1
|
Romanowska H, Danko M, Borkowska A, Popińska K, Sibilska M, Żydak J, Wielopolska J, Bartoszewicz K, Szlagatys-Sidorkiewicz A, Książyk J. Are Trace Elements Provided for Children on Long-Term Parenteral Nutrition Adequate to Meet Their Needs? Life (Basel) 2024; 15:29. [PMID: 39859969 PMCID: PMC11766632 DOI: 10.3390/life15010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/13/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Background: We conducted a cross-sectional study to investigate whether children receiving long-term parenteral nutrition (LPN) are at risk of imbalances in selected trace elements. Methods: Serum levels of manganese, zinc, copper, selenium, and iodine were measured in 83 children on LPN and compared with 121 healthy controls. Children with signs of infection or elevated C-reactive protein levels were excluded. Elemental analysis was performed using inductively coupled plasma mass spectrometry (ICP-MS). Results: Manganese and copper levels were significantly lower in the study group compared with controls (p < 0.001) but remained within normal ranges. Iodine levels were also significantly lower in the study group (p < 0.05), though pediatric reference values are lacking. Zinc and selenium levels were significantly higher in the study group (p < 0.001), with median levels within normal ranges in both groups. Zinc, selenium, and iodine levels were higher in patients weighing ≤15 kg (p < 0.001, p < 0.001, p < 0.02). Conclusions: Serum concentrations of manganese, copper, and selenium in the study group remained within normal ranges, even though children weighing over 15 kg received doses below those recommended by scientific guidelines. An iodine intake below 1 μg/kg/day in patients weighing over 15 kg appears insufficient. Patients on LPN required a higher zinc intake than current recommendations.
Collapse
Affiliation(s)
- Hanna Romanowska
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology of the Developmental Age, Pomeranian Medical University, 71-252 Szczecin, Poland; (J.W.); (K.B.)
| | - Mikołaj Danko
- The Children’s Memorial Health Institute, Department of Pediatrics, Nutrition and Metabolic Diseases, 04-730 Warsaw, Poland; (M.D.); (K.P.); (M.S.); (J.K.)
| | - Anna Borkowska
- Department of Pediatrics, Gastroenterology, Allergology and Nutrition, Medical University of Gdańsk, 80-803 Gdańsk, Poland; (A.B.); (A.S.-S.)
| | - Katarzyna Popińska
- The Children’s Memorial Health Institute, Department of Pediatrics, Nutrition and Metabolic Diseases, 04-730 Warsaw, Poland; (M.D.); (K.P.); (M.S.); (J.K.)
| | - Marta Sibilska
- The Children’s Memorial Health Institute, Department of Pediatrics, Nutrition and Metabolic Diseases, 04-730 Warsaw, Poland; (M.D.); (K.P.); (M.S.); (J.K.)
| | - Joanna Żydak
- The Children’s Memorial Health Institute, Department of Pediatrics, Nutrition and Metabolic Diseases, 04-730 Warsaw, Poland; (M.D.); (K.P.); (M.S.); (J.K.)
| | - Joanna Wielopolska
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology of the Developmental Age, Pomeranian Medical University, 71-252 Szczecin, Poland; (J.W.); (K.B.)
| | - Klaudia Bartoszewicz
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology of the Developmental Age, Pomeranian Medical University, 71-252 Szczecin, Poland; (J.W.); (K.B.)
| | - Agnieszka Szlagatys-Sidorkiewicz
- Department of Pediatrics, Gastroenterology, Allergology and Nutrition, Medical University of Gdańsk, 80-803 Gdańsk, Poland; (A.B.); (A.S.-S.)
| | - Janusz Książyk
- The Children’s Memorial Health Institute, Department of Pediatrics, Nutrition and Metabolic Diseases, 04-730 Warsaw, Poland; (M.D.); (K.P.); (M.S.); (J.K.)
| |
Collapse
|
2
|
Qu C, Shao X, Jia R, Song G, Shi D, Wang H, Wang J, An H. Hypoxia Reversion and STING Pathway Activation through Large Mesoporous Nanozyme for Near-Infrared-II Light Amplified Tumor Polymetallic-Immunotherapy. ACS NANO 2024; 18:22153-22171. [PMID: 39118372 DOI: 10.1021/acsnano.4c05483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
cGAS/STING pathway, which is highly related to tumor hypoxia, is considered as a potential target for remodeling the immunosuppressive microenvironment of solid tumors. Metal ions, such as Mn2+, activate the cGAS/STING pathway, but their efficacy in cancer therapy is limited by insufficient effect on immunogenic tumor cell death of a single ion. Here, we evaluate the association between tumor hypoxia and cGAS/STING inhibition and report a polymetallic-immunotherapy strategy based on large mesoporous trimetal-based nanozyme (AuPdRh) coordinated with Mn2+ (Mn2+@AuPdRh) to activate cGAS/STING signaling for robust adaptive antitumor immunity. Specifically, the inherent CAT-like activity of this polymetallic Mn2+@AuPdRh nanozyme decomposes the endogenous H2O2 into O2 to relieve tumor hypoxia induced suppression of cGAS/STING signaling. Moreover, the Mn2+@AuPdRh nanozyme displays a potent near-infrared-II photothermal effect and strong POD-mimic activity; and the generated hyperthermia and •OH radicals synergistically trigger immunogenic cell death in tumors, releasing abundant dsDNA, while the delivered Mn2+ augments the sensitivity of cGAS to dsDNA and activates the cGAS-STING pathway, thereby triggering downstream immunostimulatory signals to kill primary and distant metastatic tumors. Our study demonstrates the potential of metal-based nanozyme for STING-mediated tumor polymetallic-immunotherapy and may inspire the development of more effective strategies for cancer immunotherapy.
Collapse
Affiliation(s)
- Chang Qu
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300401, Tianjin, People's Republic of China
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, 300130, Tianjin, People's Republic of China
| | - Xinyue Shao
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300401, Tianjin, People's Republic of China
| | - Ran Jia
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, 300401, Tianjin, People's Republic of China
| | - Guoqiang Song
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300401, Tianjin, People's Republic of China
| | - Donghong Shi
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300401, Tianjin, People's Republic of China
| | - Hui Wang
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300401, Tianjin, People's Republic of China
| | - Jinping Wang
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300401, Tianjin, People's Republic of China
| | - Hailong An
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300401, Tianjin, People's Republic of China
| |
Collapse
|
3
|
Berger MM, Shenkin A, Dizdar OS, Amrein K, Augsburger M, Biesalski HK, Bischoff SC, Casaer MP, Gundogan K, Lepp HL, de Man AME, Muscogiuri G, Pietka M, Pironi L, Rezzi S, Schweinlin A, Cuerda C. ESPEN practical short micronutrient guideline. Clin Nutr 2024; 43:825-857. [PMID: 38350290 DOI: 10.1016/j.clnu.2024.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/27/2024] [Indexed: 02/15/2024]
Abstract
BACKGROUND Trace elements and vitamins, named together micronutrients (MNs), are essential for human metabolism. The importance of MNs in common pathologies is recognized by recent research, with deficiencies significantly impacting the outcome. OBJECTIVE This short version of the guideline aims to provide practical recommendations for clinical practice. METHODS An extensive search of the literature was conducted in the databases Medline, PubMed, Cochrane, Google Scholar, and CINAHL for the initial guideline. The search focused on physiological data, historical evidence (for papers published before PubMed release in 1996), and observational and/or randomized trials. For each MN, the main functions, optimal analytical methods, impact of inflammation, potential toxicity, and provision during enteral or parenteral nutrition were addressed. The SOP wording was applied for strength of recommendations. RESULTS The limited number of interventional trials prevented meta-analysis and led to a low level of evidence for most recommendations. The recommendations underwent a consensus process, which resulted in a percentage of agreement (%): strong consensus required of >90 % of votes. Altogether the guideline proposes 3 general recommendations and specific recommendations for the 26 MNs. Monitoring and management strategies are proposed. CONCLUSION This short version of the MN guideline should facilitate handling of the MNs in at-risk diseases, whilst offering practical advice on MN provision and monitoring during nutritional support.
Collapse
Affiliation(s)
- Mette M Berger
- Faculty of Biology & Medicine, Lausanne University, Lausanne, Switzerland.
| | - Alan Shenkin
- Institute of Aging and Chronic Disease, University of Liverpool, Liverpool, UK.
| | - Oguzhan Sıtkı Dizdar
- Department of Internal Medicine and Clinical Nutrition Unit, University of Health Sciences Kayseri City Training and Research Hospital, Kayseri, Turkey.
| | - Karin Amrein
- Medical University of Graz, Department of Internal Medicine, Division of Endocrinology and Diabetology, Austria.
| | - Marc Augsburger
- University Centre of Legal Medicine Lausanne-Geneva, Lausanne University Hospital and University of Lausanne, Geneva University Hospital and University of Geneva, Lausanne-Geneva, Switzerland.
| | | | - Stephan C Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| | - Michael P Casaer
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Intensive Care Medicine, Leuven, Belgium.
| | - Kursat Gundogan
- Division of Intensive Care Medicine, Department of Internal Medicine, Erciyes University School of Medicine, Kayseri, Turkey.
| | | | - Angélique M E de Man
- Department of Intensive Care Medicine, Research VUmc Intensive Care (REVIVE), Amsterdam Cardiovascular Science (ACS), Amsterdam Infection and Immunity Institute (AI&II), Amsterdam Medical Data Science (AMDS), Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands.
| | - Giovanna Muscogiuri
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università di Napoli (Federico II), Naples, Italy; United Nations Educational, Scientific and Cultural Organization (UNESCO) Chair for Health Education and Sustainable Development, Federico II University, Naples, Italy.
| | - Magdalena Pietka
- Pharmacy Department, Stanley Dudrick's Memorial Hospital, Skawina, Poland.
| | - Loris Pironi
- Department of Medical and Surgical Sciences, University of Bologna, Italy; Centre for Chronic Intestinal Failure, IRCCS AOUBO, Bologna, Italy.
| | - Serge Rezzi
- Swiss Nutrition and Health Foundation, Epalinges, Switzerland.
| | - Anna Schweinlin
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| | - Cristina Cuerda
- Departamento de Medicina, Universidad Complutense de Madrid, Nutrition Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
| |
Collapse
|
4
|
Zhao Y, Song R, Zhang Z, Hu H, Ning W, Duan X, Jiao J, Fu X, Zhang G. Hollow metal-organic framework-based, stimulator of interferon genes pathway-activating nanovaccines for tumor immunotherapy. NANOSCALE ADVANCES 2023; 6:72-78. [PMID: 38125595 PMCID: PMC10729872 DOI: 10.1039/d3na00867c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Nanovaccines have emerged as promising agents for cancer therapy because of their ability to induce specific immune responses without off-target effects. However, inadequate cytotoxic T lymphocyte response and low antigen/adjuvant encapsulation remain major obstacles to vaccinating against cancer. Herein, we designed a stimulator of interferon genes (STING) pathway-activating nanovaccine based on hollow metal-organic frameworks (MOFs) for tumor treatment. The nanovaccine (OVA@HZIF-Mn) was constructed by encapsulating a model antigen ovalbumin (OVA) into zeolitic imidazolate framework-8, followed by etching with tannic acid and functionalizing with manganese ions. Studies have shown that the nanovaccine can effectively enhance antigen uptake, STING pathway activation and dendritic cell maturation, triggering a robust immune response to inhibit tumor growth. In addition, no infection or pathological signs were observed in mice organs after multiple administrations. This study combines a simple assembly approach and superior therapeutic effect, providing a promising strategy for engineering effective nanovaccines.
Collapse
Affiliation(s)
- Yilei Zhao
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan Shandong 250117 China
| | - Ruinan Song
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan Shandong 250117 China
| | - Zhen Zhang
- Jinan Vocational College of Nursing Jinan Shandong 250102 China
| | - Houyang Hu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan Shandong 250117 China
| | - Wenli Ning
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan Shandong 250021 China
| | - Xiuying Duan
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan Shandong 250117 China
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Science Beijing 100101 China
| | - Xiao Fu
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan Shandong 250021 China
| | - Guiqiang Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan Shandong 250117 China
- Shandong Hongkui Medical Laboratory Co., Ltd Jinan 271100 P. R. China
| |
Collapse
|
5
|
Pironi L, Cuerda C, Jeppesen PB, Joly F, Jonkers C, Krznarić Ž, Lal S, Lamprecht G, Lichota M, Mundi MS, Schneider SM, Szczepanek K, Van Gossum A, Wanten G, Wheatley C, Weimann A. ESPEN guideline on chronic intestinal failure in adults - Update 2023. Clin Nutr 2023; 42:1940-2021. [PMID: 37639741 DOI: 10.1016/j.clnu.2023.07.019] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 07/21/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND & AIMS In 2016, ESPEN published the guideline for Chronic Intestinal Failure (CIF) in adults. An updated version of ESPEN guidelines on CIF due to benign disease in adults was devised in order to incorporate new evidence since the publication of the previous ESPEN guidelines. METHODS The grading system of the Scottish Intercollegiate Guidelines Network (SIGN) was used to grade the literature. Recommendations were graded according to the levels of evidence available as A (strong), B (conditional), 0 (weak) and Good practice points (GPP). The recommendations of the 2016 guideline (graded using the GRADE system) which were still valid, because no studies supporting an update were retrieved, were reworded and re-graded accordingly. RESULTS The recommendations of the 2016 guideline were reviewed, particularly focusing on definitions, and new chapters were included to devise recommendations on IF centers, chronic enterocutaneous fistulas, costs of IF, caring for CIF patients during pregnancy, transition of patients from pediatric to adult centers. The new guideline consist of 149 recommendations and 16 statements which were voted for consensus by ESPEN members, online in July 2022 and at conference during the annual Congress in September 2022. The Grade of recommendation is GPP for 96 (64.4%) of the recommendations, 0 for 29 (19.5%), B for 19 (12.7%), and A for only five (3.4%). The grade of consensus is "strong consensus" for 148 (99.3%) and "consensus" for one (0.7%) recommendation. The grade of consensus for the statements is "strong consensus" for 14 (87.5%) and "consensus" for two (12.5%). CONCLUSIONS It is confirmed that CIF management requires complex technologies, multidisciplinary and multiprofessional activity, and expertise to care for the underlying gastrointestinal disease and to provide HPN support. Most of the recommendations were graded as GPP, but almost all received a strong consensus.
Collapse
Affiliation(s)
- Loris Pironi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; Center for Chronic Intestinal Failure, IRCCS AOUBO, Bologna, Italy.
| | - Cristina Cuerda
- Nutrition Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | - Francisca Joly
- Center for Intestinal Failure, Department of Gastroenterology and Nutritional Support, Hôpital Beaujon, Clichy, France
| | - Cora Jonkers
- Nutrition Support Team, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Željko Krznarić
- Center of Clinical Nutrition, Department of Medicine, University Hospital Center, Zagreb, Croatia
| | - Simon Lal
- Intestinal Failure Unit, Salford Royal Foundation Trust, Salford, United Kingdom
| | | | - Marek Lichota
- Intestinal Failure Patients Association "Appetite for Life", Cracow, Poland
| | - Manpreet S Mundi
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic College of Medicine, Rochester, MN, USA
| | | | - Kinga Szczepanek
- General and Oncology Surgery Unit, Stanley Dudrick's Memorial Hospital, Skawina, Poland
| | | | - Geert Wanten
- Intestinal Failure Unit, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Carolyn Wheatley
- Support and Advocacy Group for People on Home Artificial Nutrition (PINNT), United Kingdom
| | - Arved Weimann
- Department of General, Visceral and Oncological Surgery, St. George Hospital, Leipzig, Germany
| |
Collapse
|
6
|
Gao ZL, Xu W, Zheng SJ, Duan QJ, Liu R, Du JZ. Orchestrated Cytosolic Delivery of Antigen and Adjuvant by Manganese Ion-Coordinated Nanovaccine for Enhanced Cancer Immunotherapy. NANO LETTERS 2023; 23:1904-1913. [PMID: 36801829 DOI: 10.1021/acs.nanolett.2c04970] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cancer vaccines have received tremendous attention in cancer immunotherapy due to their capability to induce a tumor-specific immune response. However, their effectiveness is compromised by the insufficient spatiotemporal delivery of antigens and adjuvants in the subcellular level to induce a robust CD8+ T cell response. Herein, a cancer nanovaccine G5-pBA/OVA@Mn is prepared through multiple interactions of manganese ions (Mn2+), benzoic acid (BA)-modified fifth generation polyamidoamine (G5-PAMAM) dendrimer, and the model protein antigen ovalbumin (OVA). In the nanovaccine, Mn2+ not only exerts a structural function to assist OVA loading as well as its endosomal escape, but works as an adjuvant of stimulator of interferon genes (STING) pathway. These collaboratively facilitate the orchestrated codelivery of OVA antigen and Mn2+ into cell cytoplasm. Vaccination with G5-pBA/OVA@Mn not only shows a prophylactic effect, but also significantly inhibits growth against B16-OVA tumors, indicating its great potential for cancer immunotherapy.
Collapse
Affiliation(s)
- Zhen-Lin Gao
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Wei Xu
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, China
| | - Sui-Juan Zheng
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Qi-Jia Duan
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Rong Liu
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Jin-Zhi Du
- School of Medicine, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, and Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
7
|
Frydrych A, Krośniak M, Jurowski K. The Role of Chosen Essential Elements (Zn, Cu, Se, Fe, Mn) in Food for Special Medical Purposes (FSMPs) Dedicated to Oncology Patients-Critical Review: State-of-the-Art. Nutrients 2023; 15:1012. [PMID: 36839370 PMCID: PMC9961387 DOI: 10.3390/nu15041012] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/22/2023] Open
Abstract
The scoping review aimed to characterise the role of selected essential elements (Zn, Cu, Se, Fe, Mn) in food for special medical purposes (FSMPs) aimed at oncology patients. The scope review was conducted using Scopus, Google Scholar, and Web of Science to find published references on this subject. Data from the reviewed literature were related to the physiological functions of the element in the body, and the effects of deficiencies and excesses, referring to the latest ESPEN and EFSA guidelines, among others. Important dietary indices/parameters based on the literature review are provided for each element. On the basis of the literature, data on the level of elements in patients with cancer were collected. The content of these elements in 100 mL of FSMPs was read from the manufacturers' declarations. The literature has been provided on the importance of each element in cancer. Our findings show that the essential elements (Zn, Cu, Se, Fe, and Mn) of FSMPs for cancer patients are not adequately treated. We suggest solutions to ensure the safe use of FSMPs in oncology patients.
Collapse
Affiliation(s)
- Adrian Frydrych
- Laboratory of Innovative Toxicological Research and Analyses, Institute of Medical Studies, Medical College, Rzeszów University, Aleja Majora W. Kopisto 2a, 35-959 Rzeszow, Poland
| | - Mirosław Krośniak
- Department of Food Chemistry and Nutrition, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| | - Kamil Jurowski
- Laboratory of Innovative Toxicological Research and Analyses, Institute of Medical Studies, Medical College, Rzeszów University, Aleja Majora W. Kopisto 2a, 35-959 Rzeszow, Poland
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertises, Aleksandrowska 67/93, 91-205 Łódź, Poland
| |
Collapse
|
8
|
Berger MM, Shenkin A, Schweinlin A, Amrein K, Augsburger M, Biesalski HK, Bischoff SC, Casaer MP, Gundogan K, Lepp HL, de Man AME, Muscogiuri G, Pietka M, Pironi L, Rezzi S, Cuerda C. ESPEN micronutrient guideline. Clin Nutr 2022; 41:1357-1424. [PMID: 35365361 DOI: 10.1016/j.clnu.2022.02.015] [Citation(s) in RCA: 285] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Trace elements and vitamins, named together micronutrients (MNs), are essential for human metabolism. Recent research has shown the importance of MNs in common pathologies, with significant deficiencies impacting the outcome. OBJECTIVE This guideline aims to provide information for daily clinical nutrition practice regarding assessment of MN status, monitoring, and prescription. It proposes a consensus terminology, since many words are used imprecisely, resulting in confusion. This is particularly true for the words "deficiency", "repletion", "complement", and "supplement". METHODS The expert group attempted to apply the 2015 standard operating procedures (SOP) for ESPEN which focuses on disease. However, this approach could not be applied due to the multiple diseases requiring clinical nutrition resulting in one text for each MN, rather than for diseases. An extensive search of the literature was conducted in the databases Medline, PubMed, Cochrane, Google Scholar, and CINAHL. The search focused on physiological data, historical evidence (published before PubMed release in 1996), and observational and/or randomized trials. For each MN, the main functions, optimal analytical methods, impact of inflammation, potential toxicity, and provision during enteral or parenteral nutrition were addressed. The SOP wording was applied for strength of recommendations. RESULTS There was a limited number of interventional trials, preventing meta-analysis and leading to a low level of evidence. The recommendations underwent a consensus process, which resulted in a percentage of agreement (%): strong consensus required of >90% of votes. Altogether the guideline proposes sets of recommendations for 26 MNs, resulting in 170 single recommendations. Critical MNs were identified with deficiencies being present in numerous acute and chronic diseases. Monitoring and management strategies are proposed. CONCLUSION This guideline should enable addressing suboptimal and deficient status of a bundle of MNs in at-risk diseases. In particular, it offers practical advice on MN provision and monitoring during nutritional support.
Collapse
Affiliation(s)
- Mette M Berger
- Department of Adult Intensive Care, Lausanne University Hospital (CHUV), Lausanne, Switzerland.
| | - Alan Shenkin
- Institute of Aging and Chronic Disease, University of Liverpool, Liverpool, UK.
| | - Anna Schweinlin
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| | - Karin Amrein
- Medical University of Graz, Department of Internal Medicine, Division of Endocrinology and Diabetology, Austria.
| | - Marc Augsburger
- University Centre of Legal Medicine Lausanne-Geneva, Lausanne University Hospital and University of Lausanne, Geneva University Hospital and University of Geneva, Lausanne-Geneva, Switzerland.
| | | | - Stephan C Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| | - Michael P Casaer
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Intensive Care Medicine, Leuven, Belgium.
| | - Kursat Gundogan
- Division of Intensive Care Medicine, Department of Internal Medicine, Erciyes University School of Medicine, Kayseri, Turkey.
| | | | - Angélique M E de Man
- Department of Intensive Care Medicine, Research VUmc Intensive Care (REVIVE), Amsterdam Cardiovascular Science (ACS), Amsterdam Infection and Immunity Institute (AI&II), Amsterdam Medical Data Science (AMDS), Amsterdam UMC, Location VUmc, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands.
| | - Giovanna Muscogiuri
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università di Napoli (Federico II), Naples, Italy; United Nations Educational, Scientific and Cultural Organization (UNESCO) Chair for Health Education and Sustainable Development, Federico II, University, Naples, Italy.
| | - Magdalena Pietka
- Pharmacy Department, Stanley Dudrick's Memorial Hospital, Skawina, Poland.
| | - Loris Pironi
- Alma Mater Studiorum - University of Bologna, Department of Medical and Surgical Sciences, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Centre for Chronic Intestinal Failure - Clinical Nutrition and Metabolism Unit, Italy.
| | - Serge Rezzi
- Swiss Nutrition and Health Foundation (SNHf), Epalinges, Switzerland.
| | - Cristina Cuerda
- Departamento de Medicina, Universidad Complutense de Madrid, Nutrition Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
| |
Collapse
|
9
|
Sun X, Zhang Y, Li J, Park KS, Han K, Zhou X, Xu Y, Nam J, Xu J, Shi X, Wei L, Lei YL, Moon JJ. Amplifying STING activation by cyclic dinucleotide-manganese particles for local and systemic cancer metalloimmunotherapy. NATURE NANOTECHNOLOGY 2021; 16:1260-1270. [PMID: 34594005 PMCID: PMC8595610 DOI: 10.1038/s41565-021-00962-9] [Citation(s) in RCA: 385] [Impact Index Per Article: 96.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 07/23/2021] [Indexed: 05/19/2023]
Abstract
Nutritional metal ions play critical roles in many important immune processes. Hence, the effective modulation of metal ions may open up new forms of immunotherapy, termed as metalloimmunotherapy. Here, we demonstrate a prototype of cancer metalloimmunotherapy using cyclic dinucleotide (CDN) stimulator of interferon genes (STING) agonists and Mn2+. We screened various metal ions and discovered specific metal ions augmented STING agonist activity, wherein Mn2+ promoted a 12- to 77-fold potentiation effect across the prevalent human STING haplotypes. Notably, Mn2+ coordinated with CDN STING agonists to self-assemble into a nanoparticle (CDN-Mn2+ particle, CMP) that effectively delivered STING agonists to immune cells. The CMP, administered either by local intratumoural or systemic intravenous injection, initiated robust anti-tumour immunity, achieving remarkable therapeutic efficacy with minute doses of STING agonists in multiple murine tumour models. Overall, the CMP offers a new platform for local and systemic cancer treatments, and this work underscores the great potential of coordination nanomedicine for metalloimmunotherapy.
Collapse
Affiliation(s)
- Xiaoqi Sun
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Yu Zhang
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Jiaqian Li
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kyung Soo Park
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Kai Han
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Xingwu Zhou
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Yao Xu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jutaek Nam
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Jin Xu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Xiaoyue Shi
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Lei Wei
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Yu Leo Lei
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
10
|
Martins AC, Ruella Oliveira S, Barbosa F, Tinkov AA, V A, Santamaría A, Lee E, Bowman AB, Aschner M. Evaluating the risk of manganese-induced neurotoxicity of parenteral nutrition: review of the current literature. Expert Opin Drug Metab Toxicol 2021; 17:581-593. [PMID: 33620266 PMCID: PMC8122055 DOI: 10.1080/17425255.2021.1894123] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/19/2021] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Several diseases and clinical conditions can affect enteral nutrition and adequate gastrointestinal uptake. In this respect, parenteral nutrition (PN) is necessary for the provision of deficient trace elements. However, some essential elements, such as manganese (Mn) may be toxic to children and adults when parenterally administered in excess, leading to toxic, especially neurotoxic effects. AREAS COVERED Here, we briefly provide an overview on Mn, addressing its sources of exposure, the role of Mn in the etiology of neurodegenerative diseases, and focusing on potential mechanisms associated with Mn-induced neurotoxicity. In addition, we discuss the potential consequences of overexposure to Mn inherent to PN. EXPERT OPINION In this critical review, we suggest that additional research is required to safely set Mn levels in PN, and that eliminating Mn as an additive should be considered by physicians and nutritionists on a case by case basis in the meantime to avoid the greater risk of neurotoxicity by its presence. There is a need to better define clinical biomarkers for Mn toxicity by PN, as well as identify new effective agents to treat Mn-neurotoxicity. Moreover, we highlight the importance of the development of new guidelines and practice safeguards to protect patients from excessive Mn exposure and neurotoxicity upon PN administration.
Collapse
Affiliation(s)
- Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Silvana Ruella Oliveira
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo-USP, Ribeirão Preto, Brazil
| | - Fernando Barbosa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo-USP, Ribeirão Preto, Brazil
| | - Alexey A. Tinkov
- Yaroslavl State University, Yaroslavl, Russia
- IM Sechenov First Moscow State Medical University, Moscow, Russia
| | - Anatoly V
- IM Sechenov First Moscow State Medical University, Moscow, Russia
- Federal Scientific Center of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Aaron B. Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- IM Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
11
|
Manganese Neurotoxicity as a Complication of Chronic Total Parenteral Nutrition. Case Rep Neurol Med 2020; 2020:9484028. [PMID: 32373376 PMCID: PMC7196137 DOI: 10.1155/2020/9484028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/18/2020] [Indexed: 12/05/2022] Open
Abstract
Manganese accumulation in the central nervous system creates clinical symptoms of cognitive dysfunction, behavioral changes, and movement disorders resembling Parkinson's disease. Radiographic features of this rare clinical entity include symmetric T1 hyperintensities in the bilateral globus pallidi, with corresponding hypointensities on T2-weighted images. Total parenteral nutrition (TPN) is an increasingly used potentially lifesaving therapy for patients who cannot tolerate enteral nutrition. However, when used over a period of several weeks to months, its associated risks and complications carry significant morbidity and mortality. One of the more rare complications of TPN use is manganese toxicity. We provided care for a 38-year-old female on chronic TPN who presented to the hospital with Parkinsonian features, confusion, falls, and lethargy. MRI brain showed T1 hyperintensities in the bilateral globus pallidi, which were attributed to manganese toxicity from chronic TPN use. Supporting evidence for this rare entity included decreased signal intensity in the bilateral globus pallidi on T2-weighted images and T1 hyperintensities in the substantia nigra. With antifungal treatment and permanent cessation of TPN, her mentation and neurological symptoms began to improve within a week. Repeat MRI brain performed one month after discontinuation of TPN revealed improvement of the T1 hyperintensities in the bilateral globus pallidi. Our objective in presenting this case is to highlight manganese neurotoxicity as a rare complication of TPN in a patient without known hepatic dysfunction and to emphasize the importance of routinely monitoring patients for the possible adverse effects of chronic TPN. Our case is among the handful of published cases in which a patient without known liver dysfunction, which is the primary organ responsible for manganese elimination from the body, developed manganese neurotoxicity.
Collapse
|
12
|
|
13
|
Olson LM, Wieruszewski PM, Jannetto PJ, Abbott JC, McMahon MM, Nystrom EM. Quantitative Assessment of Trace-Element Contamination in Parenteral Nutrition Components. JPEN J Parenter Enteral Nutr 2019; 43:970-976. [PMID: 31197862 DOI: 10.1002/jpen.1668] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/13/2019] [Indexed: 11/11/2022]
Abstract
BACKGROUND Trace-element contamination of contemporary parenteral nutrition (PN) components exists in unknown quantities and, in combination with excessive amounts of certain trace elements provided in commercially available adult, pediatric, and neonatal multitrace-element (MTE) products, could result in eventual accumulation and toxicity. This study aims to quantify trace-element contamination in components used for PN compounding to further inform recommendations for MTE product reformulation and individualized trace-element prescribing in PN. METHODS A total of 32 unique components (65 products) available for PN compounding were tested for manganese, chromium, selenium, zinc, and copper contamination, utilizing inductively coupled plasma mass spectrometry. Theoretical adult, pediatric, and neonatal PNs were formulated to assess the impact of macronutrient and micronutrient component doses on PN trace-element contamination. RESULTS Trace-element contamination was detected in 24 (75%) components tested. Chromium and manganese were common, present in 65.6% and 51.5% of all components, respectively. Eight components did not contain detectable trace-element contamination, most notably sterile water, concentrated dextrose, and lipid emulsion. Manganese contamination in theoretical adult, pediatric, and neonatal PN was 25.18, 9.92, and 1.37 µg, respectively. Chromium contamination was 4.85, 1.5, and 0.28 µg, respectively. CONCLUSION Trace-element contamination was prevalent in components used to compound PN. Our findings support reformulation of adult, pediatric, and neonatal manufactured MTE products to eliminate chromium, decrease manganese, and supply full daily physiologic requirements of selenium, zinc, and copper. Future study is needed to assess the additional contamination that could occur through the compounding and storage processes.
Collapse
Affiliation(s)
- Logan M Olson
- Department of Pharmacy, Mayo Clinic, Rochester, Minnesota, USA.,Department of Pharmacy, Nebraska Medicine, Omaha, Nebraska, USA
| | - Patrick M Wieruszewski
- Department of Pharmacy, Mayo Clinic, Rochester, Minnesota, USA.,Multidisciplinary Epidemiology and Translational Research in Intensive Care (METRIC), Mayo Clinic, Rochester, Minnesota, USA
| | - Paul J Jannetto
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA.,Metals Laboratory, Division of Clinical Biochemistry, Mayo Clinic, Rochester, Minnesota, USA
| | - Jillian C Abbott
- Metals Laboratory, Division of Clinical Biochemistry, Mayo Clinic, Rochester, Minnesota, USA
| | - M Molly McMahon
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, Minnesota, USA
| | - Erin M Nystrom
- Department of Pharmacy, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
14
|
Karlsson JOG, Andersson RG, Jynge P. Mangafodipir a Selective Cytoprotectant - with Special Reference to Oxaliplatin and Its Association to Chemotherapy-Induced Peripheral Neuropathy (CIPN). Transl Oncol 2017; 10:641-649. [PMID: 28668762 PMCID: PMC5496205 DOI: 10.1016/j.tranon.2017.04.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/24/2017] [Accepted: 04/24/2017] [Indexed: 12/12/2022] Open
Abstract
Oxaliplatin, in combination with 5-fluorouracil plus folinate (or capecitabine), has increased survival substantially in stage III colorectal cancer and prolonged life in stage IV patients, but its use is compromised because of severe toxicity. Chemotherapy-induced peripheral neuropathy (CIPN) is the most problematic dose-limiting toxicity of oxaliplatin. Oncologists included for years calcium and magnesium infusion as part of clinical practice for preventing CIPN. Results from a phase III prospective study published in 2014, however, overturned this practice. No other treatments have been clinically proven to prevent this toxicity. There is a body of evidence that CIPN is caused by cellular oxidative stress. Clinical and preclinical data suggest that the manganese chelate and superoxide dismutase mimetic mangafodipir (MnDPDP) is an efficacious inhibitor of CIPN and other conditions caused by cellular oxidative stress, without interfering negatively with the tumoricidal activity of chemotherapy. MnPLED, the metabolite of MnDPDP, attacks cellular oxidative stress at several critical levels. Firstly, MnPLED catalyzes dismutation of superoxide (O2•−), and secondly, having a tremendous high affinity for iron (and copper), PLED binds and disarms redox active iron/copper, which is involved in several detrimental oxidative steps. A case report from 2009 and a recent feasibility study suggest that MnDPDP may prevent or even cure oxaliplatin-induced CIPN. Preliminary results from a phase II study (PLIANT) suggest efficacy also of calmangafodipir, but these results are according to available data obscured by a surprisingly low number of adverse events and a seemingly lower than expected efficacy of FOLFOX.
Collapse
Affiliation(s)
| | - Rolf Gg Andersson
- Division of Drug Research/Pharmacology, Linköping University, Sweden
| | - Per Jynge
- Division of Drug Research/Pharmacology, Linköping University, Sweden
| |
Collapse
|
15
|
Jin J, Mulesa L, Carrilero Rouillet M. Trace Elements in Parenteral Nutrition: Considerations for the Prescribing Clinician. Nutrients 2017; 9:E440. [PMID: 28452962 PMCID: PMC5452170 DOI: 10.3390/nu9050440] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/14/2017] [Accepted: 04/26/2017] [Indexed: 12/11/2022] Open
Abstract
Trace elements (TEs) are an essential component of parenteral nutrition (PN). Over the last few decades, there has been increased experience with PN, and with this knowledge more information about the management of trace elements has become available. There is increasing awareness of the effects of deficiencies and toxicities of certain trace elements. Despite this heightened awareness, much is still unknown in terms of trace element monitoring, the accuracy of different assays, and current TE contamination of solutions. The supplementation of TEs is a complex and important part of the PN prescription. Understanding the role of different disease states and the need for reduced or increased doses is essential. Given the heterogeneity of the PN patients, supplementation should be individualized.
Collapse
Affiliation(s)
- Jennifer Jin
- Division of Gastroenterology, Department of Medicine, Royal Alexandra Hospital, University of Alberta, Edmonton, AB T5H 3V9, Canada.
| | - Leanne Mulesa
- Alberta Health Services, Edmonton, AB T6G 2B7, Canada.
| | - Mariana Carrilero Rouillet
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2B7, Canada.
| |
Collapse
|
16
|
Affiliation(s)
- Callum Livingstone
- Clinical Biochemistry Department, Royal Surrey County Hospital, NHS Foundation Trust, Guildford, UK
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
17
|
Jin J, Saqui O, Allard JP. Effect of Discontinuation of Manganese Supplementation From Home Parenteral Nutrition Solutions on Whole-Blood Levels and Magnetic Resonance Imaging of the Brain. JPEN J Parenter Enteral Nutr 2017; 42:164-170. [DOI: 10.1177/0148607117690519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/13/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Jennifer Jin
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Olivia Saqui
- University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Johane P. Allard
- University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Yu X, Chen L, Wang C, Yang X, Gao Y, Tian Y. The role of cord blood BDNF in infant cognitive impairment induced by low-level prenatal manganese exposure: LW birth cohort, China. CHEMOSPHERE 2016; 163:446-451. [PMID: 27565312 DOI: 10.1016/j.chemosphere.2016.07.095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 07/28/2016] [Accepted: 07/28/2016] [Indexed: 05/27/2023]
Abstract
This study aimed to examine the potential association between low-level prenatal manganese (Mn) exposure and 1-year-old children's neurodevelopment quotient (DQ) by using the Gesell Developmental Inventory (GDI) (motor, adaptive, language, and social domains) and explored the role of brain-derived neurotrophic factor (BDNF) in Mn-induced cognitive impairments. A total of 377 mothers were recruited from a prospective birth cohort in rural northern China. Cord serum concentrations of Mn and BDNF were measured and children's DQ was evaluated. The median serum Mn concentration was 3.4 μg/L. After adjusting for confounding factors, Mn level was significantly associated with gross motor scores (β = -6.0, 95% CI: -11.8 to -0.2, p < 0.05) and personal-social scores (β = -4.2, 95% CI: -8.4 to 0.1, p < 0.05). BDNF level was positively correlated with personal-social score (β = 0.7, 95% CI: 0-1.4, p < 0.05). A significant correlation was found between Mn and BDNF (r = -0.13, 95% CI: -0.23 to -0.03, p < 0.01). Furthermore, the interaction between cord serum Mn and BDNF was significant (p < 0.001). In conclusion, elevated low-level prenatal Mn exposure impaired infant's neurodevelopment, and BDNF plays an important role in cognitive impairment, especially in the personal-social ability.
Collapse
Affiliation(s)
- Xiaodan Yu
- MOE-Shanghai Key Lab of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Limei Chen
- Department of Environmental Health, School of Public Health, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Caifeng Wang
- Department of Environmental Health, School of Public Health, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Xin Yang
- MOE-Shanghai Key Lab of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Yu Gao
- Department of Environmental Health, School of Public Health, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Ying Tian
- MOE-Shanghai Key Lab of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China; Department of Environmental Health, School of Public Health, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
19
|
Stehle P, Stoffel-Wagner B, Kuhn KS. Parenteral trace element provision: recent clinical research and practical conclusions. Eur J Clin Nutr 2016; 70:886-93. [PMID: 27049031 PMCID: PMC5399133 DOI: 10.1038/ejcn.2016.53] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 02/03/2016] [Accepted: 02/06/2016] [Indexed: 12/19/2022]
Abstract
The aim of this systematic review (PubMed, www.ncbi.nlm.nih.gov/pubmed and Cochrane, www.cochrane.org; last entry 31 December 2014) was to present data from recent clinical studies investigating parenteral trace element provision in adult patients and to draw conclusions for clinical practice. Important physiological functions in human metabolism are known for nine trace elements: selenium, zinc, copper, manganese, chromium, iron, molybdenum, iodine and fluoride. Lack of, or an insufficient supply of, these trace elements in nutrition therapy over a prolonged period is associated with trace element deprivation, which may lead to a deterioration of existing clinical symptoms and/or the development of characteristic malnutrition syndromes. Therefore, all parenteral nutrition prescriptions should include a daily dose of trace elements. To avoid trace element deprivation or imbalances, physiological doses are recommended.
Collapse
Affiliation(s)
- P Stehle
- Department of Nutrition and Food Sciences - Nutritional Physiology, University of Bonn, Bonn, Germany
| | - B Stoffel-Wagner
- Department of Clinical Chemistry and Clinical Pharmacology, University Clinic of Bonn, Bonn, Germany
| | - K S Kuhn
- Department of Nutrition and Food Sciences - Nutritional Physiology, University of Bonn, Bonn, Germany
| |
Collapse
|
20
|
Pironi L, Arends J, Bozzetti F, Cuerda C, Gillanders L, Jeppesen PB, Joly F, Kelly D, Lal S, Staun M, Szczepanek K, Van Gossum A, Wanten G, Schneider SM. ESPEN guidelines on chronic intestinal failure in adults. Clin Nutr 2016; 35:247-307. [PMID: 26944585 DOI: 10.1016/j.clnu.2016.01.020] [Citation(s) in RCA: 490] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 01/27/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Chronic Intestinal Failure (CIF) is the long-lasting reduction of gut function, below the minimum necessary for the absorption of macronutrients and/or water and electrolytes, such that intravenous supplementation is required to maintain health and/or growth. CIF is the rarest organ failure. Home parenteral nutrition (HPN) is the primary treatment for CIF. No guidelines (GLs) have been developed that address the global management of CIF. These GLs have been devised to generate comprehensive recommendations for safe and effective management of adult patients with CIF. METHODS The GLs were developed by the Home Artificial Nutrition & Chronic Intestinal Failure Special Interest Group of ESPEN. The GRADE system was used for assigning strength of evidence. Recommendations were discussed, submitted to Delphi rounds, and accepted in an online survey of ESPEN members. RESULTS The following topics were addressed: management of HPN; parenteral nutrition formulation; intestinal rehabilitation, medical therapies, and non-transplant surgery, for short bowel syndrome, chronic intestinal pseudo-obstruction, and radiation enteritis; intestinal transplantation; prevention/treatment of CVC-related infection, CVC-related occlusion/thrombosis; intestinal failure-associated liver disease, gallbladder sludge and stones, renal failure and metabolic bone disease. Literature search provided 623 full papers. Only 12% were controlled studies or meta-analyses. A total of 112 recommendations are given: grade of evidence, very low for 51%, low for 39%, moderate for 8%, and high for 2%; strength of recommendation: strong for 63%, weak for 37%. CONCLUSIONS CIF management requires complex technologies, multidisciplinary and multiprofessional activity, and expertise to care for both the underlying gastrointestinal disease and to provide HPN support. The rarity of the condition impairs the development of RCTs. As a consequence, most of the recommendations have a low or very low grade of evidence. However, two-thirds of the recommendations are considered strong. Specialized management and organization underpin these recommendations.
Collapse
Affiliation(s)
- Loris Pironi
- Center for Chronic Intestinal Failure, Department of Digestive System, St. Orsola-Malpighi University Hospital, Bologna, Italy.
| | - Jann Arends
- Department of Medicine, Oncology and Hematology, University of Freiburg, Germany
| | | | - Cristina Cuerda
- Nutrition Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Lyn Gillanders
- Nutrition Support Team, Auckland City Hospital, (AuSPEN) Auckland, New Zealand
| | | | - Francisca Joly
- Centre for Intestinal Failure, Department of Gastroenterology and Nutritional Support, Hôpital Beaujon, Clichy, France
| | - Darlene Kelly
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN, USA; Oley Foundation for Home Parenteral and Enteral Nutrition, Albany, NY, USA
| | - Simon Lal
- Intestinal Failure Unit, Salford Royal Foundation Trust, Salford, UK
| | - Michael Staun
- Rigshospitalet, Department of Gastroenterology, Copenhagen, Denmark
| | - Kinga Szczepanek
- General and Oncology Surgery Unit, Stanley Dudrick's Memorial Hospital, Skawina, Poland
| | - André Van Gossum
- Medico-Surgical Department of Gastroenterology, Hôpital Erasme, Free University of Brussels, Belgium
| | - Geert Wanten
- Intestinal Failure Unit, Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Stéphane Michel Schneider
- Gastroenterology and Clinical Nutrition, CHU of Nice, University of Nice Sophia Antipolis, Nice, France
| | | |
Collapse
|
21
|
Kobtan AA, El-Kalla FS, Soliman HH, Zakaria SS, Goda MA. Higher Grades and Repeated Recurrence of Hepatic Encephalopathy May Be Related to High Serum Manganese Levels. Biol Trace Elem Res 2016; 169:153-8. [PMID: 26129828 DOI: 10.1007/s12011-015-0405-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 06/09/2015] [Indexed: 01/27/2023]
Abstract
Hepatic encephalopathy is a serious complication of liver failure. Until now, the precise pathophysiologic mechanisms are not fully determined. It has been demonstrated that manganese plays an important role in the pathogenesis of hepatic encephalopathy. Therefore, we studied manganese levels in serum of cirrhotic patients with hepatic encephalopathy in relation to grading and recurrence of hepatic encephalopathy. One hundred persons were enrolled in the study, 80 cirrhotic patients with or without encephalopathy and 20 healthy controls. Hepatic encephalopathy was diagnosed clinically and by laboratory findings. Serum manganese levels were measured in all participants. The grading of hepatic encephalopathy was significantly correlated to the severity of liver dysfunction. The mean serum manganese level was significantly higher in cirrhotic patients than in controls and in cirrhotic patients with encephalopathy than in those without encephalopathy. It was also significantly higher in patients with advanced grading of hepatic encephalopathy. Serum manganese level was positively correlated to number of recurrences of encephalopathy during a 6-month follow-up period. Serum manganese levels were able to predict recurrence of hepatic encephalopathy within 6 months following the episode. Serum manganese levels are positively correlated to the modified Child-Pugh score of cirrhosis as well as grading and number of recurrences of hepatic encephalopathy. Higher manganese levels seem to be related to worsening of the condition, and its measurement may be used as a predictor of repeated recurrences.
Collapse
Affiliation(s)
- Abdelrahman A Kobtan
- Tropical Medicine and Infectious Diseases Department, Faculty of Medicine, Tanta University , 1Algeish St., Tanta, Gharbiyah Governorate, 31111, Egypt.
| | - Ferial S El-Kalla
- Tropical Medicine and Infectious Diseases Department, Faculty of Medicine, Tanta University , 1Algeish St., Tanta, Gharbiyah Governorate, 31111, Egypt
| | - Hanan H Soliman
- Tropical Medicine and Infectious Diseases Department, Faculty of Medicine, Tanta University , 1Algeish St., Tanta, Gharbiyah Governorate, 31111, Egypt
| | - Soha S Zakaria
- Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mohamed A Goda
- Emergency Department, Senbelawein Central Hospital, Egyptian Ministry of Health, Senbelawein, Egypt
| |
Collapse
|
22
|
Walter E, Alsaffar S, Livingstone C, Ashley SL. Manganese toxicity in critical care: Case report, literature review and recommendations for practice. J Intensive Care Soc 2015; 17:252-257. [PMID: 28979499 DOI: 10.1177/1751143715622216] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We present the case of a 62-year-old man on the intensive care unit with pancreatitis. Since early in his admission, and for the remainder of his prolonged stay in intensive care, he has received parenteral nutrition for intestinal failure. The whole blood manganese concentration was significantly increased after 2½ months of parenteral nutrition (PN). Three months into his stay, he developed a resting tremor and extra-pyramidal dyskinesia. In the absence of other neurological symptoms, and with no history of essential tremor, Parkinsonism or cerebral signs, hypermanganesaemia was presumed to be the cause. We review manganese metabolism and toxicity in patients who are fed with parenteral nutrition and review the current recommendations and guidelines.
Collapse
Affiliation(s)
- Edward Walter
- Department of Intensive Care, Royal Surrey County Hospital, Surrey, UK
| | - Sinan Alsaffar
- Department of Intensive Care, Royal Surrey County Hospital, Surrey, UK
| | - Callum Livingstone
- Clinical Biochemistry Department, Royal Surrey County Hospital, Surrey, UK
| | - Sarah L Ashley
- Department of Nutrition and Dietetics, Royal Surrey County Hospital, Surrey, UK
| |
Collapse
|
23
|
Aschner JL, Anderson A, Slaughter JC, Aschner M, Steele S, Beller A, Mouvery A, Furlong HM, Maitre NL. Neuroimaging identifies increased manganese deposition in infants receiving parenteral nutrition. Am J Clin Nutr 2015; 102:1482-9. [PMID: 26561627 PMCID: PMC4658463 DOI: 10.3945/ajcn.115.116285] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 09/29/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Manganese, an essential metal for normal growth and development, is neurotoxic on excessive exposure. Standard trace element-supplemented neonatal parenteral nutrition (PN) has a high manganese content and bypasses normal gastrointestinal absorptive control mechanisms, which places infants at risk of manganese neurotoxicity. Magnetic resonance (MR) relaxometry demonstrating short T1 relaxation time (T1R) in the basal ganglia reflects excessive brain manganese accumulation. OBJECTIVE This study tested the hypothesis that infants with greater parenteral manganese exposure have higher brain manganese accumulation, as measured by MR imaging, than do infants with lower parenteral manganese exposure. DESIGN Infants exposed to parenteral manganese were enrolled in a prospective cohort study. Infants classified as having high manganese exposure received >75% of their nutrition in the preceding 4 wk as PN. All others were classified as having low exposure. Daily parenteral and enteral manganese intakes were calculated. Whole-blood manganese was measured by high-resolution inductively coupled plasma mass spectrometry. Brain MR relaxometry was interpreted by a masked reviewer. Linear regression models, adjusted for gestational age (GA) at birth, estimated the association of relaxometry indexes with total and parenteral manganese exposures. RESULTS Seventy-three infants were enrolled. High-quality MR images were available for 58 infants, 39 with high and 19 with low manganese exposure. Four infants with a high exposure had blood manganese concentrations >30 μg/L. After controlling for GA, higher parenteral and total manganese intakes were associated with a lower T1R (P = 0.01) in the globus pallidus and putamen but were not associated with whole-blood manganese (range: 3.6-56.6 μg/L). Elevated conjugated bilirubin magnified the association between parenteral manganese and decreasing T1R. CONCLUSION A short T1R for GA identifies infants at risk of increased brain manganese deposition associated with PN solutions commonly used to nourish critically ill infants. These trials were registered at clinicaltrials.gov as NCT00392977 and NCT00392730.
Collapse
Affiliation(s)
- Judy L Aschner
- Departments of Pediatrics, Center for Molecular Toxicology, and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, TN; Departments of Pediatrics and Obstetrics and Gynecology and Woman's Health, Albert Einstein College of Medicine of Montefiore Health and The Children's Hospital at Montefiore, Bronx, NY;
| | | | | | - Michael Aschner
- Center for Molecular Toxicology, and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, TN
| | | | | | | | - Heather M Furlong
- Department of Pediatrics, Wake Forest Baptist Health, Winston-Salem, NC; and
| | - Nathalie L Maitre
- Departments of Pediatrics, Physical Medicine and Rehabilitation, Center for Molecular Toxicology, and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, TN; Department of Pediatrics and the Research Institute at Nationwide Children's Hospital, Columbus, OH
| |
Collapse
|
24
|
Baker B, Ali A, Isenring L. Recommendations for Manganese Supplementation to Adult Patients Receiving Long-Term Home Parenteral Nutrition: An Analysis of the Supporting Evidence. Nutr Clin Pract 2015. [PMID: 26203074 DOI: 10.1177/0884533615591600] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
INTRODUCTION Manganese (Mn) toxicity is often observed in adult patients receiving long-term home parenteral nutrition (HPN), and differing recommendations on the safe level of Mn administration to these patients have been made in the literature over the past 10 years. METHODS This systematic review used the National Health and Medical Research Council (NHMRC) evidence hierarchy to assess the design and strength of individual studies (high I to low IV) and the overall grade of evidence (grade A high to grade D low). RESULTS Eight studies met the inclusion criteria. Levels of evidence ranged from high (NHMRC II) to mid-level (III-3). A widespread recommendation in the literature for patients receiving long-term HPN is 55 µg (1 µmol) Mn/d. CONCLUSION The recommendation of 55 µg (1 µmol) Mn/d is of moderate-strength evidence (NHMRC B grade). There is limited evidence to support not supplementing Mn to patients receiving long-term HPN. Further intervention studies providing high-level evidence (II and above) are required to determine the safety of not supplementing Mn to all patients receiving long-term HPN.
Collapse
Affiliation(s)
- Bradley Baker
- Centre for Dietetics Research, School of Human Movement Studies, University of Queensland, Brisbane, Queensland, Australia
| | - Azmat Ali
- Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Liz Isenring
- Princess Alexandra Hospital, Brisbane, Queensland, Australia School of Human Movement Studies, University of Queensland, Brisbane, Queensland, Australia Faculty of Health Sciences & Medicine, Bond University, Gold Coast, Queensland, Australia
| |
Collapse
|
25
|
Vanek VW, Borum P, Buchman A, Fessler TA, Howard L, Shenkin A, Valentine CJ, Vanek VW, Borum P, Buchman A, Fessler TA, Howard L, Shenkin A, Valentine CJ. A Call to Action to Bring Safer Parenteral Micronutrient Products to the U.S. Market. Nutr Clin Pract 2015; 30:559-69. [DOI: 10.1177/0884533615589992] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
| | | | - Alan Buchman
- Northwestern University School of Medicine, Chicago, Illinois
| | | | - Lyn Howard
- Albany Medical College, Albany, New York (Retired)
| | - Alan Shenkin
- Royal Liverpool University Hospital, Liverpool, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Karlsson JOG, Ignarro LJ, Lundström I, Jynge P, Almén T. Calmangafodipir [Ca4Mn(DPDP)5], mangafodipir (MnDPDP) and MnPLED with special reference to their SOD mimetic and therapeutic properties. Drug Discov Today 2014; 20:411-21. [PMID: 25463039 DOI: 10.1016/j.drudis.2014.11.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/27/2014] [Accepted: 11/13/2014] [Indexed: 11/28/2022]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) participate in pathological tissue damage. Mitochondrial manganese superoxide dismutase (MnSOD) normally keeps ROS and RNS in check. During development of mangafodipir (MnDPDP) as a magnetic resonance imaging (MRI) contrast agent, it was discovered that MnDPDP and its metabolite manganese pyridoxyl ethyldiamine (MnPLED) possessed SOD mimetic activity. MnDPDP has been tested as a chemotherapy adjunct in cancer patients and as an adjunct to percutaneous coronary intervention in patients with myocardial infarctions, with promising results. Whereas MRI contrast depends on release of Mn(2+), the SOD mimetic activity depends on Mn(2+) that remains bound to DPDP or PLED. Calmangafodipir [Ca4Mn(DPDP)5] is stabilized with respect to Mn(2+) and has superior therapeutic activity. Ca4Mn(DPDP)5 is presently being explored as a chemotherapy adjunct in a clinical multicenter Phase II study in patients with metastatic colorectal cancer.
Collapse
Affiliation(s)
- Jan Olof G Karlsson
- Division of Drug Research/Pharmacology, Linköping University, Linköping, Sweden.
| | - Louis J Ignarro
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, USA
| | - Ingemar Lundström
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Per Jynge
- Division of Drug Research/Pharmacology, Linköping University, Linköping, Sweden
| | - Torsten Almén
- Department of Diagnostic Radiology, Lund University, Malmö, Sweden
| |
Collapse
|
27
|
Yu XD, Zhang J, Yan CH, Shen XM. Prenatal exposure to manganese at environment relevant level and neonatal neurobehavioral development. ENVIRONMENTAL RESEARCH 2014; 133:232-8. [PMID: 24971720 DOI: 10.1016/j.envres.2014.04.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 04/11/2014] [Accepted: 04/16/2014] [Indexed: 05/06/2023]
Abstract
BACKGROUND Effects of prenatal Manganese (Mn) exposure at an environmental relevant level on neonatal neurodevelopment remains unclear. OBJECTIVES In the multi-center study, we assessed the impact of low level prenatal Mn exposure on neonatal behavioral neurological assessments (NBNA), and explore a threshold umbilical cord blood Mn on neonatal neurological development. METHODS We investigated 933 mother-newborn pairs in Shanghai, China, from 2008 through 2009. Umbilical cord serum concentrations of Mn were measured and NBNA tests were conducted. The NBNA contains five clusters: behavior, active tone, passive tone, primary reflexes and general assessment with a maximal total score of 40. The score<37 is defined as low. RESULTS The median serum Mn concentration was 4.0 μg/L. Of the 933 infants, 44 (4.7%) had low NBNA. After adjusting for potential confounders, a high level of Mn (≥ 75th percentile ) was associated with a lower NBNA score (adjusted ß=-1.1, 95% CI: -1.4-0.7, p<0.01) and a higher risk of low NBNA (adjusted OR=9.4, 95% CI: 3.4-25.7, p<0.01). A nonlinear relationship was observed between cord serum Mn and NBNA after adjusting for potential confounders. NBNA score decreased with increasing Mn levels after 5.0 μg/L(LgMn ≥ 0.7). The cord serum Mn ≥ 5.0 μg/L had adverse effects on behavior, active tone and general reactions of clusters (p<0.001). CONCLUSIONS High prenatal Mn exposure even at an environmental relevant level, is associated with poor fetal neurobehavioral development in a nonlinear pattern. A threshold cord serum Mn of 5.0 μg/L existed for lower neonatal behavioral neurological assessments.
Collapse
Affiliation(s)
- Xiao-Dan Yu
- MOE-Shanghai Key Laboratory of Children׳s Environmental Health, XinHua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, Shanghai 200092, China
| | - Jun Zhang
- MOE-Shanghai Key Laboratory of Children׳s Environmental Health, XinHua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, Shanghai 200092, China
| | - Chong-Huai Yan
- MOE-Shanghai Key Laboratory of Children׳s Environmental Health, XinHua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, Shanghai 200092, China.
| | - Xiao-Ming Shen
- MOE-Shanghai Key Laboratory of Children׳s Environmental Health, XinHua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, Shanghai 200092, China
| |
Collapse
|
28
|
Santos D, Batoreu C, Mateus L, Marreilha Dos Santos AP, Aschner M. Manganese in human parenteral nutrition: considerations for toxicity and biomonitoring. Neurotoxicology 2013; 43:36-45. [PMID: 24184781 DOI: 10.1016/j.neuro.2013.10.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/11/2013] [Accepted: 10/13/2013] [Indexed: 12/17/2022]
Abstract
The iatrogenic risks associated with excessive Mn administration in parenteral nutrition (PN) patients are well documented. Hypermanganesemia and neurotoxicity are associated with the duration of Mn supplementation, Mn dosage, as well as pathological conditions, such as anemia or cholestasis. Recent PN guidelines recommend the biomonitoring of patients if they receive Mn in their PN longer than 30 days. The data in the literature are conflicting about the method for assessing Mn stores in humans as a definitive biomarker of Mn exposure or induced-neurotoxicity has yet to be identified. The biomonitoring of Mn relies on the analysis of whole blood Mn (WB Mn) levels, which are highly variable among human population and are not strictly correlated with Mn-induced neurotoxicity. Alterations in dopaminergic (DAergic) and catecholaminergic metabolism have been studied as predictive biomarkers of Mn-induced neurotoxicity. Given these limitations, this review addresses various approaches for biomonitoring Mn exposure and neurotoxic risk.
Collapse
Affiliation(s)
- Dinamene Santos
- I-Med.UL, Department of Toxicology and Food Sciences, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Camila Batoreu
- I-Med.UL, Department of Toxicology and Food Sciences, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Luisa Mateus
- I-Med.UL, Department of Toxicology and Food Sciences, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - A P Marreilha Dos Santos
- I-Med.UL, Department of Toxicology and Food Sciences, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Michael Aschner
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
29
|
Evaluation of neurobehavioral and neuroinflammatory end-points in the post-exposure period in rats sub-acutely exposed to manganese. Toxicology 2013; 314:95-9. [PMID: 24060432 DOI: 10.1016/j.tox.2013.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 09/12/2013] [Accepted: 09/13/2013] [Indexed: 01/09/2023]
Abstract
Manganese (Mn) can cause manganism, a neurological disorder similar to Parkinson' Disease (PD). The neurobehavioral and neuroinflammatory end-points in the Mn post exposure period have not been studied yet. Rats were injected on alternate days with 8 doses of MnCl2 (25mg/kg) or saline, then euthanized 1, 10, 30 or 70 days following the last dose. Whole-blood (WB) (p<0.05), urine (p<0.05) and brain cortical (p<0.0001) Mn levels were significantly increased 24h after the last dose. Decreases in the rats' ambulation were noted 1, 10 and 30 days after the last Mn dose (p<0.001; p<0.05; p<0.001, respectively) and also in the rearing activity at the four time-points (p<0.05). Cortical glial fibrillary acid protein immunoreactivity (GFAP-ir) was significantly increased at 1, 10, 30 (p<0.0001) and 70 (p<0.001) days after the last Mn dose, as well as tumor necrosis α (TNF-α) levels (p<0.05) but just on day 1. Taken together, the results show that, during the 70-day clearance phase of Mn, the recovery is not immediate as behavioral alterations and neuroinflammation persist long after Mn is cleared from the cortical brain compartment.
Collapse
|
30
|
Sidoryk-Wegrzynowicz M, Aschner M. Manganese toxicity in the central nervous system: the glutamine/glutamate-γ-aminobutyric acid cycle. J Intern Med 2013; 273:466-77. [PMID: 23360507 PMCID: PMC3633698 DOI: 10.1111/joim.12040] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Manganese (Mn) is an essential trace element that is required for maintaining proper function and regulation of numerous biochemical and cellular reactions. Despite its essentiality, at excessive levels Mn is toxic to the central nervous system (CNS). Increased accumulation of Mn in specific brain regions, such as the substantia nigra, globus pallidus and striatum, triggers neurotoxicity resulting in a neurological brain disorder, termed manganism. Mn has been also implicated in the pathophysiology of several other neurodegenerative diseases. Its toxicity is associated with disruption of the glutamine (Gln)/glutamate (Glu)-γ-aminobutyric acid (GABA) cycle (GGC) between astrocytes and neurons, thus leading to changes in Glu-ergic and/or GABAergic transmission and Gln metabolism. Here we discuss the common mechanisms underlying Mn-induced neurotoxicity and their relationship to CNS pathology and GGC impairment.
Collapse
|
31
|
Yu X, Cao L, Yu X. Elevated cord serum manganese level is associated with a neonatal high ponderal index. ENVIRONMENTAL RESEARCH 2013; 121:79-83. [PMID: 23164521 DOI: 10.1016/j.envres.2012.11.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 10/18/2012] [Accepted: 11/01/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND The effects of low-level prenatal manganese (Mn) exposure on neonatal growth remain unclear. The level of fetal Mn that may be considered "safe" has never been examined. METHODS A multicenter study including 1377 mother-infant pairs was conducted from 2008 through 2009 in Shanghai. Mn concentrations were determined for both the cord and maternal serum, as well as neonatal birth weight and birth length. The ponderal index (PI) was calculated as (birth weight g/birth length cm(3))×100, and a ponderal index ≥3.17 was defined as a high ponderal index (HPI). RESULTS The median serum Mn concentration was 4.0μg/L in the cord blood, and was 2.8μg/L in maternal blood. Of 1377 infants, 135 (9.8%) had a HPI. After adjusting for potential confounders, cord serum Mn was not associated with birth weight. However, there was a linear relationship between the cord serum Mn and the birth length (adjusted ß=-0.5, 95% CI=-0.7 to -0.2, p<0.0001). Additionally, a nonlinear relationship was observed between the cord serum Mn and the ponderal index, and between the cord serum Mn and HPI. The ponderal index and the prevalence of HPI increased with Mn levels above 5.0μg/L (Log Mn ≥0.7). A high level of Mn in the cord (≥5.0μg/L) was associated with a higher ponderal index (adjusted ß=0.2, 95% CI=0.1 to 0.2, p<0.001) and a high risk of HPI (adjusted OR=3.3, 95% CI=1.8-6.0, p<0.001). CONCLUSIONS Higher prenatal Mn exposure, even at a low level, is associated with a higher prevalence of HPI in a nonlinear pattern. Cord serum Mn levels less than 5.0μg/L may be considered safe with respect to neonatal ponderal index assessment.
Collapse
Affiliation(s)
- XiaoDan Yu
- MOE-Shanghai Key Lab of Children's Environmental Health, XinHua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, Shanghai 200092, China.
| | | | | |
Collapse
|
32
|
Abdalian R, Saqui O, Fernandes G, Allard JP. Effects of Manganese From a Commercial Multi–Trace Element Supplement in a Population Sample of Canadian Patients on Long-Term Parenteral Nutrition. JPEN J Parenter Enteral Nutr 2012; 37:538-43. [DOI: 10.1177/0148607112454543] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- R. Abdalian
- Internal Medicine, Gastroenterology & Clinical Nutrition, North York General Hospital, Toronto, Ontario, Canada
| | - O. Saqui
- University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - G. Fernandes
- University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - J. P. Allard
- University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
33
|
Vanek VW, Borum P, Buchman A, Fessler TA, Howard L, Jeejeebhoy K, Kochevar M, Shenkin A, Valentine CJ. A.S.P.E.N. position paper: recommendations for changes in commercially available parenteral multivitamin and multi-trace element products. Nutr Clin Pract 2012; 27:440-91. [PMID: 22730042 DOI: 10.1177/0884533612446706] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The parenteral multivitamin preparations that are commercially available in the United States (U.S.) meet the requirements for most patients who receive parenteral nutrition (PN). However, a separate parenteral vitamin D preparation (cholecalciferol or ergocalciferol) should be made available for treatment of patients with vitamin D deficiency unresponsive to oral vitamin D supplementation. Carnitine is commercially available and should be routinely added to neonatal PN formulations. Choline should also be routinely added to adult and pediatric PN formulations; however, a commercially available parenteral product needs to be developed. The parenteral multi-trace element (TE) preparations that are commercially available in the U.S. require significant modifications. Single-entity trace element products can be used to meet individual patient needs when the multiple-element products are inappropriate (see Summary/A.S.P.E.N. Recommendations section for details of these proposed modifications).
Collapse
Affiliation(s)
- Vincent W Vanek
- St. Elizabeth Health Center, Youngstown, OH 44501-1790, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Richardson C, Roberts E, Nelms S, Roberts NB. Optimisation of whole blood and plasma manganese assay by ICP-MS without use of a collision cell. Clin Chem Lab Med 2011; 50:317-23. [PMID: 22081999 DOI: 10.1515/cclm.2011.775] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 10/11/2011] [Indexed: 11/15/2022]
Abstract
BACKGROUND Manganese (Mn) toxicity has been reported in patients receiving total parenteral nutrition. To avoid unnecessary exposure it is recommended by NICE (National Institute for Clinical Excellence) that blood Mn concentrations are monitored. The aim of the study was to develop a method using inductively coupled plasma mass spectrometry (ICP-MS) for the reliable determination of Mn in plasma and whole blood, as indices of acute and chronic exposure. METHODS Whole blood and plasma samples were prepared by appropriate dilution (diluent containing 0.005% Triton X-100, 0.2% propan-2-ol, 0.2% butan-1-ol and 1% nitric acid) addition of an internal standard gallium, followed by centrifugation to remove cell debris. Thermo Fisher Scientific ExCell and X Series ICP-MS instruments were used to define and correct for polyatomic interference on Mn assay. RESULTS Mn was quantified at mass 55 using aqueous calibration and the polyatomic interference from FeH was successfully eliminated by modified (Xt) skimmer cones but not with the collision cell (collision gas 7% H2 in He, flow rate 4-7 mL/min). The assay was validated showing good precision, limit of detection and percentage recovery. Good agreement was observed with the All Laboratory Trimmed Mean of External Quality Assurance samples y (in house)=1.1 (ALTM)-45.0 between values of 250 and 750 nmol/L. CONCLUSIONS A method has been developed using ICP-MS for the analysis of whole blood and plasma Mn incorporating a novel method of eliminating interference by utilizing the different geometries of the Xt interface cones. The procedure is simple and robust with good precision and recovery over a wide dynamic range.
Collapse
Affiliation(s)
- Claire Richardson
- Department of Clinical Biochemistry, MacEwen Building, Glasgow Royal Infirmary, Glasgow, Scotland, UK.
| | | | | | | |
Collapse
|
35
|
Btaiche IF, Carver PL, Welch KB. Dosing and monitoring of trace elements in long-term home parenteral nutrition patients. JPEN J Parenter Enteral Nutr 2011; 35:736-47. [PMID: 21825087 DOI: 10.1177/0148607111413902] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Trace elements (TEs) dosing and monitoring in home parenteral nutrition (PN) patients vary with their underlying conditions. METHODS This retrospective observational study evaluated parenteral TE dosing, serum TE concentrations and monitoring, and dose-concentration relationships between TE doses and serum TE concentrations in 26 adult and adolescent home PN patients. RESULTS There was a total of 40,493 PN days. Average parenteral zinc doses of 9.1 mg/d and 7.6 mg/d resulted in the majority of serum zinc concentrations (90%) within normal range in patients with and without short bowel syndrome (SBS), respectively. Selenium at about 70 mcg/d resulted in about 60% of serum selenium concentrations within normal range, with 38% of values below normal in patients with and without SBS alike. Copper at 1 mg/d resulted in 22.5% of serum copper concentrations above the normal range. The majority of serum manganese (94.6%) and chromium (96%) concentrations were elevated. Serum TE concentrations were infrequently monitored. Significant relationships existed between doses and serum concentrations for zinc (P < .0001), manganese (P = .012), and chromium (P < .0001) but not for selenium or copper. CONCLUSIONS TE doses in home PN should be individualized and adjusted based on regular monitoring of TE status. In long-term home PN patients, higher zinc and selenium doses may be necessary to maintain their normal serum concentrations. Lower copper doses and restrictions of manganese and chromium supplementation may be needed to avoid their accumulation. Relationships between TE doses and serum TE concentrations vary for each TE and underlying clinical conditions.
Collapse
Affiliation(s)
- Imad F Btaiche
- Department of Clinical, Social, and Administrative Sciences, University of Michigan College of Pharmacy, Ann Arbor, USA.
| | | | | |
Collapse
|
36
|
Wichlas F, Bail HJ, Bail JH, Seebauer CJ, Schilling R, Pflugmacher R, Pinkernelle J, Rump J, Streitparth F, Teichgräber UK, Teichgräber KMU. Development of a signal-inducing bone cement for magnetic resonance imaging. J Magn Reson Imaging 2010; 31:636-44. [PMID: 20187207 DOI: 10.1002/jmri.22074] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PURPOSE To develop a signal-inducing bone cement for musculoskeletal procedures in magnetic resonance imaging (MRI). MATERIALS AND METHODS Acrylic resins were mixed with contrast agents (CAs) and water. We determined the ideal concentration of the components and assessed feasibility in cadaveric bones in an open high-field MR scanner. The contrast-to-noise ratio (CNR) in air and bone was evaluated and mechanical tests were achieved. We determined the amount of water that was not incorporated and measured the amount of CA released with photometric analysis. The cement was analyzed microscopically. RESULTS Preparation and application of the CA-water-cement compound was feasible and its differentiation in MRI was clear. The maximal CNR(air) had a value of 157.5 (SD 18.3) in an interventional fast T1W turbo-spin echo (TSE) sequence. The compressive strength decreased with the amount of water added. Although nearly 50% of the water added was not incorporated in the cement, the CNR was sufficient for cement detection. The threshold for systemic toxicity of delivered CA was not reached and the microscopic analysis showed water bubbles in the cement. CONCLUSION A signal-inducing bone cement is feasible for the use in MRI.
Collapse
Affiliation(s)
- Florian Wichlas
- Center for Musculoskeletal Surgery, University Charité, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hardy G, Menendez AM, Manzanares W. Trace element supplementation in parenteral nutrition: Pharmacy, posology, and monitoring guidance. Nutrition 2009; 25:1073-84. [DOI: 10.1016/j.nut.2009.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 03/18/2009] [Accepted: 03/19/2009] [Indexed: 10/20/2022]
|
38
|
Abstract
PURPOSE OF REVIEW To summarize the role of the essential trace element, manganese, its potential toxicity, monitoring methods and dosage recommendations for nutrition support. RECENT FINDINGS Parenteral nutrition usually contains manganese as part of a fixed concentration multiple trace element supplement. Recent literature identifies potential problems in this approach and reports toxic symptoms resulting from hypermanganesaemia in paediatric and long-term home patients. Elimination by the hepatobiliary system is frequently impaired, and parenteral administration bypasses the regulatory mechanisms of homeostasis. Together with occasional oral intake and product contamination, this can lead to brain accumulation and neurotoxicity, with individual responses to supplementation difficult to predict. Regular monitoring is recommended, but plasma and serum analyses are poor indicators of body stores. Whole blood concentrations are more accurate and correlate with signal intensity of MRI. We have identified a need for individual trace element additives to be more widely available and for multitrace element products to be reformulated. There is now a persuasive argument for not routinely adding manganese to parenteral nutrition admixtures. SUMMARY High intravenous doses of manganese can lead to neurotoxicity. Current dosage guidelines and trace element formulations need revision. Frequent monitoring to identify tissue accumulation is recommended for paediatric and long-term home parenteral nutrition patients.
Collapse
Affiliation(s)
- Ines J Hardy
- Faculty of Medical and Heath Sciences, University of Auckland, Auckland, New Zealand
| | | | | |
Collapse
|
39
|
Tuschl K, Mills PB, Parsons H, Malone M, Fowler D, Bitner-Glindzicz M, Clayton PT. Hepatic cirrhosis, dystonia, polycythaemia and hypermanganesaemia--a new metabolic disorder. J Inherit Metab Dis 2008; 31:151-63. [PMID: 18392750 DOI: 10.1007/s10545-008-0813-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 02/03/2008] [Accepted: 02/05/2008] [Indexed: 10/22/2022]
Abstract
We report a new constellation of clinical features consisting of hypermanganesaemia, liver cirrhosis, an extrapyramidal motor disorder and polycythaemia in a 12 year-old girl born to consanguineous parents. Blood manganese levels were >3000 nmol/L (normal range <320 nmol/L) and MRI revealed signal abnormalities of the basal ganglia consistent with manganese deposition. An older brother with the same phenotype died at 18 years, suggesting a potentially lethal, autosomal recessive disease. This disorder is probably caused by a defect of manganese metabolism with the accumulation of manganese in the liver and the basal ganglia similar to the copper accumulation in Wilson disease. In order to assess the genetic basis of this syndrome we investigated two candidate genes: ATP2C2 and ATP2A3 encoding the manganese-transporting calcium-ATPases, SPCA2 and SERCA3, respectively. Genotyping of the patient and the family for microsatellite markers surrounding ATP2C2 and ATP2A3 excluded these genes. The patient was found to be heterozygous for both gene loci. Despite the unknown pathophysiology, we were able to develop a successful treatment regime. Chelation therapy with disodium calcium edetate combined with iron supplementation is the treatment of choice, lowering blood manganese levels significantly and improving clinical symptoms.
Collapse
Affiliation(s)
- Karin Tuschl
- University College London Institute of Child Health with Great Ormond Street Hospital for Children NHS Trust, London, UK
| | | | | | | | | | | | | |
Collapse
|
40
|
Howard L, Ashley C, Lyon D, Shenkin A. Autopsy tissue trace elements in 8 long-term parenteral nutrition patients who received the current U.S. Food and Drug Administration formulation. JPEN J Parenter Enteral Nutr 2007; 31:388-96. [PMID: 17712147 DOI: 10.1177/0148607107031005388] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Iron, zinc, copper, manganese, chromium, and selenium levels were measured in autopsy tissues of 8 people with short bowel syndrome who received home parenteral nutrition (HPN) and the U.S. Food and Drug Administration (FDA)-approved trace element formulation for an average duration of 14 years (range, 2-21). Iron, zinc, copper, manganese and selenium were measured by inductively coupled plasma methods; chromium, by graphite furnace atomic absorption spectrometry. The levels in the 4 tissues studied, heart, skeletal muscle, liver, and kidney, were compared with levels in 45 controls who died without chronic gastrointestinal disorders. Results showed normal HPN patient values for iron and selenium, mild elevation of zinc, and major elevations of copper, manganese, and chromium. The implications of these results for trace-element supplements in long-term PN adult patients are discussed, and the need for reformulation of commercially available multi-trace element products in the United States is stressed.
Collapse
Affiliation(s)
- Lyn Howard
- Department of Medicine, Division of Gastroenterology and Nutrition, Albany Medical College, Albany, New York 12208, USA.
| | | | | | | |
Collapse
|
41
|
Sahni V, Léger Y, Panaro L, Allen M, Giffin S, Fury D, Hamm N. Case report: a metabolic disorder presenting as pediatric manganism. ENVIRONMENTAL HEALTH PERSPECTIVES 2007; 115:1776-9. [PMID: 18087599 PMCID: PMC2137101 DOI: 10.1289/ehp.10421] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 08/23/2007] [Indexed: 05/20/2023]
Abstract
CONTEXT Manganese is a trace element, essential for physiologic functioning but neurotoxic at high doses. Common exposure sources include dietary intake as well as drinking water in some regions; toxicity is most often associated with inhalation exposures in occupational settings. In this article we describe the investigation of a pediatric case of manganism using both clinical and environmental assessment methods. CASE PRESENTATION A previously healthy 6-year-old child presented with severe Mn neurotoxicity, iron deficiency, and elevated cobalt levels. Immediate and selected extended family members had elevated plasma Mn but remained asymptomatic. An exposure assessment identified seasonal ingestion exposures to Mn at the family's summer cottage; these were common to the four immediate family members. Well water used for drinking and cooking exceeded recommended guidelines, and foods high in Mn predominated in their diet. No inhalation exposures were identified. Only pica was unique to the patient. DISCUSSION The combined evidence of the environmental assessment and biomonitoring of blood Mn levels supported a seasonal ingestion exposure source; this alone was insufficient to explain the toxicity because the patient's 7-year-old sibling was asymptomatic with almost identical exposures (except pica). A metabolic disorder involving divalent metals (Mn, Fe, and Co) interacting with environmental exposures is the most likely explanation. RELEVANCE TO CLINICAL OR PROFESSIONAL PRACTICE This case report adds to the emerging body of evidence linking neurologic effects to ingestion Mn exposure.
Collapse
Affiliation(s)
- Vanita Sahni
- Canadian Field Epidemiology Program, Ottawa, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
42
|
Uchino A, Noguchi T, Nomiyama K, Takase Y, Nakazono T, Nojiri J, Kudo S. Manganese accumulation in the brain: MR imaging. Neuroradiology 2007; 49:715-20. [PMID: 17624522 DOI: 10.1007/s00234-007-0243-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2007] [Accepted: 04/14/2007] [Indexed: 12/23/2022]
Abstract
Manganese (Mn) accumulation in the brain is detected as symmetrical high signal intensity in the globus pallidi on T1-weighted MR images without an abnormal signal on T2-weighted images. In this review, we present several cases of Mn accumulation in the brain due to acquired or congenital diseases of the abdomen including hepatic cirrhosis with a portosystemic shunt, congenital biliary atresia, primary biliary cirrhosis, congenital intrahepatic portosystemic shunt without liver dysfunction, Rendu-Osler-Weber syndrome with a diffuse intrahepatic portosystemic shunt, and patent ductus venosus. Other causes of Mn accumulation in the brain are Mn overload from total parenteral nutrition and welding-related Mn intoxication.
Collapse
Affiliation(s)
- A Uchino
- Department of Radiology, Saga Medical School, 5-1-1 Nabeshima, Saga, 849-8501, Japan.
| | | | | | | | | | | | | |
Collapse
|
43
|
Erikson KM, Thompson K, Aschner J, Aschner M. Manganese neurotoxicity: a focus on the neonate. Pharmacol Ther 2007; 113:369-77. [PMID: 17084903 PMCID: PMC1852452 DOI: 10.1016/j.pharmthera.2006.09.002] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Accepted: 09/06/2006] [Indexed: 12/24/2022]
Abstract
Manganese (Mn) is an essential trace metal found in all tissues, and it is required for normal amino acid, lipid, protein, and carbohydrate metabolism. While Mn deficiency is extremely rare in humans, toxicity due to overexposure of Mn is more prevalent. The brain appears to be especially vulnerable. Mn neurotoxicity is most commonly associated with occupational exposure to aerosols or dusts that contain extremely high levels (>1-5 mg Mn/m(3)) of Mn, consumption of contaminated well water, or parenteral nutrition therapy in patients with liver disease or immature hepatic functioning such as the neonate. This review will focus primarily on the neurotoxicity of Mn in the neonate. We will discuss putative transporters of the metal in the neonatal brain and then focus on the implications of high Mn exposure to the neonate focusing on typical exposure modes (e.g., dietary and parenteral). Although Mn exposure via parenteral nutrition is uncommon in adults, in premature infants, it is more prevalent, so this mode of exposure becomes salient in this population. We will briefly review some of the mechanisms of Mn neurotoxicity and conclude with a discussion of ripe areas for research in this underreported area of neurotoxicity.
Collapse
Affiliation(s)
- Keith M Erikson
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC, USA.
| | | | | | | |
Collapse
|
44
|
Fitsanakis VA, Zhang N, Avison MJ, Gore JC, Aschner JL, Aschner M. The use of magnetic resonance imaging (MRI) in the study of manganese neurotoxicity. Neurotoxicology 2006; 27:798-806. [PMID: 16620989 DOI: 10.1016/j.neuro.2006.03.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 03/01/2006] [Accepted: 03/02/2006] [Indexed: 12/30/2022]
Abstract
Manganese (Mn), an element found in many foods, is an important and essential nutrient for proper health and maintenance. It is toxic in high doses, however, and exposure to excessive levels can result in the onset of a neurological disorder similar to, but distinct from, Parkinson's disease. Historically, Mn neurotoxicity was most commonly associated with various occupations, such as Mn mining, welding and steel production. More recently, increases in both blood and brain Mn levels have been observed in persons with liver disease or those receiving prolonged parenteral nutrition. Additionally, rodent data suggest that iron deficiency and anemia may be risk factors for Mn neurotoxicity. Clinically, brain Mn accumulation can be monitored in vivo using non-invasive magnetic resonance imaging (MRI) due to the paramagnetic nature of this element. Indeed, MRI has been used in a variety of settings to evaluate the brain Mn deposition in various populations. This review focuses on the use of MRI technology in studies related specifically to Mn neurotoxicity. Thus, we will examine reports using MRI to confirm brain Mn accumulation in human populations, and conclude with data from non-human primate and rodent models of Mn neurotoxicity.
Collapse
Affiliation(s)
- Vanessa A Fitsanakis
- Department of Pediatrics, Vanderbilt University Medical Center, 465 21st Avenue South, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
45
|
Yokel RA, Lasley SM, Dorman DC. The speciation of metals in mammals influences their toxicokinetics and toxicodynamics and therefore human health risk assessment. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2006; 9:63-85. [PMID: 16393870 DOI: 10.1080/15287390500196230] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Chemical form (i.e., species) can influence metal toxicokinetics and toxicodynamics and should be considered to improve human health risk assessment. Factors that influence metal speciation (and examples) include: (1) carrier-mediated processes for specific metal species (arsenic, chromium, lead and manganese), (2) valence state (arsenic, chromium, manganese and mercury), (3) particle size (lead and manganese), (4) the nature of metal binding ligands (aluminum, arsenic, chromium, lead, and manganese), (5) whether the metal is an organic versus inorganic species (arsenic, lead, and mercury), and (6) biotransformation of metal species (aluminum, arsenic, chromium, lead, manganese and mercury). The influence of speciation on metal toxicokinetics and toxicodynamics in mammals, and therefore the adverse effects of metals, is reviewed to illustrate how the physicochemical characteristics of metals and their handling in the body (toxicokinetics) can influence toxicity (toxicodynamics). Generalizing from mercury, arsenic, lead, aluminum, chromium, and manganese, it is clear that metal speciation influences mammalian toxicity. Methods used in aquatic toxicology to predict the interaction among metal speciation, uptake, and toxicity are evaluated. A classification system is presented to show that the chemical nature of the metal can predict metal ion toxicokinetics and toxicodynamics. Essential metals, such as iron, are considered. These metals produce low oral toxicity under most exposure conditions but become toxic when biological processes that utilize or transport them are overwhelmed, or bypassed. Risk assessments for essential and nonessential metals should consider toxicokinetic and toxicodynamic factors in setting exposure standards. Because speciation can influence a metal's fate and toxicity, different exposure standards should be established for different metal species. Many examples are provided which consider metal essentiality and toxicity and that illustrate how consideration of metal speciation can improve the risk assessment process. More examples are available at a website established as a repository for summaries of the literature on how the speciation of metals affects their toxicokinetics.
Collapse
Affiliation(s)
- Robert A Yokel
- Pharmaceutical Sciences, College of Pharmacy, and Graduate Center for Toxicology, University of Kentucky Medical Center, Lexington, KY 40536-0082, USA.
| | | | | |
Collapse
|
46
|
Abstract
Manganese (Mn) is an essential mineral. It is present in virtually all diets at low concentrations. The principal route of intake for Mn is via food consumption, but in occupational cohorts, inhalation exposure may also occur (this subject will not be dealt with in this review). Humans maintain stable tissue levels of Mn. This is achieved via tight homeostatic control of both absorption and excretion. Nevertheless, it is well established that exposure to high oral, parenteral or ambient air concentrations of Mn can result in elevations in tissue Mn levels. Excessive Mn accumulation in the central nervous system (CNS) is an established clinical entity, referred to as manganism. It resembles idiopathic Parkinson's disease (IPD) in its clinical features, resulting in adverse neurological effects both in laboratory animals and humans. This review focuses on an area that to date has received little consideration, namely the potential exposure of parenterally fed neonates to exceedingly high Mn concentrations in parenteral nutrition solutions, potentially increasing their risk for Mn-induced adverse health sequelae. The review will consider (1) the essentiality of Mn; (2) the concentration ranges, means and variation of Mn in various foods and infant formulas; (3) the absorption, distribution, and elimination of Mn after oral exposure and (4) the factors that raise a theoretical concern that neonates receiving total parenteral nutrition (TPN) are exposed to excessive dietary Mn.
Collapse
Affiliation(s)
- Judy L. Aschner
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- The Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael Aschner
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- The Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
47
|
Aschner M, Erikson KM, Dorman DC. Manganese dosimetry: species differences and implications for neurotoxicity. Crit Rev Toxicol 2005; 35:1-32. [PMID: 15742901 DOI: 10.1080/10408440590905920] [Citation(s) in RCA: 230] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Manganese (Mn) is an essential mineral that is found at low levels in food, water, and the air. Under certain high-dose exposure conditions, elevations in tissue manganese levels can occur. Excessive manganese accumulation can result in adverse neurological, reproductive, and respiratory effects in both laboratory animals and humans. In humans, manganese-induced neurotoxicity (manganism) is the overriding concern since affected individuals develop a motor dysfunction syndrome that is recognized as a form of parkinsonism. This review primarily focuses on the essentiality and toxicity of manganese and considers contemporary studies evaluating manganese dosimetry and its transport across the blood-brain barrier, and its distribution within the central nervous system (CNS). These studies have dramatically improved our understanding of the health risks posed by manganese by determining exposure conditions that lead to increased concentrations of this metal within the CNS and other target organs. Most individuals are exposed to manganese by the oral and inhalation routes of exposure; however, parenteral injection and other routes of exposure are important. Interactions between manganese and iron and other divalent elements occur and impact the toxicokinetics of manganese, especially following oral exposure. The oxidation state and solubility of manganese also influence the absorption, distribution, metabolism, and elimination of manganese. Manganese disposition is influenced by the route of exposure. Rodent inhalation studies have shown that manganese deposited within the nose can undergo direct transport to the brain along the olfactory nerve. Species differences in manganese toxicokinetics and response are recognized with nonhuman primates replicating CNS effects observed in humans while rodents do not. Potentially susceptible populations, such as fetuses, neonates, individuals with compromised hepatic function, individuals with suboptimal manganese or iron intake, and those with other medical states (e.g., pre-parkinsonian state, aging), may have altered manganese metabolism and could be at greater risk for manganese toxicity.
Collapse
|
48
|
Chabanova E, Thomsen HS, Løgager V, Moller JM, Brage K, Fogh K, Bovin J, Elmig J. Effect of new manganese contrast agent on tissue intensities in human volunteers: comparison of 0.23, 0.6 and 1.5 T MRI, a part of a phase I trial. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2004; 17:28-35. [PMID: 15258827 DOI: 10.1007/s10334-004-0042-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Accepted: 05/14/2004] [Indexed: 10/26/2022]
Abstract
To evaluate the effect of a new oral manganese contrast agent (CMC-001) on magnetic resonance imaging (MRI) intensities at different magnetic field strengths. Twelve healthy volunteers underwent abdominal MRI 1 week before and within 2.5-4.5 h after CMC-001 (MnCl(2) and absorption promoters dissolved in water) intake at three different MR scanners of 0.23, 0.6 and 1.5 T. Image contrast and intensity enhancement of liver and pancreas were analysed relatively to muscle and fat intensities. Manganese blood levels were followed for 24 h. Whole-blood manganese concentration levels stayed within the normal range. The liver intensities on T2w images decreased about 10% for the 1/2 contrast dose and about 20% for the full contrast dose independent of the field strength. The liver intensities on T1w images increased more than 30% for 1/2 contrast dose and over 40% for full contrast dose. The maximum T1 enhancement was achieved at the highest field. Pancreas intensities were not affected. Contrast between liver, muscle and fat intensities increased with magnetic field, as well as standard errors of the volunteer-averaged intensities. Oral intake of CMC-001 influences liver intensities and does not affect pancreas intensities at different magnetic field strengths.
Collapse
Affiliation(s)
- E Chabanova
- Department of Diagnostic Radiology 54E2, Copenhagen University Hospital at Herlev, Herlev Ringvej 75, 2730 Herlev, Denmark,
| | | | | | | | | | | | | | | |
Collapse
|