1
|
Chen D, Cheng K, Wan L, Cui C, Li G, Zhao D, Yu Y, Liao X, Liu Y, D'Souza AW, Lian X, Sun J. Daily occupational exposure in swine farm alters human skin microbiota and antibiotic resistome. IMETA 2024; 3:e158. [PMID: 38868515 PMCID: PMC10989081 DOI: 10.1002/imt2.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 06/14/2024]
Abstract
Antimicrobial resistance (AMR) is a major threat to global public health, and antibiotic resistance genes (ARGs) are widely distributed across humans, animals, and environment. Farming environments are emerging as a key research area for ARGs and antibiotic resistant bacteria (ARB). While the skin is an important reservoir of ARGs and ARB, transmission mechanisms between farming environments and human skin remain unclear. Previous studies confirmed that swine farm environmental exposures alter skin microbiome, but the timeline of these changes is ill defined. To improve understanding of these changes and to determine the specific time, we designed a cohort study of swine farm workers and students through collected skin and environmental samples to explore the impact of daily occupational exposure in swine farm on human skin microbiome. Results indicated that exposure to livestock-associated environments where microorganisms are richer than school environment can reshape the human skin microbiome and antibiotic resistome. Exposure of 5 h was sufficient to modify the microbiome and ARG structure in workers' skin by enriching microorganisms and ARGs. These changes were preserved once formed. Further analysis indicated that ARGs carried by host microorganisms may transfer between the environment with workers' skin and have the potential to expand to the general population using farm workers as an ARG vector. These results raised concerns about potential transmission of ARGs to the broader community. Therefore, it is necessary to take corresponding intervention measures in the production process to reduce the possibility of ARGs and ARB transmission.
Collapse
Affiliation(s)
- Dong‐Rui Chen
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
- Jiangsu Co‐Innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou UniversityYangzhouChina
- Veterinary CenterGuangxi State Farms Yongxin Animal Husbandry Group Co., Ltd.NanningChina
| | - Ke Cheng
- Veterinary CenterGuangxi State Farms Yongxin Animal Husbandry Group Co., Ltd.NanningChina
| | - Lei Wan
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
- Jiangsu Co‐Innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou UniversityYangzhouChina
| | - Chao‐Yue Cui
- Laboratory Animal CentreWenzhou Medical UniversityWenzhouChina
| | - Gong Li
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
- Jiangsu Co‐Innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou UniversityYangzhouChina
| | - Dong‐Hao Zhao
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
- Jiangsu Co‐Innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou UniversityYangzhouChina
| | - Yang Yu
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
- Jiangsu Co‐Innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou UniversityYangzhouChina
| | - Xiao‐Ping Liao
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
- Jiangsu Co‐Innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou UniversityYangzhouChina
| | - Ya‐Hong Liu
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
- Jiangsu Co‐Innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou UniversityYangzhouChina
| | - Alaric W. D'Souza
- Department of PediatricsBoston Children's HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Xin‐Lei Lian
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Jian Sun
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
- Jiangsu Co‐Innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou UniversityYangzhouChina
| |
Collapse
|
2
|
Abstract
Particulate matter (PM) represents an air quality management challenge for confined swine production systems. Due to the limited space and ventilation rate, PM can reach relatively high concentrations in swine barns. PM in swine barns possesses different physical, chemical, and biological characteristics than that in the atmosphere and other indoor environments. As a result, it exerts different environmental and health effects and creates some unique challenges regarding PM measurement and mitigation. Numerous research efforts have been made, generating massive data and information. However, relevant review reports are sporadic. This study aims to provide an updated comprehensive review of swine barn PM, focusing on publications since 1990. It covers various topics including PM characteristics, sources, measurement methods, and in-barn mitigation technologies. As PM in swine barns is primarily of biological origins, bioaerosols are reviewed in great detail. Relevant topics include bacterial/fungal counts, viruses, microbial community composition, antibiotic-resistant bacteria, antibiotic resistance genes, endotoxins, and (1→3)-β-D-glucans. For each topic, existing knowledge is summarized and discussed and knowledge gaps are identified. Overall, PM in swine barns is complicated in chemical and biological composition and highly variable in mass concentrations, size, and microbial abundance. Feed, feces, and skins constitute the major PM sources. Regarding in-barn PM mitigation, four technologies (oil/water sprinkling, ionization, alternation of feed and feeders, and recirculating air filtration) are dominant. However, none of them have been widely used in commercial barns. A collective discussion of major knowledge gaps and future research needs is offered at the end of the report.
Collapse
|
3
|
Moor J, Wüthrich T, Aebi S, Mostacci N, Overesch G, Oppliger A, Hilty M. Influence of pig farming on human Gut Microbiota: role of airborne microbial communities. Gut Microbes 2021; 13:1-13. [PMID: 34060426 PMCID: PMC8172160 DOI: 10.1080/19490976.2021.1927634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
It has been hypothesized that both genetics and diet influence the composition of the human cecal microbiota. However, it remains unclear whether and how occupational exposure to microbes impacts the microbial communities in human guts. Using a One Health approach, we visited pig farms (n = 26) and collected stool specimens from pig workers (n = 59), pig barn air samples (n = 19), and rectal swabs from pigs at three different growth stages (n = 144). Stool samples from cattle workers were included as a control group (n = 22). Each sample's microbiota was characterized using 16S rRNA gene sequencing and the DADA2 pipeline.We obtained a significantly different clustering of the microbial compositions of pig and cattle workers by permutational multivariate analysis of variance (PERMANOVA; P < .001). Workers primarily exposed to pigs had higher relative abundances of Prevotellaceae and less Bacteroidaceae than workers exposed to cattle. We also found that the microbial compositions of pig workers' stool samples shared extensive fractions with the samples from their pigs. We also identified amplicon sequencing variants (ASVs) in the airborne microbiota which were likely involved in zoonotic transmission events.We hypothesize that ASVs originating from pig feces are aerosolized and, through breathing, get trapped in the pig farm workers' upper respiratory tract from where they can get swallowed. Consequently, some of the animal associated ASVs are transferred into the gastrointestinal tracts (GITs) which leads to changes in the composition of the human gut microbiota. The importance of this finding for human health must be investigated further.
Collapse
Affiliation(s)
- Julia Moor
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland,Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Tsering Wüthrich
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland,Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Suzanne Aebi
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Nadezda Mostacci
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Gudrun Overesch
- Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | - Anne Oppliger
- Unisante, Department of Occupational and Environmental Health, University of Lausanne, Lausanne, Switzerland
| | - Markus Hilty
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland,Markus Hilty Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3001Bern, Switzerland, Phone +41 31 632 49 83
| |
Collapse
|
4
|
Grzyb J, Pawlak K. Staphylococci and fecal bacteria as bioaerosol components in animal housing facilities in the Zoological Garden in Chorzów. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:56615-56627. [PMID: 34061267 PMCID: PMC8500874 DOI: 10.1007/s11356-021-14594-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Zoos are places open for a large number of visitors, adults and children, who can admire exotic as well as indigenous animal species. The premises for animals may contain pathogenic microbes, including those exhibiting antibiotic resistance. It poses a threat to people remaining within the zoo premises, both for animal keepers who meet animals on a daily basis and visitors who infrequently have contact with animals. There are almost no studies concerning the presence on the concentration of airborne bacteria, especially staphylococci and fecal bacteria in animal shelters in the zoo. There is no data about antibiotic resistance of staphylococci in these places. The results will enable to determine the scale of the threat that indicator bacteria from the bioaerosol pose to human health within zoo premises. This study conducted in rooms for 5 animals group (giraffes, camels, elephants, kangaroos, and Colobinae (species of monkey)) in the Silesian Zoological Garden in Chorzów (Poland). The bioaerosol samples were collected using a six-stage Andersen cascade impactor to assess the concentrations and size distribution of airborne bacteria. Staphylococci were isolated from bioaerosol and tested for antibiotic resistance. In our study, the highest contamination of staphylococci and fecal bacteria was recorded in rooms for camels and elephants, and the lowest in rooms for Colobinae. At least 2/3 of bacteria in bioaerosol constituted respirable fraction that migrates into the lower respiratory tract of the people. In investigated animal rooms, the greatest bacteria contribution was recorded for bioaerosol fraction sized 1.1-3.3μm. Bacterial concentrations were particularly strong in spring and autumn, what is related to shedding fur by animals. Among the isolated staphylococci which most often occurred were Staphylococcus succinus, S. sciuri, and S. vitulinus. The highest antibiotic resistance was noted in the case of Staphylococcus epidermidis, while the lowest for S. xylosus. In addition to standard cleaning of animal rooms, periodic disinfection should be considered. Cleaning should be carried out wet, which should reduce dust, and thus the concentrations of bacteria in the air of animal enclosures.
Collapse
Affiliation(s)
- Jacek Grzyb
- Department of Microbiology and Biomonitoring, University of Agriculture in Kraków, Mickiewicza Ave 24/28, 30-059, Kraków, Poland.
| | - Krzysztof Pawlak
- Department of Zoology and Animal Welfare, University of Agriculture in Kraków, Mickiewicza Ave 24/28, 30-059, Kraków, Poland
| |
Collapse
|
5
|
Hong SW, Park J, Jeong H, Kim M. Evaluation of the microbiome composition in particulate matter inside and outside of pig houses. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:640-650. [PMID: 34189511 PMCID: PMC8203996 DOI: 10.5187/jast.2021.e52] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 12/12/2022]
Abstract
Particulate matter (PM) produced in pig houses may contain microbes which can
spread by airborne transmission, and PM and microbes in PM adversely affect
human and animal health. To investigate the microbiome in PM from pig houses,
nine PM samples were collected in summer 2020 inside and outside of pig houses
located in Jangseong-gun, Jeollanam-do Province, Korea, comprising three PM
samples from within a nursery pig house (I-NPH), three samples from within a
finishing pig house (I-FPH), and three samples from outside of the pig houses
(O-PH). Microbiomes were analyzed using 16S rRNA gene amplicon sequencing.
Firmicutes was the most dominant phylum and accounted for 64.8%–97.5% of
total sequences in all the samples, followed by Proteobacteria
(1.4%–21.8%) and Bacteroidetes (0.3%–13.7%). In total, 31 genera
were represented by > 0.3% of all sequences, and only
Lactobacillus, Turicibacter, and
Aerococcus differed significantly among the three PM sample
types. All three genera were more abundant in the I-FPH samples than in the O-PH
samples. Alpha diversity indices did not differ significantly among the three PM
types, and a principal coordinate analysis suggested that overall microbial
communities were similar across PM types. The concentration of PM did not
significantly differ among the three PM types, and no significant correlation of
PM concentration with the abundance of any potential pathogen was observed. The
present study demonstrates that microbial composition in PM inside and outside
of pig houses is similar, indicating that most microbe-containing PM inside pig
houses leaks to the outside from where it, along with microbe-containing PM on
the outside, may re-enter the pig houses. Our results may provide useful
insights regarding strategies to mitigate potential risk associated with pig
farming PM and pathogens in PM.
Collapse
Affiliation(s)
- Se-Woon Hong
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Korea.,Education and Research Unit for Climate-Smart Reclaimed-Tideland Agriculture, Chonnam National University, Gwangju 61186, Korea.,AgriBio Institute of Climate Change Management, Chonnam National University, Gwangju 61186, Korea
| | - Jinseon Park
- AgriBio Institute of Climate Change Management, Chonnam National University, Gwangju 61186, Korea
| | - Hanna Jeong
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Korea.,Education and Research Unit for Climate-Smart Reclaimed-Tideland Agriculture, Chonnam National University, Gwangju 61186, Korea
| | - Minseok Kim
- AgriBio Institute of Climate Change Management, Chonnam National University, Gwangju 61186, Korea.,Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
6
|
Sudatip D, Chasiri K, Kritiyakan A, Phanprasit W, Thinphovong C, Tiengrim S, Thamlikitkul V, Abdallah R, Baron SA, Rolain JM, Morand S, Hilty M, Oppliger A. A One Health approach to assessing occupational exposure to antimicrobial resistance in Thailand: The FarmResist project. PLoS One 2021; 16:e0245250. [PMID: 33507909 PMCID: PMC7842938 DOI: 10.1371/journal.pone.0245250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022] Open
Abstract
This Southeast Asia-Europe research project will use a One Health approach to identify the major parameters responsible for the presence of animal-associated antimicrobial resistant bacteria in animal production facilities in Thailand and the risk of their transmission from animals to humans. We will focus on traditional, small, extensive pig and poultry farms where information on antibiotic use is scarce and animals live in close contact with humans. This cross-sectional study will be based on the epidemiological analysis of the antimicrobial resistance (AMR) present in fecal samples from animals and humans. Extended spectrum beta-lactamase producing Enterobacteriaceae (ESBL-E) and Enterobacteriaceae resistant to colistin will be actively searched in the feces of farm animals (pigs and poultry), small wild rodents and farmers. Phenotypic (selective plating) and genotypic (multilocus seuquence typing and sequencing) methods will be used for the detection of AMR, the identification of antibiotic resistance genes (ARGs) and the characterization of strains carrying resistance genes. Questionnaires will be administered to investigate the effects of antibiotic use, farm characteristics and biosecurity measures on the occurrence of AMR in animals. Subsequently, the fecal carriage of AMR and ARGs in farmers will be compared to a control population with no occupational contacts with animals, thus enabling an estimation of the risk of transmission of AMR/ARGs from animals to farmers.
Collapse
Affiliation(s)
- Duangdao Sudatip
- Faculty of Public Health, Department of Occupational Health and Safety, Mahidol University, Bangkok, Thailand
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Department of Occupational Health and Environment, Unisante, University of Lausanne, Lausanne, Switzerland
| | | | - Anamika Kritiyakan
- Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
| | - Wantanee Phanprasit
- Faculty of Public Health, Department of Occupational Health and Safety, Mahidol University, Bangkok, Thailand
| | | | - Surapee Tiengrim
- Faculty of Medical Technology, Department of Clinical Microbiology and Applied Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Visanu Thamlikitkul
- Faculty of Medicine, Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Rim Abdallah
- MEPHI, IHU Méditerranée Infection, Aix-Marseille University, Marseille, France
| | | | - Jean-Marc Rolain
- MEPHI, IHU Méditerranée Infection, Aix-Marseille University, Marseille, France
| | - Serge Morand
- Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
- Institut des Sciences de l’Evolution, CNRS, Université de Montpellier, Montpellier, France
| | - Markus Hilty
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Anne Oppliger
- Department of Occupational Health and Environment, Unisante, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
7
|
Grzyb J, Pawlak K. Impact of bacterial aerosol, particulate matter, and microclimatic parameters on animal welfare in Chorzów (Poland) zoological garden. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:3318-3330. [PMID: 32914308 PMCID: PMC7788024 DOI: 10.1007/s11356-020-10680-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/30/2020] [Indexed: 06/11/2023]
Abstract
Zoos are very popular facilities visited by entire families with children, who come there to watch live animals. Zoos also provide workplaces for a large number of people directly looking after the animals. For places designed to house animals, regardless of whether they are farm animals, pets, or zoo animals, a higher concentration of both dust and potentially harmful bioaerosols can be expected. Unfortunately, there are almost no studies concerning the concentration of bacterial bioaerosols and particulate matter in animal shelters that would answer the question whether the level of these pollutants is constant or variable and dependent on a particular zoo, group of animals, their number in enclosures, or season. This study aimed to assess the levels of bacterial aerosol in rooms intended for animals (giraffes, camels, elephants, kangaroos, and colobinae) in the Silesian Zoological Garden in Chorzów (Poland). The bioaerosol samples were collected using a six-stage Andersen cascade impactor to assess the concentrations and size distribution of airborne bacteria. Particulate matter (PM10) was assessed using an electronic dust meter. Measurements of microclimate parameters were carried out using the Airflow™ Instruments Velocity Meter TA440, while gas concentrations were determined applying GFG Microtector II G450. The results showed that the concentration of airborne bacteria varied significantly between facilities for the analyzed animal groups. The lowest concentration of the total bacterial aerosol was observed in enclosures for colobinae (approx. 850 CFU/m3), while the highest-in rooms for elephants (approx. 105,600 CFU/m3). The average share of respirable fraction of bacteria was quite high, with values ranging from 62.9 (colobinae) to 86.9% (elephants), indicating potential harmfulness to the health of exposed people. PM10 concentrations were relatively low (10-86 μg/m3) and did not exceed the limit values for occupational exposure. Moreover, the levels of bacterial bioaerosol in almost all cases did not exceed the limit values. As the animals constitute a significant source of bioaerosol, attention should be paid to thorough cleaning of animals and their shelters, as well as maintaining appropriate levels of microclimate parameters in the facilities.
Collapse
Affiliation(s)
- Jacek Grzyb
- Department of Microbiology and Biomonitoring, University of Agriculture in Kraków, Mickiewicza Ave 24/28, 30-059, Kraków, Poland.
| | - Krzysztof Pawlak
- Department of Zoology and Animal Welfare, University of Agriculture in Kraków, Mickiewicza Ave 24/28, 30-059, Kraków, Poland
| |
Collapse
|
8
|
George AN, Stewart JR, Evans JC, Gibson JM. Risk of Antibiotic-Resistant Staphylococcus aureus Dispersion from Hog Farms: A Critical Review. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2020; 40:1645-1665. [PMID: 32406956 DOI: 10.1111/risa.13495] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
The World Health Organization has declared antibiotic resistance "one of the biggest threats to global health." Mounting evidence suggests that antibiotic use in industrial-scale hog farming is contributing to the spread of antibiotic-resistant Staphylococcus aureus. To capture available evidence on these risks, we searched peer-reviewed studies published before June 2017 and conducted a meta-analysis of these studies' estimates of the prevalence of swine-associated, antibiotic-resistant S. aureus in animals, humans, and the environment. The 166 relevant studies revealed consistent evidence of livestock-associated methicillin-resistant S. aureus (MRSA) in hog herds (55.3%) raised with antibiotics. MRSA prevalence was also substantial in slaughterhouse pigs (30.4%), industrial hog operation workers (24.4%), and veterinarians (16.8%). The prevalence of swine-associated, multidrug-resistant S. aureus (MDRSA)-with resistance to three or more antibiotics-is not as well documented. Nonetheless, sufficient studies were available to estimate MDRSA pooled prevalence in conventional hog operation workers (15.0%), workers' household members (13.0%), and community members (5.37%). Evidence also suggests that antibiotic-resistant S. aureus can be present in air, soil, water, and household surface samples gathered in or near high-intensity hog operations. An important caveat is that prevalence estimates for humans reflect colonization, not active infection, and the health risks of colonization remain poorly understood. In addition, these pooled results may not represent risks in specific locations, due to wide geographic variation. Nonetheless, these results underscore the need for additional preventive action to stem the spread of antibiotic-resistant pathogens from livestock operations and a streamlined reporting system to track this risk.
Collapse
Affiliation(s)
- Alexandra N George
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Jill R Stewart
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Jessica C Evans
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN, USA
| | - Jacqueline MacDonald Gibson
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN, USA
| |
Collapse
|
9
|
Molecular Epidemiology of Staphylococcus aureus Lineages in Wild Animals in Europe: A Review. Antibiotics (Basel) 2020; 9:antibiotics9030122. [PMID: 32183272 PMCID: PMC7148531 DOI: 10.3390/antibiotics9030122] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/20/2022] Open
Abstract
Staphylococcus aureus is an opportunist pathogen that is responsible for numerous types of infections. S. aureus is known for its ability to easily acquire antibiotic resistance determinants. Methicillin-resistant S. aureus (MRSA) is a leading cause of infections both in humans and animals and is usually associated with a multidrug-resistant profile. MRSA dissemination is increasing due to its capability of establishing new reservoirs and has been found in humans, animals and the environment. Despite the fact that the information on the incidence of MRSA in the environment and, in particular, in wild animals, is scarce, some studies have reported the presence of these strains among wildlife with no direct contact with antibiotics. This shows a possible transmission between species and, consequently, a public health concern. The aim of this review is to better understand the distribution, prevalence and molecular lineages of MRSA in European free-living animals.
Collapse
|
10
|
Kozajda A, Jeżak K, Kapsa A. Airborne Staphylococcus aureus in different environments-a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:34741-34753. [PMID: 31654301 PMCID: PMC6900272 DOI: 10.1007/s11356-019-06557-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 09/23/2019] [Indexed: 05/22/2023]
Abstract
The aim of the literature review was to describe the environments where the presence of airborne Staphylococcus aureus was confirmed and to catalogue the most often used methods and conditions of bioaerosol sampling to identify the bacteria. The basis for searching of studies on S. aureus in the bioaerosol in different environments was PubMed database resources from the years 1990-2019 (May). The review included studies which were carried on in selected environments: hospitals and other health care facilities, large-scale animal breeding, wastewater treatment plants, residential areas, educational institutions, and other public places. The highest concentrations and genetic diversity of identified S. aureus strains, including MRSA (methicillin-resistant S. aureus), have been shown in large-scale animal breeding. The role of the airborne transmission in dissemination of infection caused by these pathogens is empirically confirmed in environmental studies. Commonly available, well-described, and relatively inexpensive methods of sampling, identification, and subtyping guarantee a high reliability of results and allow to obtain fast and verifiable outcomes in environmental studies on air transmission routes of S. aureus strains.
Collapse
Affiliation(s)
- Anna Kozajda
- Nofer Institute of Occupational Medicine, 8 Teresy Str, 91-348, Łódź, Poland.
| | - Karolina Jeżak
- Nofer Institute of Occupational Medicine, 8 Teresy Str, 91-348, Łódź, Poland
| | - Agnieszka Kapsa
- Nofer Institute of Occupational Medicine, 8 Teresy Str, 91-348, Łódź, Poland
| |
Collapse
|
11
|
de
Rooij MMT, Hoek G, Schmitt H, Janse I, Swart A, Maassen CBM, Schalk M, Heederik DJJ, Wouters IM. Insights into Livestock-Related Microbial Concentrations in Air at Residential Level in a Livestock Dense Area. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7746-7758. [PMID: 31081619 PMCID: PMC6611074 DOI: 10.1021/acs.est.8b07029] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/03/2019] [Accepted: 04/29/2019] [Indexed: 05/21/2023]
Abstract
Microbial air pollution from livestock farms has raised concerns regarding public health. Little is known about airborne livestock-related microbial levels in residential areas. We aimed to increase insights into this issue. Air measurements were performed in 2014 and 2015 at 61 residential sites in The Netherlands. Quantitative-PCR was used to assess DNA concentrations of selected bacteria (commensals: Escherichia coli and Staphylococcus spp.; a zoonotic pathogen: Campylobacter jejuni) and antimicrobial resistance (AMR) genes ( tetW, mecA) in airborne dust. Mixed models were used to explore spatial associations (temporal adjusted) with livestock-related characteristics of the surroundings. DNA from commensals and AMR genes was detectable even at sites furthest away from farms (1200 m), albeit at lower levels. Concentrations, distinctly different between sites, were strongly associated with the density of farms in the surroundings especially with poultry and pigs. C. jejuni DNA was less prevalent (42% of samples positive). Presence of C. jejuni was solely associated with poultry (OR: 4.7 (95% CI: 1.7-14), high versus low poultry density). Residential exposure to livestock-related bacteria and AMR genes was demonstrated. Identified associations suggest contribution of livestock farms to microbial air pollution in general and attribution differences between farm types. This supports the plausibility of recent studies showing health effects in relation to residential proximity to farms.
Collapse
Affiliation(s)
- Myrna M. T. de
Rooij
- Institute
for Risk Assessment Sciences (IRAS), Utrecht
University, Yalelaan 2, 3584 CM Utrecht, The Netherlands
- Phone: +31302532539; e-mail:
| | - Gerard Hoek
- Institute
for Risk Assessment Sciences (IRAS), Utrecht
University, Yalelaan 2, 3584 CM Utrecht, The Netherlands
| | - Heike Schmitt
- Institute
for Risk Assessment Sciences (IRAS), Utrecht
University, Yalelaan 2, 3584 CM Utrecht, The Netherlands
- National
Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Ingmar Janse
- National
Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Arno Swart
- National
Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Catharina B. M. Maassen
- National
Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Marjolijn Schalk
- National
Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Dick J. J. Heederik
- Institute
for Risk Assessment Sciences (IRAS), Utrecht
University, Yalelaan 2, 3584 CM Utrecht, The Netherlands
| | - Inge M. Wouters
- Institute
for Risk Assessment Sciences (IRAS), Utrecht
University, Yalelaan 2, 3584 CM Utrecht, The Netherlands
| |
Collapse
|
12
|
Kalupahana RS, Duim B, Verstappen KM, Gamage CD, Dissanayake N, Ranatunga L, Graveland H, Wagenaar JA. MRSA in Pigs and the Environment as a Risk for Employees in Pig-Dense Areas of Sri Lanka. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
13
|
The Indoor-Air Microbiota of Pig Farms Drives the Composition of the Pig Farmers' Nasal Microbiota in a Season-Dependent and Farm-Specific Manner. Appl Environ Microbiol 2019; 85:AEM.03038-18. [PMID: 30824439 DOI: 10.1128/aem.03038-18] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/19/2019] [Indexed: 12/20/2022] Open
Abstract
Prior studies have demonstrated an influence of the built environment on the human nasal microbiota. However, very little is known about the influences of working on a pig farm on the human nasal microbiota. We longitudinally collected samples from 30 pig farms (air and nasal swabs from humans and pigs) in Switzerland from 2014 to 2015. As controls, nasal swabs from cow farmers and individuals with no contact with farm animals were included. An analysis of the microbiota for all samples (n = 609) was performed based on 16S rRNA gene sequencing (MiSeq) and included the investigations of source-sink dynamics. The numbers of indoor airborne particles and bacterial loads in pig farms were also investigated and were highest in winter. Similarly, the microbiota analyses revealed that the alpha diversity values of the nares of pig farmers were increased in winter in contrast to those of samples from the nonexposed controls, which displayed low alpha diversity values throughout the seasons. Source-sink analyses revealed that bacteria from the noses of pigs are more commonly coidentified within the pig farmers' microbiota in winter but to a less extent in summer. In addition, in winter, there was a stronger intrasimilarity for samples that originated from the same farm than for samples from different farms, and this farm specificity was partially or completely lost in spring, summer, and fall. In conclusion, in contrast to nonexposed controls, a pig farmer's nasal microbiota is dynamic, as the indoor-air microbiota of pig farms drives the composition of the pig farmer's nasal microbiota in a season-dependent manner.IMPORTANCE The airborne microbiota of pig farms poses a potential health hazard and impacts both livestock and humans working in this environment. Therefore, a more thorough understanding of the microbiota composition and dynamics in this setting is needed. This study was of a prospective design (12 months) and used samples from different sites. This means that the microbiota of air, animals (pigs), and humans was simultaneously investigated. Our findings highlight that the potential health hazard might be particularly high in winter compared to that in summer.
Collapse
|
14
|
Vestergaard DV, Holst GJ, Basinas I, Elholm G, Schlünssen V, Linneberg A, Šantl-Temkiv T, Finster K, Sigsgaard T, Marshall IPG. Pig Farmers' Homes Harbor More Diverse Airborne Bacterial Communities Than Pig Stables or Suburban Homes. Front Microbiol 2018; 9:870. [PMID: 29765370 PMCID: PMC5938556 DOI: 10.3389/fmicb.2018.00870] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/16/2018] [Indexed: 12/30/2022] Open
Abstract
Airborne bacterial communities are subject to conditions ill-suited to microbial activity and growth. In spite of this, air is an important transfer medium for bacteria, with the bacteria in indoor air having potentially major consequences for the health of a building’s occupants. A major example is the decreased diversity and altered composition of indoor airborne microbial communities as a proposed explanation for the increasing prevalence of asthma and allergies worldwide. Previous research has shown that living on a farm confers protection against development of asthma and allergies, with airborne bacteria suggested as playing a role in this protective effect. However, the composition of this beneficial microbial community has still not been identified. We sampled settled airborne dust using a passive dust sampler from Danish pig stables, associated farmers’ homes, and from suburban homes (267 samples in total) and carried out quantitative PCR measurements of bacterial abundance and MiSeq sequencing of the V3–V4 region of bacterial 16S rRNA genes found in these samples. Airborne bacteria had a greater diversity and were significantly more abundant in pig stables and farmers’ homes than suburban homes (Wilcoxon rank sum test P < 0.05). Moreover, bacterial taxa previously suggested to contribute to a protective effect had significantly higher relative and absolute abundance in pig stables and farmers’ homes than in suburban homes (ALDEx2 with P < 0.05), including Firmicutes, Peptostreptococcaceae, Prevotellaceae, Lachnospiraceae, Ruminococcaceae, Ruminiclostridium, and Lactobacillus. Pig stables had significantly lower airborne bacterial diversity than farmers’ homes, and there was no discernable direct transfer of airborne bacteria from stable to home. This study identifies differences in indoor airborne bacterial communities that may be an important component of this putative protective effect, while showing that pig stables themselves do not appear to directly contribute to the airborne bacterial communities in the homes of farmers. These findings improve our understanding of the role of airborne bacteria in the increasing prevalence of asthma and allergy.
Collapse
Affiliation(s)
- Ditte V Vestergaard
- Section for Environment, Occupation and Health, Department of Public Health, Aarhus University, Aarhus, Denmark.,Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Gitte J Holst
- Section for Environment, Occupation and Health, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Ioannis Basinas
- Centre for Human Exposure Science, Institute of Occupational Medicine, Edinburgh, United Kingdom
| | - Grethe Elholm
- Section for Environment, Occupation and Health, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Vivi Schlünssen
- Section for Environment, Occupation and Health, Department of Public Health, Aarhus University, Aarhus, Denmark.,National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Allan Linneberg
- Department of Clinical Experimental Research, Rigshospitalet, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Research Centre for Prevention and Health, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Tina Šantl-Temkiv
- Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Kai Finster
- Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Torben Sigsgaard
- Section for Environment, Occupation and Health, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Ian P G Marshall
- Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
15
|
Influence of Pig Farming on the Human Nasal Microbiota: Key Role of Airborne Microbial Communities. Appl Environ Microbiol 2018; 84:AEM.02470-17. [PMID: 29330190 PMCID: PMC5835734 DOI: 10.1128/aem.02470-17] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
It has been hypothesized that the environment can influence the composition of the nasal microbiota. However, the direct influence of pig farming on the anterior and posterior nasal microbiota is unknown. Using a cross-sectional design, pig farms (n = 28) were visited in 2014 to 2015, and nasal swabs from 43 pig farmers and 56 pigs, as well as 27 air samples taken in the vicinity of the pig enclosures, were collected. As controls, nasal swabs from 17 cow farmers and 26 non-animal-exposed individuals were also included. Analyses of the microbiota were performed based on 16S rRNA amplicon sequencing and the DADA2 pipeline to define sequence variants (SVs). We found that pig farming is strongly associated with specific microbial signatures (including alpha- and beta-diversity), which are reflected in the microbiota of the human nose. Furthermore, the microbial communities were more similar within the same farm compared to between the different farms, indicating a specific microbiota pattern for each pig farm. In total, there were 82 SVs that occurred significantly more abundantly in samples from pig farms than from cow farmers and nonexposed individuals (i.e., the core pig farm microbiota). Of these, nine SVs were significantly associated with the posterior part of the human nose. The results strongly indicate that pig farming is associated with a distinct human nose microbiota. Finally, the community structures derived by the DADA2 pipeline showed an excellent agreement with the outputs of the mothur pipeline which was revealed by procrustes analyses. IMPORTANCE The knowledge about the influence of animal keeping on the human microbiome is important. Previous research has shown that pets significantly affect the microbial communities of humans. However, the effect of animal farming on the human microbiota is less clear, although it is known that the air at farms and, in particular, at pig farms is charged with large amounts of dust, bacteria, and fungi. In this study, we simultaneously investigated the nasal microbiota of pigs, humans, and the environment at pig farms. We reveal an enormous impact of pig farming on the human nasal microbiota which is far more pronounced compared to cow farming. In addition, we analyzed the airborne microbiota and found significant associations suggesting an animal-human transmission of the microbiota within pig farms. We also reveal that microbial patterns are farm specific, suggesting that the environment influences animals and humans in a similar manner.
Collapse
|
16
|
Feld L, Bay H, Angen Ø, Larsen AR, Madsen AM. Survival of LA-MRSA in Dust from Swine Farms. Ann Work Expo Health 2018; 62:147-156. [PMID: 29365048 PMCID: PMC6788576 DOI: 10.1093/annweh/wxx108] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 10/30/2017] [Accepted: 12/07/2017] [Indexed: 11/24/2022] Open
Abstract
Dust is suspected to be an important factor in transmission of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) between pigs and pig farmers and their families. The aim of this study was to determine the rate of decay for Staphylococcus aureus and LA-MRSA in dust from swine farms. Electrostatic dust fall collectors (EDCs) were used for passive sampling of settling airborne dust in 11 stable sections from six swine farms. Extraction, plating, identification, and enumeration of cultivable S. aureus and LA-MRSA from the EDCs were performed after storage for 0-30 days postsampling. The survival of S. aureus was measured in 196 dust samples from all farms, and data were used to estimate the decay constant λ according to a model for exponential decay: N(t) = N0 × e-λt. The number of S. aureus colonies was up to 600-fold higher than the number of LA-MRSA colonies on MRSA selective agar. The data showed a good fit to the model (λ = 0.13, r2 = 0.86) even with a large difference in initial concentrations of S. aureus between stables. The loads of S. aureus and LA-MRSA in the dust were significantly reduced by storage time, and the half-life was 5 days for both S. aureus and LA-MRSA. In dust samples with high initial concentrations, LA-MRSA and S. aureus could still be cultivated 30 days after sampling. On all farms MRSA isolates belonged to the clonal complex (CC) 398, and at one farm some isolates also belonged to CC30. A screening for other Staphylococcus species in the farm dust revealed 13 different species numerically dominated by Staphylococcus equorum. Based on the exponential decay model, S. equorum had a half-life of 4 days. In conclusion, the presence of MRSA in airborne dust from five of six farms indicates that dust might be an important vehicle for transmission of LA-MRSA. LA-MRSA and S. aureus was found to survive well in farm dust with half-lives of 5 days, and dependent on the initial concentration they could be found in farm dust for weeks. The 99.9% die-off rate was 66 days for LA-MRSA. Thus, farm dust can pose an exposure risk for humans in the farm environment, but also when transported to other environments. On the other hand, the risk will decrease by time. These results provide important knowledge to diminish spread from farm environments to other environments on, e.g., tools or clothing, and in relation to cleaning of emptied LA-MRSA-positive stables.
Collapse
Affiliation(s)
- Louise Feld
- The National Research Center for the Working Environment, Copenhagen Ø, Denmark
| | - Hans Bay
- The National Research Center for the Working Environment, Copenhagen Ø, Denmark
| | | | | | - Anne Mette Madsen
- The National Research Center for the Working Environment, Copenhagen Ø, Denmark
| |
Collapse
|
17
|
Transmission of Methicillin-Resistant Staphylococcus aureus to Human Volunteers Visiting a Swine Farm. Appl Environ Microbiol 2017; 83:AEM.01489-17. [PMID: 28970219 PMCID: PMC5691421 DOI: 10.1128/aem.01489-17] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/13/2017] [Indexed: 11/21/2022] Open
Abstract
Transmission of methicillin-resistant Staphylococcus aureus (MRSA) from animals to humans is of great concern due to the implications for human health and the health care system. The objective was to investigate the frequency and duration of MRSA carriage in human volunteers after a short-term exposure in a swine farm. The experimental study included 34 human volunteers staying 1 h in a MRSA-positive swine farm in four trials. In two of the trials, the influence of farm work involving pig contact was studied using a crossover design. The quantities of MRSA in nasal swabs, throat swabs, and air samples were measured at different time points and analyzed in relation to relevant covariates. This investigation showed that, overall, 94% of the volunteers acquired MRSA during the farm visit. Two hours after the volunteers left the stable, the nasal MRSA count had declined to unquantifiable levels in 95% of the samples. After 48 h, 94% of the volunteers were MRSA-negative. Nasal MRSA carriage was positively correlated to personal exposure to airborne MRSA and farm work involving pig contact and negatively correlated to smoking. No association was observed between MRSA carriage and face touching behavior, nasal methicillin-susceptible Staphylococcus aureus (MSSA) carriage, age, or gender. The increase in human MRSA carriage among the volunteers with pig contact seems to be dependent on the increased concentration of airborne MRSA of the surrounding air and not directly on physical contact with pigs. MRSA was not detected in any of the throat samples. IMPORTANCE The experimental approach made it possible to elucidate the contributions of airborne MRSA levels and farm work to nasal MRSA carriage in a swine farm. Short-term exposure to airborne MRSA poses a substantial risk for farm visitors to become nasal carriers, but the carriage is typically cleared within hours to a few days. The risk for short-term visitors to cause secondary transmissions of MRSA is most likely negligible due to the observed decline to unquantifiable levels in 95% of the nasal samples after only 2 h. The MRSA load in the nose was highly correlated to the amount of MRSA in the air and interventions to reduce the level of airborne MRSA or the use of face masks might consequently reduce nasal contamination.
Collapse
|
18
|
Anderson BD, Lednicky JA, Torremorell M, Gray GC. The Use of Bioaerosol Sampling for Airborne Virus Surveillance in Swine Production Facilities: A Mini Review. Front Vet Sci 2017; 4:121. [PMID: 28798919 PMCID: PMC5529434 DOI: 10.3389/fvets.2017.00121] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/10/2017] [Indexed: 12/30/2022] Open
Abstract
Modern swine production facilities typically house dense populations of pigs and may harbor a variety of potentially zoonotic viruses that can pass from one pig generation to another and periodically infect human caretakers. Bioaerosol sampling is a common technique that has been used to conduct microbial risk assessments in swine production, and other similar settings, for a number of years. However, much of this work seems to have been focused on the detection of non-viral microbial agents (i.e., bacteria, fungi, endotoxins, etc.), and efforts to detect viral aerosols in pig farms seem sparse. Data generated by such studies would be particularly useful for assessments of virus transmission and ecology. Here, we summarize the results of a literature review conducted to identify published articles related to bioaerosol generation and detection within swine production facilities, with a focus on airborne viruses. We identified 73 scientific reports, published between 1991 and 2017, which were included in this review. Of these, 19 (26.7%) used sampling methodology for the detection of viruses. Our findings show that bioaerosol sampling methodologies in swine production settings have predominately focused on the detection of bacteria and fungi, with no apparent standardization between different approaches. Information, specifically regarding virus aerosol burden in swine production settings, appears to be limited. However, the number of viral aerosol studies has markedly increased in the past 5 years. With the advent of new sampling technologies and improved diagnostics, viral bioaerosol sampling could be a promising way to conduct non-invasive viral surveillance among swine farms.
Collapse
Affiliation(s)
- Benjamin D Anderson
- Division of Infectious Diseases, School of Medicine, Global Health Institute, Duke University, Durham, NC, United States.,Department of Environmental and Global Health, College of Public Health & Health Professions, Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - John A Lednicky
- Department of Environmental and Global Health, College of Public Health & Health Professions, Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Montserrat Torremorell
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota-Twin Cities, Saint Paul, MN, United States
| | - Gregory C Gray
- Division of Infectious Diseases, School of Medicine, Global Health Institute, Duke University, Durham, NC, United States
| |
Collapse
|
19
|
Yu G, Wang Y, Wang S, Duan C, Wei L, Gao J, Chai T, Cai Y. Effects of Microbial Aerosol in Poultry House on Meat Ducks' Immune Function. Front Microbiol 2016; 7:1245. [PMID: 27582731 PMCID: PMC4988117 DOI: 10.3389/fmicb.2016.01245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/27/2016] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to evaluate effects of microbial aerosols on immune function of ducks and shed light on the establishment of microbial aerosol concentration standards for poultry. A total of 1800 1-d-old cherry valley ducks were randomly divided into five groups (A, B, C, D, and E) with 360 ducks in each. To obtain objective data, each group had three replications. Concentrations of airborne bacteria, fungi, endotoxin in different groups were created by controlling ventilation and bedding cleaning frequency. Group A was the control group and hygienic conditions deteriorated progressively from group B to E. A 6-stage Andersen impactor was used to detect the aerosol concentration of aerobes, gram-negative bacteria, fungi, and AGI-30 microbial air sampler detect the endotoxin, and Composite Gas Detector detect the noxious gas. In order to assess the immune function of meat ducks, immune indicators including H5 AIV antibody titer, IgG, IL-2, T-lymphocyte transformation rate, lysozyme and immune organ indexes were evaluated. Correlation coefficients were also calculated to evaluate the relationships among airborne bacteria, fungi, endotoxin, and immune indicators. The results showed that the concentration of airborne aerobe, gram-negative bacteria, fungi, endotoxin have a strong correlation to H5 AIV antibody titer, IgG, IL-2, T-lymphocyte transformation rate, lysozyme, and immune organ indexes, respectively. In addition, when the concentration of microbial aerosol reach the level of group D, serum IgG (6–8 weeks), lysozyme (4 week) were significantly higher than in group A (P < 0.05); serum IL-2 (7 and 8 weeks), T-lymphocyte transformation rate, lysozyme (7 and 8 weeks), spleen index (6 and 8 weeks), and bursa index (8 week) were significantly lower than in group A (P < 0.05 or P < 0.01). The results indicated that a high level of microbial aerosol adversely affected the immune level of meat ducks. The microbial aerosol values in group D provide a basis for recommending upper limit concentrations of microbial aerosols for healthy meat ducks.
Collapse
Affiliation(s)
- Guanliu Yu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province Tai'an, China
| | - Yao Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province Tai'an, China
| | | | | | - Liangmeng Wei
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province Tai'an, China
| | - Jing Gao
- The Central Hospital of Tai'an Tai'an, China
| | - Tongjie Chai
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province Tai'an, China
| | - Yumei Cai
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province Tai'an, China
| |
Collapse
|
20
|
Yu G, Wei L, Liu Y, Liu J, Wang Y, Gao J, Chai T, Cai Y. Influence of indoor microbial aerosol on the welfare of meat ducks. Br Poult Sci 2016; 57:12-22. [DOI: 10.1080/00071668.2015.1122739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Eradication of methicillin-resistant Staphylococcus aureus and of Enterobacteriaceae expressing extended-spectrum beta-lactamases on a model pig farm. Appl Environ Microbiol 2015; 81:7633-43. [PMID: 26341200 DOI: 10.1128/aem.01713-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/18/2015] [Indexed: 01/06/2023] Open
Abstract
Colonization of livestock with bacteria resistant to antibiotics is considered a risk for the entry of drug-resistant pathogens into the food chain. For this reason, there is a need for novel concepts to address the eradication of drug-resistant commensals on farms. In the present report, we evaluated the decontamination measures taken on a farm contaminated with methicillin-resistant Staphylococcus aureus (MRSA) and Enterobacteriaceae expressing extended-spectrum β-lactamases (ESBL-E). The decontamination process preceded the conversion from piglet breeding to gilt production. Microbiological surveillance showed that the decontamination measures eliminated the MRSA and ESBL-E strains that were detected on the farm before the complete removal of pigs, cleaning and disinfection of the stable, and construction of an additional stable meeting high-quality standards. After pig production was restarted, ESBL-E remained undetectable over 12 months, but MRSA was recovered from pigs and the environment within the first 2 days. However, spa (Staphylococcus aureus protein A gene) typing revealed acquisition of an MRSA strain (type t034) that had not been detected before decontamination. Interestingly, we observed that a farmworker who had been colonized with the prior MRSA strain (t2011) acquired the new strain (t034) after 2 months. In summary, this report demonstrates that decontamination protocols similar to those used here can lead to successful elimination of contaminating MRSA and ESBL-E in pigs and the stable environment. Nevertheless, decontamination protocols do not prevent the acquisition of new MRSA strains.
Collapse
|
22
|
Blais-Lecours P, Perrott P, Duchaine C. Non-culturable bioaerosols in indoor settings: Impact on health and molecular approaches for detection. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2015; 110:45-53. [PMID: 32288547 PMCID: PMC7108366 DOI: 10.1016/j.atmosenv.2015.03.039] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 03/09/2015] [Accepted: 03/19/2015] [Indexed: 05/21/2023]
Abstract
Despite their significant impact on respiratory health, bioaerosols in indoor settings remain understudied and misunderstood. Culture techniques, predominantly used for bioaerosol characterisation in the past, allow for the recovery of only a small fraction of the real airborne microbial burden in indoor settings, given the inability of several microorganisms to grow on agar plates. However, with the development of new tools to detect non-culturable environmental microorganisms, the study of bioaerosols has advanced significantly. Most importantly, these techniques have revealed a more complex bioaerosol burden that also includes non-culturable microorganisms, such as archaea and viruses. Nevertheless, air quality specialists and consultants remain reluctant to adopt these new research-developed techniques, given that there are relatively few studies found in the literature, making it difficult to find a point of comparison. Furthermore, it is unclear as to how this new non-culturable data can be used to assess the impact of bioaerosol exposure on human health. This article reviews the literature that describes the non-culturable fraction of bioaerosols, focussing on bacteria, archaea and viruses, and examines its impact on bioaerosol-related diseases. It also outlines available molecular tools for the detection and quantification of these microorganisms and states various research needs in this field.
Collapse
Affiliation(s)
- Pascale Blais-Lecours
- Centre de recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - Phillipa Perrott
- Centre de recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - Caroline Duchaine
- Centre de recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
- Département de biochimie, de microbiologie et de bioinformatique, Faculté des sciences et de génie, Université Laval, Québec, QC, Canada
| |
Collapse
|
23
|
McClendon CJ, Gerald CL, Waterman JT. Farm animal models of organic dust exposure and toxicity: insights and implications for respiratory health. Curr Opin Allergy Clin Immunol 2015; 15:137-44. [PMID: 25636160 PMCID: PMC4783132 DOI: 10.1097/aci.0000000000000143] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Modern food animal production is a major contributor to the global economy, owing to advanced intensive indoor production facilities aimed at increasing market readiness and profit. Consequences of these advances are accumulation of dusts, gases, and microbial products that diminish air quality within production facilities. Chronic inhalation exposure contributes to onset and exacerbation of respiratory symptoms and diseases in animals and workers. This article reviews literature regarding constituents of farm animal production facility dusts, animal responses to production building and organic dust exposure, and the effect of chronic inhalation exposure on pulmonary oxidative stress and inflammation. RECENT FINDINGS Porcine models of production facility and organic dust exposures reveal striking similarities to observations of human cells, tissues, and clinical data. Oxidative stress plays a key role in mediating respiratory diseases in animals and humans, and enhancement of antioxidant levels through nutritional supplements can improve respiratory health. SUMMARY Pigs are well adapted to the exposures common to swine production buildings and thus serve as excellent models for facility workers. Insight for understanding mechanisms governing organic dust associated respiratory diseases may come from parallel comparisons between farmers and the animals they raise.
Collapse
Affiliation(s)
- Chakia J. McClendon
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC
- Department of Energy and Environmental Systems, North Carolina Agricultural and Technical State University, Greensboro, NC
| | - Carresse L. Gerald
- Pulmonary and Critical Care Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Jenora T. Waterman
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC
| |
Collapse
|
24
|
Hellberg RS, Chu E. Effects of climate change on the persistence and dispersal of foodborne bacterial pathogens in the outdoor environment: A review. Crit Rev Microbiol 2015; 42:548-72. [PMID: 25612827 DOI: 10.3109/1040841x.2014.972335] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
According to the Intergovernmental Panel on Climate Change (IPCC), warming of the climate system is unequivocal. Over the coming century, warming trends such as increased duration and frequency of heat waves and hot extremes are expected in some areas, as well as increased intensity of some storm systems. Climate-induced trends will impact the persistence and dispersal of foodborne pathogens in myriad ways, especially for environmentally ubiquitous and/or zoonotic microorganisms. Animal hosts of foodborne pathogens are also expected to be impacted by climate change through the introduction of increased physiological stress and, in some cases, altered geographic ranges and seasonality. This review article examines the effects of climatic factors, such as temperature, rainfall, drought and wind, on the environmental dispersal and persistence of bacterial foodborne pathogens, namely, Bacillus cereus, Brucella, Campylobacter, Clostridium, Escherichia coli, Listeria monocytogenes, Salmonella, Staphylococcus aureus, Vibrio and Yersinia enterocolitica. These relationships are then used to predict how future climatic changes will impact the activity of these microorganisms in the outdoor environment and associated food safety issues. The development of predictive models that quantify these complex relationships will also be discussed, as well as the potential impacts of climate change on transmission of foodborne disease from animal hosts.
Collapse
Affiliation(s)
- Rosalee S Hellberg
- a Food Science and Nutrition Program, Schmid College of Science and Technology, Chapman University , Orange , CA , USA
| | - Eric Chu
- a Food Science and Nutrition Program, Schmid College of Science and Technology, Chapman University , Orange , CA , USA
| |
Collapse
|
25
|
Labro MT, Bryskier JM. Antibacterial resistance: an emerging ‘zoonosis’? Expert Rev Anti Infect Ther 2014; 12:1441-61. [DOI: 10.1586/14787210.2014.976611] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|