1
|
Avsievich E, Salimgereeva D, Maluchenko A, Antysheva Z, Voloshin M, Feidorov I, Glazova O, Abramov I, Maksimov D, Kaziakhmedova S, Bodunova N, Karnaukhov N, Volchkov P, Krupinova J. Pancreatic Neuroendocrine Tumor: The Case Report of a Patient with Germline FANCD2 Mutation and Tumor Analysis Using Single-Cell RNA Sequencing. J Clin Med 2024; 13:7621. [PMID: 39768544 PMCID: PMC11728285 DOI: 10.3390/jcm13247621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 01/16/2025] Open
Abstract
Background: Neuroendocrine neoplasms are a rare and heterogeneous group of neoplasms. Small-sized (≤2 cm) pancreatic neuroendocrine tumors (PanNETs) are of particular interest as they are often associated with aggressive behavior, with no specific prognostic or progression markers. METHODS This article describes a clinical case characterized by a progressive growth of nonfunctional PanNET requiring surgical treatment in a patient with a germline FANCD2 mutation, previously not reported in PanNETs. The patient underwent whole exome sequencing and single-cell RNA sequencing. RESULTS The patient underwent surgical treatment. We confirmed the presence of the germline mutation FANCD2 and also detected the germline mutation WNT10A. The cellular composition of the PanNET was analyzed using single-cell sequencing, and the main cell clusters were identified. We analyzed the tumor genomics, and used the data to define the effect the germline FANCD2 mutation had. CONCLUSIONS Analysis of the mutational status of patients with PanNET may provide additional data that may influence treatment tactics, refine the plan for monitoring such patients, and provide more information about the pathogenesis of PanNET. PanNET research using scRNA-seq data may help in predicting the effect of therapy on neuroendocrine cells with FANCD2 mutations.
Collapse
Affiliation(s)
- Ekaterina Avsievich
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (E.A.); (D.S.); (M.V.); (I.F.); (O.G.); (I.A.); (N.B.); (N.K.); (P.V.)
- Moscow Center for Advanced Studies, Kulakova Street 20, Moscow 123592, Russia; (A.M.); (Z.A.); (D.M.); (S.K.)
- Federal Research Center for Innovator, Emerging Biomedical and Pharmaceutical Technologies, Moscow 125315, Russia
| | - Diana Salimgereeva
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (E.A.); (D.S.); (M.V.); (I.F.); (O.G.); (I.A.); (N.B.); (N.K.); (P.V.)
| | - Alesia Maluchenko
- Moscow Center for Advanced Studies, Kulakova Street 20, Moscow 123592, Russia; (A.M.); (Z.A.); (D.M.); (S.K.)
| | - Zoia Antysheva
- Moscow Center for Advanced Studies, Kulakova Street 20, Moscow 123592, Russia; (A.M.); (Z.A.); (D.M.); (S.K.)
- Federal Research Center for Innovator, Emerging Biomedical and Pharmaceutical Technologies, Moscow 125315, Russia
| | - Mark Voloshin
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (E.A.); (D.S.); (M.V.); (I.F.); (O.G.); (I.A.); (N.B.); (N.K.); (P.V.)
| | - Ilia Feidorov
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (E.A.); (D.S.); (M.V.); (I.F.); (O.G.); (I.A.); (N.B.); (N.K.); (P.V.)
| | - Olga Glazova
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (E.A.); (D.S.); (M.V.); (I.F.); (O.G.); (I.A.); (N.B.); (N.K.); (P.V.)
- Moscow Center for Advanced Studies, Kulakova Street 20, Moscow 123592, Russia; (A.M.); (Z.A.); (D.M.); (S.K.)
| | - Ivan Abramov
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (E.A.); (D.S.); (M.V.); (I.F.); (O.G.); (I.A.); (N.B.); (N.K.); (P.V.)
- Moscow Center for Advanced Studies, Kulakova Street 20, Moscow 123592, Russia; (A.M.); (Z.A.); (D.M.); (S.K.)
- Federal Research Center for Innovator, Emerging Biomedical and Pharmaceutical Technologies, Moscow 125315, Russia
| | - Denis Maksimov
- Moscow Center for Advanced Studies, Kulakova Street 20, Moscow 123592, Russia; (A.M.); (Z.A.); (D.M.); (S.K.)
- Federal Research Center for Innovator, Emerging Biomedical and Pharmaceutical Technologies, Moscow 125315, Russia
| | - Samira Kaziakhmedova
- Moscow Center for Advanced Studies, Kulakova Street 20, Moscow 123592, Russia; (A.M.); (Z.A.); (D.M.); (S.K.)
| | - Natalia Bodunova
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (E.A.); (D.S.); (M.V.); (I.F.); (O.G.); (I.A.); (N.B.); (N.K.); (P.V.)
| | - Nikolay Karnaukhov
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (E.A.); (D.S.); (M.V.); (I.F.); (O.G.); (I.A.); (N.B.); (N.K.); (P.V.)
| | - Pavel Volchkov
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (E.A.); (D.S.); (M.V.); (I.F.); (O.G.); (I.A.); (N.B.); (N.K.); (P.V.)
- Moscow Center for Advanced Studies, Kulakova Street 20, Moscow 123592, Russia; (A.M.); (Z.A.); (D.M.); (S.K.)
- Federal Research Center for Innovator, Emerging Biomedical and Pharmaceutical Technologies, Moscow 125315, Russia
| | - Julia Krupinova
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (E.A.); (D.S.); (M.V.); (I.F.); (O.G.); (I.A.); (N.B.); (N.K.); (P.V.)
- Moscow Center for Advanced Studies, Kulakova Street 20, Moscow 123592, Russia; (A.M.); (Z.A.); (D.M.); (S.K.)
- Federal Research Center for Innovator, Emerging Biomedical and Pharmaceutical Technologies, Moscow 125315, Russia
| |
Collapse
|
2
|
van der Merwe NC, Buccimazza I, Rossouw B, Araujo M, Ntaita KS, Schoeman M, Vorster K, Napo K, Kotze MJ, Oosthuizen J. Clinical relevance of double heterozygosity revealed by next-generation sequencing of homologous recombination repair pathway genes in South African breast cancer patients. Breast Cancer Res Treat 2024; 207:331-342. [PMID: 38814507 PMCID: PMC11297091 DOI: 10.1007/s10549-024-07362-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/24/2024] [Indexed: 05/31/2024]
Abstract
PURPOSE Genetically predisposed breast cancer (BC) patients represent a minor but clinically meaningful subgroup of the disease, with 25% of all cases associated with actionable variants in BRCA1/2. Diagnostic implementation of next-generation sequencing (NGS) resulted in the rare identification of BC patients with double heterozygosity for deleterious variants in genes partaking in homologous recombination repair of DNA. As clinical heterogeneity poses challenges for genetic counseling, this study focused on the occurrence and clinical relevance of double heterozygous BC in South Africa. METHODS DNA samples were diagnostically screened using the NGS-based Oncomine™ BRCA Expanded Research Assay. Data was generated on the Ion GeneStudio S5 system and analyzed using the Torrent Suite™ and reporter software. The clinical significance of the variants detected was determined using international variant classification guidelines and treatment implications. RESULTS Six of 1600 BC patients (0.375%) tested were identified as being bi-allelic for two germline likely pathogenic or pathogenic variants. Most of the variants were present in BRCA1/2, including two founder-related small deletions in three cases, with family-specific variants detected in ATM, BARD1, FANCD2, NBN, and TP53. The scientific interpretation and clinical relevance were based on the clinical and tumor characteristics of each case. CONCLUSION This study increased current knowledge of the risk implications associated with the co-occurrence of more than one pathogenic variant in the BC susceptibility genes, confirmed to be a rare condition in South Africa. Further molecular pathology-based studies are warranted to determine whether clinical decision-making is affected by the detection of a second pathogenic variant in BRCA1/2 and TP53 carriers.
Collapse
Affiliation(s)
- Nerina C van der Merwe
- Division of Human Genetics, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa.
- Division of Human Genetics, National Health Laboratory Service, Universitas Hospital, Bloemfontein, South Africa.
| | - Ines Buccimazza
- Genetics Unit, Inkosi Albert Luthuli General Hospital, Durban, South Africa
- Department of Surgery, Nelson R Mandela School of Medicine, Inkosi Albert Luthuli General Hospital, Durban, South Africa
| | - Bianca Rossouw
- Division of Human Genetics, National Health Laboratory Service, Braamfontein, Johannesburg, South Africa
- Division of Human Genetics, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Monica Araujo
- Division of Human Genetics, National Health Laboratory Service, Braamfontein, Johannesburg, South Africa
- Division of Human Genetics, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kholiwe S Ntaita
- Division of Human Genetics, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
- Division of Human Genetics, National Health Laboratory Service, Universitas Hospital, Bloemfontein, South Africa
| | - Mardelle Schoeman
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Karin Vorster
- Department of Oncology, Free State Department of Health, Universitas Annex Hospital, Bloemfontein, South Africa
- Department of Oncology, Faculty of Health Science, University of the Free State, Bloemfontein, South Africa
| | - Kgabo Napo
- Department of Oncology, Free State Department of Health, Universitas Annex Hospital, Bloemfontein, South Africa
- Department of Oncology, Faculty of Health Science, University of the Free State, Bloemfontein, South Africa
| | - Maritha J Kotze
- Division of Chemical Pathology, Department of Pathology, National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jaco Oosthuizen
- Division of Human Genetics, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
- Division of Human Genetics, National Health Laboratory Service, Universitas Hospital, Bloemfontein, South Africa
| |
Collapse
|
3
|
Shi JY, Che X, Wen R, Hou SJ, Xi YJ, Feng YQ, Wang LX, Liu SJ, Lv WH, Zhang YF. Ferroptosis biomarkers predict tumor mutation burden's impact on prognosis in HER2-positive breast cancer. World J Clin Oncol 2024; 15:391-410. [PMID: 38576597 PMCID: PMC10989258 DOI: 10.5306/wjco.v15.i3.391] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/14/2024] [Accepted: 02/03/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Ferroptosis has recently been associated with multiple degenerative diseases. Ferroptosis induction in cancer cells is a feasible method for treating neoplastic diseases. However, the association of iron proliferation-related genes with prognosis in HER2+ breast cancer (BC) patients is unclear. AIM To identify and evaluate fresh ferroptosis-related biomarkers for HER2+ BC. METHODS First, we obtained the mRNA expression profiles and clinical information of HER2+ BC patients from the TCGA and METABRIC public databases. A four-gene prediction model comprising PROM2, SLC7A11, FANCD2, and FH was subsequently developed in the TCGA cohort and confirmed in the METABRIC cohort. Patients were stratified into high-risk and low-risk groups based on their median risk score, an independent predictor of overall survival (OS). Based on these findings, immune infiltration, mutations, and medication sensitivity were analyzed in various risk groupings. Additionally, we assessed patient prognosis by combining the tumor mutation burden (TMB) with risk score. Finally, we evaluated the expression of critical genes by analyzing single-cell RNA sequencing (scRNA-seq) data from malignant vs normal epithelial cells. RESULTS We found that the higher the risk score was, the worse the prognosis was (P < 0.05). We also found that the immune cell infiltration, mutation, and drug sensitivity were different between the different risk groups. The high-risk subgroup was associated with lower immune scores and high TMB. Moreover, we found that the combination of the TMB and risk score could stratify patients into three groups with distinct prognoses. HRisk-HTMB patients had the worst prognosis, whereas LRisk-LTMB patients had the best prognosis (P < 0.0001). Analysis of the scRNA-seq data showed that PROM2, SLC7A11, and FANCD2 were significantly differentially expressed, whereas FH was not, suggesting that these genes are expressed mainly in cancer epithelial cells (P < 0.01). CONCLUSION Our model helps guide the prognosis of HER2+ breast cancer patients, and its combination with the TMB can aid in more accurate assessment of patient prognosis and provide new ideas for further diagnosis and treatment.
Collapse
Affiliation(s)
- Jin-Yu Shi
- Department of Breast Surgery, The Fifth Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
- The Fifth Clinical Medical College, Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
| | - Xin Che
- The Fifth Clinical Medical College, Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
- Department of Colorectal Surgery, The Fifth Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
| | - Rui Wen
- College of Pharmacy, Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
| | - Si-Jia Hou
- Department of Neurology, The First Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
| | - Yu-Jia Xi
- Department of Urology, The Second Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
| | - Yi-Qian Feng
- Department of Breast Surgery, The First Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
| | - Ling-Xiao Wang
- The Fifth Clinical Medical College, Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
- Department of Colorectal Surgery, The Fifth Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
| | - Shi-Jia Liu
- Department of Breast Surgery, The Fifth Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
- The Fifth Clinical Medical College, Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
| | - Wen-Hao Lv
- Department of Breast Surgery, The Fifth Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
- The Fifth Clinical Medical College, Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
| | - Ya-Fen Zhang
- Department of Breast Surgery, The Fifth Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
| |
Collapse
|
4
|
Xie X, Zhao Y, Du F, Cai B, Fang Z, Liu Y, Sang Y, Ma C, Liu Z, Yu X, Zhang C, Jiang J, Gao Z, Liu Y, Lin X, Jing H, Zhong X, Cong L, Dai H, Sha D, Shao N, Feng H, Li L, Liu J, Shang L. Pan-cancer analysis of the tumorigenic role of Fanconi anemia complementation group D2 (FANCD2) in human tumors. Genomics 2024; 116:110762. [PMID: 38104669 DOI: 10.1016/j.ygeno.2023.110762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/27/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Monoubiquitination of FANCD2 is a central step in the activation of the Fanconi anemia (FA) pathway after DNA damage. Defects in the FA pathway centered around FANCD2 not only lead to genomic instability but also induce tumorigenesis. At present, few studies have investigated FANCD2 in tumors, and no pan-cancer research on FANCD2 has been conducted. We conducted a comprehensive analysis of the role of FANCD2 in cancer using public databases and other published studies. Moreover, we evaluated the role of FANCD2 in the proliferation, migration and invasion of lung adenocarcinoma cells through in vitro and in vivo experiments, and explored the role of FANCD2 in cisplatin chemoresistance. We investigated the regulatory effect of FANCD2 on the cell cycle of lung adenocarcinoma cells by flow cytometry, and verified this effect by western blotting. FANCD2 expression is elevated in most TCGA tumors and shows a strong positive correlation with poor prognosis in tumor patients. In addition, FANCD2 expression shows strong correlations with immune infiltration, immune checkpoints, the tumor mutation burden (TMB), and microsatellite instability (MSI), which are immune-related features, suggesting that it may be a potential target of tumor immunotherapy. We further found that FANCD2 significantly promotes the proliferation, invasion, and migration abilities of lung adenocarcinoma cells and that its ability to promote cancer cell proliferation may be achieved by modulating the cell cycle. The findings indicate that FANCD2 is a potential biomarker and therapeutic target in cancer treatment by analyzing the oncogenic role of FANCD2 in different tumors.
Collapse
Affiliation(s)
- Xiaozhou Xie
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China; Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, Jinan 250000, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250000 Jinan, China
| | - Yulong Zhao
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China; Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, Jinan 250000, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250000 Jinan, China
| | - Fengying Du
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China; Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, Jinan 250000, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250000 Jinan, China
| | - Baoshan Cai
- Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, Jinan 250000, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250000 Jinan, China
| | - Zhen Fang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100000, China
| | - Yuan Liu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China; Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, Jinan 250000, China
| | - Yaodong Sang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China; Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, Jinan 250000, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250000 Jinan, China
| | - Chenghao Ma
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China; Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, Jinan 250000, China
| | - Zhaodong Liu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Xinshuai Yu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Chi Zhang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Jiayu Jiang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Zi Gao
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Yan Liu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Xiaoyan Lin
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Haiyan Jing
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Xiuming Zhong
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Lei Cong
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Honghai Dai
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Dan Sha
- Department of Minimally Invasive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Na Shao
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Hong Feng
- Cancer Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Leping Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China; Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, Jinan 250000, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250000 Jinan, China.
| | - Jin Liu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China.
| | - Liang Shang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China; Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, Jinan 250000, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250000 Jinan, China.
| |
Collapse
|
5
|
Tang X, Luo B, Huang S, Jiang J, Chen Y, Ren W, Shi X, Zhang W, Shi L, Zhong X, Lü M. FANCD2 as a novel prognostic biomarker correlated with immune and drug therapy in Hepatitis B-related hepatocellular carcinoma. Eur J Med Res 2023; 28:419. [PMID: 37821996 PMCID: PMC10566141 DOI: 10.1186/s40001-023-01411-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Ferroptosis is related to the immunosuppression of tumors and plays a critical role in cancer progression. Fanconi anemia complementation group D2 (FANCD2) is a vital gene that regulates ferroptosis. However, the mechanism of action of FANCD2 in Hepatitis B-related hepatocellular carcinoma (HCC) remains unknown. In this study, we investigated the prognostic significance and mechanism of action of FANCD2 in Hepatitis B-related HCC. METHODS The expression of FANCD2 in Hepatitis B-related HCC was explored using The Cancer Genome Atlas (TCGA) and validated using the Gene Expression Omnibus (GEO) database. Univariate and multivariate Cox regression analyses and Kaplan-Meier survival curves were used to analyze the relationship between FANCD2 expression and the overall survival of patients with Hepatitis B-related HCC. Protein-protein interaction networks for FANCD2 were built using the STRING website. In addition, correlations between FANCD2 expression and the dryness index, tumor mutational burden, microsatellite instability (MSI), immune pathways, genes involved in iron metabolism, and sorafenib chemotherapeutic response were analyzed. RESULTS Our results indicated that FANCD2 was significantly overexpressed in Hepatitis B-related HCC and demonstrated a strong predictive ability for diagnosis (Area Under Curve, 0.903) and prognosis of the disease. High FANCD2 expression was associated with poor prognosis, high-grade tumors, high expression of PDL-1, high MSI scores, and low sorafenib IC50 in Hepatitis B-related HCC. BRCA1, BRCA2, FAN1, and FANCC were vital proteins interacting with FANCD2. The expression level of FANCD2 significantly correlated with the infiltration levels of Treg cells, B cells, CD8 + T cells, CD4 + T cells, neutrophils, macrophages, myeloid dendritic cells, and NK cells in Hepatitis B-related HCC. FANCD2 was positively correlated with the tumor proliferation signature pathway, DNA repair, and cellular response to hypoxia. CONCLUSION Our study indicated that FANCD2 was a potential novel biomarker and immunotherapeutic target against Hepatitis B-related HCC, which might be related to the chemotherapeutic response to sorafenib.
Collapse
Affiliation(s)
- Xiaowei Tang
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Bei Luo
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shu Huang
- Department of Gastroenterology, the People's Hospital of Lianshui, Huaian, China
| | - Jiao Jiang
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuan Chen
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wensen Ren
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaomin Shi
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wei Zhang
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lei Shi
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaolin Zhong
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Muhan Lü
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
6
|
Shi Y, Wang Y, Dong H, Niu K, Zhang W, Feng K, Yang R, Zhang Y. Crosstalk of ferroptosis regulators and tumor immunity in pancreatic adenocarcinoma: novel perspective to mRNA vaccines and personalized immunotherapy. Apoptosis 2023; 28:1423-1435. [PMID: 37369808 PMCID: PMC10425492 DOI: 10.1007/s10495-023-01868-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 06/29/2023]
Abstract
Pancreatic adenocarcinoma (PAAD) is the eighth leading cause of cancer-related mortality that causes serious physical and mental burden to human. Reactive oxygen species accumulation and iron overload might enable ferroptosis-mediated cancer therapies. This study was to elusive novel ferroptosis regulator and its association with immune microenvironment and PD-L1 in PAAD. RNA-seq data and relevant information were obtained from The Cancer Genome Atlas and Genotype-Tissue Expression. The R packages "ggplot2" and "pheatmap" were used to the expression of 20 ferroptosis regulators between PAAD and normal tissues. The R package "ConsensusClusterPlus", "survival", "survminer", "immunedeconv", and TIDE algorithm performed consensus clustering, overall survival, progression-free survival, disease free survival, immune infiltration level, and immunotherapy responses between cluster 1 and cluster 2. The prognostic value was confirmed by the Kaplan-Meier curves, receiver operating characteristic curve, univariate and multivariate cox regression, and nomogram. Moreover, the relationship of FANCD2 and immunity, drug sensitivity was investigated by R package "ggstatsplot", "immunedeconv", "ggalluvial" and "pRRophetic". Besides, the qRT-PCR, immunohistochemistry and western blotting detected the expression of FANCD2 in PAAD cell lines. Most ferroptosis regulators were up-regulated in PAAD, while the expression of LPCAT3, MT1G, and GLS2 was down-regulated in PAAD (P < 0.05), indicting there was a positively correlation among ferroptosis regulators. Based on clustering parameter, we identified cluster 1 and cluster 2, and cluster 2 had a better prognosis for patients with PAAD. The immune infiltration level of cluster 1 was higher in macrophage M1, myeloid dendritic cell, T cell CD4 + Th2, B cell, T cell CD8 + central memory, immune score, and microenvironment score than cluster 2 in PAAD. Moreover, FANCD2 was up-regulated in PAAD by public databases, immunohistochemistry, qRT-PCR and Western blotting, which had closely related to overall survival, immune microenvironment, and drug sensitivity. A novel crosstalk of ferroptosis exhibits a favourable prognostic performance and builds a robust theoretical foundation for mRNA vaccine and personalized immunotherapy. FANCD2 could be an effective for prognostic recognition, immune efficacy evaluation, and mRNA vaccine for patients with PAAD, providing a vital guidance for further study of regulating tumor immunity and vaccine development.
Collapse
Affiliation(s)
- Yanlong Shi
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, 210003, Nanjing, Jiangsu Province, China
| | - Yizhu Wang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, 210003, Nanjing, Jiangsu Province, China
| | - Hui Dong
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Kaiyi Niu
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, 210003, Nanjing, Jiangsu Province, China
| | - Wenning Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, 210003, Nanjing, Jiangsu Province, China
| | - Kun Feng
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, 210003, Nanjing, Jiangsu Province, China
| | - Rui Yang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, 210003, Nanjing, Jiangsu Province, China
| | - Yewei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, 210003, Nanjing, Jiangsu Province, China.
| |
Collapse
|
7
|
Previtali V, Myers SH, Poppi L, Wynne K, Casamassima I, Girotto S, Di Stefano G, Farabegoli F, Roberti M, Oliviero G, Cavalli A. Preomic profile of BxPC-3 cells after treatment with BRC4. J Proteomics 2023; 288:104983. [PMID: 37536521 DOI: 10.1016/j.jprot.2023.104983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
BRCA2 and RAD51 are two proteins that play a central role in homologous recombination (HR) and DNA double strand break (DSB) repair. BRCA2 assists RAD51 fibrillation and defibrillation through binding with its eight BRC repeats, with BRC4 being one of the most efficient and best characterized. RAD51 inactivation by small molecules has been proposed as a strategy to impair BRCA2/RAD51 binding and, ultimately, the HR pathway, with the aim of making cancer cells more sensitive to PARP inhibitors (PARPi). This strategy, which mimics a synthetic lethality (SL) approach, has been successfully performed in vitro by using the myristoylated derivative of BRC4 (myr-BRC4), designed for a more efficient cell entry. The present study applies a method to obtain a proteomic fingerprint after cellular treatment with the myr-BRC4 peptide using a mass spectroscopy (MS) proteomic approach. (Data are available via ProteomeXchange with identifier PXD042696.) We performed a comparative proteomic profiling of the myr-BRC4 treated vs. untreated BxPC-3 pancreatic cancer cells and evaluated the differential expression of proteins. Among the identified proteins, we focused our attention on proteins shared by both the RAD51 and the BRCA2 interactomes, and on those whose reduction showed high statistical significance. Three downregulated proteins were identified (FANCI, FANCD2, and RPA3), and protein downregulation was confirmed through immunoblotting analysis, validating the MS approach. Our results suggest that, being a direct consequence of myr-BRC4 treatment, the detection of FANCD2, FANCI, and RPA3 downregulation could be used as an indicator for monitoring HR impairment. SIGNIFICANCE: RAD51's inhibition has gained increasing attention because of its possible implications in personalized medicine through the SL approach. Chemical disruption of protein-protein interactions (PPIs) between RAD51 and BRCA2, or some of its partner proteins, could potentiate PARPi DNA damage-induced cell death. This could have application for difficult to treat cancers, such as BRCA-competent and olaparib (PARPi) resistant pancreatic adenocarcinoma. Despite RAD51 being a widely studied target, researchers still lack detailed mechanistic information. This has stifled progress in the field with only a few RAD51 inhibitors having been identified, none of which have gained regulatory approval. Nevertheless, the peptide BRC4 is one of the most specific and best characterized RAD51 binder and inhibitor reported to date. Our study is the first to report the proteomic fingerprint consequent to cellular treatment of myr-BRC4, to offer a reference for the discovery of specific protein/pathway alterations within DNA damage repair. Our results suggest that, being a direct consequence of myr-BRC4 treatment, and ultimately ofBRCA2/RAD51 disruption, the detection of FANCD2, FANCI, and RPA3 downregulation could be used as an indicator for monitoring DNA damage repair impairment and therefore be used to potentiate the development of new effective therapeutic strategies.
Collapse
Affiliation(s)
- Viola Previtali
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Samuel H Myers
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Laura Poppi
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Kieran Wynne
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield Dublin 4, Ireland; Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Irene Casamassima
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Stefania Girotto
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy; Structural Biophysics and Translational Pharmacology Facility, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Giuseppina Di Stefano
- Department of Surgical and Medical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Fulvia Farabegoli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Marinella Roberti
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Giorgio Oliviero
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield Dublin 4, Ireland
| | - Andrea Cavalli
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy; Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
8
|
Zhou Z, Yin H, Suye S, He J, Fu C. Pan-cancer analysis of the prognostic and immunological role of Fanconi anemia complementation group E. Front Genet 2023; 13:1024989. [PMID: 36685883 PMCID: PMC9846156 DOI: 10.3389/fgene.2022.1024989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Fanconi anemia (FA) genes contribute to tumorigenesis by regulating DNA repair. Despite its importance for assembly and functionality of the FA core complex, no pan-cancer analysis of FANCE was performed. We aimed to provide a comprehensive understanding of the role of FANCE in cancers. Based on The Cancer Genome Atlas (TCGA), Cancer Cell Line Encyclopedia (CCLE), Genotype Tissue-Expression (GTEx), Human Protein Atlas (HPA), Gene Expression Omnibus (GEO), and Cancer Single-cell Atlas (CancerSEA) databases, we investigated the carcinogenicity of FANCE using various bioinformatics methods, including FANCE expression and prognosis, immune invasion, tumor mutation burden, microsatellite instability, and neoantigens. We monitored Fance mutations in mice that caused tumorigenesis. FANCE expression and activity scores were upregulated in 15 and 21 cancers. High expression of FANCE affected shorter overall survival (OS) in seven cancers and longer overall survival in three cancers. It was correlated with shorter overall survival and progression-free interval (PFI) in endometrial cancer and longer overall survival and PFI in cervical cancer. FANCE expression negatively correlated with stromal/immune scores in 21 cancers including cervical cancer, endometrial cancer, and ovarian cancer. FANCE expression negatively correlated with CD8 T cells in endometrial cancer and positively correlated with M1 macrophages in cervical cancer, possibly related to cancer prognosis. FANCE positively correlated with immune checkpoint inhibitors PD-1, PD-L1, and CTLA4 in endometrial cancer and ovarian cancer. FANCE expression positively correlated with microsatellite instability, tumor mutational burden, and neoantigens in 7, 22, and five cancers, especially in endometrial cancer, potentially increasing the effectiveness of immunotherapy. Single-cell sequencing data showed FANCE was primarily expressed in cancer cells in cervical and ovarian cancer, and in fibroblasts in endometrial cancer. Fance heterozygous mutant mice had increased tumor incidences and shorter overall survival and tumor-free survival (TFS) than Fance homozygous mutant mice and wild-type mice. Conclusively, FANCE potential to serve as a biomarker for cancer prognosis and may predict cancer immunotherapy responses. Fance heterozygous mutant resulted in increased tumorigenesis and poor prognosis in mice.
Collapse
Affiliation(s)
- Zhixian Zhou
- Department of Obstetrics and Gynecology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Huan Yin
- Department of Obstetrics and Gynecology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Suye Suye
- Department of Obstetrics and Gynecology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiarong He
- Department of Neurosurgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Chun Fu
- Department of Obstetrics and Gynecology, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Zheng C, Ren Z, Chen H, Yuan X, Suye S, Yin H, Zhou Z, Fu C. FANCD2 promotes the malignant behavior of endometrial cancer cells and its prognostic value. Exp Cell Res 2022; 421:113388. [PMID: 36257352 DOI: 10.1016/j.yexcr.2022.113388] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 12/29/2022]
Abstract
Defective DNA damage repair is a key mechanism affecting tumor susceptibility, treatment response, and survival outcome of endometrial cancer (EC). Fanconi anemia complementation group D2 (FANCD2) is the core component of the Fanconi anemia repair pathway. To explore the function of FANCD2 in EC, we examined the expression of FANCD2 in human specimens and databases, and discussed the possible mechanism of carcinogenesis by in vitro assays. Immunohistochemistry results showed overexpression of FANCD2 was detected in EC tissues compared to normal and atypical hyperplasia endometrium. Higher FANCD2 expression was correlated with deeper myometrial invasion (MI) and proficient mismatch repair status. The Cancer Genome Atlas (TCGA) database analysis showed FANCD2 was upregulated in EC compared with normal tissue. The high expression of FANCD2 was associated with poor overall survival in EC. Knockdown of FANCD2 expression in EC cell lines inhibited malignant proliferation and migration ability. We demonstrated that decreased FANCD2 expression results in increased DNA damage and decreased S-phase cells, leading to a decrease in proliferative capacity in EC cells. Down-regulated FANCD2 confers sensitivity of EC cells to interstrand crosslinking agents. This study provides evidence for the malignant progression and prognostic value of FANCD2 in EC.
Collapse
Affiliation(s)
- Chunying Zheng
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Zhen Ren
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Hongliang Chen
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xiaorui Yuan
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Suye Suye
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Huan Yin
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Zhixian Zhou
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Chun Fu
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
10
|
Ye C, Lu Y, Yuan Z, Mi M, Qi L, Yuan Y, Weng S. Ferroptosis regulator FANCD2 is associated with immune infiltration and predicts worse prognosis in lung adenocarcinoma. Front Genet 2022; 13:922914. [PMID: 36267413 PMCID: PMC9576926 DOI: 10.3389/fgene.2022.922914] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022] Open
Abstract
Lung adenocarcinoma (LUAD) remains one of the leading causes of cancer-related death. Although immunotherapy has been shown to improve survival in LUAD patients, only a select group of LUAD patients could benefit from it. The correlation between ferroptosis and the tumor immune environment requires further investigation in the setting of LUAD. An analysis using The Cancer Genome Atlas (TCGA)-LUAD cohort systematically evaluated the expression levels of ferroptosis regulators between LUAD and normal tissues and demonstrated the correlation of ferroptosis regulators with the immune checkpoint B7-H3 expression. Based on consensus clustering analysis, we divided LUAD patients into two subtypes according to the expression pattern of ferroptosis regulators. Cluster 2 patients showed more favorable overall survival (OS) (p < 0.001) and disease-free survival (DFS) (p < 0.001) than Cluster 1 patients. CIBERSORT analysis indicated that Cluster 1 patients harbored higher infiltrated levels of uncharacterized cells, CD4+ T cells (nonregulatory), and myeloid dendritic cells, while Cluster 2 patients were more correlated with B cells, M1 macrophages, natural killer cells (NK cells) and regulatory T cells (Tregs). More importantly, we identified FANCD2 as a potentially unfavorable prognostic factor that was overexpressed in LUAD and positively associated with the checkpoint molecule B7-H3 expression. In addition, higher FANCD2 expression was related to a higher tumor immune dysfunction and exclusion (TIDE) score, indicating lower responder rates to cancer immunotherapeutics. In summary, our study suggested a relationship between immune infiltration and ferroptosis and that FANCD2 is a potential biomarker for clinical outcomes and a therapeutic target for LUAD therapy concerning ferroptotic regulation. Our findings may help to advance personalized treatment and improve the prognosis of LUAD.
Collapse
Affiliation(s)
- Chenyang Ye
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Yier Lu
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Zhijun Yuan
- Cancer Center, Zhejiang University, Hangzhou, China
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Mi Mi
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Lina Qi
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Ying Yuan
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
- *Correspondence: Ying Yuan, ; Shanshan Weng,
| | - Shanshan Weng
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
- *Correspondence: Ying Yuan, ; Shanshan Weng,
| |
Collapse
|
11
|
Yang Z, Song Y, Li Y, Mao Y, Du G, Tan B, Zhang H. Integrative analyses of prognosis, tumor immunity, and ceRNA network of the ferroptosis-associated gene FANCD2 in hepatocellular carcinoma. Front Genet 2022; 13:955225. [PMID: 36246623 PMCID: PMC9557971 DOI: 10.3389/fgene.2022.955225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
Extensive evidence has revealed that ferroptosis plays a vital role in HCC development and progression. Fanconi anemia complementation group D2 (FANCD2) has been reported to serve as a ferroptosis-associated gene and has a close relationship with tumorigenesis and drug resistance. However, the impact of the FANCD2-related immune response and its mechanisms in HCC remains incompletely understood. In the current research, we evaluated the prognostic significance and immune-associated mechanism of FANCD2 based on multiple bioinformatics methods and databases. The results demonstrated that FANCD2 was commonly upregulated in 15/33 tumors, and only the high expression of FANCD2 in HCC was closely correlated with worse clinical outcomes by OS and DFS analyses. Moreover, ncRNAs, including two major types, miRNAs and lncRNAs, were closely involved in mediating FANCD2 upregulation in HCC and were established in a ceRNA network by performing various in silico analyses. The DUXAP8-miR-29c-FANCD2 and LINC00511-miR-29c-FANCD2 axes were identified as the most likely ncRNA-associated upstream regulatory axis of FANCD2 in HCC. Finally, FANCD2 expression was confirmed to be positively related to HCC immune cell infiltration, immune checkpoints, and IPS analysis, and GSEA results also revealed that this ferroptosis-associated gene was primarily involved in cancer-associated pathways in HCC. In conclusion, our investigations indicate that ncRNA-related modulatory overexpression of FANCD2 might act as a promising prognostic and immunotherapeutic target against HCC.
Collapse
Affiliation(s)
- Zhihao Yang
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
| | - Yaoshu Song
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- North Sichuan Medical College, Nanchong, China
| | - Ya Li
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yiming Mao
- Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou, China
| | - Guobo Du
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- North Sichuan Medical College, Nanchong, China
| | - Bangxian Tan
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- North Sichuan Medical College, Nanchong, China
- *Correspondence: Bangxian Tan, ; Hongpan Zhang,
| | - Hongpan Zhang
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- North Sichuan Medical College, Nanchong, China
- *Correspondence: Bangxian Tan, ; Hongpan Zhang,
| |
Collapse
|
12
|
Zhang T, Song X, Qiao J, Zhu R, Ren Y, Shan PF. A Novel Predictive Model for Adrenocortical Carcinoma Based on Hypoxia- and Ferroptosis-Related Gene Expression. Front Med (Lausanne) 2022; 9:856606. [PMID: 35652069 PMCID: PMC9148996 DOI: 10.3389/fmed.2022.856606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe impact of hypoxia on ferroptosis is important in cancer proliferation, but no predictive model combining hypoxia and ferroptosis for adrenocortical carcinoma (ACC) has been reported. The purpose of this study was to construct a predictive model based on hypoxia- and ferroptosis-related gene expression in ACC.MethodsWe assessed hypoxia- and ferroptosis-related gene expression using data from 79 patients with ACC in The Cancer Genome Atlas (TCGA). Then, a predictive model was constructed to stratify patient survival using least absolute contraction and selection operation regression. Gene expression profiles of patients with ACC in the Gene Expression Omnibus (GEO) database were used to verify the predictive model.ResultsBased on hypoxia-related gene expression, 79 patients with ACC in the TCGA database were divided into three molecular subtypes (C1, C2, and C3) with different clinical outcomes. Patients with the C3 subtype had the shortest survival. Ferroptosis-related genes exhibited distinct expression patterns in the three subtypes. A predictive model combining hypoxia- and ferroptosis-related gene expression was constructed. A nomogram was constructed using age, sex, tumor stage, and the predictive gene model. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that the gene signature was mainly related to the cell cycle and organelle fission.ConclusionThis hypoxia-and ferroptosis-related gene signature displayed excellent predictive performance for ACC and could serve as an emerging source of novel therapeutic targets in ACC.
Collapse
|
13
|
Guan Z, Liu S, Luo L, Wu Z, Lu S, Guan Z, Tao K. Identification of Ferroptosis-Related Genes as Biomarkers for Sarcoma. Front Cell Dev Biol 2022; 10:847513. [PMID: 35309947 PMCID: PMC8929291 DOI: 10.3389/fcell.2022.847513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 01/31/2022] [Indexed: 12/25/2022] Open
Abstract
Sarcomas are seen as mixed-up nature with genetic and transcriptional heterogeneity and poor prognosis. Although the genes involved in ferroptosis are still unclear, iron loss is considered to be the core of glioblastoma, tumor progression, and tumor microenvironment. Here, we developed and tested the prognosis of SARC, which is a genetic marker associated with iron residues. The ferroptosis-related gene expression, one-way Cox analysis, and least-selection absolute regression algorithm (LASSO) are used to track prognostic-related genes and create risk assessment models. Finally, immune system infiltration and immune control point analysis are used to study the characteristics of the tumor microenvironment related to risk assessment. Moreover, LncRNA–miRNA–mRNA network was contributed in our studies. We determined the biomarker characteristics associated with iron degradation in gene 32 and developed a risk assessment model. ROC analysis showed that its model was accurately predicted, with 1, 2, 3, 4, and 5 years of overall survival in TCGA cohort of SARC patients. A comparative analysis of settings found that overall survival (OS) was lower in the high-risk than that in the low-risk group. The nomogram survival prediction model also helped to predict the OS of SARC patients. The nomogram survival prediction model has strong predictive power for the overall survival of SARC patients in TCGA dataset. GSEA analysis shows that high-risk groups are rich in inflammation, cancer-related symptoms, and pathological processes. High risk is related to immune cell infiltration and immune checkpoint. Our prediction model is based on SARC ferritin-related genes, which may support SARC prediction and provide potential attack points.
Collapse
Affiliation(s)
- Zhiyuan Guan
- Department of Orthopedics, The Shanghai tenth People's Hospital of Tongji University, Shanghai, China
| | | | - Liying Luo
- Department of Nursing, Xuzhou Municipal Hospital Affiliated with Xuzhou Medical University, Jiangsu, China
| | - Zhong Wu
- Department of Orthopedics, The Shanghai tenth People's Hospital of Tongji University, Shanghai, China
| | - Shan Lu
- Department of Nursing, Xuzhou Municipal Hospital Affiliated with Xuzhou Medical University, Jiangsu, China
| | - Zhiqiang Guan
- Department of Dermatology, Xuzhou Municipal Hospital Affiliated with Xuzhou Medical University, Xuzhou, China
| | - Kun Tao
- Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Gianni P, Matenoglou E, Geropoulos G, Agrawal N, Adnani H, Zafeiropoulos S, Miyara SJ, Guevara S, Mumford JM, Molmenti EP, Giannis D. The Fanconi anemia pathway and Breast Cancer: A comprehensive review of clinical data. Clin Breast Cancer 2022; 22:10-25. [PMID: 34489172 DOI: 10.1016/j.clbc.2021.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/17/2021] [Accepted: 08/05/2021] [Indexed: 02/08/2023]
Abstract
The development of breast cancer depends on several risk factors, including environmental, lifestyle and genetic factors. Despite the evolution of DNA sequencing techniques and biomarker detection, the epidemiology and mechanisms of various breast cancer susceptibility genes have not been elucidated yet. Dysregulation of the DNA damage response causes genomic instability and increases the rate of mutagenesis and the risk of carcinogenesis. The Fanconi Anemia (FA) pathway is an important component of the DNA damage response and plays a critical role in the repair of DNA interstrand crosslinks and genomic stability. The FA pathway involves 22 recognized genes and specific mutations have been identified as the underlying defect in the majority of FA patients. A thorough understanding of the function and epidemiology of these genes in breast cancer is critical for the development and implementation of individualized therapies that target unique tumor profiles. Targeted therapies (PARP inhibitors) exploiting the FA pathway gene defects have been developed and have shown promising results. This narrative review summarizes the current literature on the involvement of FA genes in sporadic and familial breast cancer with a focus on clinical data derived from large cohorts.
Collapse
Affiliation(s)
- Panagiota Gianni
- Department of Internal Medicine III, Hematology, Oncology, Palliative Medicine, Rheumatology and Infectious Diseases, University Hospital Ulm, Germany
| | - Evangelia Matenoglou
- Medical School, Aristotle University of Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Geropoulos
- Thoracic Surgery Department, University College London Hospitals NHS Foundation Trust, London
| | - Nirav Agrawal
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY
| | - Harsha Adnani
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY
| | - Stefanos Zafeiropoulos
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY; Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, New York, NY
| | - Santiago J Miyara
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY; Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, New York, NY
| | - Sara Guevara
- Department of Surgery, North Shore University Hospital, Manhasset, New York, NY
| | - James M Mumford
- Department of Family Medicine, Glen Cove Hospital, Glen Cove, New York, NY; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, NY
| | - Ernesto P Molmenti
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY; Department of Surgery, North Shore University Hospital, Manhasset, New York, NY; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, NY
| | - Dimitrios Giannis
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY.
| |
Collapse
|
15
|
Lv Z, Wang J, Wang X, Mo M, Tang G, Xu H, Wang J, Li Y, Liu M. Identifying a Ferroptosis-Related Gene Signature for Predicting Biochemical Recurrence of Prostate Cancer. Front Cell Dev Biol 2021; 9:666025. [PMID: 34778244 PMCID: PMC8586218 DOI: 10.3389/fcell.2021.666025] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 09/27/2021] [Indexed: 01/20/2023] Open
Abstract
Ferroptosis induced by lipid peroxidation is closely related to cancer biology. Prostate cancer (PCa) is not only a malignant tumor but also a lipid metabolic disease. Previous studies have identified ferroptosis as an important pathophysiological pathway in PCa development and treatment, but its role in the prognosis of PCa is less well known. In this study, we constructed a nine-ferroptosis-related gene risk model that demonstrated strong prognostic and therapeutic predictive power. The higher risk score calculated by the model was significantly associated with a higher ferroptosis potential index, higher Ki67 expression, higher immune infiltration, higher probability of biochemical recurrence, worse clinicopathological characteristics, and worse response to chemotherapy and antiandrogen therapy in PCa. The mechanisms identified by the gene set enrichment analysis suggested that this signature can accurately distinguish high- and low-risk populations, which is possibly closely related to variations in steroid hormone secretion, regulation of endocrine processes, positive regulation of humoral immune response, and androgen response. Results of this study were confirmed in two independent PCa cohorts, namely, The Cancer Genome Atlas cohort and the MSK-IMPACT Clinical Sequencing Cohort, which contributed to the body of scientific evidence for the prediction of biochemical recurrence in patients with PCa. In addition, as the main components of this signature, the effects of the AIFM2 and NFS1 genes on ferroptosis were evaluated and verified by in vivo and in vitro experiments, respectively. The above findings provided new insights and presented potential clinical applications of ferroptosis in PCa.
Collapse
Affiliation(s)
- Zhengtong Lv
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jianlong Wang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuan Wang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Miao Mo
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Guyu Tang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Haozhe Xu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Jianye Wang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan Li
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming Liu
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
16
|
He S, Lyu F, Lou L, Liu L, Li S, Jakowitsch J, Ma Y. Anti-tumor activities of Panax quinquefolius saponins and potential biomarkers in prostate cancer. J Ginseng Res 2021; 45:273-286. [PMID: 33841008 PMCID: PMC8020356 DOI: 10.1016/j.jgr.2019.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 10/28/2019] [Accepted: 12/30/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Prostate carcinoma is the second most common cancer among men worldwide. Developing new therapeutic approaches and diagnostic biomarkers for prostate cancer (PC) is a significant need. The Chinese herbal medicine Panax quinquefolius saponins (PQS) have been reported to show anti-tumor effects. We hypothesized that PQS exhibits anti-cancer activity in human PC cells and we aimed to search for novel biomarkers allowing early diagnosis of PC. METHODS We used the human PC cell line DU145 and the prostate epithelial cell line PNT2 to perform cell viability assays, flow cytometric analysis of the cell cycle, and FACS-based apoptosis assays. Microarray-based gene expression analysis was used to display specific gene expression patterns and to search for novel biomarkers. Western blot and quantitative real-time PCR were performed to demonstrate the expression levels of multiple cancer-related genes. RESULTS Our data showed that PQS inhibited the viability of DU145 cells and induced cell cycle arrest at the G1 phase. A significant decrease in DU145 cell invasion and migration were observed after 24 h treatment by PQS. PQS up-regulated the expression levels of p21, p53, TMEM79, ACOXL, ETV5, and SPINT1 while it down-regulated the expression levels of bcl2, STAT3, FANCD2, DRD2, and TMPRSS2. CONCLUSION PQS promoted cells apoptosis and inhibited the proliferation of DU145 cells, which suggests that PQS may be effective for treating PC. TMEM79 and ACOXL were expressed significantly higher in PNT2 than in DU145 cells and could be novel biomarker candidates for PC diagnosis.
Collapse
Key Words
- ACOXL, Acyl-CoA oxidase-like protein
- Chinese medicinal herbs
- DRD2, dopamine receptor D2
- ETV5, ETS variant 5
- FACS, fluorescence-activated cell sorting
- FANCD2, fanconi anemia group D2
- PC, prostate cancer
- PQS, Panax quinquefolius saponins
- Panax quinquefolius
- Potential biomarkers
- Prostate cancer cells
- SPINT1, serine peptidase inhibitor Kunitz type 1
- STAT3, signal transducer and activator of transcription 3
- TCM, Traditional Chinese Medicine
- TMEM79, transmembrane protein 79
- TMPRSS2, transmembrane protease serine 2
- bcl2, B-cell lymphoma 2
- p21, cyclin-dependent kinase inhibitor p21
- p53, tumor suppressor p53
- qRT-PCR, quantitative real-time PCR
- saponins
Collapse
Affiliation(s)
- Shan He
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology & Immunology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Fangqiao Lyu
- Department of Cell Biology, School of Basic Medicine, Capital Medical University, Beijing, China
| | - Lixia Lou
- The Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lu Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Songlin Li
- Department of Pharmaceutical Analysis and Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing, China
| | - Johannes Jakowitsch
- Department of Internal Medicine, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Yan Ma
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology & Immunology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Hu H, Jing J, Lu X, Yuan Y, Xing C. XPF expression and its relationship with the risk and prognosis of colorectal cancer. Cancer Cell Int 2021; 21:12. [PMID: 33407486 PMCID: PMC7789628 DOI: 10.1186/s12935-020-01710-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/07/2020] [Indexed: 08/30/2023] Open
Abstract
BACKGROUND XPF (xeroderma pigmentosum complementation group F) is a key factor contributing to DNA damage excision of nucleotide excision repair pathway. The relationship between XPF expression and the risk and prognosis of colorectal cancer (CRC) is unclear. METHODS In this experiment, a total of 824 cases of colorectal tissue were collected. XPF protein expression was detected by immunohistochemical staining. We conducted a Mann-Whitney U test in order to explore the differential expression of XPF between CRC and non-cancer controls, and the correlation between XPF expression and CRC clinicopathological parameters. Univariate and multivariate Cox regression analyses were conducted to investigate the relationship between XPF expression and CRC prognosis. The Java based software GSEA as well as STRING, David, GO, KEGG were used to explore the function and regulation network of XPF. RESULTS The results demonstrated that the XPF expression in CRC was significantly up-regulated compared with non-tumor controls (P < 0.001) and adenoma tissue (P < 0.001). XPF protein was increased in the dynamic sequence of anal diseases to adenoma tissue to CRC. Expression of XPF was related to tumor location (P = 0.005) and tumor growth pattern (P = 0.009). The results of prognosis analysis suggested that in patients with stage T1-T2, XPF low expression may be significantly associated with better overall survival (HR = 7.978, 95% CI 1.208-52.673, P = 0.031). XPF and its interacting genes played a vital role in different processes of nucleotide excision repair pathway. XPF expression was related with Ubiquitin like protein specific protease activity. CONCLUSIONS XPF might be a promising biomarker for CRC risk, and also showed potential as a prognostic predictor in CRC patients.
Collapse
Affiliation(s)
- Huixin Hu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, Liaoning Province, 110001, China.,Liaoning Provincial Education Department, Key Laboratory of Cancer Etiology and Prevention (China Medical University), Shenyang, 110001, China.,Key Laboratory of Gastrointestinal Cancer Etiology and Screening, Shenyang, 110001, Liaoning Province, China
| | - Jingjing Jing
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, Liaoning Province, 110001, China.,Liaoning Provincial Education Department, Key Laboratory of Cancer Etiology and Prevention (China Medical University), Shenyang, 110001, China.,Key Laboratory of Gastrointestinal Cancer Etiology and Screening, Shenyang, 110001, Liaoning Province, China
| | - Xiaodong Lu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, Liaoning Province, 110001, China.,Liaoning Provincial Education Department, Key Laboratory of Cancer Etiology and Prevention (China Medical University), Shenyang, 110001, China.,Key Laboratory of Gastrointestinal Cancer Etiology and Screening, Shenyang, 110001, Liaoning Province, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, Liaoning Province, 110001, China. .,Liaoning Provincial Education Department, Key Laboratory of Cancer Etiology and Prevention (China Medical University), Shenyang, 110001, China. .,Key Laboratory of Gastrointestinal Cancer Etiology and Screening, Shenyang, 110001, Liaoning Province, China.
| | - Chengzhong Xing
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, Liaoning Province, 110001, China. .,Liaoning Provincial Education Department, Key Laboratory of Cancer Etiology and Prevention (China Medical University), Shenyang, 110001, China. .,Key Laboratory of Gastrointestinal Cancer Etiology and Screening, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
18
|
FANCD2 Confers a Malignant Phenotype in Esophageal Squamous Cell Carcinoma by Regulating Cell Cycle Progression. Cancers (Basel) 2020; 12:cancers12092545. [PMID: 32906798 PMCID: PMC7565464 DOI: 10.3390/cancers12092545] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 01/05/2023] Open
Abstract
Fanconi anemia patients with germline genetic defects in FANCD2 are highly susceptible to cancers. Esophageal squamous cell carcinoma (ESCC) is a deadly cancer. Little is known about the function of FANCD2 in ESCC. For detailed molecular and mechanistic insights on the functional role of FANCD2 in ESCC, in vivo and in vitro assays and RNA sequencing approaches were used. Utilizing Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) technology, FANCD2 knockout models were established to examine the functional impact in mouse models for tumor growth and metastasis and in vitro assays for cell growth, cell cycle, and cellular localization. Our RNA sequence analyses were integrated with public datasets. FANCD2 confers a malignant phenotype in ESCC. FANCD2 is significantly upregulated in ESCC tumors, as compared to normal counterparts. Depletion of FANCD2 protein expression significantly suppresses the cancer cell proliferation and tumor colony formation and metastasis potential, as well as cell cycle progression, by involving cyclin-CDK and ATR/ATM signaling. FANCD2 translocates from the nucleus to the cytoplasm during cell cycle progression. We provide evidence of a novel role of FANCD2 in ESCC tumor progression and its potential usefulness as a biomarker for ESCC disease management.
Collapse
|
19
|
Feng L, Jin F. Expression and prognostic significance of Fanconi anemia group D2 protein and breast cancer type 1 susceptibility protein in familial and sporadic breast cancer. Oncol Lett 2019; 17:3687-3700. [PMID: 30881493 PMCID: PMC6403512 DOI: 10.3892/ol.2019.10046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 01/21/2019] [Indexed: 12/20/2022] Open
Abstract
Fanconi anemia group D2 protein (FANCD2) and breast cancer type 1 susceptibility protein (BRCA1), within the FA/BRCA pathway, are involved in the regulation of DNA damage repair, which is associated with breast cancer (BC) progression. The present study aimed to investigate BRCA1 and FANCD2 expression in breast cancer, and to highlight the association with patient clinical characteristics and prognoses. The BRCA1 and FANCD2 proteins were detected by immunohistochemistry in 335 tissue samples obtained from patients with BC, including 141 patients with familial BC (FBC), 147 patients with sporadic breast cancer (SBC) and 47 patients with benign breast tumors. Western blotting was used to detect the FANCD2 ubiquitination level in 56 frozen specimens that were randomly selected from the SBC group. Protein expression of BRCA1 in the FBC group was positively associated with tumor size, lymphatic invasion, Tumor-Node-Metastasis (TNM) stage, estrogen receptor (ER) status and FANCD2 expression. Protein expression of FANCD2 in the SBC group was positively associated with tumor size, TNM stage, ER status and Ki-67 index. Survival analyses revealed that BRCA1 expression was associated with the decreased disease-free survival (DFS) rate of patients with FBC (versus no BRCA1 expression) and that FANCD2 was associated with decreased DFS of patients with SBC (versus no FANCD expression). Univariable and multivariable analyses demonstrated that BRCA1 expression may be an independent prognostic factor in the FBC group. In the SBC group, FANCD2 high expression and low ubiquitination levels were considered as independent prognostic factors. In conclusion, the present study suggested that BRCA1 and FANCD2 expression, and FANCD2 ubiquitination levels, may be considered of novel potential prognostic value in patients with BC.
Collapse
Affiliation(s)
- Liang Feng
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Feng Jin
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
20
|
Deng W, Zhao M, Liu Y, Cao L, Yang M. Fanconi anemia in twins with neutropenia: A case report. Oncol Lett 2018; 16:5325-5330. [PMID: 30250602 PMCID: PMC6144108 DOI: 10.3892/ol.2018.9304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 01/10/2018] [Indexed: 01/28/2023] Open
Abstract
Fanconi anemia (FA) is a rare inherited disease caused by mutations in genes that are primarily involved in DNA damage response or repair. The disease is often characterized by congenital malformations, progressive bone marrow failure, abnormal skin pigmentation patterns and susceptibility to cancer. The present study describes a pair of 4-year-old male twins, both of whom had been suffering from upper respiratory tract infections for >2 years. There was no indication of discomfort including fever, coughing, bleeding or fatigue from either child when the upper respiratory tract infection disappeared. Physical examination of the twins did not reveal anything significant, and no external anomalies were observed. In order to obtain additional diagnostic evidence, next-generation gene sequencing, chromosome breakage analysis and comet assays were performed. The results revealed double heterozygous mutations in the Fanconi Anemia Complementation Group D2 gene of the twins, therefore providing a conclusive diagnosis of FA. The case highlights how difficulties in clinical diagnosis may be overcome by including genetic screening tests into the range of diagnostic tests, which may also reveal unexpected results.
Collapse
Affiliation(s)
- Wenjun Deng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yingting Liu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Minghua Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
21
|
Mantere T, Tervasmäki A, Nurmi A, Rapakko K, Kauppila S, Tang J, Schleutker J, Kallioniemi A, Hartikainen JM, Mannermaa A, Nieminen P, Hanhisalo R, Lehto S, Suvanto M, Grip M, Jukkola-Vuorinen A, Tengström M, Auvinen P, Kvist A, Borg Å, Blomqvist C, Aittomäki K, Greenberg RA, Winqvist R, Nevanlinna H, Pylkäs K. Case-control analysis of truncating mutations in DNA damage response genes connects TEX15 and FANCD2 with hereditary breast cancer susceptibility. Sci Rep 2017; 7:681. [PMID: 28386063 PMCID: PMC5429682 DOI: 10.1038/s41598-017-00766-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/13/2017] [Indexed: 11/26/2022] Open
Abstract
Several known breast cancer susceptibility genes encode proteins involved in DNA damage response (DDR) and are characterized by rare loss-of-function mutations. However, these explain less than half of the familial cases. To identify novel susceptibility factors, 39 rare truncating mutations, identified in 189 Northern Finnish hereditary breast cancer patients in parallel sequencing of 796 DDR genes, were studied for disease association. Mutation screening was performed for Northern Finnish breast cancer cases (n = 578–1565) and controls (n = 337–1228). Mutations showing potential cancer association were analyzed in additional Finnish cohorts. c.7253dupT in TEX15, encoding a DDR factor important in meiosis, associated with hereditary breast cancer (p = 0.018) and likely represents a Northern Finnish founder mutation. A deleterious c.2715 + 1G > A mutation in the Fanconi anemia gene, FANCD2, was over two times more common in the combined Finnish hereditary cohort compared to controls. A deletion (c.640_644del5) in RNF168, causative for recessive RIDDLE syndrome, had high prevalence in majority of the analyzed cohorts, but did not associate with breast cancer. In conclusion, truncating variants in TEX15 and FANCD2 are potential breast cancer risk factors, warranting further investigations in other populations. Furthermore, high frequency of RNF168 c.640_644del5 indicates the need for its testing in Finnish patients with RIDDLE syndrome symptoms.
Collapse
Affiliation(s)
- Tuomo Mantere
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, Northern Finland Laboratory Centre Nordlab Oulu, University of Oulu, Oulu, Finland
| | - Anna Tervasmäki
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, Northern Finland Laboratory Centre Nordlab Oulu, University of Oulu, Oulu, Finland
| | - Anna Nurmi
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Katrin Rapakko
- Laboratory of Genetics, Northern Finland Laboratory Centre NordLab Oulu, Oulu, Finland.,Cancer Genetic Unit, Service and Central Laboratory of Haematology, CHUV, Lausanne University Hospital, Lausanne, Switzerland
| | - Saila Kauppila
- Department of Pathology, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Jiangbo Tang
- Departments of Cancer Biology and Pathology, Abramson Family Cancer Research Institute, Basser Research Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Johanna Schleutker
- Medical Biochemistry and Genetics Institute of Biomedicine, University of Turku, Turku, Finland.,Microbiology and Genetics, Department of Medical Genetics, Turku University Hospital, Turku, Finland
| | - Anne Kallioniemi
- BioMediTech and FimLab Laboratories, University of Tampere, Tampere, Finland
| | - Jaana M Hartikainen
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland.,Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland.,Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Arto Mannermaa
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland.,Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland.,Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Pentti Nieminen
- Medical Informatics and Statistics Research Group, University of Oulu, Oulu, Finland
| | - Riitta Hanhisalo
- Laboratory of Genetics, Northern Finland Laboratory Centre NordLab Oulu, Oulu, Finland
| | - Sini Lehto
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Maija Suvanto
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mervi Grip
- Department of Surgery, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Arja Jukkola-Vuorinen
- Department of Oncology, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Maria Tengström
- Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland.,Cancer Center, Kuopio University Hospital, Kuopio, Finland
| | - Päivi Auvinen
- Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland.,Cancer Center, Kuopio University Hospital, Kuopio, Finland
| | - Anders Kvist
- Department of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Lund, Sweden
| | - Åke Borg
- Department of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Lund, Sweden
| | - Carl Blomqvist
- Department of Oncology, Helsinki University Hospital, Helsinki, Finland.,Department of Oncology, University of Örebro, Örebro, Sweden
| | - Kristiina Aittomäki
- Department of Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Roger A Greenberg
- Departments of Cancer Biology and Pathology, Abramson Family Cancer Research Institute, Basser Research Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, Northern Finland Laboratory Centre Nordlab Oulu, University of Oulu, Oulu, Finland.
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, Northern Finland Laboratory Centre Nordlab Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
22
|
Kiiski JI, Fagerholm R, Tervasmäki A, Pelttari LM, Khan S, Jamshidi M, Mantere T, Pylkäs K, Bartek J, Bartkova J, Mannermaa A, Tengström M, Kosma VM, Winqvist R, Kallioniemi A, Aittomäki K, Blomqvist C, Nevanlinna H. FANCM c.5101C>T mutation associates with breast cancer survival and treatment outcome. Int J Cancer 2016; 139:2760-2770. [PMID: 27542569 PMCID: PMC5095781 DOI: 10.1002/ijc.30394] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/19/2016] [Indexed: 01/16/2023]
Abstract
Breast cancer (BC) is a heterogeneous disease, and different tumor characteristics and genetic variation may affect the clinical outcome. The FANCM c.5101C > T nonsense mutation in the Finnish population associates with increased risk of breast cancer, especially for triple‐negative breast cancer patients. To investigate the association of the mutation with disease prognosis, we studied tumor phenotype, treatment outcome, and patient survival in 3,933 invasive breast cancer patients, including 101 FANCM c.5101C > T mutation carriers and 3,832 non‐carriers. We also examined association of the mutation with nuclear immunohistochemical staining of DNA repair markers in 1,240 breast tumors. The FANCM c.5101C > T mutation associated with poor 10‐year breast cancer‐specific survival (hazard ratio (HR)=1.66, 95% confidence interval (CI) 1.09–2.52, p = 0.018), with a more pronounced survival effect among familial cases (HR = 2.93, 95% CI 1.5–5.76, p = 1.80 × 10−3). Poor disease outcome of the carriers was also found among the estrogen receptor (ER) positive subgroup of patients (HR = 1.8, 95% CI 1.09–2.98, p = 0.021). Reduced survival was seen especially among patients who had not received radiotherapy (HR = 3.43, 95% CI 1.6–7.34, p = 1.50 × 10−3) but not among radiotherapy treated patients (HR = 1.35, 95% CI 0.82–2.23, p = 0.237). Significant interaction was found between the mutation and radiotherapy (p = 0.040). Immunohistochemical analyses show that c.5101C > T carriers have reduced PAR‐activity. Our results suggest that FANCM c.5101C > T nonsense mutation carriers have a reduced breast cancer survival but postoperative radiotherapy may diminish this survival disadvantage. What's new? Variations in DNA repair genes can predispose individuals to breast cancer, with one example being FANCM c.5101C > T, a nonsense mutation in the Fanconi Anemia DNA repair pathway. In previous work, FANCM c.5101C > T was associated with increased breast cancer risk in the Finnish population. Here, the mutation is further shown to be associated with adverse breast cancer outcome. Mutation‐positive Finnish patients exhibited reduced long‐term survival and increased risk of disease recurrence. Survival was worse particularly for patients who were not treated with radiotherapy, indicating that FANCM c.5101C>T may interact with radiotherapy to improve disease outcome in mutation carriers.
Collapse
Affiliation(s)
- Johanna I Kiiski
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Rainer Fagerholm
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anna Tervasmäki
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland.,Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre, NordLab, Oulu, Finland
| | - Liisa M Pelttari
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sofia Khan
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Maral Jamshidi
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tuomo Mantere
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland.,Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre, NordLab, Oulu, Finland
| | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland.,Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre, NordLab, Oulu, Finland
| | - Jiri Bartek
- Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Biochemistry and Biophysics, Division of Translational Medicine and Chemical Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Jirina Bartkova
- Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Biochemistry and Biophysics, Division of Translational Medicine and Chemical Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Arto Mannermaa
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, and Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland.,Imaging Center, Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Maria Tengström
- School of Medicine, Institute of Clinical Medicine, Oncology, Kuopio, Finland.,Cancer Center, Kuopio University Hospital, Kuopio, Finland
| | - Veli-Matti Kosma
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, and Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland.,Imaging Center, Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland.,Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre, NordLab, Oulu, Finland
| | - Anne Kallioniemi
- BioMediTech, University of Tampere and Fimlab Laboratories, Tampere, Finland
| | - Kristiina Aittomäki
- Department of Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Carl Blomqvist
- Department of Oncology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
23
|
Jamshidi M, Fagerholm R, Khan S, Aittomäki K, Czene K, Darabi H, Li J, Andrulis IL, Chang-Claude J, Devilee P, Fasching PA, Michailidou K, Bolla MK, Dennis J, Wang Q, Guo Q, Rhenius V, Cornelissen S, Rudolph A, Knight JA, Loehberg CR, Burwinkel B, Marme F, Hopper JL, Southey MC, Bojesen SE, Flyger H, Brenner H, Holleczek B, Margolin S, Mannermaa A, Kosma VM, Dyck LV, Nevelsteen I, Couch FJ, Olson JE, Giles GG, McLean C, Haiman CA, Henderson BE, Winqvist R, Pylkäs K, Tollenaar RA, García-Closas M, Figueroa J, Hooning MJ, Martens JW, Cox A, Cross SS, Simard J, Dunning AM, Easton DF, Pharoah PD, Hall P, Blomqvist C, Schmidt MK, Nevanlinna H. SNP-SNP interaction analysis of NF-κB signaling pathway on breast cancer survival. Oncotarget 2015; 6:37979-94. [PMID: 26317411 PMCID: PMC4741978 DOI: 10.18632/oncotarget.4991] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 07/16/2015] [Indexed: 12/03/2022] Open
Abstract
In breast cancer, constitutive activation of NF-κB has been reported, however, the impact of genetic variation of the pathway on patient prognosis has been little studied. Furthermore, a combination of genetic variants, rather than single polymorphisms, may affect disease prognosis. Here, in an extensive dataset (n = 30,431) from the Breast Cancer Association Consortium, we investigated the association of 917 SNPs in 75 genes in the NF-κB pathway with breast cancer prognosis. We explored SNP-SNP interactions on survival using the likelihood-ratio test comparing multivariate Cox' regression models of SNP pairs without and with an interaction term. We found two interacting pairs associating with prognosis: patients simultaneously homozygous for the rare alleles of rs5996080 and rs7973914 had worse survival (HRinteraction 6.98, 95% CI=3.3-14.4, P=1.42E-07), and patients carrying at least one rare allele for rs17243893 and rs57890595 had better survival (HRinteraction 0.51, 95% CI=0.3-0.6, P = 2.19E-05). Based on in silico functional analyses and literature, we speculate that the rs5996080 and rs7973914 loci may affect the BAFFR and TNFR1/TNFR3 receptors and breast cancer survival, possibly by disturbing both the canonical and non-canonical NF-κB pathways or their dynamics, whereas, rs17243893-rs57890595 interaction on survival may be mediated through TRAF2-TRAIL-R4 interplay. These results warrant further validation and functional analyses.
Collapse
Affiliation(s)
- Maral Jamshidi
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, FI-00029 HUS, Finland
| | - Rainer Fagerholm
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, FI-00029 HUS, Finland
| | - Sofia Khan
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, FI-00029 HUS, Finland
| | - Kristiina Aittomäki
- Department of Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, FI-00029 HUS, Finland
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm SE-17177, Sweden
| | - Hatef Darabi
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm SE-17177, Sweden
| | - Jingmei Li
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm SE-17177, Sweden
| | - Irene L. Andrulis
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jenny Chang-Claude
- Department of Obstetrics and Gynecology, University of Ulm, Ulm, Germany
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Devilee
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter A. Fasching
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Department of Medicine, Division of Hematology and Oncology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Manjeet K. Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Qi Guo
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Valerie Rhenius
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Sten Cornelissen
- Netherlands Cancer Institute, Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Anja Rudolph
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julia A. Knight
- Prosserman Centre for Health Research, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Christian R. Loehberg
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Barbara Burwinkel
- Molecular Epidemiology Group, German Cancer Research Center, Heidelberg, Germany
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
| | - Frederik Marme
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | - John L. Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Melissa C. Southey
- Department of Pathology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Stig E. Bojesen
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Henrik Flyger
- Department of Breast Surgery, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Sara Margolin
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Arto Mannermaa
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland
- Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Veli-Matti Kosma
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland
- Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | | | - Laurien Van Dyck
- Vesalius Research Center (VRC), VIB, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Oncology, University of Leuven, Leuven, Belgium
| | - Ines Nevelsteen
- Multidisciplinary Breast Center, Medical Oncology, University Hospital Leuven, Leuven, Belgium
| | - Fergus J. Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Janet E. Olson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Graham G. Giles
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, School of Population and Global health, The University of Melbourne, Melbourne, Australia
| | - Catriona McLean
- Anatomical Pathology, The Alfred Hospital, Melbourne, Australia
| | - Christopher A. Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brian E. Henderson
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Cancer Research and Translational Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
- Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre NordLab, Oulu, Finland
| | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Cancer Research and Translational Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
- Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre NordLab, Oulu, Finland
| | - Rob A.E.M. Tollenaar
- Department of Surgical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Montserrat García-Closas
- Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, SM2 5NG, UK
- Breakthrough Breast Cancer Research Centre, Division of Breast Cancer Research, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Jonine Figueroa
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Maartje J. Hooning
- Department of Medical Oncology, Erasmus MC Cancer Institute, AE Rotterdam, The Netherlands
| | - John W.M. Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, AE Rotterdam, The Netherlands
| | - Angela Cox
- Sheffield Cancer Research, Department of Oncology, University of Sheffield, Sheffield, UK
| | - Simon S. Cross
- Academic Unit of Pathology, Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Jacques Simard
- Centre Hospitalier Universitaire de Québec Research Center, Laval University, Québec City, Canada
| | - Alison M. Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Douglas F. Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Paul D.P. Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm SE-17177, Sweden
| | - Carl Blomqvist
- Department of Oncology, University of Helsinki and Helsinki University Central Hospital, Helsinki, HUS, Finland
| | - Marjanka K. Schmidt
- Netherlands Cancer Institute, Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, FI-00029 HUS, Finland
| |
Collapse
|
24
|
Wiegmans AP, Yap PY, Ward A, Lim YC, Khanna KK. Differences in Expression of Key DNA Damage Repair Genes after Epigenetic-Induced BRCAness Dictate Synthetic Lethality with PARP1 Inhibition. Mol Cancer Ther 2015; 14:2321-31. [PMID: 26294743 DOI: 10.1158/1535-7163.mct-15-0374] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/03/2015] [Indexed: 11/16/2022]
Abstract
The triple-negative breast cancer (TNBC) subtype represents a cancer that is highly aggressive with poor patient outcome. Current preclinical success has been gained through synthetic lethality, targeting genome instability with PARP inhibition in breast cancer cells that harbor silencing of the homologous recombination (HR) pathway. Histone deacetylase inhibitors (HDACi) are a class of drugs that mediate epigenetic changes in expression of HR pathway genes. Here, we compare the activity of the pan-HDAC inhibitor suberoylanilide hydroxamic acid (SAHA), the class I/IIa HDAC inhibitor valproic acid (VPA), and the HDAC1/2-specific inhibitor romidepsin (ROMI) for their capability to regulate DNA damage repair gene expression and in sensitizing TNBC to PARPi. We found that two of the HDACis tested, SAHA and ROMI, but not VPA, indeed inhibit HR repair and that RAD51, BARD1, and FANCD2 represent key proteins whose inhibition is required for HDACi-mediated therapy with PARP inhibition in TNBC. We also observed that restoration of BRCA1 function stabilizes the genome compared with mutant BRCA1 that results in enhanced polyploid population after combination treatment with HDACi and PARPi. Furthermore, we found that overexpression of the key HR protein RAD51 represents a mechanism for this resistance, promoting aberrant repair and the enhanced polyploidy observed. These findings highlight the key components of HR in guiding synthetic lethality with PARP inhibition and support the rationale for utilizing the novel combination of HDACi and PARPi against TNBC in the clinical setting.
Collapse
Affiliation(s)
- Adrian P Wiegmans
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia. Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.
| | - Pei-Yi Yap
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Ambber Ward
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Yi Chieh Lim
- Translational Brain Cancer Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Kum Kum Khanna
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| |
Collapse
|
25
|
Pelttari LM, Kiiski JI, Ranta S, Vilske S, Blomqvist C, Aittomäki K, Nevanlinna H. RAD51, XRCC3, and XRCC2 mutation screening in Finnish breast cancer families. SPRINGERPLUS 2015; 4:92. [PMID: 25918678 PMCID: PMC4404470 DOI: 10.1186/s40064-015-0880-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 02/06/2015] [Indexed: 12/25/2022]
Abstract
Majority of the known breast cancer susceptibility genes have a role in DNA repair and the most important high-risk genes BRCA1 and BRCA2 are specifically involved in the homologous recombination repair (HRR) of DNA double-strand breaks. A central player in HRR is RAD51 that binds DNA at the damage site. The RAD51 paralogs RAD51B, RAD51C, RAD51D, XRCC2, and XRCC3 facilitate the binding of RAD51 to DNA. While germline mutations in RAD51C and RAD51D are associated with high ovarian cancer risk and RAD51B polymorphisms with breast cancer, the contribution of RAD51, XRCC3, and XRCC2 is more unclear. To investigate the role of RAD51, XRCC3, and XRCC2 in breast cancer predisposition and to identify putative recurrent founder mutations in the Finnish population where such mutations have been observed in most of the currently known susceptibility genes, we screened 182 familial Finnish breast or ovarian cancer patients for germline variation in the RAD51and XRCC3 genes and 342 patients for variation in XRCC2, with a subset of the patients selected on the basis of decreased RAD51 protein expression on tumors. We also performed haplotype analyses for 1516 breast cancer cases and 1234 controls to assess the common variation in these genes. No pathogenic mutations were detected in any of the genes and the distribution of haplotypes was similar between cases and controls. Our results suggest that RAD51, XRCC3, and XRCC2 do not substantially contribute to breast cancer predisposition in the Finnish population.
Collapse
Affiliation(s)
- Liisa M Pelttari
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, FIN-00029 Helsinki, Finland
| | - Johanna I Kiiski
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, FIN-00029 Helsinki, Finland
| | - Salla Ranta
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, FIN-00029 Helsinki, Finland
| | - Sara Vilske
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, FIN-00029 Helsinki, Finland
| | - Carl Blomqvist
- Department of Oncology, University of Helsinki and Helsinki University Hospital, P.O. Box 180, FIN-00029 Helsinki, Finland
| | - Kristiina Aittomäki
- Department of Clinical Genetics, University of Helsinki and Helsinki University Hospital, P.O. Box 160, FIN-00029 Helsinki, Finland
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, FIN-00029 Helsinki, Finland
| |
Collapse
|
26
|
CUI XUELIAN, JIN TIEFENG, WANG XIAOYAN, JIN GUANG, LI ZHUHU, LIN LIJUAN. NAD(P)H:quinone oxidoreductase-1 overexpression predicts poor prognosis in small cell lung cancer. Oncol Rep 2014; 32:2589-95. [DOI: 10.3892/or.2014.3494] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 08/06/2014] [Indexed: 11/05/2022] Open
|
27
|
Yang H, Yu J, Wang L, Ding DI, Zhang L, Chu C, Chen Q, Xu Z, Zou Q, Liu X. miR-320a is an independent prognostic biomarker for invasive breast cancer. Oncol Lett 2014; 8:1043-1050. [PMID: 25120655 PMCID: PMC4114662 DOI: 10.3892/ol.2014.2298] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 06/12/2014] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is one of the most common malignancies worldwide and is the second leading cause of cancer-related mortality among females. miRNAs are a class of small noncoding RNAs that are aberrantly expressed in human cancers. Due to their small size and stability, miRNAs have the potential to be efficacious clinical targets. MicroRNA-320a (miR-320a) has been shown to be dysregulated in multiple malignancies. In the present study, the expression levels of miR-320a were investigated in 15 paraffin-embedded in situ breast carcinoma and 130 invasive breast cancer tissues, and the prognostic value for breast cancer patients was assessed. Chromogenic in situ hybridization revealed that 60/130 (46%) invasive breast cancer tissues exhibited high expression levels of miR-320a (staining index score of ≥4). Furthermore, miR-320a staining was found to significantly correlate with tumor size (P=0.046), clinical stage (P<0.001), lymph node metastasis (P<0.001) and distant metastasis (P=0.006). In addition, patients exhibiting low miR-320a expression levels had shorter overall survival times (P<0.001). Univariate and multivariate analyses revealed that miR-320a was an independent prognostic biomarker for invasive breast cancer (hazard ratio, 0.221; 95% confidence interval, 0.050–0.979; P=0.047). Receiver operator characteristic curves revealed that the prognostic value of miR-320a was enhanced when compared with the widely used prognostic biomarkers (estrogen receptor, progesterone receptor and human epidermal growth factor-2) in invasive breast cancer. The results of the present study suggest that miR-320a presents a potential biomarker for the prognosis of invasive breast cancer, and dysregulation of miR-320a may be involved in invasive breast cancer progression.
Collapse
Affiliation(s)
- Haiping Yang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Juan Yu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Lei Wang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - DI Ding
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Lei Zhang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Chengyu Chu
- Department of Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Qi Chen
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Zude Xu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Qiang Zou
- Department of Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Xiuping Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China ; Department of Pathology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, P.R. China
| |
Collapse
|
28
|
Yamada M, Masai H, Bartek J. Regulation and roles of Cdc7 kinase under replication stress. Cell Cycle 2014; 13:1859-66. [PMID: 24841992 DOI: 10.4161/cc.29251] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cdc7 (cell division cycle 7) kinase together with its activation subunit ASK (also known as Dbf4) play pivotal roles in DNA replication and contribute also to other aspects of DNA metabolism such as DNA repair and recombination. While the biological significance of Cdc7 is widely appreciated, the molecular mechanisms through which Cdc7 kinase regulates these various DNA transactions remain largely obscure, including the role of Cdc7-ASK/Dbf4 under replication stress, a condition associated with diverse (patho)physiological scenarios. In this review, we first highlight the recent findings on a novel pathway that regulates the stability of the human Cdc7-ASK/Dbf4 complex under replication stress, its interplay with ATR-Chk1 signaling, and significance in the RAD18-dependent DNA damage bypass pathway. We also consider Cdc7 function in a broader context, considering both physiological conditions and pathologies associated with enhanced replication stress, particularly oncogenic transformation and tumorigenesis. Furthermore, we integrate the emerging evidence and propose a concept of Cdc7-ASK/Dbf4 contributing to genome integrity maintenance, through interplay with RAD18 that can serve as a molecular switch to dictate DNA repair pathway choice. Finally, we discuss the possibility of targeting Cdc7, particularly in the context of the Cdc7/RAD18-dependent translesion synthesis, as a potential innovative strategy for treatment of cancer.
Collapse
Affiliation(s)
- Masayuki Yamada
- Institute of Molecular and Translational Medicine; Faculty of Medicine and Dentistry; Palacky University; Olomouc, Czech Republic
| | - Hisao Masai
- Genome Dynamics Project; Department of Genome Medicine; Tokyo Metropolitan Institute of Medical Science; Tokyo, Japan
| | - Jiri Bartek
- Institute of Molecular and Translational Medicine; Faculty of Medicine and Dentistry; Palacky University; Olomouc, Czech Republic; Danish Cancer Society Research Center; Copenhagen, Denmark
| |
Collapse
|
29
|
Lin L, Qin Y, Jin T, Liu S, Zhang S, Shen X, Lin Z. Significance of NQO1 overexpression for prognostic evaluation of gastric adenocarcinoma. Exp Mol Pathol 2013; 96:200-5. [PMID: 24384455 DOI: 10.1016/j.yexmp.2013.12.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 12/03/2013] [Indexed: 12/15/2022]
Abstract
NQO1 (NAD(P)H: quinone oxidoreductase, also known as DT-diaphorase) plays a prominent role in maintaining cellular homeostasis. NQO1 is abnormally elevated in many solid cancer types, including those of the adrenal gland, breast, colon, lung, ovary, and thyroid. However, little is known about the status of NQO1 in gastric adenocarcinoma (GAC). To investigate the clinicopathological significance of NQO1 expression in GAC, and thus evaluate its role as a potential prognostic marker, 203 cases of primary GAC, 31 of gastric dysplasia, and 53 of adjacent non-tumor tissues were selected for immunohistochemical staining of NQO1 protein. Correlations between NQO1 overexpression and clinicopathological characteristics were evaluated by χ(2) test and Fisher's exact test, while survival rates were calculated by Kaplan-Meier method. The relationship between prognostic factors and patient survival was analyzed by Cox proportional hazards model. Through these analyses it was found that the strongly positive rate of NQO1 protein in GAC was significantly higher than that in gastric dysplasia and adjacent non-tumor tissues. Analysis by qRT-PCR also confirmed that NQO1 mRNA levels were increased in GAC compared with those detected in either adjacent non-tumor tissues or normal gastric mucosa. Additionally, the NQO1 expression rate was positively correlated with tumor size, serosal invasion, tumor stage, and both disease-free survival and 5-year survival rates. Further analysis showed that although NQO1 was not an independent predictor of GAC, elevated expression of NQO1 could predict lower disease-free survival and 5-year survival times in late-stage patients. In conclusion, NQO1 plays an important role in the progression of GAC, and might be a potential, but not an independent, poor prognostic biomarker and therapeutic target of GAC.
Collapse
Affiliation(s)
- Lijuan Lin
- Department of Pathology, Yanbian University Medical College, Yanji 133002, China; Department of Medical Imaging, College of Medicine, Eastern Liaoning University, Dandong 118003, China.
| | - Yunzhi Qin
- Department of Anesthesiology, Yanbian University Hospital, Yanji 133000, China.
| | - Tiefeng Jin
- Department of Pathology, Yanbian University Medical College, Yanji 133002, China.
| | - Shuangping Liu
- Department of Pathology, Yanbian University Medical College, Yanji 133002, China.
| | - Songnan Zhang
- Department of Oncology, Yanbian University Hospital, Yanji 133000, China.
| | - Xionghu Shen
- Department of Oncology, Yanbian University Hospital, Yanji 133000, China.
| | - Zhenhua Lin
- Department of Pathology, Yanbian University Medical College, Yanji 133002, China.
| |
Collapse
|