1
|
Ayten H, Toker P, Turan Duman G, Olgun ÇE, Demiralay ÖD, Bınarcı B, Güpür G, Yaşar P, Akman HB, Haberkant P, Muyan M. CXXC5 is a ubiquitinated protein and is degraded by the ubiquitin-proteasome pathway. Protein Sci 2025; 34:e70140. [PMID: 40371716 PMCID: PMC12079423 DOI: 10.1002/pro.70140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 05/16/2025]
Abstract
CXXC5, as a member of the zinc-finger CXXC family proteins, interacts with unmodified CpG dinucleotides to modulate the expression of genes involved in cellular proliferation, differentiation, and death in physiology and pathophysiology. Various signaling pathways, including mitogenic 17β-estradiol (E2), contribute to the expression and synthesis of CXXC5. However, how signaling pathways modulate protein levels of CXXC5 in cells is largely unknown. We previously reported that some key regulators, including retinoblastoma 1 and E74-like ETS transcription factor 1, of the G1 to S phase transitions are involved in the expression of CXXC5 in estrogen-responsive MCF-7 cells, derived from a breast adenocarcinoma. We, therefore, predict that the synthesis of CXXC5 is regulated in a cell cycle-dependent manner. We report here that although E2 in synchronized MCF-7 cells augments both transcription and synthesis of CXXC5 in the G1 phase, CXXC5 protein levels are primarily mediated by ubiquitination independently of cell cycle phases. Utilizing the bioUbiquitination approach, which is based on cellular biotinylation of ubiquitin, in HEK293FT cells derived from immortalized human embryonic kidney cells, followed by sequential immunoprecipitation coupled mass spectrometry analyses, we identified ubiquitinated lysine residues of CXXC5. We show in both MCF-7 and HEK293FT cells that the ubiquitinated lysine residues contribute to the degradation of CXXC5 through the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Hazal Ayten
- Department of Biological SciencesMiddle East Technical UniversityÇankaya‐AnkaraTürkiye
| | - Pelin Toker
- Department of Biological SciencesMiddle East Technical UniversityÇankaya‐AnkaraTürkiye
| | - Gizem Turan Duman
- Department of Biological SciencesMiddle East Technical UniversityÇankaya‐AnkaraTürkiye
| | - Çağla Ece Olgun
- Department of Biological SciencesMiddle East Technical UniversityÇankaya‐AnkaraTürkiye
| | - Öykü Deniz Demiralay
- Department of Biological SciencesMiddle East Technical UniversityÇankaya‐AnkaraTürkiye
- Present address:
Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Helmholtz Zentrum MünchenGerman Research Center for Environmental HealthNeuherbergGermany
| | - Büşra Bınarcı
- Department of Biological SciencesMiddle East Technical UniversityÇankaya‐AnkaraTürkiye
| | - Gizem Güpür
- Department of Biological SciencesMiddle East Technical UniversityÇankaya‐AnkaraTürkiye
| | - Pelin Yaşar
- Department of Biological SciencesMiddle East Technical UniversityÇankaya‐AnkaraTürkiye
- Present address:
Epigenetics and Stem Cell Biology Laboratory, Single Cell Dynamics GroupNational Institute of Environmental Health SciencesResearch Triangle ParkNorth CarolinaUSA
| | - Hesna Begüm Akman
- Department of Biological SciencesMiddle East Technical UniversityÇankaya‐AnkaraTürkiye
| | - Per Haberkant
- Proteomics Core FacilityEMBL HeidelbergHeidelbergGermany
| | - Mesut Muyan
- Department of Biological SciencesMiddle East Technical UniversityÇankaya‐AnkaraTürkiye
| |
Collapse
|
2
|
An Z, Wang J, Li C, Tang C. Signal integrator function of CXXC5 in Cancer. Cell Commun Signal 2025; 23:25. [PMID: 39806388 PMCID: PMC11730785 DOI: 10.1186/s12964-024-02005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
CXXC type zinc finger protein 5 (CXXC5) is a member of the ZF-CXXC family and plays a pivotal role in signal integration and information transfer within cell signaling network. CXXC5 acts as a regulator in various physiological processes, and abnormalities in its protein structure or function have been linked to multiple pathological processes. In this article, we correspondingly describe the composition of the ZF-CXXC family, emphatically introducing the features of the CXXC5 gene and protein, review the role of CXXC5 in cellular signaling networks, the physiological and pathological processes associated with CXXC5 dysregulation, and particularly focus on the correlation between CXXC5 and cancers. Finally, we summarize the current therapies targeting CXXC5 and their potential applications, and discuss the intriguing findings from current studies, and the opportunities and challenges in future.
Collapse
Affiliation(s)
- Zihao An
- National Clinical Research Center for Child Health of Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Jiepu Wang
- National Clinical Research Center for Child Health of Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Chengzuo Li
- National Clinical Research Center for Child Health of Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Chao Tang
- National Clinical Research Center for Child Health of Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
| |
Collapse
|
3
|
Dong K, Geng C, Zhan X, Sun Z, Pu Q, Li P, Song H, Zhao G, Gao H. GREB1L overexpression is associated with good clinical outcomes in breast cancer. Eur J Med Res 2023; 28:510. [PMID: 37964281 PMCID: PMC10644546 DOI: 10.1186/s40001-023-01483-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 10/30/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Breast cancer is the most common malignant tumor among women worldwide. GREB1L is a protein-coding gene. Previous studies have shown that GREB1L plays a vital role in lung and gastric adenocarcinoma. Currently, there is no relevant report about its role in breast cancer. METHODS The Cancer Genome Atlas database was used to compare the expression level of GREB1L between tumor and normal tissues. The TISIDB website was used for prognosis analysis. The LinkedOmics database was used to predict the potential biological mechanism of GREB1L in breast cancer. Immunohistochemistry was used to detect the GREB1L expression level in breast tissue. Western blotting was used to detect the GREB1L expression level in cell lines. Transwell assays, CCK-8 cell proliferation assays, and colony formation assays were used to detect the migration, invasion, proliferation, and colony formation abilities of cells. Subcutaneous xenograft models were used to detect the in vivo tumor formation abilities of cells. RESULTS GREB1L is highly expressed in breast cancer tissues and breast cancer cells. KEGG enrichment analysis suggested that GREB1L participates in the regulation of the Hedgehog signaling pathway; changes in GREB1L expression affected the migration and invasion abilities of MCF7 and MDA-MB-231 cells. Although changes in GREB1L expression did not affect their proliferation and colony formation abilities in vitro and in vivo, they affected the expression of tumor metastasis-related genes in vivo. The overexpression of GREB1L in breast cancer predicted a favorable prognosis. CONCLUSION These results showed that GREB1L is involved in the development of breast cancer, and it may be a potential molecular marker for predicting the prognosis of breast cancer.
Collapse
Affiliation(s)
- Ke Dong
- Department of Breast Surgery, Qilu Hospital of Shandong University (Qingdao), No. 758 Hefei Road, Qingdao, 266000, Shandong, China
| | - Chenchen Geng
- Department of Ultrasound, Qilu Hospital of Shandong University (Qingdao), No. 758 Hefei Road, Qingdao, 266000, Shandong, China
| | - Xiaohong Zhan
- Department of Pathology, The Affiliated Hospital of Qingdao University, No. 58 Haier Road, Qingdao, 266000, Shandong, China
| | - Zhi Sun
- Department of Breast Diseases, Shandong Second Provincial General Hospital, No. 4 Duanxing West Road, Jinan, 250000, Shandong, China
| | - Qian Pu
- Department of Breast Surgery, Qilu Hospital of Shandong University (Qingdao), No. 758 Hefei Road, Qingdao, 266000, Shandong, China
| | - Peng Li
- Department of Breast Surgery, Qilu Hospital of Shandong University (Qingdao), No. 758 Hefei Road, Qingdao, 266000, Shandong, China
| | - Haiyun Song
- Department of Pathology, Qilu Hospital of Shandong University (Qingdao), No. 758 Hefei Road, Qingdao, 266000, Shandong, China
| | - Guanghui Zhao
- Women and Children's Hospital, Peking University People's Hospital (Qingdao), No. 7, Jinsheng 1St Road, Qingdao, 266111, Shandong, China.
- Medical Laboratory Center, Qilu Hospital of Shandong University (Qingdao), No. 758 Hefei Road, Qingdao, 266000, Shandong, China.
| | - Haidong Gao
- Department of Breast Surgery, Qilu Hospital of Shandong University (Qingdao), No. 758 Hefei Road, Qingdao, 266000, Shandong, China.
- Oncology Laboratory, Qilu Hospital of Shandong University (Qingdao), No. 758 Hefei Road, Qingdao, 266000, Shandong, China.
| |
Collapse
|
4
|
Wang W, Zhang Z, Zhao M, Wang Y, Ge Y, Shan L. Zinc-finger protein CXXC5 promotes breast carcinogenesis by regulating the TSC1/mTOR signaling pathway. J Biol Chem 2023; 299:102812. [PMID: 36539038 PMCID: PMC9860500 DOI: 10.1016/j.jbc.2022.102812] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
CXXC5, a member of the CXXC family of zinc-finger proteins, is associated with numerous pathological processes. However, the pathophysiological function of CXXC5 has not been clearly established. Herein, we found that CXXC5 interacts with the CRL4B and NuRD complexes. Screening of transcriptional targets downstream of the CXXC5-CRL4B-NuRD complex by next-generation sequencing (chromatin immunoprecipitation sequencing) revealed that the complex regulates the transcriptional repression process of a cohort of genes, including TSC1 (tuberous sclerosis complex subunit 1), which play important roles in cell growth and mammalian target of rapamycin signaling pathway regulation, and whose abnormal regulation results in the activation of programmed cell death-ligand protein 1 (PD-L1). Intriguingly, CXXC5 expression increased after stimulation with vitamin B2 but decreased after vitamin D treatment. We also found that the CXXC5-CRL4B-NuRD complex promotes the proliferation of tumor cells in vitro and accelerates the growth of breast cancer in vivo. The expression of CXXC5, CUL4B, and MTA1 increased during the occurrence and development of breast cancer, and correspondingly, TSC1 expression decreased. Meanwhile, a high expression of CXXC5 was positively correlated with the histological grade of high malignancy and poor survival of patients. In conclusion, our study revealed that CXXC5-mediated TSC1 suppression activates the mammalian target of rapamycin pathway, reduces autophagic cell death, induces PD-L1-mediated immune suppression, and results in tumor development, shedding light on the mechanism of the pathophysiological function of CXXC5.
Collapse
Affiliation(s)
- Wenjuan Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhaohan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Minghui Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yuze Ge
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lin Shan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China; Beijing Key Laboratory of Cancer Invasion and Metastasis Research, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Abou-Jaoude A, Huang CY, Flores JC, Ravichandran M, Lei R, Chrysanthou S, Dawlaty MM. Idax and Rinf facilitate expression of Tet enzymes to promote neural and suppress trophectodermal programs during differentiation of embryonic stem cells. Stem Cell Res 2022; 61:102770. [PMID: 35390758 PMCID: PMC10810145 DOI: 10.1016/j.scr.2022.102770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/07/2022] [Accepted: 03/28/2022] [Indexed: 11/15/2022] Open
Abstract
The Inhibitor of disheveled and axin (Idax) and its ortholog the Retinoid inducible nuclear factor (Rinf) are DNA binding proteins with nuclear and cytoplasmic functions. Rinf is expressed in embryonic stem cells (ESCs) where it regulates transcription of the Ten-eleven translocation (Tet) enzymes, promoting neural and suppressing mesendoderm/trophectoderm differentiation. Here, we find that Idax, which is not expressed in ESCs, is induced upon differentiation. Like Rinf, Idax facilitates neural and silences trophectodermal programs. Individual or combined loss of Idax and Rinf led to downregulation of neural and upregulation of trophectoderm markers during differentiation of ESCs to embryoid bodies as well as during directed differentiation of ESCs to neural progenitor cells (NPCs) and trophoblast-like cells. These defects resemble those of Tet-deficient ESCs. Consistently, Tet genes are direct targets of Idax and Rinf, and loss of Idax and Rinf led to downregulation of Tet enzymes during ESC differentiation to NPCs and trophoblast-like cells. While Idax and Rinf single and double knockout (DKO) mice were viable and overtly normal, DKO embryos had reduced expression of several NPC markers in embryonic forebrains and deregulated expression of selected trophoblast markers in placentas. NPCs derived from DKO forebrains had reduced self-renewal while DKO placentas had increased junctional zone and reduced labyrinth layers. Together, our findings establish Idax and Rinf as regulators of Tet enzymes for proper differentiation of ESCs.
Collapse
Affiliation(s)
- Antoine Abou-Jaoude
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA; Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Cheng-Yen Huang
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA; Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Julio C Flores
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA; Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Mirunalini Ravichandran
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA; Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
| | - Run Lei
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA; Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
| | - Stephanie Chrysanthou
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA; Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Meelad M Dawlaty
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA; Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA.
| |
Collapse
|
6
|
Yaşar P, Kars G, Yavuz K, Ayaz G, Oğuztüzün Ç, Bilgen E, Suvacı Z, Çetinkol ÖP, Can T, Muyan M. A CpG island promoter drives the CXXC5 gene expression. Sci Rep 2021; 11:15655. [PMID: 34341443 PMCID: PMC8329181 DOI: 10.1038/s41598-021-95165-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
CXXC5 is a member of the zinc-finger CXXC family that binds to unmethylated CpG dinucleotides. CXXC5 modulates gene expressions resulting in diverse cellular events mediated by distinct signaling pathways. However, the mechanism responsible for CXXC5 expression remains largely unknown. We found here that of the 14 annotated CXXC5 transcripts with distinct 5' untranslated regions encoding the same protein, transcript variant 2 with the highest expression level among variants represents the main transcript in cell models. The DNA segment in and at the immediate 5'-sequences of the first exon of variant 2 contains a core promoter within which multiple transcription start sites are present. Residing in a region with high G-C nucleotide content and CpG repeats, the core promoter is unmethylated, deficient in nucleosomes, and associated with active RNA polymerase-II. These findings suggest that a CpG island promoter drives CXXC5 expression. Promoter pull-down revealed the association of various transcription factors (TFs) and transcription co-regulatory proteins, as well as proteins involved in histone/chromatin, DNA, and RNA processing with the core promoter. Of the TFs, we verified that ELF1 and MAZ contribute to CXXC5 expression. Moreover, the first exon of variant 2 may contain a G-quadruplex forming region that could modulate CXXC5 expression.
Collapse
Affiliation(s)
- Pelin Yaşar
- Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey.
- Epigenetics and Stem Cell Biology Laboratory, Single Cell Dynamics Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA.
| | - Gizem Kars
- Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey
| | - Kerim Yavuz
- Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey
| | - Gamze Ayaz
- Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey
- Cancer and Stem Cell Epigenetics Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Çerağ Oğuztüzün
- Department of Computer Engineering, Bilkent University, Ankara, 06800, Turkey
| | - Ecenaz Bilgen
- Department of Chemistry, Middle East Technical University, Ankara, 06800, Turkey
| | - Zeynep Suvacı
- Department of Chemistry, Middle East Technical University, Ankara, 06800, Turkey
| | | | - Tolga Can
- Department of Computer Engineering, Middle East Technical University, Ankara, 06800, Turkey
| | - Mesut Muyan
- Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey.
- Cansyl Laboratories, Middle East Technical University, Ankara, 06800, Turkey.
| |
Collapse
|
7
|
Ramirez R, Chiu YC, Zhang S, Ramirez J, Chen Y, Huang Y, Jin YF. Prediction and interpretation of cancer survival using graph convolution neural networks. Methods 2021; 192:120-130. [PMID: 33484826 DOI: 10.1016/j.ymeth.2021.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 12/13/2022] Open
Abstract
The survival rate of cancer has increased significantly during the past two decades for breast, prostate, testicular, and colon cancer, while the brain and pancreatic cancers have a much lower median survival rate that has not improved much over the last forty years. This has imposed the challenge of finding gene markers for early cancer detection and treatment strategies. Different methods including regression-based Cox-PH, artificial neural networks, and recently deep learning algorithms have been proposed to predict the survival rate for cancers. We established in this work a novel graph convolution neural network (GCNN) approach called Surv_GCNN to predict the survival rate for 13 different cancer types using the TCGA dataset. For each cancer type, 6 Surv_GCNN models with graphs generated by correlation analysis, GeneMania database, and correlation + GeneMania were trained with and without clinical data to predict the risk score (RS). The performance of the 6 Surv_GCNN models was compared with two other existing models, Cox-PH and Cox-nnet. The results showed that Cox-PH has the worst performance among 8 tested models across the 13 cancer types while Surv_GCNN models with clinical data reported the best overall performance, outperforming other competing models in 7 out of 13 cancer types including BLCA, BRCA, COAD, LUSC, SARC, STAD, and UCEC. A novel network-based interpretation of Surv_GCNN was also proposed to identify potential gene markers for breast cancer. The signatures learned by the nodes in the hidden layer of Surv_GCNN were identified and were linked to potential gene markers by network modularization. The identified gene markers for breast cancer have been compared to a total of 213 gene markers from three widely cited lists for breast cancer survival analysis. About 57% of gene markers obtained by Surv_GCNN with correlation + GeneMania graph either overlap or directly interact with the 213 genes, confirming the effectiveness of the identified markers by Surv_GCNN.
Collapse
Affiliation(s)
- Ricardo Ramirez
- Department of Electrical and Computer Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Yu-Chiao Chiu
- Greehey Children's Cancer Research Institute, The University of Texas Health San Antonio, San Antonio, Texas 78229, USA
| | - SongYao Zhang
- Key Laboratory of Information Fusion Technology of Ministry of Education, Department of Intelligent Science And Technology, School of Automation, Northwestern Polytechnical University, Xí'an, China
| | - Joshua Ramirez
- Department of Electrical and Computer Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, The University of Texas Health San Antonio, San Antonio, Texas 78229, USA; Department of Population Health Sciences, The University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Yufei Huang
- Department of Electrical and Computer Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA; Department of Population Health Sciences, The University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Yu-Fang Jin
- Department of Electrical and Computer Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| |
Collapse
|
8
|
Astori A, Matherat G, Munoz I, Gautier EF, Surdez D, Zermati Y, Verdier F, Zaidi S, Feuillet V, Kadi A, Lauret E, Delattre O, Lefèvre C, Fontenay M, Ségal-Bendirdjian E, Dusanter-Fourt I, Bouscary D, Hermine O, Mayeux P, Pendino F. The epigenetic regulator RINF (CXXC5) maintains <i>SMAD7</i> expression in human immature erythroid cells and sustains red blood cells expansion. Haematologica 2020; 107:268-283. [PMID: 33241676 PMCID: PMC8719099 DOI: 10.3324/haematol.2020.263558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Indexed: 11/16/2022] Open
Abstract
The gene CXXC5, encoding a retinoid-inducible nuclear factor (RINF), is located within a region at 5q31.2 commonly deleted in myelodysplastic syndrome and adult acute myeloid leukemia. RINF may act as an epigenetic regulator and has been proposed as a tumor suppressor in hematopoietic malignancies. However, functional studies in normal hematopoiesis are lacking, and its mechanism of action is unknown. Here, we evaluated the consequences of RINF silencing on cytokine-induced erythroid differentiation of human primary CD34+ progenitors. We found that RINF is expressed in immature erythroid cells and that RINF-knockdown accelerated erythropoietin-driven maturation, leading to a significant reduction (~45%) in the number of red blood cells, without affecting cell viability. The phenotype induced by RINF-silencing was dependent on tumor growth factor b (TGFb) and mediated by SMAD7, a TGFb-signaling inhibitor. RINF upregulates SMAD7 expression by direct binding to its promoter and we found a close correlation between RINF and SMAD7 mRNA levels both in CD34+ cells isolated from bone marrow of healthy donors and myelodysplastic syndrome patients with del(5q). Importantly, RINF knockdown attenuated SMAD7 expression in primary cells and ectopic SMAD7 expression was sufficient to prevent the RINF knockdown-dependent erythroid phenotype. Finally, RINF silencing affects 5’-hydroxymethylation of human erythroblasts, in agreement with its recently described role as a TET2-anchoring platform in mouse. Collectively, our data bring insight into how the epigenetic factor RINF, as a transcriptional regulator of SMAD7, may fine-tune cell sensitivity to TGFb superfamily cytokines and thus play an important role in both normal and pathological erythropoiesis.
Collapse
Affiliation(s)
- Audrey Astori
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France; Laboratory of Excellence GR-ex, Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris
| | - Gabriel Matherat
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France; Laboratory of Excellence GR-ex, Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris
| | - Isabelle Munoz
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France; Laboratory of Excellence GR-ex, Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris
| | - Emilie-Fleur Gautier
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France; Laboratory of Excellence GR-ex, Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris
| | - Didier Surdez
- Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris, France; PSL Research University, Institut Curie Research Center, INSERM U830, Paris, France; SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris
| | - Yaël Zermati
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France; Laboratory of Excellence GR-ex, Paris
| | - Frédérique Verdier
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France; Laboratory of Excellence GR-ex, Paris
| | - Sakina Zaidi
- Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris, France; PSL Research University, Institut Curie Research Center, INSERM U830, Paris, France; SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris
| | - Vincent Feuillet
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris
| | - Amir Kadi
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris
| | - Evelyne Lauret
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris
| | - Olivier Delattre
- Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris, France; PSL Research University, Institut Curie Research Center, INSERM U830, Paris, France; SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris
| | - Carine Lefèvre
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France; Laboratory of Excellence GR-ex, Paris
| | - Michaela Fontenay
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France; Laboratory of Excellence GR-ex, Paris, France; Service d'Hématologie Biologique, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Centre-Université de Paris, Paris
| | | | - Isabelle Dusanter-Fourt
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris
| | - Didier Bouscary
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris
| | - Olivier Hermine
- Laboratory of Excellence GR-ex, Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris, France; Université de Paris, Institut Imagine, INSERM, CNRS, F-75015, Paris
| | - Patrick Mayeux
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France; Laboratory of Excellence GR-ex, Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris
| | - Frédéric Pendino
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France; Laboratory of Excellence GR-ex, Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris.
| |
Collapse
|
9
|
Ravichandran M, Lei R, Tang Q, Zhao Y, Lee J, Ma L, Chrysanthou S, Lorton BM, Cvekl A, Shechter D, Zheng D, Dawlaty MM. Rinf Regulates Pluripotency Network Genes and Tet Enzymes in Embryonic Stem Cells. Cell Rep 2020; 28:1993-2003.e5. [PMID: 31433977 PMCID: PMC6716522 DOI: 10.1016/j.celrep.2019.07.080] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 06/07/2019] [Accepted: 07/23/2019] [Indexed: 11/30/2022] Open
Abstract
The Retinoid inducible nuclear factor (Rinf), also known as CXXC5, is a nuclear protein, but its functions in the context of the chromatin are poorly defined. We find that in mouse embryonic stem cells (mESCs), Rinf binds to the chromatin and is enriched at promoters and enhancers of Tet1, Tet2, and pluripotency genes. The Rinf-bound regions show significant overlapping occupancy of pluripotency factors Nanog, Oct4, and Sox2, as well as Tet1 and Tet2. We found that Rinf forms a complex with Nanog, Oct4, Tet1, and Tet2 and facilitates their proper recruitment to regulatory regions of pluripotency and Tet genes in ESCs to positively regulate their transcription. Rinf deficiency in ESCs reduces expression of Rinf target genes, including several pluripotency factors and Tet enzymes, and causes aberrant differentiation. Together, our findings establish Rinf as a regulator of the pluripotency network genes and Tet enzymes in ESCs.
Collapse
Affiliation(s)
- Mirunalini Ravichandran
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA; Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
| | - Run Lei
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA; Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
| | - Qin Tang
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA; Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
| | - Yilin Zhao
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
| | - Joun Lee
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA; Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
| | - Liyang Ma
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA; Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
| | - Stephanie Chrysanthou
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA; Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
| | - Benjamin M Lorton
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Ales Cvekl
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - David Shechter
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA; Departments of Neurology and Neuroscience, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
| | - Meelad M Dawlaty
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA; Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA.
| |
Collapse
|
10
|
Ayaz G, Razizadeh N, Yaşar P, Kars G, Kahraman DC, Saatci Ö, Şahin Ö, Çetin-Atalay R, Muyan M. CXXC5 as an unmethylated CpG dinucleotide binding protein contributes to estrogen-mediated cellular proliferation. Sci Rep 2020; 10:5971. [PMID: 32249801 PMCID: PMC7136269 DOI: 10.1038/s41598-020-62912-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
Evidence suggests that the CXXC type zinc finger (ZF-CXXC) protein 5 (CXXC5) is a critical regulator/integrator of various signaling pathways that include the estrogen (E2)-estrogen receptor α (ERα). Due to its ZF-CXXC domain, CXXC5 is considered to be a member of the ZF-CXXC family, which binds to unmethylated CpG dinucleotides of DNA and through enzymatic activities for DNA methylation and/or chromatin modifications generates a chromatin state critical for gene expressions. Structural/functional features of CXXC5 remain largely unknown. CXXC5, suggested as transcription and/or epigenetic factor, participates in cellular proliferation, differentiation, and death. To explore the role of CXXC5 in E2-ERα mediated cellular events, we verified by generating a recombinant protein that CXXC5 is indeed an unmethylated CpG binder. We uncovered that CXXC5, although lacks a transcription activation/repression function, participates in E2-driven cellular proliferation by modulating the expression of distinct and mutual genes also regulated by E2. Furthermore, we found that the overexpression of CXXC5, which correlates with mRNA and protein levels of ERα, associates with poor prognosis in ER-positive breast cancer patients. Thus, CXXC5 as an unmethylated CpG binder contributes to E2-mediated gene expressions that result in the regulation of cellular proliferation and may contribute to ER-positive breast cancer progression.
Collapse
Affiliation(s)
- Gamze Ayaz
- Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey.,Cancer and Stem Cell Epigenetics Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Negin Razizadeh
- Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey
| | - Pelin Yaşar
- Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey
| | - Gizem Kars
- Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey
| | - Deniz Cansen Kahraman
- Enformatics Institute, Middle East Technical University, Ankara, 06800, Turkey.,Cansyl Laboratories, Middle East Technical University, Ankara, 06800, Turkey
| | - Özge Saatci
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Özgür Şahin
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA.,Department of Molecular Biology and Genetics, Bilkent University, Ankara, 06800, Turkey
| | - Rengül Çetin-Atalay
- Enformatics Institute, Middle East Technical University, Ankara, 06800, Turkey.,Cansyl Laboratories, Middle East Technical University, Ankara, 06800, Turkey
| | - Mesut Muyan
- Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey. .,Cansyl Laboratories, Middle East Technical University, Ankara, 06800, Turkey.
| |
Collapse
|
11
|
CXXC5 Attenuates Pulmonary Fibrosis in a Bleomycin-Induced Mouse Model and MLFs by Suppression of the CD40/CD40L Pathway. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7840652. [PMID: 32337277 PMCID: PMC7160725 DOI: 10.1155/2020/7840652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 01/26/2023]
Abstract
Objective To investigate the role of CXXC5 and the CD40/CD40L pathway in lung fibrosis. Methods (1) We constructed mouse models of bleomycin-induced pulmonary fibrosis and transfected them with a CXXC5 overexpression vector to evaluate the severity of pulmonary fibrosis. (2) Mouse lung fibroblast (MLF) models stably overexpressed or knockout of CXXC5 vector were constructed. After transforming growth factor-β1 (TGF-β1) stimulation, we examined the proliferation and apoptosis of the MLF model and evaluated the expression of mesenchymal markers and the CXXC5/CD40/CD40L pathway. Results (1) Compared with other groups, the overexpressed CXXC5 group had less alveolar structure destruction, thinner alveolar septum, and lower Ashcroft score. (2) In bleomycin-induced mice, the expression of CD40 and CD40L increased at both transcriptional and protein levels, and the same changes were observed in α-smooth muscle actin (α-SMA) and collagen type I (Colla I). After upregulation of CXXC5, the increase in CD40, CD40L, α-SMA, and Colla I was attenuated. (3) Stimulated with TGF-β1, MLF proliferation was activated, apoptosis was suppressed, and the expression of CD40, CD40L, α-SMA, and Colla I was increased at both transcriptional and protein levels. After upregulation of CXXC5, these changes were attenuated. Conclusion CXXC5 inhibits pulmonary fibrosis and transformation to myofibroblasts by negative feedback regulation of the CD40/CD40L pathway.
Collapse
|
12
|
Jafari Najaf Abadi MH, Shafabakhsh R, Asemi Z, Mirzaei HR, Sahebnasagh R, Mirzaei H, Hamblin MR. CFIm25 and alternative polyadenylation: Conflicting roles in cancer. Cancer Lett 2019; 459:112-121. [PMID: 31181319 DOI: 10.1016/j.canlet.2019.114430] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/01/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022]
Abstract
Alternative polyadenylation (APA) is now widely recognized to regulate gene expression. APA is an RNA-processing mechanism that generates distinct 3' termini on mRNAs, producing mRNA isoforms. Different factors influence the initiation and development of this process. CFIm25 (among others) is a cleavage and polyadenylation factor that plays a key role in the regulation of APA. Shortening of the 3'UTRs on mRNAs leads to enhanced cellular proliferation and tumorigenicity. One reason may be the up-regulation of growth promoting factors, such as Cyclin D1. Different studies have reported a dual role of CFIm25 in cancer (both oncogenic and tumor suppressor). microRNAs (miRNAs) may be involved in CFIm25 function as well as competing endogenous RNAs (ceRNAs). The present review focuses on the role of CFIm25 in cancer, cancer treatment, and possible involvement in other human diseases. We highlight the involvement of miRNAs and ceRNAs in the function of CFIm25 to affect gene expression. The lack of understanding of the mechanisms and regulation of CFIm25 and APA has underscored the need for further research regarding their role in cancer and other diseases.
Collapse
Affiliation(s)
| | - Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Roxana Sahebnasagh
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA, 02114, USA.
| |
Collapse
|
13
|
Xiong X, Tu S, Wang J, Luo S, Yan X. CXXC5: A novel regulator and coordinator of TGF-β, BMP and Wnt signaling. J Cell Mol Med 2018; 23:740-749. [PMID: 30479059 PMCID: PMC6349197 DOI: 10.1111/jcmm.14046] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/23/2018] [Indexed: 12/18/2022] Open
Abstract
CXXC5 is a member of the CXXC-type zinc-finger protein family. Proteins in this family play a pivotal role in epigenetic regulation by binding to unmethylated CpG islands in gene promoters through their characteristic CXXC domain. CXXC5 is a short protein (322 amino acids in length) that does not have any catalytic domain, but is able to bind to DNA and act as a transcription factor and epigenetic factor through protein-protein interactions. Intriguingly, increasing evidence indicates that expression of the CXXC5 gene is controlled by multiple signaling pathways and a variety of transcription factors, positioning CXXC5 as an important signal integrator. In addition, CXXC5 is capable of regulating various signal transduction processes, including the TGF-β, Wnt and ATM-p53 pathways, thereby acting as a novel and crucial signaling coordinator. CXXC5 plays an important role in embryonic development and adult tissue homeostasis by regulating cell proliferation, differentiation and apoptosis. In keeping with these functions, aberrant expression or altered activity of CXXC5 has been shown to be involved in several human diseases including tumourigenesis. This review summarizes the current understanding of CXXC5 as a transcription factor and signaling regulator and coordinator.
Collapse
Affiliation(s)
- Xiangyang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Shuo Tu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Jianbin Wang
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Shiwen Luo
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaohua Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| |
Collapse
|
14
|
NUDT21 negatively regulates PSMB2 and CXXC5 by alternative polyadenylation and contributes to hepatocellular carcinoma suppression. Oncogene 2018; 37:4887-4900. [PMID: 29780166 DOI: 10.1038/s41388-018-0280-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 01/21/2023]
Abstract
Alternative polyadenylation (APA) is an important post-transcriptional regulatory mechanism and involved in many diseases, including cancer. CFIm25, a subunit of the cleavage factor I encoded by NUDT21, is required for 3'RNA cleavage and polyadenylation. Although it has been recently reported to be involved in glioblastoma tumor suppression, its roles and the underlying functional mechanism remain unclear in other types of cancer. In this study, we characterized NUDT21 in hepatocellular carcinoma (HCC). Reduced expression of NUDT21 was observed in HCC tissue compared to adjacent non-tumorous compartment. HCC patients with lower NUDT21 expression have shorter overall and disease-free survival times than those with higher NUDT21 expression after surgery. Knockdown of NUDT21 promotes HCC cell proliferation, metastasis, and tumorigenesis, whereas forced expression of NUDT21 exhibits the opposite effects. We then performed global APA site profiling analysis in HCC cells and identified considerable number of genes with shortened 3'UTRs upon the modulation of NUDT21 expression. In particular, we further characterized the NUDT21-regulated genes PSMB2 and CXXC5. We found NUDT21 knockdown increases usage of the proximal polyadenylation site in the PSMB2 and CXXC5 3' UTRs, resulting in marked increase in the expression of PSMB2 and CXXC5. Moreover, knockdown of PSMB2 or CXXC5 suppresses HCC cell proliferation and invasion. Taken together, our study demonstrated that NUDT21 inhibits HCC proliferation, metastasis and tumorigenesis, at least in part, by suppressing PSMB2 and CXXC5, and thereby provided a new insight into understanding the connection of HCC suppression and APA machinery.
Collapse
|
15
|
Fang L, Wang Y, Gao Y, Chen X. Overexpression of CXXC5 is a strong poor prognostic factor in ER+ breast cancer. Oncol Lett 2018; 16:395-401. [PMID: 29928427 PMCID: PMC6006432 DOI: 10.3892/ol.2018.8647] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 04/26/2018] [Indexed: 12/13/2022] Open
Abstract
CXXC5 is a newly identified CXXC-type zinc finger family protein, which is encoded by the CXXC5 gene localised to the 5q31.3 chromosomal region. Previous studies revealed that CXXC5 is associated with various malignant tumours. The aim of the present study was to investigate the prognosis prediction of CXXC5 in different breast cancer subtypes via the Gene Expression Omnibus database and bc-GenExMiner. CXXC5 overexpression was observed as associated with a poor prognosis for oestrogen receptor positive (ER+) breast cancer. Basal-like breast cancer and triple-negative breast cancer also suggest a poor prognosis, however their CXXC5 expression was low and could not be used as a prognostic factor. The CXXC5 correlated genes and their enriched Gene Ontology (GO) terms were obtained. Among those enriched GO terms, GO:0070062 (extracellular exosome) had the greatest number of associated genes and the associated genes of GO:0000122 (negative regulation of transcription from RNA polymerase II promoter) and GO:0008134 (transcription factor binding) contained CXXC5. These results suggest that overexpression of CXXC5 is a strongly poor prognostic factor in ER+ breast cancer. However, the role of CXXC5 in breast cancer requires further investigation.
Collapse
Affiliation(s)
- Lei Fang
- Department of Pathology and Pathophysiology, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Yu Wang
- Department of Radiology and NFCR Center for Molecular Imaging, Case Western Reserve University, Cleveland, OH 44106-5065, USA
| | - Yang Gao
- Department of Oncology, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Xuejun Chen
- Department of Pathology and Pathophysiology, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| |
Collapse
|
16
|
Ma S, Choi J, Jin X, Kim HY, Yun JH, Lee W, Choi KY, No KT. Discovery of a small-molecule inhibitor of Dvl-CXXC5 interaction by computational approaches. J Comput Aided Mol Des 2018; 32:643-655. [PMID: 29627878 DOI: 10.1007/s10822-018-0118-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 04/02/2018] [Indexed: 12/28/2022]
Abstract
The Wnt/β-catenin signaling pathway plays a significant role in the control of osteoblastogenesis and bone formation. CXXC finger protein 5 (CXXC5) has been recently identified as a negative feedback regulator of osteoblast differentiation through a specific interaction with Dishevelled (Dvl) protein. It was reported that targeting the Dvl-CXXC5 interaction could be a novel anabolic therapeutic target for osteoporosis. In this study, complex structure of Dvl PDZ domain and CXXC5 peptide was simulated with molecular dynamics (MD). Based on the structural analysis of binding modes of MD-simulated Dvl PDZ domain with CXXC5 peptide and crystal Dvl PDZ domain with synthetic peptide-ligands, we generated two different pharmacophore models and applied pharmacophore-based virtual screening to discover potent inhibitors of the Dvl-CXXC5 interaction for the anabolic therapy of osteoporosis. Analysis of 16 compounds selected by means of a virtual screening protocol yielded four compounds that effectively disrupted the Dvl-CXXC5 interaction in the fluorescence polarization assay. Potential compounds were validated by fluorescence spectroscopy and nuclear magnetic resonance. We successfully identified a highly potent inhibitor, BMD4722, which directly binds to the Dvl PDZ domain and disrupts the Dvl-CXXC5 interaction. Overall, CXXC5-Dvl PDZ domain complex based pharmacophore combined with various traditional and simple computational methods is a promising approach for the development of modulators targeting the Dvl-CXXC5 interaction, and the potent inhibitor BMD4722 could serve as a starting point to discover or design more potent and specific the Dvl-CXXC5 interaction disruptors.
Collapse
Affiliation(s)
- Songling Ma
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.,Bioinformatics and Molecular Design Research Center, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jiwon Choi
- Bioinformatics and Molecular Design Research Center, Yonsei University, Seoul, 03722, Republic of Korea
| | - Xuemei Jin
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyun-Yi Kim
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, 03722, Republic of Korea
| | - Ji-Hye Yun
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Weontae Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kang-Yell Choi
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kyoung Tai No
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea. .,Bioinformatics and Molecular Design Research Center, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
17
|
Zhou H, Wang B, Sun H, Xu X, Wang Y. Epigenetic Regulations in Neural Stem Cells and Neurological Diseases. Stem Cells Int 2018; 2018:6087143. [PMID: 29743892 PMCID: PMC5878882 DOI: 10.1155/2018/6087143] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 01/08/2018] [Indexed: 12/17/2022] Open
Abstract
Among the regulatory mechanisms of the renewal and differentiation of neural stem cells, recent evidences support that epigenetic modifications such as DNA methylation, histone modification, and noncoding RNAs play critical roles in the regulation on the proliferation and differentiation of neural stem cells. In this review, we discussed recent advances of DNA modifications on the regulative mechanisms of neural stem cells. Among these epigenetic modifications, DNA 5-hydroxymethylcytosine (5hmC) modification is emerging as an important modulator on the proliferation and differentiation of neural stem cells. At the same time, Ten-eleven translocation (Tet) methylcytosine dioxygenases, the rate-limiting enzyme for the 5-hydroxymethylation reaction from 5-methylcytosine to 5-hydroxymethylcytosine, play a critical role in the tumorigenesis and the proliferation and differentiation of stem cells. The functions of 5hmC and TET proteins on neural stem cells and their roles in neurological diseases are discussed.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Bin Wang
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Hao Sun
- Department of Orthopedics, Clinical Medical School, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou 225001, China
| | - Xingshun Xu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yongxiang Wang
- Department of Orthopedics, Clinical Medical School, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou 225001, China
| |
Collapse
|
18
|
Yan X, Wu J, Jiang Q, Cheng H, Han JDJ, Chen YG. CXXC5 suppresses hepatocellular carcinoma by promoting TGF-β-induced cell cycle arrest and apoptosis. J Mol Cell Biol 2017; 10:48-59. [DOI: 10.1093/jmcb/mjx042] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 09/18/2017] [Indexed: 12/18/2022] Open
Affiliation(s)
- Xiaohua Yan
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Jingyi Wu
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Quanlong Jiang
- Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hao Cheng
- Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jing-Dong J Han
- Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
19
|
Benedetti I, De Marzo AM, Geliebter J, Reyes N. CXXC5 expression in prostate cancer: implications for cancer progression. Int J Exp Pathol 2017; 98:234-243. [PMID: 29027288 DOI: 10.1111/iep.12241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 07/13/2017] [Indexed: 01/08/2023] Open
Abstract
Identification of genes specifically deregulated in prostate adenocarcinoma may lead to discovery of new oncogenes/tumour suppressors with clinical relevance for diagnosis, prognosis and/or therapy. CXXC5 is a gene encoding a retinoid-inducible nuclear factor, whose overexpression in breast tumours, metastatic malignant melanomas and papillary thyroid carcinoma has been recently reported. We previously found differential expression of CXXC5 transcripts in metastatic prostate cancer cell lines of both rat and human origin. However, knowledge on the expression of this gene in benign or malignant human prostate tissue is lacking. The aim of this study was to determine the mRNA and protein expression pattern of CXXC5 in human benign prostate tissue, proliferative inflammatory atrophy, high-grade prostatic intra-epithelial neoplasia and prostate cancer, using qPCR, chromogenic in situ hybridization and immunohistochemistry. Our results showed that protein levels determined by immunohistochemistry were in agreement with transcript levels observed by chromogenic in situ hybridization. CXXC5 mRNA and protein expressions were significantly higher in prostate cancer, high-grade prostatic intra-epithelial neoplasia, and proliferative inflammatory atrophy, compared to benign prostate tissue. Significantly, within the same tissue specimens, CXXC5 staining was stronger in malignant acini than in matched adjacent, benign acini; immunostaining for this protein was mainly localized to the nucleus of benign epithelial cells and both the nucleus and cytoplasm of malignant epithelial cells. Our findings suggest that CXXC5 may play a role in the process of prostate carcinogenesis. Additional studies are required to determine the biological and clinical significance of CXXC5 in prostate cancer development and/or progression.
Collapse
Affiliation(s)
- Ines Benedetti
- School of Medicine, University of Cartagena, Cartagena, Colombia.,Research Group of Histopathology, Cartagena, Colombia
| | - Angelo M De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jan Geliebter
- School of Medicine, New York Medical College, Valhalla, NY, USA
| | - Niradiz Reyes
- School of Medicine, University of Cartagena, Cartagena, Colombia.,Research Group of Genetics and Molecular Biology, Cartagena, Colombia
| |
Collapse
|
20
|
Zhong J, Lei J, Jiang K, Li Z, Gong R, Zhu J. Synchronous papillary thyroid carcinoma and breast ductal carcinoma: A rare case report and literature review. Medicine (Baltimore) 2017; 96:e6114. [PMID: 28207532 PMCID: PMC5319521 DOI: 10.1097/md.0000000000006114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The incidences of both thyroid cancer and breast cancer have been rising in recent years; however, it is very rare to find a single person with both of these cancers. Only a few cases of synchronous thyroid and breast cancer have been published, and even fewer cases have been reported in older patients (>60 years). CASE SUMMARY The current study presents a case of synchronous papillary thyroid carcinoma and breast ductal carcinoma in an elderly patient. The patient first underwent a mastectomy and axillary lymphadenectomy in our department, followed by a total thyroidectomy and lymphadenectomy of the left lateral region of the neck 1 month later. Postoperative pathological examination identified invasive ductal carcinoma of the breast and papillary carcinoma of the thyroid. Over almost half a year of follow-up, the patient has exhibited no evidence of recurrence or metastasis, as demonstrated by careful ultrasound examinations. Herein, we not only report this case but also present a systematic review of the causes, diagnosis, and treatment of synchronous breast and thyroid cancer. CONCLUSION Although synchronous primary tumors of the thyroid and breast are very rare, they remain a possibility; therefore, more attention should be paid to these cases.
Collapse
Affiliation(s)
- Jinjing Zhong
- Department of Pathology, West China Hospital of Sichuan University
| | - Jianyong Lei
- Thyroid and Parathyroid Surgery Group, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ke Jiang
- Thyroid and Parathyroid Surgery Group, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Zhihui Li
- Thyroid and Parathyroid Surgery Group, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Rixiang Gong
- Thyroid and Parathyroid Surgery Group, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jingqiang Zhu
- Thyroid and Parathyroid Surgery Group, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
21
|
Estradiol-Estrogen Receptor α Mediates the Expression of the CXXC5 Gene through the Estrogen Response Element-Dependent Signaling Pathway. Sci Rep 2016; 6:37808. [PMID: 27886276 PMCID: PMC5122896 DOI: 10.1038/srep37808] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/02/2016] [Indexed: 12/12/2022] Open
Abstract
17β-estradiol (E2), the primary circulating estrogen hormone, mediates physiological and pathophysiological functions of breast tissue mainly through estrogen receptor α (ERα). Upon binding to E2, ERα modulates the expression of target genes involved in the regulation of cellular proliferation primarily through interactions with specific DNA sequences, estrogen response elements (EREs). Our previous microarray results suggested that E2-ERα modulates CXXC5 expression. Because of the presence of a zinc-finger CXXC domain (ZF-CXXC), CXXC5 is considered to be a member of the ZF-CXXC family, which binds to non-methylated CpG dinucleotides. Although studies are limited, CXXC5 appears to participate as a transcription factor, co-regulator and/or epigenetic factor in the regulation of cellular events induced by various signaling pathways. However, how signaling pathways mediate the expression of CXXC5 is yet unclear. Due to the importance of E2-ERα signaling in breast tissue, changes in the CXXC5 transcription/synthesis could participate in E2-mediated cellular events as well. To address these issues, we initially examined the mechanism whereby E2-ERα regulates CXXC5 expression. We show here that CXXC5 is an E2-ERα responsive gene regulated by the interaction of E2-ERα with an ERE present at a region upstream of the initial translation codon of the gene.
Collapse
|
22
|
Abstract
Ten eleven translocation (TET) genes, and especially TET2, are frequently mutated in various cancers, but how the TET proteins contribute to the onset and maintenance of these malignancies is largely unknown. In this review, Rasmussen and Helin highlight recent advances in understanding the physiological function of the TET proteins and their role in regulating DNA methylation and transcription. The pattern of DNA methylation at cytosine bases in the genome is tightly linked to gene expression, and DNA methylation abnormalities are often observed in diseases. The ten eleven translocation (TET) enzymes oxidize 5-methylcytosines (5mCs) and promote locus-specific reversal of DNA methylation. TET genes, and especially TET2, are frequently mutated in various cancers, but how the TET proteins contribute to prevent the onset and maintenance of these malignancies is largely unknown. Here, we highlight recent advances in understanding the physiological function of the TET proteins and their role in regulating DNA methylation and transcription. In addition, we discuss some of the key outstanding questions in the field.
Collapse
Affiliation(s)
- Kasper Dindler Rasmussen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark; Centre for Epigenetics, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kristian Helin
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark; Centre for Epigenetics, University of Copenhagen, 2200 Copenhagen, Denmark; The Danish Stem Cell Center (Danstem), University of Copenhagen, 2200 Copenhagen, Denmark; Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
23
|
CXXC5 is required for cardiac looping relating to TGFβ signaling pathway in zebrafish. Int J Cardiol 2016; 214:246-53. [DOI: 10.1016/j.ijcard.2016.03.201] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/05/2016] [Accepted: 03/29/2016] [Indexed: 11/21/2022]
|
24
|
Gene Expression Profiling of Prostate Cancer–Associated Genes Identifies Fibromodulin as Potential Novel Biomarker for Prostate Cancer. Int J Biol Markers 2016; 31:e153-62. [DOI: 10.5301/jbm.5000184] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2015] [Indexed: 01/06/2023]
Abstract
Background The aim of this study was to evaluate the gene expression profiles of a set of prostate cancer–associated genes in prostate cancer cell lines, to determine their association with different cancer phenotypes and identify potential novel biomarkers for this disease. Methods Quantitative real-time PCR was used to determine the expression profiles of 21 prostate cancer–associated genes in the human prostate cancer cell lines PC-3 and LNCaP, using the nontumorigenic cell line PWR-1E as control cell line. Genes evaluated were ESM-1, SERPINE2, CLU, BGN, A2M, PENK, FMOD, CD81, DCN, TSPAN8, KBTBD10, F2RL1, TMSB4X, SNCG, CXXC5, FOXQ1, PDPN, SPN, CAV1, CD24 and KLK3. A potential biomarker from this set of genes, the FMOD gene, encoding the small leucine-rich proteoglycan fibromodulin, was selected for further evaluation in clinical samples from patients diagnosed with benign or malignant prostatic disease. Results Several of the evaluated genes showed significantly altered expression in the prostate cancer cell lines, compared with nontumorigenic PWR-1E cells. Further evaluation of FMOD transcript in prostate clinical samples from patients diagnosed with benign or malignant prostatic disease identified a significant difference in the expression levels of this proteoglycan between benign and malignant tissue (p<0.05). Conclusions A number of gene transcripts were differentially expressed by the cell lines assayed. Among them, FMOD was further evaluated in clinical samples and was found to be differentially expressed between benign and prostate cancer tissue. Further validation of FMOD transcript in a larger population is required to ascertain its usefulness as biomarker for prostate cancer.
Collapse
|
25
|
Centritto F, Paroni G, Bolis M, Garattini SK, Kurosaki M, Barzago MM, Zanetti A, Fisher JN, Scott MF, Pattini L, Lupi M, Ubezio P, Piccotti F, Zambelli A, Rizzo P, Gianni' M, Fratelli M, Terao M, Garattini E. Cellular and molecular determinants of all-trans retinoic acid sensitivity in breast cancer: Luminal phenotype and RARα expression. EMBO Mol Med 2016; 7:950-72. [PMID: 25888236 PMCID: PMC4520659 DOI: 10.15252/emmm.201404670] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Forty-two cell lines recapitulating mammary carcinoma heterogeneity were profiled for all-trans retinoic acid (ATRA) sensitivity. Luminal and ER+ (estrogen-receptor-positive) cell lines are generally sensitive to ATRA, while refractoriness/low sensitivity is associated with a Basal phenotype and HER2 positivity. Indeed, only 2 Basal cell lines (MDA-MB157 and HCC-1599) are highly sensitive to the retinoid. Sensitivity of HCC-1599 cells is confirmed in xenotransplanted mice. Short-term tissue-slice cultures of surgical samples validate the cell-line results and support the concept that a high proportion of Luminal/ER+ carcinomas are ATRA sensitive, while triple-negative (Basal) and HER2-positive tumors tend to be retinoid resistant. Pathway-oriented analysis of the constitutive gene-expression profiles in the cell lines identifies RARα as the member of the retinoid pathway directly associated with a Luminal phenotype, estrogen positivity and ATRA sensitivity. RARα3 is the major transcript in ATRA-sensitive cells and tumors. Studies in selected cell lines with agonists/antagonists confirm that RARα is the principal mediator of ATRA responsiveness. RARα over-expression sensitizes retinoid-resistant MDA-MB453 cells to ATRA anti-proliferative action. Conversely, silencing of RARα in retinoid-sensitive SKBR3 cells abrogates ATRA responsiveness. All this is paralleled by similar effects on ATRA-dependent inhibition of cell motility, indicating that RARα may mediate also ATRA anti-metastatic effects. We define gene sets of predictive potential which are associated with ATRA sensitivity in breast cancer cell lines and validate them in short-term tissue cultures of Luminal/ER+ and triple-negative tumors. In these last models, we determine the perturbations in the transcriptomic profiles afforded by ATRA. The study provides fundamental information for the development of retinoid-based therapeutic strategies aimed at the stratified treatment of breast cancer subtypes.
Collapse
Affiliation(s)
- Floriana Centritto
- Laboratory of Molecular Biology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Gabriela Paroni
- Laboratory of Molecular Biology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Marco Bolis
- Laboratory of Molecular Biology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Silvio Ken Garattini
- Laboratory of Molecular Biology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Mami Kurosaki
- Laboratory of Molecular Biology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Maria Monica Barzago
- Laboratory of Molecular Biology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Adriana Zanetti
- Laboratory of Molecular Biology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - James Neil Fisher
- Laboratory of Molecular Biology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Mark Francis Scott
- Laboratory of Molecular Biology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Linda Pattini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Monica Lupi
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Paolo Ubezio
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | | | | | - Paola Rizzo
- Gene Therapy and Cellular Reprogramming, IRCCS- Istituto di Ricerche Farmacologiche "Mario Negri", Bergamo, Italy
| | - Maurizio Gianni'
- Laboratory of Molecular Biology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Maddalena Fratelli
- Laboratory of Molecular Biology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Mineko Terao
- Laboratory of Molecular Biology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Enrico Garattini
- Laboratory of Molecular Biology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| |
Collapse
|
26
|
Tsuchiya Y, Naito T, Tenno M, Maruyama M, Koseki H, Taniuchi I, Naoe Y. ThPOK represses CXXC5, which induces methylation of histone H3 lysine 9 in Cd40lg promoter by association with SUV39H1: implications in repression of CD40L expression in CD8+ cytotoxic T cells. J Leukoc Biol 2016; 100:327-38. [PMID: 26896487 DOI: 10.1189/jlb.1a0915-396rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 02/01/2016] [Indexed: 12/31/2022] Open
Abstract
CD40 ligand is induced in CD4(+) Th cells upon TCR stimulation and provides an activating signal to B cells, making CD40 ligand an important molecule for Th cell function. However, the detailed molecular mechanisms, whereby CD40 ligand becomes expressed on the cell surface in T cells remain unclear. Here, we showed that CD40 ligand expression in CD8(+) cytotoxic T cells was suppressed by combined epigenetic regulations in the promoter region of the Cd40lg gene, such as the methylation of CpG dinucleotides, histone H3 lysine 9, histone H3 lysine 27, and histone H4 lysine 20. As the transcription factor Th-inducing pox virus and zinc finger/Kruppel-like factor (encoded by the Zbtb7b gene) is critical in Th cell development, we focused on the role of Th-inducing pox virus and zinc finger/Kruppel-like factor in CD40 ligand expression. We found that CD40 ligand expression is moderately induced by retroviral Thpok transduction into CD8(+) cytotoxic T cells, which was accompanied by a reduction of histone H3 lysine 9 methylation and histone H3 lysine 27 methylation in the promoter region of the Cd40lg gene. Th-inducing pox virus and zinc finger/Kruppel-like factor directly inhibited the expression of murine CXXC5, a CXXC-type zinc finger protein that induced histone H3 lysine 9 methylation, in part, through an interaction with the histone-lysine N-methyltransferase SUV39H1. In addition, to inhibit CD40 ligand induction in activated CD4(+) T cells by the CXXC5 transgene, our findings indicate that CXXC5 was one of the key molecules contributing to repressing CD40 ligand expression in CD8(+) cytotoxic T cells.
Collapse
Affiliation(s)
- Yukako Tsuchiya
- Department of Mechanism of Aging, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Taku Naito
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and
| | - Mari Tenno
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and
| | - Mitsuo Maruyama
- Department of Mechanism of Aging, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and
| | - Yoshinori Naoe
- Department of Mechanism of Aging, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan;
| |
Collapse
|
27
|
Kühnl A, Valk PJM, Sanders MA, Ivey A, Hills RK, Mills KI, Gale RE, Kaiser MF, Dillon R, Joannides M, Gilkes A, Haferlach T, Schnittger S, Duprez E, Linch DC, Delwel R, Löwenberg B, Baldus CD, Solomon E, Burnett AK, Grimwade D. Downregulation of the Wnt inhibitor CXXC5 predicts a better prognosis in acute myeloid leukemia. Blood 2015; 125:2985-94. [PMID: 25805812 PMCID: PMC4463809 DOI: 10.1182/blood-2014-12-613703] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 03/11/2015] [Indexed: 12/13/2022] Open
Abstract
The gene CXXC5 on 5q31 is frequently deleted in acute myeloid leukemia (AML) with del(5q), suggesting that inactivation of CXXC5 might play a role in leukemogenesis. Here, we investigated the functional and prognostic implications of CXXC5 expression in AML. CXXC5 mRNA was downregulated in AML with MLL rearrangements, t(8;21) and GATA2 mutations. As a mechanism of CXXC5 inactivation, we found evidence for epigenetic silencing by promoter methylation. Patients with CXXC5 expression below the median level had a lower relapse rate (45% vs 59%; P = .007) and a better overall survival (OS, 46% vs 28%; P < .001) and event-free survival (EFS, 36% vs 21%; P < .001) at 5 years, independent of cytogenetic risk groups and known molecular risk factors. In gene-expression profiling, lower CXXC5 expression was associated with upregulation of cell-cycling genes and co-downregulation of genes implicated in leukemogenesis (WT1, GATA2, MLL, DNMT3B, RUNX1). Functional analyses demonstrated CXXC5 to inhibit leukemic cell proliferation and Wnt signaling and to affect the p53-dependent DNA damage response. In conclusion, our data suggest a tumor suppressor function of CXXC5 in AML. Inactivation of CXXC5 is associated with different leukemic pathways and defines an AML subgroup with better outcome.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carrier Proteins/antagonists & inhibitors
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Cycle
- Cohort Studies
- DNA Methylation
- DNA-Binding Proteins
- Down-Regulation
- Female
- Follow-Up Studies
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Humans
- Immunoenzyme Techniques
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Male
- Middle Aged
- Mutation/genetics
- Oligonucleotide Array Sequence Analysis
- Prognosis
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Survival Rate
- Transcription Factors
- Tumor Cells, Cultured
- Wnt Proteins/antagonists & inhibitors
- Young Adult
Collapse
Affiliation(s)
- Andrea Kühnl
- Department of Medical and Molecular Genetics, King's College London, Faculty of Life Sciences and Medicine, London, United Kingdom; Department of Hematology and Oncology, Charité University Hospital Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Peter J M Valk
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mathijs A Sanders
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Adam Ivey
- Department of Medical and Molecular Genetics, King's College London, Faculty of Life Sciences and Medicine, London, United Kingdom
| | - Robert K Hills
- Department of Haematology, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Ken I Mills
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - Rosemary E Gale
- Department of Haematology, University College London, London, United Kingdom
| | - Martin F Kaiser
- Department of Hematology and Oncology, Charité University Hospital Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Richard Dillon
- Department of Medical and Molecular Genetics, King's College London, Faculty of Life Sciences and Medicine, London, United Kingdom
| | - Melanie Joannides
- Department of Medical and Molecular Genetics, King's College London, Faculty of Life Sciences and Medicine, London, United Kingdom
| | - Amanda Gilkes
- Department of Haematology, Cardiff University School of Medicine, Cardiff, United Kingdom
| | | | | | - Estelle Duprez
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, Centre National de la Recherche Scientifique UMR7258, Institut Paoli-Calmettes, Aix Marseille University, Marseille, France
| | - David C Linch
- Department of Haematology, University College London, London, United Kingdom
| | - Ruud Delwel
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Bob Löwenberg
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Claudia D Baldus
- Department of Hematology and Oncology, Charité University Hospital Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Ellen Solomon
- Department of Medical and Molecular Genetics, King's College London, Faculty of Life Sciences and Medicine, London, United Kingdom
| | - Alan K Burnett
- Department of Haematology, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - David Grimwade
- Department of Medical and Molecular Genetics, King's College London, Faculty of Life Sciences and Medicine, London, United Kingdom
| |
Collapse
|
28
|
Kroeze LI, van der Reijden BA, Jansen JH. 5-Hydroxymethylcytosine: An epigenetic mark frequently deregulated in cancer. Biochim Biophys Acta Rev Cancer 2015; 1855:144-54. [PMID: 25579174 DOI: 10.1016/j.bbcan.2015.01.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 01/02/2015] [Accepted: 01/04/2015] [Indexed: 12/26/2022]
Abstract
The epigenetic mark 5-hydroxymethylcytosine (5hmC) has gained interest since 2009, when it was discovered that Ten-Eleven-Translocation (TET) proteins catalyze the conversion of 5-methylcytosine (5mC) into 5hmC. This conversion appears to be an intermediate step in the active DNA demethylation pathway. Factors that regulate DNA hydroxymethylation are frequently affected in cancer, leading to deregulated 5hmC levels. In this review, we will discuss the regulation of DNA hydroxymethylation, defects in this pathway in cancer, and novel therapies that may correct deregulated (hydroxy)methylation of DNA.
Collapse
Affiliation(s)
- Leonie I Kroeze
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Bert A van der Reijden
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Joop H Jansen
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
29
|
CXXC5 regulates differentiation of C2C12 myoblasts into myocytes. J Muscle Res Cell Motil 2014; 35:259-65. [DOI: 10.1007/s10974-014-9400-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 11/17/2014] [Indexed: 10/24/2022]
|
30
|
Liu L, Shi J, Mao F, Wei J, Fu D, Zhang J. Synchronous primary cancers of the thyroid and breast: A case report and review of the literature. Oncol Lett 2014; 9:351-354. [PMID: 25435991 PMCID: PMC4246699 DOI: 10.3892/ol.2014.2625] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 09/08/2014] [Indexed: 11/06/2022] Open
Abstract
The current report presents the case of a 41-year-old female exhibiting synchronous primary cancers of the thyroid and breast. Pathological examination of a tissue sample following biopsy identified papillary carcinoma of the thyroid and invasive ductal carcinoma of the breast to provide a definitive diagnosis of synchronous primary tumors. The patient underwent a modified radical mastectomy and total thyroidectomy. Following regular adjuvant chemotherapy with cyclophosphamide (800 mg), doxorubicin (100 mg) and paclitaxel (120 mg), once every three weeks for 3.5 months, oral levothyroxine and endocrinotherapy was recommended. Two years after the initial diagnosis, the patient was healthy with no disease recurrence. To the best of our knowledge, no association has been identified between the etiology and diagnoses of the two synchronous primary tumors. Thus, the aim of the current report was to improve the understanding of synchronous primary tumors of the thyroid and breast by presenting a review of the associated literature regarding breast and thyroid cancer. The mechanisms of synchronous neoplasms have only recently been elucidated, however, misdiagnosis is common. Clinicians are, therefore, advised to carefully examine patients with thyroid or breast cancer to avoid an incorrect or misdiagnosis. Furthermore, the present report aims to provide a reference for the cancer database, since the majority of analyses of rare diseases are derived from case reports. To improve the understanding of synchronous primary cancers of the thyroid and breast, an analysis of recent studies regarding the underlying mechanisms of synchronous primary cancers was also undertaken.
Collapse
Affiliation(s)
- Li Liu
- Department of Thyroid and Breast Surgery, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, P.R. China
| | - Jing Shi
- Department of Thyroid and Breast Surgery, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, P.R. China
| | - Fengfeng Mao
- Department of Thyroid and Breast Surgery, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, P.R. China
| | - Jinli Wei
- Department of Thyroid and Breast Surgery, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, P.R. China
| | - Deyuan Fu
- Department of Thyroid and Breast Surgery, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, P.R. China
| | - Jiaxin Zhang
- Department of Thyroid and Breast Surgery, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, P.R. China
| |
Collapse
|
31
|
CXXC5 (retinoid-inducible nuclear factor, RINF) is a potential therapeutic target in high-risk human acute myeloid leukemia. Oncotarget 2014; 4:1438-48. [PMID: 23988457 PMCID: PMC3824541 DOI: 10.18632/oncotarget.1195] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The retinoid-responsive gene CXXC5 localizes to the 5q31.2 chromosomal region and encodes a retinoid-inducible nuclear factor (RINF) that seems important during normal myelopoiesis. We investigated CXXC5/RINF expression in primary human acute myeloid leukemia (AML) cells derived from 594 patients, and a wide variation in CXXC5/RINF mRNA levels was observed both in the immature leukemic myeloblasts and in immature acute lymphoblastic leukemia cells. Furthermore, patients with low-risk cytogenetic abnormalities showed significantly lower levels compared to patients with high-risk abnormalities, and high RINF/CXXC5/ mRNA levels were associated with decreased overall survival for patients receiving intensive chemotherapy for newly diagnosed AML. This association with prognosis was seen both when investigating (i) an unselected patient population as well as for patients with (ii) normal cytogenetic and (iii) core-binding factor AML. CXXC5/RINF knockdown in AML cell lines caused increased susceptibility to chemotherapy-induced apoptosis, and regulation of apoptosis also seemed to differ between primary human AML cells with high and low RINF expression. The association with adverse prognosis together with the antiapoptotic effect of CXXC5/RINF suggests that targeting of CXXC5/RINF should be considered as a possible therapeutic strategy, especially in high-risk patients who show increased expression in AML cells compared with normal hematopoietic cells.
Collapse
|
32
|
Ko M, An J, Bandukwala HS, Chavez L, Aijö T, Pastor WA, Segal MF, Li H, Koh KP, Lähdesmäki H, Hogan PG, Aravind L, Rao A. Modulation of TET2 expression and 5-methylcytosine oxidation by the CXXC domain protein IDAX. Nature 2013; 497:122-6. [PMID: 23563267 DOI: 10.1038/nature12052] [Citation(s) in RCA: 299] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 02/28/2013] [Indexed: 12/14/2022]
Abstract
TET (ten-eleven-translocation) proteins are Fe(ii)- and α-ketoglutarate-dependent dioxygenases that modify the methylation status of DNA by successively oxidizing 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxycytosine, potential intermediates in the active erasure of DNA-methylation marks. Here we show that IDAX (also known as CXXC4), a reported inhibitor of Wnt signalling that has been implicated in malignant renal cell carcinoma and colonic villous adenoma, regulates TET2 protein expression. IDAX was originally encoded within an ancestral TET2 gene that underwent a chromosomal gene inversion during evolution, thus separating the TET2 CXXC domain from the catalytic domain. The IDAX CXXC domain binds DNA sequences containing unmethylated CpG dinucleotides, localizes to promoters and CpG islands in genomic DNA and interacts directly with the catalytic domain of TET2. Unexpectedly, IDAX expression results in caspase activation and TET2 protein downregulation, in a manner that depends on DNA binding through the IDAX CXXC domain, suggesting that IDAX recruits TET2 to DNA before degradation. IDAX depletion prevents TET2 downregulation in differentiating mouse embryonic stem cells, and short hairpin RNA against IDAX increases TET2 protein expression in the human monocytic cell line U937. Notably, we find that the expression and activity of TET3 is also regulated through its CXXC domain. Taken together, these results establish the separate and linked CXXC domains of TET2 and TET3, respectively, as previously unknown regulators of caspase activation and TET enzymatic activity.
Collapse
Affiliation(s)
- Myunggon Ko
- Division of Signaling and Gene Expression, La Jolla Institute for Allergy & Immunology, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Marshall PA, Hernandez Z, Kaneko I, Widener T, Tabacaru C, Aguayo I, Jurutka PW. Discovery of novel vitamin D receptor interacting proteins that modulate 1,25-dihydroxyvitamin D3 signaling. J Steroid Biochem Mol Biol 2012; 132:147-59. [PMID: 22626544 PMCID: PMC3408799 DOI: 10.1016/j.jsbmb.2012.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 04/03/2012] [Accepted: 05/04/2012] [Indexed: 12/24/2022]
Abstract
The nuclear vitamin D receptor (VDR) modulates gene transcription in 1,25-dihydroxyvitamin D(3) (1,25D) target tissues such as kidney, intestine, and bone. VDR is also expressed in heart, and 1,25D deficiency may play a role in the acceleration of cardiovascular disease. Employing a yeast two-hybrid system and a human heart library, using both a 1,25D-independent and 1,25D-dependent screen, we discovered six candidate VDR interacting proteins (VIPs). These novel VIPs include CXXC5, FASTK, NR4A1, TPM2, MYL3 and XIRP1. Mammalian two-hybrid assays as well as GST pull-downs were used to confirm VIP-VDR interaction, and the combination of these two assays reveals that CXXC5, XIRP1, FASTK and NR4A1 interactions with VDR may be modulated by 1,25D. The functional effects of these VIPs on 1,25D-mediated gene expression were explored in transcriptional assays employing three separate and distinct 1,25D-responsive element (VDRE)-driven luciferase reporter genes in transfected Caco-2 and HEK-293 cells, and in a C2C12 myoblast line. FASTK and TPM2 activated expression in all cell line and promoter contexts, while CXXC5 and XIRP1 exhibited differing effects depending on the cell line and promoter employed, suggesting promoter and cell-specific effects of these unique VIPs on VDR signaling. Further evaluation of the interaction between CXXC5 and VDR revealed that CXXC5 acts in a dose-dependent manner to stimulate VDR-mediated transcription on select VDREs. Identification of novel heart VIPs and their influence on VDR activity may increase our understanding of how vitamin D impacts cardiac physiology and may facilitate development of VDR/VIP drug analogs to combat heart disease.
Collapse
Affiliation(s)
- Pamela A. Marshall
- Division of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, United States
| | - Zachary Hernandez
- Division of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, United States
| | - Ichiro Kaneko
- Division of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, United States
- Department of Basic Medical Sciences, The University of Arizona, College of Medicine, Phoenix, AZ, 85004, United States
| | - Tim Widener
- Division of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, United States
- Department of Basic Medical Sciences, The University of Arizona, College of Medicine, Phoenix, AZ, 85004, United States
| | - Christa Tabacaru
- Division of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, United States
| | - Izayadeth Aguayo
- Division of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, United States
| | - Peter W. Jurutka
- Division of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, United States
- Department of Basic Medical Sciences, The University of Arizona, College of Medicine, Phoenix, AZ, 85004, United States
- Corresponding author at: Division of Mathematical and Natural Sciences, Arizona State University, 4701 W. Thunderbird Rd., Glendale, AZ 85306, United States, Tel. +1 602 543 6087, fax: +1 602 543 6074. (P.W. Jurutka)
| |
Collapse
|