such as VE-cadherin. Activating calpain elevated phosphorylated Akt in mice cultured ECs, and inhibiting calpain decreased phosphorylated Akt. Upregulation of phosphorylated Akt by calpain promoted the EndMT, whereas inhibiting calpain switched on the protective mechanism during the EndMT via the heat shock protein (HSP)90/Akt signaling way in cultured ECs. CONCLUSIONS This study demonstrated a vital role of calpain in ECs for inducing myocardiocyte hypertrophy, cell death and the EndMT via the HSP90/Akt signaling pathway, thereby promoting cardiac fibrosis. The results indicate that inhibiting ECs calpain is a novel therapeutic target to retard cardiac fibrosis and has positive effects on heart failure.
Collapse
Affiliation(s)
- Xiaodi Sun
- Department of Geriatric Cardiovascular Disease, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yujiao Sun
- Department of Geriatric Cardiovascular Disease, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Pengcheng Jiang
- Department of Geriatric Cardiovascular Disease, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Guoxian Qi
- Department of Geriatric Cardiovascular Disease, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xitao Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
31
|
Fan P, Li Z, Zuo C, Fang M. Promotion effects of mono-2-ethyhexyl phthalate (MEHP) on migration and invasion of human melanoma cells via activation of TGF-β signals. Cell Biochem Funct 2020; 38:38-46. [PMID: 31667872 DOI: 10.1002/cbf.3447] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/17/2019] [Accepted: 09/22/2019] [Indexed: 12/12/2022]
Abstract
Malignant melanoma is one of the most leading forms of skin cancer associated with a low patient survival rate. There is an urgent need to illustrate risk factors that can trigger the motility of melanoma cancer cells. Our present study revealed that mono-(2-ethylhexyl)phthalate (MEHP) exposure can significantly increase the in vitro migration and invasion of WM983A and A375 cells. Among the tested cytokines, MEHP can increase the expression of transforming growth factor β (TGF-β). Inhibition of TGF-β via its neutralization antibody can attenuate MEHP-induced cell migration and invasion. Further, upregulation of TGF-β mediated MEHP-induced activation of Smad signals and upregulation of Snail in melanoma cells. Blocking the TGF-β/Smad signal pathway can attenuate MEHP-induced cell migration. Estrogen receptor α (ERα) was essential for MEHP-induced expression of TGF-β. In addition, MEHP can increase the expression of ERα in melanoma cells. Collectively, our study found that MEHP can stimulate the progression of melanoma via TGF-β signals. SIGNIFICANCE: Mono-(2-ethylhexyl)phthalate (MEHP) is the active and most toxic metabolite of di(2-ethylhexyl)phthalate (DEHP). Our present study revealed that MEHP can trigger the in vitro migration and invasion of melanoma cells via upregulation of TGF-β/Snail signals. It revealed that daily exposure to MEHP might be a risk factor for melanoma patients.
Collapse
Affiliation(s)
- Pengju Fan
- Department of Plastic and Esthetic Surgery, Xiangya Hospital of Central South University, Changsha, China
| | - Zhen Li
- Department of Anaesthesia, The Maternity and Child Health Hospital of Hunan Province, Changsha, China
| | - Chenchen Zuo
- Department of Plastic and Esthetic Surgery, Xiangya Hospital of Central South University, Changsha, China
| | - Man Fang
- Department of Plastic and Esthetic Surgery, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
32
|
Zhang K, Zhang M, Yao Q, Han X, Zhao Y, Zheng L, Li G, Liu Q, Chang Y, Zhang P, Cui H, Shi Z, Chen T, Yao Z, Han T, Hong W. The hepatocyte-specifically expressed lnc-HSER alleviates hepatic fibrosis by inhibiting hepatocyte apoptosis and epithelial-mesenchymal transition. Theranostics 2019; 9:7566-7582. [PMID: 31695787 PMCID: PMC6831459 DOI: 10.7150/thno.36942] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/02/2019] [Indexed: 12/19/2022] Open
Abstract
Liver fibrosis leading to cirrhosis is one of the major health burdens worldwide with currently limited therapeutic options available. Long noncoding RNAs (lncRNAs) play important roles in various biological and pathological processes in a cell- or tissue-specific manner. However, there is still an important gap in the understanding of the role of hepatocyte-specific lncRNAs in liver fibrosis. Methods: The expressions of lnc-Hser in human and mice fibrotic livers as well as primary hepatocytes (HCs) of mice developing liver fibrosis were determined by real-time RT-PCR. The roles and mechanisms of lnc-Hser in HCs and liver fibrosis were determined in vitro and in vivo. Results: In this study, we have identified a hepatocyte-specifically expressed lnc-Hser, which was reduced in human and mice fibrotic livers as well as primary HCs of mice developing liver fibrosis. We have shown that silencing lnc-Hser aggravated liver fibrosis both in vitro and in vivo through inducing the epithelial-mesenchymal transition (EMT) and the apoptosis of HCs. In addition, knockdown of lnc-Hser promoted hepatic stellate cells (HSCs) activation through the signals derived from injured HCs. Mechanistically, we have revealed that lnc-Hser inhibited HCs apoptosis via the C5AR1-Hippo-YAP pathway and suppressed HCs EMT via the Notch signaling. Conclusions: Our work has identified a hepatocyte-specific lnc-HSER that regulates liver fibrosis, providing a proof that this molecule is a novel biomarker for damaged HCs and a potential target for anti-fibrotic therapy.
Collapse
|
33
|
Huang H, Nie C, Qin X, Zhou J, Zhang L. Diosgenin inhibits the epithelial-mesenchymal transition initiation in osteosarcoma cells via the p38MAPK signaling pathway. Oncol Lett 2019; 18:4278-4287. [PMID: 31579425 DOI: 10.3892/ol.2019.10780] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 06/13/2019] [Indexed: 01/01/2023] Open
Abstract
Diosgenin is an important basic raw material for the production of steroid hormone drugs. It can be isolated and purified from a variety of traditional Chinese medicines or plants. Modern molecular biological studies have shown that diosgenin inhibits various tumor cells migration and invasion ability to varying degrees in vitro and in vivo. The aim of the present study was to observe the inhibitory effects of diosgenin on the invasive and metastatic capabilities of osteosarcoma cells and to determine the association between the effects of diosgenin on the epithelial-mesenchymal transition (EMT). Wound healing and Transwell assays were used to observe the inhibitory effects of diosgenin on the invasion and migration of two osteosarcoma cell lines. Immunofluorescence was used to observe changes in transforming growth factor β1 (TGF-β1) protein expression levels in the osteosarcoma cells following drug administration. EMT-associated proteins, including TGFβ1, E-cadherin and vimentin were detected by western blotting, which demonstrated that the drug may inhibit the initiation of EMT in osteosarcoma cells. Western blot analysis of the expression of all the proteins in the mitogen-activated protein kinase (MAPK) pathway demonstrated that the drug inhibited the MAPK signaling pathway. The primary mechanism of action of diosgenin was the inhibition of the phosphorylated p38 (pP38) protein. Through a combination of inhibitors of the p38MAPK signaling pathway and detection of the downstream EMT marker protein E-cadherin by quantitative PCR, pP38 was confirmed to be a target of diosgenin in the inhibition of EMT in the osteosarcoma cells via the MAPK molecular signaling pathway. Diosgenin may exhibit utility as an auxiliary drug for the clinical reduction of metastasis in patients with osteosarcoma.
Collapse
Affiliation(s)
- Huaming Huang
- Department of Research Office, Jiangsu Health Vocational College, Nanjing, Jiangsu 211800, P.R. China.,Department of Orthopedics, Xishan People's Hospital of Wuxi, Wuxi, Jiangsu 214015, P.R. China
| | - Chao Nie
- Department of Research Office, Jiangsu Health Vocational College, Nanjing, Jiangsu 211800, P.R. China
| | - Xiaokang Qin
- Jiangsu KeyGEN BioTECH Co., Ltd., Nanjing, Jiangsu 211100, P.R. China
| | - Jie Zhou
- Department of Research Office, Jiangsu Health Vocational College, Nanjing, Jiangsu 211800, P.R. China
| | - Lei Zhang
- Department of Research Office, Jiangsu Health Vocational College, Nanjing, Jiangsu 211800, P.R. China
| |
Collapse
|
34
|
Control of lung myofibroblast transformation by monovalent ion transporters. CURRENT TOPICS IN MEMBRANES 2019. [PMID: 31196603 DOI: 10.1016/bs.ctm.2019.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Abstract
Myofibroblast differentiation is a critical process in the pathogenesis of tissue fibrosis. We focus our mini-review on recent data showing an implication of monovalent ion transporters in fibroblast to myofibroblast transformation of human lung fibroblasts (HLF). In cultured HLF, cardiotonic steroids (CTS) known as potent inhibitors of Na+,K+-ATPase suppress myofibroblast differentiation in parallel with up- and down-regulated expression of cyclooxygenase-2 (COX-2) and TGF-β receptor subunit TGFBR2, respectively. K+-free medium mimics antifibrotic action of CTS indicating a key role of elevated intracellular [Na+]i/[K+]i ratio. Augmented expression of COX-2 is abolished by inhibition of Na+/Ca2+ exchanger. Side-by-side with CTS acting via elevation of the [Na+]i/[K+]i ratio fibroblast to myofibroblast transformation is also suppressed by potent inhibitors of Ca2+-activated chloride channels tannic acid and K+,Cl- cotransporter DIOA. The relative impact of [Formula: see text] -mediated and -independent signaling triggered by elevated [Na+]i/[K+]i ratio and altered intracellular anion handling in transcriptomic changes involved in myofibroblast differentiation should be examined further.
Collapse
|
35
|
Liu X, Wu Y, Zhou Z, Huang M, Deng W, Wang Y, Zhou X, Chen L, Li Y, Zeng T, Wang G, Fu B. Celecoxib inhibits the epithelial-to-mesenchymal transition in bladder cancer via the miRNA-145/TGFBR2/Smad3 axis. Int J Mol Med 2019; 44:683-693. [PMID: 31198976 PMCID: PMC6605707 DOI: 10.3892/ijmm.2019.4241] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022] Open
Abstract
Celecoxib, a selective cyclooxygenase-2 inhibitor, has chemo-preventive activity against different cancer types, including bladder cancer (BC). However, the mechanisms by which celecoxib exerts its cancer preventative effects have yet to be completely understood. In the present study, the effect of celecoxib on the epithelial-to-mesenchymal transition (EMT) of BC cells and its potential molecular mechanisms were investigated. The results of the present study demonstrated that celecoxib inhibited the proliferation, migration, invasion and EMT of BC cells. Further investigation of the underlying mechanism revealed that celecoxib inhibited EMT by upregulating microRNA (miR)-145 and downregulating the expression of transforming growth factor β receptor 2 and SMAD family member 3. Furthermore, the combination of celecoxib with miR-145 mimics demonstrated an additive migration and invasion-inhibitory effect in BC cell lines.
Collapse
Affiliation(s)
- Xiaoqiang Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yanlong Wu
- Department of Gynaecology and Obstetrics, The People's Hospital of Jiangxi Province, Nanchang, Jiangxi 330006, P.R. China
| | - Zhengtao Zhou
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Mingchuan Huang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wen Deng
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yibing Wang
- Department of Emergency, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaochen Zhou
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Luyao Chen
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yu Li
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tao Zeng
- Department of Urology, The People's Hospital of Jiangxi Province, Nanchang, Jiangxi 330006, P.R. China
| | - Gongxian Wang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Bin Fu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
36
|
Liu R, Liu Q, Pan Z, Liu X, Ding J. Cell Type and Nuclear Size Dependence of the Nuclear Deformation of Cells on a Micropillar Array. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7469-7477. [PMID: 30226387 DOI: 10.1021/acs.langmuir.8b02510] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
While various cellular responses to materials have been published, little concerns the deformation of cell nuclei. Herein we fabricated a polymeric micropillar array of appropriate dimensions to trigger the significant self-deformation of cell nuclei and examined six cell types, which could be classified into cancerous cells (Hela and HepG2) versus healthy cells (HCvEpC, MC3T3-E1, NIH3T3, and hMSC) or epithelial-like cells (Hela, HepG2, and HCvEpC) versus fibroblast-like cells (MC3T3-E1, NIH3T3, and hMSC). While all of the cell types exhibited severe nuclear deformation on the poly(lactide- co-glycolide) (PLGA) micropillar array, the difference between the epithelial-like and fibroblast-like cells was much more significant than that between the cancerous and healthy cells. We also examined the statistics of nuclear shape indexes of cells with an inevitable dispersity of nuclear sizes. It was found that larger nuclei favored more significant deformation on the micropillar array for each cell type. In the same region of nuclear size, the parts of the epithelial-like cells exhibited more significant nuclear deformation than those of the fibroblast-like cells. Hence, this article reports the nuclear size dependence of the self-deformation of cell nuclei on micropillar arrays for the first time and meanwhile strengthens the cell-type dependence.
Collapse
Affiliation(s)
- Ruili Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Qiong Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Zhen Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Xiangnan Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| |
Collapse
|
37
|
Liu R, Yao X, Liu X, Ding J. Proliferation of Cells with Severe Nuclear Deformation on a Micropillar Array. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:284-299. [PMID: 30513205 DOI: 10.1021/acs.langmuir.8b03452] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cellular responses on a topographic surface are fundamental topics about interfaces and biology. Herein, a poly(lactide- co-glycolide) (PLGA) micropillar array was prepared and found to trigger significant self-deformation of cell nuclei. The time-dependent cell viability and thus cell proliferation was investigated. Despite significant nuclear deformation, all of the examined cell types (Hela, HepG2, MC3T3-E1, and NIH3T3) could survive and proliferate on the micropillar array yet exhibited different proliferation abilities. Compared to the corresponding groups on the smooth surface, the cell proliferation abilities on the micropillar array were decreased for Hela and MC3T3-E1 cells and did not change significantly for HepG2 and NIH3T3 cells. We also found that whether the proliferation ability changed was related to whether the nuclear sizes decreased in the micropillar array, and thus the size deformation of cell nuclei should, besides shape deformation, be taken into consideration in studies of cells on topological surfaces.
Collapse
Affiliation(s)
- Ruili Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Xiang Yao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Xiangnan Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| |
Collapse
|
38
|
Xiong X, Tu S, Wang J, Luo S, Yan X. CXXC5: A novel regulator and coordinator of TGF-β, BMP and Wnt signaling. J Cell Mol Med 2018; 23:740-749. [PMID: 30479059 PMCID: PMC6349197 DOI: 10.1111/jcmm.14046] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/23/2018] [Indexed: 12/18/2022] Open
Abstract
CXXC5 is a member of the CXXC-type zinc-finger protein family. Proteins in this family play a pivotal role in epigenetic regulation by binding to unmethylated CpG islands in gene promoters through their characteristic CXXC domain. CXXC5 is a short protein (322 amino acids in length) that does not have any catalytic domain, but is able to bind to DNA and act as a transcription factor and epigenetic factor through protein-protein interactions. Intriguingly, increasing evidence indicates that expression of the CXXC5 gene is controlled by multiple signaling pathways and a variety of transcription factors, positioning CXXC5 as an important signal integrator. In addition, CXXC5 is capable of regulating various signal transduction processes, including the TGF-β, Wnt and ATM-p53 pathways, thereby acting as a novel and crucial signaling coordinator. CXXC5 plays an important role in embryonic development and adult tissue homeostasis by regulating cell proliferation, differentiation and apoptosis. In keeping with these functions, aberrant expression or altered activity of CXXC5 has been shown to be involved in several human diseases including tumourigenesis. This review summarizes the current understanding of CXXC5 as a transcription factor and signaling regulator and coordinator.
Collapse
Affiliation(s)
- Xiangyang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Shuo Tu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Jianbin Wang
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Shiwen Luo
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaohua Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| |
Collapse
|
39
|
Gao J, Ye J, Ying Y, Lin H, Luo Z. Negative regulation of TGF-β by AMPK and implications in the treatment of associated disorders. Acta Biochim Biophys Sin (Shanghai) 2018; 50:523-531. [PMID: 29873702 DOI: 10.1093/abbs/gmy028] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Indexed: 01/18/2023] Open
Abstract
Transforming growth factor beta (TGF-β) regulates a large number of biological processes, including proliferation, differentiation, immune response, and development. In addition, TGF-β plays important roles in some pathological processes, for instance, it is upregulated and activated in fibrosis and advanced cancer. Adenosine monophosphate-activated protein kinase (AMPK) acts as a fuel gauge that is activated when cells sense shortage of ATP and increase in AMP or AMP:ATP ratio. Activation of AMPK slows down anabolic processes and stimulates catabolic processes, leading to increased production of ATP. Furthermore, the functions of AMPK have been extended beyond energy homeostasis. In fact, AMPK has been shown to exert a tumor suppressive effect. Recent studies have demonstrated negative impacts of AMPK on TGF-β function. Therefore, in this review, we will discuss the differences in the biological functions of TGF-β and AMPK, and some pathological processes such as fibrosis, epithelial-mesenchymal transition (EMT) and cancer metastasis, as well as angiogenesis and heterotopic ossifications where TGF-β and AMPK exert opposite effects.
Collapse
Affiliation(s)
- Jiayu Gao
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University Jiangxi Medical College, Nanchang 330000, China
- Department of Pathology, Schools of Basic Sciences, Nanchang University Jiangxi Medical College, Nanchang 330000, China
| | - Jinhui Ye
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University Jiangxi Medical College, Nanchang 330000, China
| | - Ying Ying
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University Jiangxi Medical College, Nanchang 330000, China
| | - Hui Lin
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University Jiangxi Medical College, Nanchang 330000, China
| | - Zhijun Luo
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University Jiangxi Medical College, Nanchang 330000, China
- Department of Pathology, Schools of Basic Sciences, Nanchang University Jiangxi Medical College, Nanchang 330000, China
| |
Collapse
|