1
|
Boeckmans J, Widman L, Shang Y, Strandberg R, Wester A, Schattenberg JM, Hagström H. Risk of hepatic decompensation or HCC is similar in patients with ALD- and MASLD-cirrhosis: A population-based cohort study. Eur J Intern Med 2025; 134:104-113. [PMID: 39952814 DOI: 10.1016/j.ejim.2025.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND It is unclear if the risk of hepatic decompensation or hepatocellular carcinoma (HCC) differs between patients with compensated alcohol-related liver disease (ALD)- and metabolic dysfunction-associated steatotic liver disease (MASLD)-cirrhosis. We investigated the risk to develop hepatic decompensation or HCC based on ALD or MASLD as the underlying etiology of cirrhosis. METHODS All patients with a new diagnosis in hospital-based outpatient care of ALD- or MASLD-cirrhosis in Sweden between 2002 and 2020 were identified using national registers. Hepatic decompensation was analyzed as a composite outcome with HCC. Cox regression was employed to compare rates of hepatic decompensation or HCC, and subsequent death. RESULTS 1660 patients with ALD-cirrhosis and 943 patients with MASLD-cirrhosis were identified. The median ages were 64 years (IQR 57-70) and 69 years (IQR 62-75) in patients with ALD- and MASLD-cirrhosis, respectively. Patients with ALD-cirrhosis consisted of 69.4 % males, compared to 47.6 % males in the MASLD-cirrhosis group. 581 (35 %) patients with ALD-cirrhosis and 284 (30 %) patients with MASLD-cirrhosis developed hepatic decompensation or HCC (median follow-up time: 25 months), resulting in an adjusted hazard ratio of 1.12 (ALD- vs. MASLD-cirrhosis, 95 %-confidence interval=0.88-1.41). The adjusted risk of mortality afterwards was lower in patients with ALD-cirrhosis compared to patients with MASLD-cirrhosis (adjusted hazard ratio 0.62, 95 %-confidence interval=0.39-0.97). CONCLUSIONS The risk of hepatic decompensation or HCC is comparable in patients with ALD- and MASLD-cirrhosis, but the risk of mortality after a decompensation event or HCC tends to be higher in patients with MASLD-cirrhosis.
Collapse
Affiliation(s)
- Joost Boeckmans
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden; In Vitro Liver Disease Modelling team - Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Linnea Widman
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden.
| | - Ying Shang
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden.
| | - Rickard Strandberg
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden.
| | - Axel Wester
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden.
| | - Jörn M Schattenberg
- Department of Medicine II, University Medical Center Homburg, Homburg and Saarland University, Saarbrücken, Germany.
| | - Hannes Hagström
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden; Division of Hepatology, Department of Upper GI, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
2
|
Malin Igra A, Ekström S, Andersson N, Ljungman P, Melén E, Kull I, Risérus U, Bergström A. Biomarkers of dietary PUFA intake in childhood and adolescence in relation to cardiometabolic risk factors in young adulthood: a prospective cohort study in Sweden. Am J Clin Nutr 2025; 121:558-566. [PMID: 40044394 PMCID: PMC11923371 DOI: 10.1016/j.ajcnut.2024.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/19/2024] [Accepted: 11/27/2024] [Indexed: 03/23/2025] Open
Abstract
BACKGROUND PUFAs, especially from vegetable fat sources, have been suggested to contribute to weight regulation and be protective to cardiometabolic health. However, a few longitudinal studies on childhood exposure are available, with short follow-up time and conflicting results. OBJECTIVES To study the relationship between plasma proportions of PUFA in childhood and adolescence and cardiometabolic risk factors in young adulthood, such as obesity, body composition, blood pressure (BP), and blood lipids in a prospective cohort study. METHODS We included n = 688 participants of the BAMSE (Barn, Allergi, Miljö, Stockholm, Epidemiologi) cohort in Stockholm, Sweden, with data on plasma phospholipid proportions of n-3 and n-6 fatty acids [α-linolenic acid (ALA), EPA, docosapentaenoic acid, DHA, linoleic acid (LA), and arachidonic acid (AA)] at 8 and 16 y and body mass index (BMI), waist circumference, fat mass %, BP, and blood lipids at 24 y. Associations between PUFAs and cardiometabolic health outcomes were assessed with sex-stratified multivariable-adjusted linear and logistic regression models. RESULTS In females, LA and ALA at 16 y were inversely associated with BMI [B: -0.35 (-0.54, -0.17) and B: -6.1 (-11, -1.5), respectively], and similarly with waist circumference and fat mass at 24 y. Also in females, LA was inversely associated with BP, triglycerides, LDL-cholesterol), and total cholesterol (e.g., B -0.044 [-0.079, -0.0099] for LA at 16 y and LDL-cholesterol), whereas ALA was only inversely associated with LDL-cholesterol. No associations were found between long chain n-3 fatty acids or AA and any of the studied outcomes. CONCLUSIONS Plasma phospholipid proportions of LA and ALA, biomarkers of vegetable oil intake, during childhood and adolescence were inversely associated with measures of obesity and cardiometabolic health in young adulthood, with a potential sex difference. These findings accord with short-term feeding trials suggesting a possible preventive role of LA on body fat accumulation.
Collapse
Affiliation(s)
| | - Sandra Ekström
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Center for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden; Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Niklas Andersson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Petter Ljungman
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Cardiology, Danderyd University Hospital, Danderyd, Sweden
| | - Erik Melén
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden; Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Inger Kull
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden; Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Ulf Risérus
- Clinical Nutrition and Metabolism, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Anna Bergström
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Center for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| |
Collapse
|
3
|
Kopiczko N, Bobrus-Chociej A, Harasim-Symbor E, Flisiak-Jackiewicz M, Kowalczuk-Krystoń M, Tarasów E, Chabowski A, Lebensztejn DM. Serum dihomo-γ-linolenic acid concentration as a potential novel noninvasive biomarker for liver steatosis detection in children. Clin Exp Hepatol 2024; 10:278-284. [PMID: 40290533 PMCID: PMC12022613 DOI: 10.5114/ceh.2024.145365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/25/2024] [Indexed: 04/30/2025] Open
Abstract
Aim of the study To evaluate serum concentrations of dihomo-γ-linolenic acid and associated long chain n-6 polyunsaturated fatty acids (linoleic (LA), arachidonic acid (AA)) together with estimated desaturase activities in obese children with metabolic dysfunction-associated steatotic liver disease (MASLD). Material and methods The prospective study included 57 children with obesity. MASLD was diagnosed according to the latest consensus. The total intrahepatic lipid content (TILC) was assessed by magnetic resonance proton spectroscopy (1H-MRS). Fasting serum concentrations of LA, dihomo-γ-linolenic acid (DGLA) and AA were measured. The estimated Δ5 desaturase (D5D) activity was calculated based on the AA to DGLA ratio and the estimated Δ6 desaturase (D6D) activity based on the DGLA to LA ratio. Results MASLD was diagnosed in 25 children. DGLA was significantly higher in children with obesity in comparison to the reference group (n = 19, p < 0.01). The DGLA/LA ratio was significantly elevated, while the AA/DGLA ratio was significantly lower in obese subjects compared with the reference group. DGLA concentration and estimated D6D activity correlated positively with TILC. The ability of DGLA concentration to detect liver steatosis in 1HMRS was significant (AUC = 0.72, p < 0.05). Conclusions Serum DGLA levels may be considered as a potential novel non-invasive biomarker for liver steatosis detection in children. The differences in the serum concentrations of DGLA, LA and AA between the groups and correlations found between their concentrations and other parameters suggest their potential role in pathogenesis and development of MASLD in children with obesity.
Collapse
Affiliation(s)
- Natalia Kopiczko
- Department of Pediatrics, Gastroenterology, Hepatology, Nutrition, Allergology and Pulmonology, Medical University of Bialystok, Poland
| | - Anna Bobrus-Chociej
- Department of Pediatrics, Gastroenterology, Hepatology, Nutrition, Allergology and Pulmonology, Medical University of Bialystok, Poland
| | | | - Marta Flisiak-Jackiewicz
- Department of Pediatrics, Gastroenterology, Hepatology, Nutrition, Allergology and Pulmonology, Medical University of Bialystok, Poland
| | - Monika Kowalczuk-Krystoń
- Department of Pediatrics, Gastroenterology, Hepatology, Nutrition, Allergology and Pulmonology, Medical University of Bialystok, Poland
| | | | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Poland
| | - Dariusz M. Lebensztejn
- Department of Pediatrics, Gastroenterology, Hepatology, Nutrition, Allergology and Pulmonology, Medical University of Bialystok, Poland
| |
Collapse
|
4
|
Tillander V, Holmer M, Hagström H, Petersson S, Brismar TB, Stål P, Lindqvist C. Associations between dietary fatty acid and plasma fatty acid composition in non-alcoholic fatty liver disease: secondary analysis from a randomised trial with a hypoenergetic low-carbohydrate high-fat and intermittent fasting diet. Br J Nutr 2024; 132:1-13. [PMID: 39290088 PMCID: PMC11499086 DOI: 10.1017/s0007114524001673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/02/2024] [Accepted: 07/24/2024] [Indexed: 09/19/2024]
Abstract
Dietary fatty acids (FA) affect metabolic risk factors. The aim of this study was to explore if changes in dietary fat intake during energy restriction were associated with plasma FA composition. The study also investigated if these changes were associated with changes in liver fat, liver stiffness and plasma lipids among persons with non-alcoholic fatty liver disease. Dietary and plasma FA were investigated in patients with non-alcoholic fatty liver disease (n 48) previously enrolled in a 12-week-long open-label randomised controlled trial comparing two energy-restricted diets: a low-carbohydrate high-fat diet and intermittent fasting diet (5:2), to a control group. Self-reported 3 d food diaries were used for FA intake, and plasma FA composition was analysed using GC. Liver fat content and stiffness were measured by MRI and transient elastography. Changes in intake of total FA (r 0·41; P = 0·005), SFA (r 0·38; P = 0·011) and MUFA (r 0·42; P = 0·004) were associated with changes in liver stiffness. Changes in plasma SFA (r 0·32; P = 0·032) and C16 : 1n-7 (r 0·33; P = 0·028) were positively associated with changes in liver fat, while total n-6 PUFA (r -0·33; P = 0·028) and C20 : 4n-6 (r -0·42; P = 0·005) were inversely associated. Changes in dietary SFA, MUFA, cholesterol and C20:4 were positively associated with plasma total cholesterol and LDL-cholesterol. Modifying the composition of dietary fats during dietary interventions causes changes in the plasma FA profile in patients with non-alcoholic fatty liver disease. These changes are associated with changes in liver fat, stiffness, plasma cholesterol and TAG. Replacing SFA with PUFA may improve metabolic parameters in non-alcoholic fatty liver disease patients during weight loss treatment.
Collapse
Affiliation(s)
- Veronika Tillander
- Division of Clinical Chemistry, Cardio Metabolic Unit, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Holmer
- Unit of Gastroenterology and Hepatology, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Division of Hepatology, Department of Upper GI, Karolinska University Hospital, Stockholm, Sweden
| | - Hannes Hagström
- Unit of Gastroenterology and Hepatology, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Division of Hepatology, Department of Upper GI, Karolinska University Hospital, Stockholm, Sweden
| | - Sven Petersson
- Department of Clinical Science, Intervention and Technology, Division of Medical Imaging and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Torkel B. Brismar
- Department of Clinical Science, Intervention and Technology, Division of Medical Imaging and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Radiology, Karolinska University Hospital in Huddinge, Stockholm sE-14186, Sweden
| | - Per Stål
- Unit of Gastroenterology and Hepatology, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Division of Hepatology, Department of Upper GI, Karolinska University Hospital, Stockholm, Sweden
| | - Catarina Lindqvist
- Unit of Gastroenterology and Hepatology, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Medical Unit Clinical Nutrition, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
5
|
Zhao X, Zhu Y, Yao Q, Zhao B, Lin G, Zhang M, Guo C, Li Y. Lipidomics Investigation Reveals the Reversibility of Hepatic Injury by Silica Nanoparticles in Rats After a 6-Week Recovery Duration. SMALL METHODS 2024; 8:e2301430. [PMID: 38191992 DOI: 10.1002/smtd.202301430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/19/2023] [Indexed: 01/10/2024]
Abstract
Given the inevitable human exposure owing to its increasing production and utilization, the comprehensive safety evaluation of silica nanoparticles (SiNPs) has sparked concerns. Substantial evidence indicated liver damage by inhaled SiNPs. Notwithstanding, few reports focused on the persistence or reversibility of hepatic injuries, and the intricate molecular mechanisms involved remain limited. Here, rats are intratracheally instilled with SiNPs in two regimens (a 3-month exposure and a subsequent 6-week recovery after terminating SiNPs administration) to assess the hepatic effects. Nontargeted lipidomics revealed alterations in lipid metabolites as a contributor to the hepatic response and recovery effects of SiNPs. In line with the functional analysis of differential lipid metabolites, SiNPs activated oxidative stress, and induced lipid peroxidation and lipid deposition in the liver, as evidenced by the elevated hepatic levels of ROS, MDA, TC, and TG. Of note, these indicators showed great improvements after a 6-week recovery, even returning to the control levels. According to the correlation, ROC curve, and SEM analysis, 11 lipids identified as potential regulatory molecules for ameliorating liver injury by SiNPs. Collectively, the work first revealed the reversibility of SiNP-elicited hepatotoxicity from the perspective of lipidomics and offered valuable laboratory evidence and therapeutic strategy to facilitate nanosafety.
Collapse
Affiliation(s)
- Xinying Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yawen Zhu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Qing Yao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Bosen Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Guimiao Lin
- School of Public Health, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Min Zhang
- Department of Nephrology, Affiliated Beijing Chaoyang Hospital of Capital Medical University, Beijing, 100020, China
| | - Caixia Guo
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
6
|
Fridén M, Warensjö Lemming E, Lind L, Vessby J, Rosqvist F, Risérus U. Substitutions of saturated fat intakes with other macronutrients and foods and risk of NAFLD cirrhosis and all-cause hepatocellular carcinoma: a prospective cohort study. Am J Clin Nutr 2024; 120:187-195. [PMID: 38797249 DOI: 10.1016/j.ajcnut.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 05/11/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Short-term trials have shown a reduction in liver fat when saturated fatty acids (SFAs) are substituted with polyunsaturated fatty acids (PUFA), or with low-glycemic carbohydrates. However, few cohort studies have been conducted to investigate the associations of replacing SFA and SFA-rich foods with different macronutrients and foods in more severe stages of liver disease; nonalcoholic fatty liver disease (NAFLD) cirrhosis and hepatocellular carcinoma (HCC). OBJECTIVES To investigate associations between the substitution of SFA and SFA-rich foods with other macronutrients and foods and NAFLD cirrhosis and HCC in a middle-aged to elderly Swedish population of n = 77,059 males and females. METHODS Time-to-event analyses were performed to investigate associations between the food and macronutrient substitutions and NAFLD cirrhosis and HCC. Multivariable Cox regression models were constructed to estimate hazard ratios (HRs) with corresponding 95% confidence intervals (CIs). Statistical isocaloric and equal-mass substitutions were performed using the leave-one-out method. Prespecified nutrient and food substitutions of interest were SFA with carbohydrates, SFA with fiber, SFA with PUFA, butter with margarine and vegetable oils, unprocessed red meat with fish, and milk with fermented milk. RESULTS Over a median follow-up of 24 y, 566 cases of NAFLD cirrhosis and 205 cases of HCC were registered. Overall, dietary substitutions showed no clear associations with either NAFLD cirrhosis or HCC. Substituting SFA with carbohydrates showed an HR of 0.87 (95% CI: 0.74, 1.02) for HCC and 1.00 (95% CI: 0.89, 1.11) for NAFLD cirrhosis. Substituting milk with fermented milk showed an HR of 0.93 (95% CI: 0.85, 1.01) for HCC and 0.97 (95% CI: 0.92, 1.03) for NAFLD cirrhosis. CONCLUSIONS No clear associations were observed between diet and NAFLD cirrhosis or HCC. Although accompanied by low precision, possible lowered risks of HCC by substituting SFA with carbohydrates or milk with fermented milk might be of interest, but needs replication in other cohorts.
Collapse
Affiliation(s)
- Michael Fridén
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| | - Eva Warensjö Lemming
- Department of Surgical Sciences, Medical Epidemiology, Uppsala University, Uppsala, Sweden; Department of Food Studies, Nutrition and Dietetics, Uppsala University, Uppsala, Sweden
| | - Lars Lind
- Department of Surgical Sciences, Medical Epidemiology, Uppsala University, Uppsala, Sweden
| | - Johan Vessby
- Department of Medical Sciences, Gastroenterology Research Group, Uppsala University, Uppsala, Sweden
| | - Fredrik Rosqvist
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| | - Ulf Risérus
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
7
|
Fridén M, Mora AM, Lind L, Risérus U, Kullberg J, Rosqvist F. Diet composition, nutrient substitutions and circulating fatty acids in relation to ectopic and visceral fat depots. Clin Nutr 2023; 42:1922-1931. [PMID: 37633021 DOI: 10.1016/j.clnu.2023.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/29/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023]
Abstract
BACKGROUND & AIMS Short-term randomized trials have demonstrated that replacing saturated fat (SFA) with polyunsaturated fat (PUFA) causes a reduction or prevention of liver fat accumulation, but population-based studies on diet and body fat distribution are limited. We investigated cross-sectional associations between diet, circulating fatty acids and liver fat, visceral adipose tissue (VAT), intermuscular adipose tissue (IMAT) and other fat depots using different energy-adjustment models. METHODS Sex-stratified analyses of n = 9119 (for serum fatty acids) to 13 849 (for nutrients) participants in UK Biobank were conducted. Fat depots were assessed by MRI, circulating fatty acids by NMR spectroscopy and diet by repeated 24-h recalls. Liver fat, VAT and IMAT were primary outcomes; total adipose tissue (TAT) and abdominal subcutaneous adipose tissue (ASAT) were secondary outcomes. Three a priori defined models were constructed: the all-components model, standard model and leave-one-out model (main model including specified nutrient substitutions). Imiomics (MRI-derived) was used to confirm and visualize associations. RESULTS In women, substituting carbohydrates and free sugars with saturated fat (SFA) was positively associated with liver fat (β (95% CI) = 0.19 (0.02, 0.36) and β (95% CI) = 0.20 (0.05-0.35), respectively) and IMAT (β (95% CI) = 0.07 (0.00, 0.14) and β (95% CI) = 0.08 (0.02, 0.13), respectively), whereas substituting animal fat with plant fat was inversely associated with IMAT, ASAT and TAT. In the all-components and standard models, SFA and animal fat were positively associated with liver fat, IMAT and VAT whereas plant fat was inversely associated with IMAT in women. Few associations were observed in men. Circulating polyunsaturated fatty acids (PUFA) were inversely associated with liver fat, IMAT and VAT in both men and women, whereas SFA and monounsaturated fatty acids were positively associated. CONCLUSIONS Type of dietary fat may be an important determinant of ectopic fat in humans consuming their habitual diet. Plant fat and PUFA should be preferred over animal fat and SFA. This is corroborated by circulating fatty acids and overall consistent through different energy adjustment models. TWITTER SUMMARY In UK Biobank, intake of saturated- and animal fat were positively whereas biomarkers of polyunsaturated fat were inversely associated with liver-, visceral- and intermuscular fat. Type of dietary fat may be a determinant of ectopic fat, a risk factor for cardiometabolic disease.
Collapse
Affiliation(s)
- Michael Fridén
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden.
| | - Andrés Martínez Mora
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden.
| | - Lars Lind
- Department of Medical Sciences, Clinical Epidemiology, Uppsala University, Uppsala, Sweden.
| | - Ulf Risérus
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden.
| | - Joel Kullberg
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden; Antaros Medical AB, Mölndal, Sweden.
| | - Fredrik Rosqvist
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
8
|
Ong KL, Marklund M, Huang L, Rye KA, Hui N, Pan XF, Rebholz CM, Kim H, Steffen LM, van Westing AC, Geleijnse JM, Hoogeveen EK, Chen YY, Chien KL, Fretts AM, Lemaitre RN, Imamura F, Forouhi NG, Wareham NJ, Birukov A, Jäger S, Kuxhaus O, Schulze MB, de Mello VD, Tuomilehto J, Uusitupa M, Lindström J, Tintle N, Harris WS, Yamasaki K, Hirakawa Y, Ninomiya T, Tanaka T, Ferrucci L, Bandinelli S, Virtanen JK, Voutilainen A, Jayasena T, Thalamuthu A, Poljak A, Bustamante S, Sachdev PS, Senn MK, Rich SS, Tsai MY, Wood AC, Laakso M, Lankinen M, Yang X, Sun L, Li H, Lin X, Nowak C, Ärnlöv J, Risérus U, Lind L, Le Goff M, Samieri C, Helmer C, Qian F, Micha R, Tin A, Köttgen A, de Boer IH, Siscovick DS, Mozaffarian D, Wu JH. Association of omega 3 polyunsaturated fatty acids with incident chronic kidney disease: pooled analysis of 19 cohorts. BMJ 2023; 380:e072909. [PMID: 36653033 PMCID: PMC9846698 DOI: 10.1136/bmj-2022-072909] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2022] [Indexed: 01/20/2023]
Abstract
OBJECTIVE To assess the prospective associations of circulating levels of omega 3 polyunsaturated fatty acid (n-3 PUFA) biomarkers (including plant derived α linolenic acid and seafood derived eicosapentaenoic acid, docosapentaenoic acid, and docosahexaenoic acid) with incident chronic kidney disease (CKD). DESIGN Pooled analysis. DATA SOURCES A consortium of 19 studies from 12 countries identified up to May 2020. STUDY SELECTION Prospective studies with measured n-3 PUFA biomarker data and incident CKD based on estimated glomerular filtration rate. DATA EXTRACTION AND SYNTHESIS Each participating cohort conducted de novo analysis with prespecified and consistent exposures, outcomes, covariates, and models. The results were pooled across cohorts using inverse variance weighted meta-analysis. MAIN OUTCOME MEASURES Primary outcome of incident CKD was defined as new onset estimated glomerular filtration rate <60 mL/min/1.73 m2. In a sensitivity analysis, incident CKD was defined as new onset estimated glomerular filtration rate <60 mL/min/1.73 m2 and <75% of baseline rate. RESULTS 25 570 participants were included in the primary outcome analysis and 4944 (19.3%) developed incident CKD during follow-up (weighted median 11.3 years). In multivariable adjusted models, higher levels of total seafood n-3 PUFAs were associated with a lower incident CKD risk (relative risk per interquintile range 0.92, 95% confidence interval 0.86 to 0.98; P=0.009, I2=9.9%). In categorical analyses, participants with total seafood n-3 PUFA level in the highest fifth had 13% lower risk of incident CKD compared with those in the lowest fifth (0.87, 0.80 to 0.96; P=0.005, I2=0.0%). Plant derived α linolenic acid levels were not associated with incident CKD (1.00, 0.94 to 1.06; P=0.94, I2=5.8%). Similar results were obtained in the sensitivity analysis. The association appeared consistent across subgroups by age (≥60 v <60 years), estimated glomerular filtration rate (60-89 v ≥90 mL/min/1.73 m2), hypertension, diabetes, and coronary heart disease at baseline. CONCLUSIONS Higher seafood derived n-3 PUFA levels were associated with lower risk of incident CKD, although this association was not found for plant derived n-3 PUFAs. These results support a favourable role for seafood derived n-3 PUFAs in preventing CKD.
Collapse
Affiliation(s)
- Kwok Leung Ong
- Lipid Research Group, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Matti Marklund
- The George Institute for Global Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- The Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| | - Liping Huang
- The George Institute for Global Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Kerry-Anne Rye
- Lipid Research Group, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Nicholas Hui
- Lipid Research Group, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Xiong-Fei Pan
- The George Institute for Global Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Shuangliu Institute of Women's and Children's Health, Shuangliu Maternal and Child Health Hospital, Chengdu, Sichuan, China
| | - Casey M Rebholz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Hyunju Kim
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Lyn M Steffen
- University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Anniek C van Westing
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Johanna M Geleijnse
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Ellen K Hoogeveen
- Department of Nephrology, Jeroen Bosch Hospital, Den Bosch, The Netherlands
- Institute of Epidemiology and Preventive Medicine College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | - Kuo-Liong Chien
- Institute of Epidemiology and Preventive Medicine College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Amanda M Fretts
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | | | - Fumiaki Imamura
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Nita G Forouhi
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Anna Birukov
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Susanne Jäger
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Olga Kuxhaus
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Vanessa Derenji de Mello
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Jaakko Tuomilehto
- Population Health Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Saudi Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Matti Uusitupa
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Jaana Lindström
- Population Health Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Nathan Tintle
- The Fatty Acid Research Institute, Sioux Falls, SD, USA
- Department of Population Health Nursing Science, College of Nursing, University of Illinois-Chicago, Chicago, IL, USA
| | - William S Harris
- The Fatty Acid Research Institute, Sioux Falls, SD, USA
- Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keisuke Yamasaki
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoichiro Hirakawa
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiharu Ninomiya
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, USA
| | | | - Jyrki K Virtanen
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Ari Voutilainen
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Tharusha Jayasena
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Anne Poljak
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, Australia
| | - Sonia Bustamante
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, Australia
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | | | - Mackenzie K Senn
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Stephen S Rich
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Michael Y Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Alexis C Wood
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Maria Lankinen
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Xiaowei Yang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Liang Sun
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Huaixing Li
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xu Lin
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
| | - Christoph Nowak
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Sweden
| | - Johan Ärnlöv
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Sweden
| | - Ulf Risérus
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Mélanie Le Goff
- Bordeaux Population Health Research Centre, INSERM, UMR 1219, University of Bordeaux, Bordeaux, France
| | - Cécilia Samieri
- Bordeaux Population Health Research Centre, INSERM, UMR 1219, University of Bordeaux, Bordeaux, France
| | - Catherine Helmer
- Bordeaux Population Health Research Centre, INSERM, UMR 1219, University of Bordeaux, Bordeaux, France
| | - Frank Qian
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Renata Micha
- Department of Food Science and Nutrition, University of Thessaly, Karditsa, Greece
- The Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Adrienne Tin
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Anna Köttgen
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Institute of Genetic Epidemiology, Department of Data Driven Medicine, Faculty of Medicine and Medical Centre, University of Freiburg, Freiburg, Germany
| | - Ian H de Boer
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA, USA
- Kidney Research Institute, University of Washington, Seattle, WA, USA
- Puget Sound VA Healthcare System, Seattle, WA, USA
| | | | - Dariush Mozaffarian
- The Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Jason Hy Wu
- The George Institute for Global Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- School of Population Health, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
9
|
Rosqvist F, Fridén M, Vessby J, Rorsman F, Lind L, Risérus U. Circulating fatty acids from high-throughput metabolomics platforms as potential biomarkers of dietary fatty acids. Clin Nutr 2022; 41:2637-2643. [PMID: 36308982 DOI: 10.1016/j.clnu.2022.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/27/2022] [Accepted: 10/08/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Some fatty acids, i.e. n-3 and n-6 polyunsaturated fatty acids (PUFA), from metabolomics platforms based on nuclear magnetic resonance imaging (NMR) or liquid chromatography mass-spectrometry (LC-MS) are suggested to reflect dietary exposure. NMR and LC-MS are both relatively fast and cheap, however few studies have investigated their validity. Linoleic acid (LA) and docosahexaenoic acid (DHA), measured using gas chromatography (GC), are established biomarkers of dietary n-6 and n-3 PUFA intake, respectively. OBJECTIVE To examine if circulating fatty acids derived from two commonly applied metabolomics platforms (using NMR and LC-MS) provide similar information compared to GC in two pooled population-based cohorts, one patient cohort, and in a randomized controlled trial (RCT). METHODS Spearman rank correlations were conducted between LA and DHA in cholesteryl esters (CE) from GC and whole serum/plasma LA and DHA from the metabolomics platforms in a pooled population-based cohort of men and women (n ˜ 1100) (primary analysis). Secondary correlation analyses included fatty acid classes such as n-3 PUFA, n-6 PUFA, saturated fatty acids (SFA), monounsaturated fatty acids (MUFA) and total PUFA. Additionally, correlations were investigated for LA, DHA and the five fatty acid classes in phospholipids (PL), triacylglycerols (TAG) and non-esterified fatty acids (NEFA) in a RCT of n = 60 as well as in a population with biopsy-verified non-alcoholic fatty liver disease (NAFLD) (n = 59). Misclassification was examined using cross-tabulation and visualized using alluvial plots. RESULTS Moderate to strong correlations (r = 0.51-0.81) were observed for LA and DHA in multiple lipid fractions in all cohorts using the NMR platform. For the pooled cohort, LA (r = 0.67, P < 0.0001) and DHA (r = 0.68, P < 0.0001) assessed in CE were strongly correlated with LA and DHA derived using NMR. Nearly half (49%) were correctly classified into their respective quartiles. Using LC-MS, only DHA (r = 0.44, P < 0.0001) demonstrated moderate correlations with DHA from GC. CONCLUSIONS Unless fatty acid data from GC analysis is available or feasible, NMR-based technology might be a better option than a LC-MS-based platform, at least for certain PUFA. This should be taken into account in future studies aiming to use circulating fatty acids as dietary biomarkers for the investigation of diet-disease relationships.
Collapse
Affiliation(s)
- Fredrik Rosqvist
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden.
| | - Michael Fridén
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| | - Johan Vessby
- Department of Medical Sciences, Gastroenterology and Hepatology, Uppsala University, Uppsala, Sweden
| | - Fredrik Rorsman
- Department of Medical Sciences, Gastroenterology and Hepatology, Uppsala University, Uppsala, Sweden
| | - Lars Lind
- Department of Medical Sciences, Clinical Epidemiology, Uppsala University, Uppsala, Sweden
| | - Ulf Risérus
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Cole RM, Angelotti A, Sparagna GC, Ni A, Belury MA. Linoleic Acid-Rich Oil Alters Circulating Cardiolipin Species and Fatty Acid Composition in Adults: A Randomized Controlled Trial. Mol Nutr Food Res 2022; 66:e2101132. [PMID: 35596730 PMCID: PMC9540417 DOI: 10.1002/mnfr.202101132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/07/2022] [Indexed: 11/08/2022]
Abstract
SCOPE Higher circulating linoleic acid (LA) and muscle-derived tetralinoleoyl-cardiolipin (LA4 CL) are each associated with decreased cardiometabolic disease risk. Mitochondrial dysfunction occurs with low LA4 CL. Whether LA-rich oil fortification can increase LA4 CL in humans is unknown. The aims of this study are to determine whether dietary fortification with LA-rich oil for 2 weeks increases: 1) LA in plasma, erythrocytes, and peripheral blood mononuclear cells (PBMC); and 2) LA4 CL in PBMC in adults. METHODS AND RESULTS In this randomized controlled trial, adults are instructed to consume one cookie per day delivering 10 g grapeseed (LA-cookie, N = 42) or high oleate (OA) safflower (OA-cookie, N = 42) oil. In the LA-cookie group, LA increases in plasma, erythrocyte, and PBMC by 6%, 7%, and 10% respectively. PBMC and erythrocyte OA increase by 7% and 4% in the OA-cookie group but is unchanged in the plasma. PBMC LA4 CL increases (5%) while LA3 OA1 CL decreases (7%) in the LA-cookie group but are unaltered in the OA-cookie group. CONCLUSIONS LA-rich oil fortification increases while OA-oil has no effect on LA4 CL in adults. Because LA-rich oil fortification reduces cardiometabolic disease risk and increases LA4 CL, determining whether mitochondrial dysfunction is repaired through dietary fortification is warranted.
Collapse
Affiliation(s)
- Rachel M. Cole
- Program of Human Nutrition, The Department of Human SciencesThe Ohio State UniversityColumbusOH43210USA
| | - Austin Angelotti
- Program of Human Nutrition, The Department of Human SciencesThe Ohio State UniversityColumbusOH43210USA
| | - Genevieve C. Sparagna
- Division of CardiologyThe Department of MedicineUniversity of Colorado Anschutz Medical CenterAuroraCO80045USA
| | - Ai Ni
- Division of BiostatisticsCollege of Public HealthThe Ohio State UniversityColumbusOH43210USA
| | - Martha A. Belury
- Program of Human Nutrition, The Department of Human SciencesThe Ohio State UniversityColumbusOH43210USA
| |
Collapse
|
11
|
Christou CN, Ehrsson YT, Westerbergh J, Risérus U, Laurell G. Longitudinal Changes in the Fatty Acid Profile in Patients with Head and Neck Cancer: Associations with Treatment and Inflammatory Response. Cancers (Basel) 2022; 14:3696. [PMID: 35954360 PMCID: PMC9367269 DOI: 10.3390/cancers14153696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 02/01/2023] Open
Abstract
Studies on fatty acids (FAs) in patients with head and neck cancer (HNC) are limited. We aimed to investigate the longitudinal changes of circulating FAs in patients with HNC and to examine potential correlations of FA changes with treatment. The secondary aims were to investigate correlations of FAs with cytokines and patient-related factors, and if any FAs correlated with disease recurrence or death. A total of 174 patients with HNC were included before treatment and followed-up at three time points after the start of the treatment through blood sampling and body weight measurements. Serum FA profiling was assessed by gas chromatography. The total follow-up time was 3 years. The levels of almost all FAs changed from baseline to 7 weeks. The change in FA 14:0 was associated with treatment and the change in 18:3n-6 was associated with the patients' pre-treatment BMI. FAs 14:0 and 18:0 were correlated with weight changes from baseline to 7 weeks. IL-6 was correlated with three FAs at 7 weeks and with two FAs at 1 year. Patients with higher levels 20:5n-3 at 3 months had a higher risk of all-cause death within 3 years (HR 2.75, 95% CI 1.22-6.21). Treatment, inflammation, and weight loss contributed in a complex manner to the altered FA profile in the studied cohort. The association between IL-6 and FAs in patients with HNC is in line with earlier studies and suggests the opportunity for regulating inflammation in HNC patients through modulation of FAs.
Collapse
Affiliation(s)
- Constantina N Christou
- Department of Surgical Sciences, Uppsala University, 751 85 Uppsala, Sweden; (Y.T.E.); (G.L.)
| | - Ylva Tiblom Ehrsson
- Department of Surgical Sciences, Uppsala University, 751 85 Uppsala, Sweden; (Y.T.E.); (G.L.)
| | - Johan Westerbergh
- Uppsala Clinical Research Center, Uppsala University, 751 85 Uppsala, Sweden;
| | - Ulf Risérus
- Department of Public Health and Caring Sciences, Uppsala University, 752 37 Uppsala, Sweden;
| | - Göran Laurell
- Department of Surgical Sciences, Uppsala University, 751 85 Uppsala, Sweden; (Y.T.E.); (G.L.)
| |
Collapse
|
12
|
Reduction of De Novo Lipogenesis Mediates Beneficial Effects of Isoenergetic Diets on Fatty Liver: Mechanistic Insights from the MEDEA Randomized Clinical Trial. Nutrients 2022; 14:nu14102178. [PMID: 35631319 PMCID: PMC9143579 DOI: 10.3390/nu14102178] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Non-alcoholic liver steatosis (NAS) results from an imbalance between hepatic lipid storage, disposal, and partitioning. A multifactorial diet high in fiber, monounsaturated fatty acids (MUFAs), n-6 and n-3 polyunsaturated fatty acids (PUFAs), polyphenols, and vitamins D, E, and C reduces NAS in people with type 2 diabetes (T2D) by 40% compared to a MUFA-rich diet. We evaluated whether dietary effects on NAS are mediated by changes in hepatic de novo lipogenesis (DNL), stearoyl-CoA desaturase (SCD1) activity, and/or β-oxidation. METHODS According to a randomized parallel group study design, 37 individuals with T2D completed an 8-week isocaloric intervention with a MUFA diet (n = 20) or multifactorial diet (n = 17). Before and after the intervention, liver fat content was evaluated by proton magnetic resonance spectroscopy, serum triglyceride fatty acid concentrations measured by gas chromatography, plasma β-hydroxybutyrate by enzymatic method, and DNL and SCD-1 activity assessed by calculating the palmitic acid/linoleic acid (C16:0/C18:2 n6) and palmitoleic acid/palmitic acid (C16:1/C16:0) ratios, respectively. RESULTS Compared to baseline, mean ± SD DNL significantly decreased after the multifactorial diet (2.2 ± 0.8 vs. 1.5 ± 0.5, p = 0.0001) but did not change after the MUFA diet (1.9 ± 1.1 vs. 1.9 ± 0.9, p = 0.949), with a significant difference between the two interventions (p = 0.004). The mean SCD-1 activity also decreased after the multifactorial diet (0.13 ± 0.05 vs. 0.10 ± 0.03; p = 0.001), but with no significant difference between interventions (p = 0.205). Fasting plasma β-hydroxybutyrate concentrations did not change significantly after the MUFA or multifactorial diet. Changes in the DNL index significantly and positively correlated with changes in liver fat (r = 0.426; p = 0.009). CONCLUSIONS A diet rich in multiple beneficial dietary components (fiber, polyphenols, MUFAs, PUFAs, and other antioxidants) compared to a diet rich only in MUFAs further reduces liver fat accumulation through the inhibition of DNL. Registered under ClinicalTrials.gov no. NCT03380416.
Collapse
|
13
|
Ekström S, Sdona E, Klevebro S, Hallberg J, Georgelis A, Kull I, Melén E, Risérus U, Bergström A. Dietary intake and plasma concentrations of PUFAs in childhood and adolescence in relation to asthma and lung function up to adulthood. Am J Clin Nutr 2021; 115:886-896. [PMID: 34964829 PMCID: PMC8895221 DOI: 10.1093/ajcn/nqab427] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/27/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND PUFAs may influence the risk of asthma; however, long-term prospective studies including objective biomarkers of PUFA intake are lacking. OBJECTIVES The objective was to investigate the role of dietary intake and plasma concentrations of n-3 and n-6 (ω-3 and ω-6) PUFAs in childhood and adolescence for the development of asthma and lung function up to young adulthood. METHODS The study included participants from the Swedish prospective birth cohort BAMSE. Dietary intake of PUFAs was calculated from FFQs (n = 1992) and plasma proportions of PUFAs were measured in phospholipids (n = 831). We analyzed the n-3 PUFA α-linolenic acid (ALA; 18:3n-3); the sum of very-long-chain (VLC) n-3 PUFAs: EPA (20:5n-3), DHA (22:6n-3), and docosapentaenoic acid (22:5n-3); and the n-6 PUFAs linoleic acid (LA; 18:2n-6) and arachidonic acid (AA; 20:4n-6). Asthma was assessed by questionnaires at 8, 16, and 24 y and lung function was measured by spirometry at 24 y. RESULTS A high (≥median) self-reported dietary intake of LA at 8 y and AA at 16 y was associated with increased risk of prevalent asthma at 24 y (OR: 1.41; 95% CI: 1.10, 1.82 and OR: 1.32; 95% CI: 1.02, 1.70, respectively). In contrast, plasma proportions of ALA, ∑VLC n-3 PUFAs, and AA at 8 y, as well as LA at 16 y, were inversely associated with prevalent asthma at 24 y (e.g., OR: 0.55; 95% CI: 0.38, 0.81 for ∑VLC n-3 PUFAs). No consistent associations were observed with lung function. CONCLUSIONS High dietary intake of certain n-6 PUFAs in childhood or adolescence may be associated with increased risk of asthma up to young adulthood, whereas dietary biomarkers of certain n-3 and n-6 PUFAs in plasma may be associated with decreased risk. Thus, the role of diet compared with altered metabolism of PUFAs needs further investigation to improve dietary preventive strategies for asthma.
Collapse
Affiliation(s)
| | - Emmanouela Sdona
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Susanna Klevebro
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institute, Stockholm, Sweden
- Sachs’ Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Jenny Hallberg
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
- Sachs’ Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Antonios Georgelis
- Center for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Inger Kull
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institute, Stockholm, Sweden
- Sachs’ Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institute, Stockholm, Sweden
- Sachs’ Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Ulf Risérus
- Clinical Nutrition and Metabolism, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Anna Bergström
- Center for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|