1
|
Abiola YO, Liu B, Sulaiman HY, Kaurilind E, Tosens T, Niinemets Ü. Contrasting leaf structural, photosynthetic and allocation responses to elevated [CO 2] in different-aged leaves of tropical fruit trees Persea americana and Annona muricata. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109842. [PMID: 40199162 DOI: 10.1016/j.plaphy.2025.109842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/22/2025] [Accepted: 03/26/2025] [Indexed: 04/10/2025]
Abstract
Responses of leaf photosynthetic traits to elevated growth [CO2] vary among species, but there is limited understanding of underlying trait trade-offs, especially for tropical species with continuous leaf formation. Persea americana and Annona muricata with significant investments in defense structures (idioblasts) were used to study the impacts of growth [CO2] (400 vs 800 μmol mol-1) on leaf structural, chemical, and photosynthetic characteristics at different leaf developmental stages. Growth at elevated [CO2] increased whole plant leaf area (ST) and whole plant average leaf dry mass per unit area (MAv) in P. americana, whereas both ST and MAv were reduced in A. muricata. Elevated [CO2] moderately reduced foliage N and P contents per dry mass in P. americana but increased in A. muricata. In P. americana, elevated [CO2] increased anthocyanin content in young leaves and decreased in mature leaves, and increased the share of idioblast tissue fraction (fI) with moderate downregulation of photosynthesis (A). In A. muricata, elevated [CO2] reduced anthocyanin content in young leaves and fI was unaffected, whereas a major downregulation in A was observed. In this species, photosynthetic downregulation was not associated with nutrient starvation, but occurred due to direct inhibition of stomatal conductance by elevated [CO2], ultimately limiting leaf development and growth and curbing Vcmax and Jmax in mature leaves. These results demonstrate a limited impact of primary/secondary metabolism trade-off on photosynthetic response to growth [CO2], underscore major species differences in response to elevated [CO2] and emphasize the impact of leaf age in determining whole plant growth response.
Collapse
Affiliation(s)
- Yusuph Olawale Abiola
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 5, 51006, Tartu, Estonia.
| | - Bin Liu
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 5, 51006, Tartu, Estonia
| | - Hassan Yusuf Sulaiman
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 5, 51006, Tartu, Estonia
| | - Eve Kaurilind
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 5, 51006, Tartu, Estonia
| | - Tiina Tosens
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 5, 51006, Tartu, Estonia
| | - Ülo Niinemets
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 5, 51006, Tartu, Estonia; Estonian Academy of Sciences, Kohtu 6, 10130, Tallinn, Estonia
| |
Collapse
|
2
|
Liu B, Yuan S, Chen Z, Zhao P, Wang Y, Chu W, Zhang S, Zhao W, Tan S, Zhou T, Peng S. Plant Architecture Optimizes the Trait-Based Description and Classification of Vegetation. PLANT, CELL & ENVIRONMENT 2025; 48:2910-2922. [PMID: 39632682 DOI: 10.1111/pce.15314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/11/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
Trait-based approaches offer valuable perspectives for vegetation classification, but functional traits struggle to capture resource allocation among competing plants, showing limitations across scales. This study aimed to introduce plant architecture to enhance trait-based vegetation classification. Based on a forest transect survey along China's eastern coast from 2021 to 2023, data from 32 plots of coastal dwarf forests (CDF), characterized primarily by reduced plant height, and normal noncoastal dwarf forests (NCDF) were obtained. Their community characteristics were quantified, and classification and clustering models assessed the advantages of plant architecture in distinguishing these communities. The results indicated plant architecture traits are more critical for distinguishing different community types than leaf-based functional traits. Additionally, plant architecture traits are effective in clustering plant associations within the same community type. Because plant architectural traits are closely linked to habitat, phylogeny and community structure, providing a comprehensive description of vegetation. In contrast, traditional plant functional traits primarily reflect habitat information related to soil nutrients. Our findings underscore the importance of plant architecture in optimizing trait-based vegetation classification and suggest that variations in the plasticity of plant architecture traits may support the classification of CDF as a distinct vegetation unit.
Collapse
Affiliation(s)
- Biying Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Sihao Yuan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhihui Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Panpan Zhao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yi Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wei Chu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shuo Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wensheng Zhao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Shiqin Tan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ting Zhou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shaolin Peng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Yang S, Ooi MKJ, Falster DS, Cornwell WK. Continental-scale empirical evidence for relationships between fire response strategies and fire frequency. THE NEW PHYTOLOGIST 2025; 246:528-542. [PMID: 39931917 PMCID: PMC11923400 DOI: 10.1111/nph.20464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/23/2025] [Indexed: 03/21/2025]
Abstract
Theory suggests that the dominance of resprouting and seeding, two key mechanisms through which plants persist with recurrent fire, both depend on other traits and vary with fire regime. However, these patterns remain largely untested over broad scales. We analysed the relationships between mean fire frequency, derived from MODIS satellite data, and resprouting and seeding strategies, respectively, for c. 10 000 woody and herbaceous species in Australia. We tested whether leaf economics traits differed among these strategies. Probability of resprouting exhibits a monotonic increase with fire frequency for woody plants; for herbaceous plants, a hump-shaped relationship is observed. Probability of seeding exhibits a hump shape with fire frequency in woody plants. In herbaceous plants, probability of resprouting was associated with higher leaf mass per area (LMA), and probability of seeding with lower LMA. A broader range of leaf investment strategies occurred in woody plants. Our findings provide the largest empirical support to date for theory connecting fire response strategy to fire frequency. Woody seeders appear constrained by immaturity and senescence risk. Herbaceous and woody seeders showed different placements along the leaf economics spectrum, suggesting an important interaction between growth form and growth rate for seeders.
Collapse
Affiliation(s)
- Sophie Yang
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental SciencesUniversity of New South WalesSydneyNSW2052Australia
| | - Mark K. J. Ooi
- Centre for Ecosystem Science, School of Biological, Earth & Environmental SciencesUniversity of New South WalesSydneyNSW2052Australia
| | - Daniel S. Falster
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental SciencesUniversity of New South WalesSydneyNSW2052Australia
| | - William K. Cornwell
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental SciencesUniversity of New South WalesSydneyNSW2052Australia
| |
Collapse
|
4
|
Li Q, Chen L, Qiu Y, Li X, Nan Z, Yao S, Chen Z, Zhang Y, Zhao C. Responses of the Leaf Characteristics of Nymphoides peltata to a Water Depth Gradient in the Qionghai Lake, Western Sichuan Plateau, China. PLANTS (BASEL, SWITZERLAND) 2025; 14:919. [PMID: 40265841 PMCID: PMC11944560 DOI: 10.3390/plants14060919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/02/2025] [Accepted: 03/05/2025] [Indexed: 04/24/2025]
Abstract
The correlations between leaf traits of plants with floating leaves and the responses of these traits to changes in water depth can be used to explore the ecological adaptation strategies of aquatic plants. However, few studies have investigated the covariation and correlation of leaf petiole and leaf morphological indices of aquatic plants along natural water depth gradients. Three plots were established along a water depth gradient: plot I (shallow water, with a water depth ranging from 0 to 20 cm), plot II (medium water, with a water depth ranging from 20 to 40 cm), and plot III (deep water, with a water level ranging from 40 to 60 cm). The floating plant Nymphoides peltata (S. G. Gmel.) Kuntze was studied in the Qionghai National Wetland Park, Sichuan Province, China. The results showed that N. peltata had large, thin leaves and short, thin leaf petioles in plot I; the leaf petiole and leaf traits were opposite of those in Plot III. In the three plots, leaf petiole length and leaf petiole diameter were significantly negatively correlated with leaf area, leaf circumference, leaf length, and leaf width (p < 0.05). N. peltata can maintain normal growth, survival, and reproduction in heterogeneous habitats with different water depths by altering its leaf morphological characteristics in a timely manner. This study is helpful for understanding the mechanism of phenotypic plasticity in aquatic plants with floating foliage in heterogeneous environments and provides a scientific basis for the management of aquatic plants in wetlands.
Collapse
Affiliation(s)
- Qun Li
- College of Resources and Environment, Xichang University, Xichang 615013, China; (L.C.); (Y.Q.); (Z.N.); (S.Y.); (Z.C.); (Y.Z.)
- School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Lan Chen
- College of Resources and Environment, Xichang University, Xichang 615013, China; (L.C.); (Y.Q.); (Z.N.); (S.Y.); (Z.C.); (Y.Z.)
| | - Yumei Qiu
- College of Resources and Environment, Xichang University, Xichang 615013, China; (L.C.); (Y.Q.); (Z.N.); (S.Y.); (Z.C.); (Y.Z.)
| | - Xiaoyan Li
- College of Animal Science, Xichang University, Xichang 615013, China;
| | - Zhe Nan
- College of Resources and Environment, Xichang University, Xichang 615013, China; (L.C.); (Y.Q.); (Z.N.); (S.Y.); (Z.C.); (Y.Z.)
| | - Shulin Yao
- College of Resources and Environment, Xichang University, Xichang 615013, China; (L.C.); (Y.Q.); (Z.N.); (S.Y.); (Z.C.); (Y.Z.)
| | - Zhenghong Chen
- College of Resources and Environment, Xichang University, Xichang 615013, China; (L.C.); (Y.Q.); (Z.N.); (S.Y.); (Z.C.); (Y.Z.)
| | - Yuhan Zhang
- College of Resources and Environment, Xichang University, Xichang 615013, China; (L.C.); (Y.Q.); (Z.N.); (S.Y.); (Z.C.); (Y.Z.)
| | - Chengzhang Zhao
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China;
| |
Collapse
|
5
|
Boisseaux M, Troispoux V, Bordes A, Cazal J, Cazal SO, Coste S, Stahl C, Schimann H. Are plant traits drivers of endophytic communities in seasonally flooded tropical forests? AMERICAN JOURNAL OF BOTANY 2024; 111:e16366. [PMID: 39010811 DOI: 10.1002/ajb2.16366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 07/17/2024]
Abstract
PREMISE In the Amazon basin, seasonally flooded (SF) forests offer varying water constraints, providing an excellent way to investigate the role of habitat selection on microbial communities within plants. However, variations in the microbial community among host plants cannot solely be attributed to environmental factors, and how plant traits contribute to microbial assemblages remains an open question. METHODS We described leaf- and root-associated microbial communities using ITS2 and 16 S high-throughput sequencing and investigated the stochastic-deterministic balance shaping these community assemblies using two null models. Plant ecophysiological functioning was evaluated by focusing on 10 leaf and root traits in 72 seedlings, belonging to seven tropical SF tree species in French Guiana. We then analyzed how root and leaf traits drove the assembly of endophytic communities. RESULTS While both stochastic and deterministic processes governed the endophyte assembly in the leaves and roots, stochasticity prevailed. Discrepancies were found between fungi and bacteria, highlighting that these microorganisms have distinct ecological strategies within plants. Traits, especially leaf traits, host species and spatial predictors better explained diversity than composition, but they were modest predictors overall. CONCLUSIONS This study widens our knowledge about tree species in SF forests, a habitat sensitive to climate change, through the combined analyses of their associated microbial communities with functional traits. We emphasize the need to investigate other plant traits to better disentangle the drivers of the relationship between seedlings and their associated microbiomes, ultimately enhancing their adaptive capacities to climate change.
Collapse
Affiliation(s)
- Marion Boisseaux
- UMR EcoFoG, Agroparistech, Cirad, CNRS, INRAE, Université des Antilles, Université de la Guyane. Campus Agronomique, Kourou, 97310, France
| | - Valérie Troispoux
- UMR EcoFoG, Agroparistech, Cirad, CNRS, INRAE, Université des Antilles, Université de la Guyane. Campus Agronomique, Kourou, 97310, France
| | - Alice Bordes
- Université Grenoble Alpes, INRAE, URLESSEM, Saint-Martin-d'Hères, France, Grenoble, France
| | - Jocelyn Cazal
- UMR EcoFoG, Agroparistech, Cirad, CNRS, INRAE, Université des Antilles, Université de la Guyane. Campus Agronomique, Kourou, 97310, France
| | - Saint-Omer Cazal
- UMR EcoFoG, Agroparistech, Cirad, CNRS, INRAE, Université des Antilles, Université de la Guyane. Campus Agronomique, Kourou, 97310, France
| | - Sabrina Coste
- UMR EcoFoG, Agroparistech, Cirad, CNRS, INRAE, Université des Antilles, Université de la Guyane. Campus Agronomique, Kourou, 97310, France
| | - Clément Stahl
- UMR EcoFoG, Agroparistech, Cirad, CNRS, INRAE, Université des Antilles, Université de la Guyane. Campus Agronomique, Kourou, 97310, France
| | - Heidy Schimann
- INRAE, Université de Bordeaux, BIOGECO, Cestas, 33610, France
| |
Collapse
|
6
|
Arnold PA, Wang S, Notarnicola RF, Nicotra AB, Kruuk LEB. Testing the evolutionary potential of an alpine plant: phenotypic plasticity in response to growth temperature outweighs parental environmental effects and other genetic causes of variation. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5971-5988. [PMID: 38946283 PMCID: PMC11427842 DOI: 10.1093/jxb/erae290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/28/2024] [Indexed: 07/02/2024]
Abstract
Phenotypic plasticity and rapid evolution are fundamental processes by which organisms can maintain their function and fitness in the face of environmental changes. Here we quantified the plasticity and evolutionary potential of an alpine herb Wahlenbergia ceracea. Utilizing its mixed-mating system, we generated outcrossed and self-pollinated families that were grown in either cool or warm environments, and that had parents that had also been grown in either cool or warm environments. We then analysed the contribution of environmental and genetic factors to variation in a range of phenotypic traits including phenology, leaf mass per area, photosynthetic function, thermal tolerance, and reproductive fitness. The strongest effect was that of current growth temperature, indicating strong phenotypic plasticity. All traits except thermal tolerance were plastic, whereby warm-grown plants flowered earlier, grew larger, and produced more reproductive stems compared with cool-grown plants. Flowering onset and biomass were heritable and under selection, with early flowering and larger plants having higher relative fitness. There was little evidence for transgenerational plasticity, maternal effects, or genotype×environment interactions. Inbreeding delayed flowering and reduced reproductive fitness and biomass. Overall, we found that W. ceracea has the capacity to respond rapidly to climate warming via plasticity, and the potential for evolutionary change.
Collapse
Affiliation(s)
- Pieter A Arnold
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Shuo Wang
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China
| | - Rocco F Notarnicola
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Adrienne B Nicotra
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Loeske E B Kruuk
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
7
|
Münzbergová Z, Šurinová M, Biscarini F, Níčová E. Genetic response of a perennial grass to warm and wet environments interacts and is associated with trait means as well as plasticity. J Evol Biol 2024; 37:704-716. [PMID: 38761114 DOI: 10.1093/jeb/voae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 04/15/2024] [Accepted: 05/17/2024] [Indexed: 05/20/2024]
Abstract
The potential for rapid evolution is an important mechanism allowing species to adapt to changing climatic conditions. Although such potential has been largely studied in various short-lived organisms, to what extent we can observe similar patterns in long-lived plant species, which often dominate natural systems, is largely unexplored. We explored the potential for rapid evolution in Festuca rubra, a long-lived grass with extensive clonal growth dominating in alpine grasslands. We used a field sowing experiment simulating expected climate change in our model region. Specifically, we exposed seeds from five independent seed sources to novel climatic conditions by shifting them along a natural climatic grid and explored the genetic profiles of established seedlings after 3 years. Data on genetic profiles of plants selected under different novel conditions indicate that different climate shifts select significantly different pools of genotypes from common seed pools. Increasing soil moisture was more important than increasing temperature or the interaction of the two climatic factors in selecting pressure. This can indicate negative genetic interaction in response to the combined effects or that the effects of different climates are interactive rather than additive. The selected alleles were found in genomic regions, likely affecting the function of specific genes or their expression. Many of these were also linked to morphological traits (mainly to trait plasticity), suggesting these changes may have a consequence on plant performance. Overall, these data indicate that even long-lived plant species may experience strong selection by climate, and their populations thus have the potential to rapidly adapt to these novel conditions.
Collapse
Affiliation(s)
- Zuzana Münzbergová
- Department of Botany, Faculty of Science, Charles University, Benátská 2, Prague, Czech Republic
- Department of Population Ecology, Institute of Botany, Czech Academy of Sciences, Zámek 1, Průhonice, Czech Republic
| | - Maria Šurinová
- Department of Botany, Faculty of Science, Charles University, Benátská 2, Prague, Czech Republic
- Department of Population Ecology, Institute of Botany, Czech Academy of Sciences, Zámek 1, Průhonice, Czech Republic
| | - Filippo Biscarini
- Institute of Agricultural Biology and Biotechnology, National Research Council (IBBA-CNR), Milan, Italy
| | - Eva Níčová
- Department of Population Ecology, Institute of Botany, Czech Academy of Sciences, Zámek 1, Průhonice, Czech Republic
| |
Collapse
|
8
|
Singh R, Pandey R. Underlying plant trait strategies for understanding the carbon sequestration in Banj oak Forest of Himalaya. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170681. [PMID: 38325486 DOI: 10.1016/j.scitotenv.2024.170681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/13/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Plant functional attributes are subjected to environmental adjustments, which lead to modulations in forest processes under environmental changes. However, a comprehensive assessment of the relationships between plant traits and carbon stock remains subtle. The present study attempted to accomplish the gap of knowledge by examining the linkages between forest carbon with plant traits within the Banj Oak forest in the Garhwal Himalaya. Twelve individuals from three major species in the Banj Oak forest were randomly selected for trait measurements, and soil samples were collected randomly across the area for evaluation of soil nutrients and carbon. Forest biomass and soil carbon were estimated following standard protocols. A Structural Equation Model (SEM) was applied to establish the relationship between above ground carbon (AGC) and soil organic carbon (SOC) with leaf and stem traits, and soil nutrients. Stem traits were tree height and tree diameter; whereas leaf morphological traits were leaf area, specific leaf area, leaf dry matter content; leaf physiological traits were photosynthesis rate, stomatal conductance, and transpiration rate; and leaf biochemical traits were leaf carbon concentration, leaf nitrogen concentration, and leaf phosphorus concentration. Soil nutrients were available nitrogen, available phosphorus, and exchangeable potassium. Based on SEM results, AGC of the forest was positively correlated with stem traits and leaf physiological traits, while negatively correlated with leaf morphological traits. SOC was positively correlated with soil nutrients and leaf biochemical traits, whereas negatively correlated with stem traits. These findings may support for precise quantification of forest carbon and modeling of forest carbon stocks besides providing inputs to forest managers for devising effective forest management strategies.
Collapse
Affiliation(s)
| | - Rajiv Pandey
- Indian Council of Forestry Research and Education, Dehradun, India.
| |
Collapse
|
9
|
Lawrence-Paul EH, Lasky JR. Ontogenetic changes in ecophysiology are an understudied yet important component of plant adaptation. AMERICAN JOURNAL OF BOTANY 2024; 111:e16294. [PMID: 38384001 PMCID: PMC10965374 DOI: 10.1002/ajb2.16294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 02/23/2024]
Abstract
Plants rely on adjustments in growth and development to respond to environmental stimuli. Developmental transitions, including germination, vegetative phase change, reproductive transition, and senescence, modify the growth patterns of plants and their requirements for survival. Consequently, the timing of developmental transitions and the developmental stage at which a plant encounters environmental stress hold significant implications for the performance of individuals, population dynamics, and community dynamics. If developmental phases, and the timing of transitions between them, are key to plant success in fluctuating environments, then understanding ontogenetic changes in plant environmental interactions is necessary to predict how plants will react to environmental stress and novel environments. Geneticists and molecular biologists have discovered many mechanisms governing developmental transitions, while developmental biologists have studied how plant form changes across ontogeny and ecologists have studied how plant form alters organismal interactions. However, there has been insufficient integration of these fields of study, hindering a comprehensive understanding of how plant development contributes to environmental adaptation and acclimation.
Collapse
Affiliation(s)
- Erica H Lawrence-Paul
- Pennsylvania State University, Department of Biology, University Park, Pennsylvania, 16802, USA
| | - Jesse R Lasky
- Pennsylvania State University, Department of Biology, University Park, Pennsylvania, 16802, USA
| |
Collapse
|
10
|
Funk JL, Kimball S, Nguyen MA, Lulow M, Vose GE. Interacting ecological filters influence success and functional composition in restored plant communities over time. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2899. [PMID: 37335271 DOI: 10.1002/eap.2899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/05/2023] [Accepted: 05/18/2023] [Indexed: 06/21/2023]
Abstract
A trait-based community assembly framework has great potential to direct ecological restoration, but uncertainty over how traits and environmental factors interact to influence community composition over time limits the widespread application of this approach. In this study, we examined how the composition of seed mixes and environment (north- vs. south-facing slope aspect) influence functional composition and native plant cover over time in restored grassland and shrubland communities. Variation in native cover over 4 years was primarily driven by species mix, slope aspect, and a species mix by year interaction rather than an interaction between species mix and slope aspect as predicted. Although native cover was higher on wetter, north-facing slopes for most of the study, south-facing slopes achieved a similar cover (65%-70%) by year 4. While community-weighted mean (CWM) values generally became more resource conservative over time, we found shifts in particular traits across community types and habitats. For example, CWM for specific leaf area increased over time in grassland mixes. Belowground, CWM for root mass fraction increased while CWM for specific root length decreased across all seed mixes. Multivariate functional dispersion remained high in shrub-containing mixes throughout the study, which could enhance invasion resistance and recovery following disturbance. Functional diversity and species richness were initially higher in drier, south-facing slopes compared to north-facing slopes, but these metrics were similar across north- and south-facing slopes by the end of the 4-year study. Our finding that different combinations of traits were favored in south- and north-facing slopes and over time demonstrates that trait-based approaches can be used to identify good restoration candidate species and, ultimately, enhance native plant cover across community types and microhabitat. Changing the composition of planting mixes based on traits could be a useful strategy for restoration practitioners to match species to specific environmental conditions and may be more informative than using seed mixes based on growth form, as species within functional groups can vary tremendously in leaf and root traits.
Collapse
Affiliation(s)
- Jennifer L Funk
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Sarah Kimball
- Center for Environmental Biology, University of California, Irvine, Irvine, California, USA
| | - Monica A Nguyen
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Megan Lulow
- UCI Nature, University of California, Irvine, Irvine, California, USA
| | - Gregory E Vose
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
11
|
Dinish US, Teng MTJ, Xinhui VT, Dev K, Tan JJ, Koh SS, Urano D, Olivo M. Miniaturized Vis-NIR handheld spectrometer for non-invasive pigment quantification in agritech applications. Sci Rep 2023; 13:9524. [PMID: 37308523 DOI: 10.1038/s41598-023-36220-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/31/2023] [Indexed: 06/14/2023] Open
Abstract
Advanced precision agriculture requires the objective measurement of the structural and functional properties of plants. Biochemical profiles in leaves can differ depending on plant growing conditions. By quantitatively detecting these changes, farm production processes can be optimized to achieve high-yield, high-quality, and nutrient dense agricultural products. To enable the rapid and non-destructive detection on site, this study demonstrates the development of a new custom-designed portable handheld Vis-NIR spectrometer that collects leaf reflectance spectra, wirelessly transfers the spectral data through Bluetooth, and provides both raw spectral data and processed information. The spectrometer has two preprogramed methods: anthocyanin and chlorophyll quantification. Anthocyanin content of red and green lettuce estimated with the new spectrometer showed an excellent correlation coefficient of 0.84 with those determined by a destructive gold standard biochemical method. The differences in chlorophyll content were measured using leaf senescence as a case study. Chlorophyll Index calculated with the handheld spectrometer gradually decreased with leaf age as chlorophyll degrades during the process of senescence. The estimated chlorophyll values were highly correlated with those obtained from a commercial fluorescence-based chlorophyll meter with a correlation coefficient of 0.77. The developed portable handheld Vis-NIR spectrometer could be a simple, cost-effective, and easy to operate tool that can be used to non-invasively monitor plant pigment and nutrient content efficiently.
Collapse
Affiliation(s)
- U S Dinish
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore.
| | - Mark Teo Ju Teng
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Valerie Teo Xinhui
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Kapil Dev
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Javier Jingheng Tan
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Sally Shuxian Koh
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Daisuke Urano
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| | - Malini Olivo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore.
| |
Collapse
|
12
|
Atamian HS, Funk JL. Physiological and transcriptomic responses of two Artemisia californica populations to drought: implications for restoring drought-resilient native communities. Glob Ecol Conserv 2023. [DOI: 10.1016/j.gecco.2023.e02466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023] Open
|
13
|
Yang KT, Zhao LH, Li Z, Zhou WZ, Lu J, Chen GP. Do the same genus plants have consistent adaptation strategies in cold-wet environments? A case study of leaf suitability of 19 Syringa species. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
14
|
Del Vecchio S, Sharma SK, Pavan M, Acosta ATR, Bacchetta G, de Bello F, Isermann M, Michalet R, Buffa G. Within-species variation of seed traits of dune engineering species across a European climatic gradient. FRONTIERS IN PLANT SCIENCE 2022; 13:978205. [PMID: 36035686 PMCID: PMC9403325 DOI: 10.3389/fpls.2022.978205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Within-species variation is a key component of biodiversity and linking it to climatic gradients may significantly improve our understanding of ecological processes. High variability can be expected in plant traits, but it is unclear to which extent it varies across populations under different climatic conditions. Here, we investigated seed trait variability and its environmental dependency across a latitudinal gradient of two widely distributed dune-engineering species (Thinopyrum junceum and Calamagrostis arenaria). Seed germination responses against temperature and seed mass were compared within and among six populations exposed to a gradient of temperature and precipitation regimes (Spiekeroog, DE; Bordeaux, FR; Valencia, ES; Cagliari, IT, Rome, IT; Venice, IT). Seed germination showed opposite trends in response to temperature experienced during emergence in both species: with some expectation, in populations exposed to severe winters, seed germination was warm-cued, whereas in populations from warm sites with dry summer, seed germination was cold-cued. In C. arenaria, variability in seed germination responses disappeared once the seed coat was incised. Seed mass from sites with low precipitation was smaller than that from sites with higher precipitation and was better explained by rainfall continentality than by aridity in summer. Within-population variability in seed germination accounted for 5 to 54%, while for seed mass it was lower than 40%. Seed trait variability can be considerable both within- and among-populations even at broad spatial scale. The variability may be hardly predictable since it only partially correlated with the analyzed climatic variables, and with expectation based on the climatic features of the seed site of origin. Considering seed traits variability in the analysis of ecological processes at both within- and among-population levels may help elucidate unclear patterns of species dynamics, thereby contributing to plan adequate measures to counteract biodiversity loss.
Collapse
Affiliation(s)
- Silvia Del Vecchio
- Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice, Venice, Italy
| | - Shivam Kumar Sharma
- Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice, Venice, Italy
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mario Pavan
- Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice, Venice, Italy
| | | | - Gianluigi Bacchetta
- Sardinian Germplasm Bank (BG-SAR), Hortus Botanicus Karalitanus (HBK), University of Cagliari, Cagliari, Italy
| | - Francesco de Bello
- Centro de Investigaciones sobre Desertificación (CSIC-UV-GV), Valencia, Spain
| | - Maike Isermann
- Lower Saxon Wadden Sea National Park Authority, Wilhelmshaven, Germany
| | | | - Gabriella Buffa
- Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice, Venice, Italy
| |
Collapse
|
15
|
Westerband AC, Funk JL, Barton KE. Intraspecific trait variation in plants: a renewed focus on its role in ecological processes. ANNALS OF BOTANY 2021; 127:397-410. [PMID: 33507251 PMCID: PMC7988520 DOI: 10.1093/aob/mcab011] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/26/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Investigating the causes and consequences of intraspecific trait variation (ITV) in plants is not novel, as it has long been recognized that such variation shapes biotic and abiotic interactions. While evolutionary and population biology have extensively investigated ITV, only in the last 10 years has interest in ITV surged within community and comparative ecology. SCOPE Despite this recent interest, still lacking are thorough descriptions of ITV's extent, the spatial and temporal structure of ITV, and stronger connections between ITV and community and ecosystem properties. Our primary aim in this review is to synthesize the recent literature and ask: (1) How extensive is intraspecific variation in traits across scales, and what underlying mechanisms drive this variation? (2) How does this variation impact higher-order ecological processes (e.g. population dynamics, community assembly, invasion, ecosystem productivity)? (3) What are the consequences of ignoring ITV and how can these be mitigated? and (4) What are the most pressing research questions, and how can current practices be modified to suit our research needs? Our secondary aim is to target diverse and underrepresented traits and plant organs, including anatomy, wood, roots, hydraulics, reproduction and secondary chemistry. In addressing these aims, we showcase papers from the Special Issue. CONCLUSIONS Plant ITV plays a key role in determining individual and population performance, species interactions, community structure and assembly, and ecosystem properties. Its extent varies widely across species, traits and environments, and it remains difficult to develop a predictive model for ITV that is broadly applicable. Systematically characterizing the sources (e.g. ontogeny, population differences) of ITV will be a vital step forward towards identifying generalities and the underlying mechanisms that shape ITV. While the use of species means to link traits to higher-order processes may be appropriate in many cases, such approaches can obscure potentially meaningful variation. We urge the reporting of individual replicates and population means in online data repositories, a greater consideration of the mechanisms that enhance and constrain ITV's extent, and studies that span sub-disciplines.
Collapse
Affiliation(s)
- A C Westerband
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, Australia
| | - J L Funk
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - K E Barton
- School of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, HI, USA
| |
Collapse
|
16
|
Martin AR, Isaac ME. The leaf economics spectrum's morning coffee: plant size-dependent changes in leaf traits and reproductive onset in a perennial tree crop. ANNALS OF BOTANY 2021; 127:483-493. [PMID: 33502446 PMCID: PMC7988517 DOI: 10.1093/aob/mcaa199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/20/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND AND AIMS Size-dependent changes in plant traits are an important source of intraspecific trait variation. However, there are few studies that have tested if leaf trait co-variation and/or trade-offs follow a within-genotype leaf economics spectrum (LES) related to plant size and reproductive onset. To our knowledge, there are no studies on any plant species that have tested whether or not the shape of a within-genotype LES that describes how traits covary across whole plant sizes, is the same as the shape of a within-genotype LES that represents environmentally driven trait plasticity. METHODS We quantified size-dependent variation in eight leaf traits in a single coffee genotype (Coffea arabica var. Caturra) in managed agroecosystems with different environmental conditions (light and fertilization treatments), and evaluated these patterns with respect to reproductive onset. We also evaluated if trait covariation along a within-genotype plant-size LES differed from a within-genotype environmental LES defined with trait data from coffee growing in different environmental conditions. KEY RESULTS Leaf economics traits related to resource acquisition - maximum photosynthetic rates (A) and mass-based leaf nitrogen (N) concentrations - declined linearly with plant size. Structural traits - leaf mass, leaf thickness, and leaf mass per unit area (LMA) - and leaf area increased with plant size beyond reproductive onset, then declined in larger plants. Three primary LES traits (mass-based A, leaf N and LMA) covaried across a within-genotype plant-size LES, with plants moving towards the 'resource-conserving' end of the LES as they grow larger; in coffee these patterns were nearly identical to a within-genotype environmental LES. CONCLUSIONS Our results demonstrate that a plant-size LES exists within a single genotype. Our findings indicate that in managed agroecosystems where resource availability is high the role of reproductive onset in driving within-genotype trait variability, and the strength of covariation and trade-offs among LES traits, are less pronounced compared with plants in natural systems. The consistency in trait covariation in coffee along both plant-size and environmental LES axes indicates strong constraints on leaf form and function that exist within plant genotypes.
Collapse
Affiliation(s)
- Adam R Martin
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Military Trail, Toronto, Canada
| | - Marney E Isaac
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Military Trail, Toronto, Canada
- Centre for Critical Development Studies, University of Toronto Scarborough, Military Trail, Toronto, Canada
- Department of Geography, University of Toronto, Toronto, Canada
| |
Collapse
|
17
|
Funk JL, Larson JE, Ricks-Oddie J. Plant traits are differentially linked to performance in a semiarid ecosystem. Ecology 2021; 102:e03318. [PMID: 33630332 DOI: 10.1002/ecy.3318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/21/2020] [Accepted: 12/06/2020] [Indexed: 11/09/2022]
Abstract
A central principle in trait-based ecology is that trait variation has an adaptive value. However, uncertainty over which plant traits influence individual performance across environmental gradients may limit our ability to use traits to infer ecological processes at larger scales. To better understand which traits are linked to performance under different precipitation regimes, we measured above- and belowground traits, growth, and reproductive allocation for four annual and four perennial species from a coastal sage scrub community in California under conditions of 50%, 100%, and 150% ambient precipitation. Across water treatments, annual species displayed morphological trait values consistent with high rates of resource acquisition (e.g., low leaf mass per area, low root tissue density, high specific root length), and aboveground measures of resource acquisition (including photosynthetic rate and leaf N concentration) were positively associated with plant performance (reproductive allocation). Results from a structural equation model demonstrated that leaf traits explained 38% of the variation in reproductive allocation across the water gradient in annual species, while root traits accounted for only 6%. Although roots play a critical role in water uptake, more work is needed to understand the mechanisms by which root trait variation can influence performance in water-limited environments. Perennial species showed lower trait plasticity than annuals across the water gradient and were more variable as a group in terms of trait-performance relationships, indicating that species rely on different functional strategies to respond to drought. Our finding that species identity drives much of the variation in trait values and trait-performance relationships across a water gradient may simplify efforts to model ecological processes, such as productivity, that are potentially influenced by environmentally induced shifts in trait values.
Collapse
Affiliation(s)
- Jennifer L Funk
- Schmid College of Science and Technology, Chapman University, Orange, California, 92866, USA.,Department of Plant Sciences, University of California, Davis, California, 95616, USA
| | - Julie E Larson
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80309, USA
| | - Joni Ricks-Oddie
- Center for Statistical Consulting, University of California, Irvine, California, 92797, USA.,Institute for Clinical and Translation Sciences, University of California, Irvine, California, 92797, USA
| |
Collapse
|