1
|
Khan S, Iqbal MZ, Solangi F, Azeem S, Bodlah MA, Zaheer MS, Niaz Y, Ashraf M, Abid M, Gul H, Yu H, Li Q, Weijie J, Rizwan M, Manoharadas S. Impact of amino acid supplementation on hydroponic lettuce (Lactuca sativa L.) growth and nutrient content. Sci Rep 2025; 15:15829. [PMID: 40328794 DOI: 10.1038/s41598-025-00294-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 04/28/2025] [Indexed: 05/08/2025] Open
Abstract
Lettuce (Lactuca sativa L.), a widely cultivated leafy green, is valued for its rich content of bioactive compounds, including folates, vitamins, tocopherols, ascorbic acid, and antioxidants. This study aimed to evaluate the effects of amino acid supplementation on the growth and nutrient content of hydroponically grown lettuce. A greenhouse experiment using a completely randomized design (CRD) was conducted, with three replications and three plants per replication. There were 4 treatments (T0 (Control), T1 (Methionine 20 mg/L), T2 (Tryptophan 220 mg/L, T3 (Glycine 200 mg/L) of this experiment Growth parameters, including biomass, leaf length, leaf width, and leaf area, were measured four weeks after transplantation. L-methionine supplementation resulted in a significant improvement in plant growth, with a 23.60% increase in biomass and a 31.41% increase in leaf area. Conversely, L-tryptophan treatment led to substantial reductions in growth, including a 98.78% decrease in biomass. Nutrient analysis revealed that amino acid treatments, especially methionine, enhanced the nitrogen, phosphorus, and potassium content in leaf tissues. These results suggest that L-methionine has a positive effect on both growth and nutrient uptake in hydroponic lettuce, while L-tryptophan and L-glycine negatively affect plant development. The differential responses to amino acid treatments may be attributed to their distinct roles in plant metabolism, with methionine enhancing sulfur-containing compounds and proteins essential for growth, while tryptophan and glycine could disrupt metabolic pathways. Future research should explore the mechanisms underlying these effects and evaluate the optimal amino acid concentrations for maximizing hydroponic lettuce production and nutrient density.
Collapse
Affiliation(s)
- Shumaila Khan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences (CAAS), No.12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
- Climate Smart Agriculture Accelerator Program (CSAAP) KFUEIT GIZ SAR, Rahim Yar Khan, Pakistan
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Zafar Iqbal
- State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Farheen Solangi
- Research Centre of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Shahid Azeem
- Climate Smart Agriculture Accelerator Program (CSAAP) KFUEIT GIZ SAR, Rahim Yar Khan, Pakistan
| | - Muhammad Adnan Bodlah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Saqlain Zaheer
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan.
| | - Yasir Niaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Ashraf
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Abid
- Adaptation to Climate Change, Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH, Bonn, Germany
| | - Hera Gul
- Department of Horticultural Sciences, Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Hongjun Yu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences (CAAS), No.12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Qiang Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences (CAAS), No.12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Jiang Weijie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences (CAAS), No.12 Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| | - Muhammad Rizwan
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53115, Bonn, Germany.
| | - Salim Manoharadas
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Guha T, Biswas SM. Seed Endophytic Bacteria from Manilkara zapota L. and Their Influence as Rice Seed Priming Agents. Curr Microbiol 2025; 82:275. [PMID: 40317325 DOI: 10.1007/s00284-025-04253-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 04/21/2025] [Indexed: 05/07/2025]
Abstract
In recent years, seed endophytes have gained significant attention due to their impact on the ecology, health, and productivity of host plants. Extensive research is being conducted to explore novel endophytic bacteria for sustainable crop improvement. Manilkara zapota L. P. Royen (Sapotaceae) is a highly stress-tolerant tree widely cultivated in tropical countries, yet its associated endophytes remain unexplored. In this study, nine bacterial isolates were obtained from M. zapota seeds, of which three (LA2, LA4, and NS1) were selected based on their IAA production capability which ranged from 2.3, 6.34, and 16.1 µg mL-1, respectively. Identification through 16S rRNA sequencing confirmed LA2 as Pseudomonas rhodesiae, LA4 as Bacillus cereus, and NS1 as Enterobacter cloacae. All isolates exhibited nitrogen-fixing ability, while NS1 uniquely solubilized potassium and phosphorus with KSI and PSI value as 2.9 and 2.3, respectively. Further, the efficacy of the bacterial isolates in promoting rice seedling growth was evaluated, and novel bioformulation was prepared from the consortia of LA2 + LA4, LA2 + NS1, LA4 + NS1, and LA2 + LA4 + NS1. All the isolates and bioformulations were tested as biopriming agents. Rice seedling growth experiments revealed a significant increase in germination percentage, root length, and shoot length following biopriming with individual isolates and consortia. Among treatments, the LA2 + LA4 combination exhibited the highest growth promotion, with a root length increase of 2.1-fold and shoot length increase of 2.3-fold as compared to control. Thus, our results highlighted that bioprospecting microbes from M. zapota seeds can help in nutrient management and seedling establishment.
Collapse
Affiliation(s)
- Titir Guha
- Agricultural & Ecological Research Unit, Biological Sciences Division, Indian Statistical Institute, 203, Barrackpore Trunk Road, Kolkata, 700 108, India.
- Department of Biology, Indian Institute of Science Education and Research, Srinivasapuram, Yerpedu Mandal, Tirupati, 517619, Andhra Pradesh, India.
| | - Suparna Mandal Biswas
- Agricultural & Ecological Research Unit, Biological Sciences Division, Indian Statistical Institute, 203, Barrackpore Trunk Road, Kolkata, 700 108, India.
| |
Collapse
|
3
|
da Silva OB, de Castro EM, Vassura Y, Pires MV, de Carvalho CGP, de Carvalho LM, Pereira MP. Root system morphoanatomy of sunflower genotypes under water deficit. BMC PLANT BIOLOGY 2025; 25:449. [PMID: 40205530 PMCID: PMC11980319 DOI: 10.1186/s12870-025-06468-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/26/2025] [Indexed: 04/11/2025]
Abstract
Sunflower is classified as a moderately drought tolerant crop. Genotypic variations and water availability are factors that influence the root development of the crop, which is important for water absorption in deep regions of the soil. Therefore, tests in controlled water deficit environments allow evaluating a set of morphoanatomical characteristics of the root system that attribute tolerance to water deficit, contributing to sunflower genetic improvement programs. The objective of this study was to identify a set of root morphoanatomical characteristics of four sunflower genotypes subjected to controlled water deficit. We tested four commercial sunflower genotypes (OLISUN03, AGUARÁ06, HELIO250 and BRS323) under well-irrigated (field capacity) and water restriction (40% of field capacity) conditions, completely randomized design with six replicates was applied, grown in rhizotron pot, allowing to evaluate root development through imaging and anatomical characteristics related to water absorption in different regions of the sunflower root system. Plants under water deficit showed changes that contributed to water absorption in different positions of root development. Under water deficit, the tissue differentiation occurred first near the root apex, while at field capacity differentiation occurred close to the root base. In the condition of water deficit, it was verified narrow root system architecture (RSA) for the genotype OLISUN03, deep RSA for BRS323, reduced endoderm thickness in OLISUN03 and vascular cylinder area in AGUARÁ06. In general, water deficit promoted changes in the morphological and anatomical characteristics of the root system. Morphological and anatomical modifications of the root system contribute to the anchoring and absorption of water and nutrients in places with little water availability in the soil.
Collapse
Affiliation(s)
- Orivaldo Benedito da Silva
- Laboratório de Anatomia Vegetal, Departamento de Biologia, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil.
| | - Evaristo Mauro de Castro
- Laboratório de Anatomia Vegetal, Departamento de Biologia, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Yohanna Vassura
- Laboratório de Anatomia Vegetal, Departamento de Biologia, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Mateus Vilela Pires
- Laboratório de Anatomia Vegetal, Departamento de Biologia, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | | | | | - Marcio Paulo Pereira
- Laboratório de Anatomia Vegetal, Departamento de Biologia, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| |
Collapse
|
4
|
Shah SSTH, Shan W, Wang Y, Zheng Z, Feng S, Wang L, Hu X, Li L. Eco-friendly Biocontrol of Ralstonia solanacearum and Plant Growth Promotion in Tobacco Using Garbage Enzyme and Bacillus velezensis A1. Mol Biotechnol 2025:10.1007/s12033-025-01412-w. [PMID: 40180693 DOI: 10.1007/s12033-025-01412-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/13/2025] [Indexed: 04/05/2025]
Abstract
Ralstonia solanacearum, the causative agent of bacterial wilt disease, poses a significant threat to agriculture. The demand for safe and high-quality food has increased interest in biological control agents (BCAs), despite challenges related to stability and cost. Garbage enzymes (GEs) are a promising alternative, rich in beneficial microbes and organic compounds. In this study, four types of GEs (onion, garlic, ginger, and mixed fruit) were individually tested against R. solanacearum in vitro, with only onion GE showing significant inhibition. Filtered onion GE, which lacked any microbes, also showed inhibition; however, its heat-treated form exhibited a reduced inhibitory effect, indicating the role of heat-sensitive compounds in inhibiting R. solanacearum. An antagonistic bacterial strain A1, isolated from onion GE, inhibited pathogen growth by up to 75% through volatile compounds. Cell-free culture filtrate of the strain A1 also inhibited R. solanacearum in vitro. Strain A1 exhibited nitrogen fixation, siderophore production, indole acetic acid (IAA) synthesis, and extracellular enzyme production, positioning it as a potent biocontrol agent. The genome analysis of the strain A1 revealed the presence of several plant growth-promoting genes. In vivo studies with GE, GE-filtered, and strain A1 demonstrated significant pathogen inhibition and promoted tobacco plant growth. Disease incidence was reduced to 26.6% with GE, 46.67% with microbe-free GE, and 40% with strain A1. Overall, these treatments positively impacted plant root and shoot lengths as well as both fresh and dry weights. Our findings highlight onion GE as a potential, environmentally friendly method for controlling bacterial wilt and enhancing plant development, offering an alternative approach to traditional chemical controls in agriculture.
Collapse
Affiliation(s)
- Syed Sib Tul Hassan Shah
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Road 2, Xiasha, Hangzhou, 310018, People's Republic of China
| | - Wangjie Shan
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Road 2, Xiasha, Hangzhou, 310018, People's Republic of China
| | - Ying Wang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Road 2, Xiasha, Hangzhou, 310018, People's Republic of China
| | - Zhisheng Zheng
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Road 2, Xiasha, Hangzhou, 310018, People's Republic of China
| | - Shuo Feng
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Road 2, Xiasha, Hangzhou, 310018, People's Republic of China
| | - Lingxiao Wang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Road 2, Xiasha, Hangzhou, 310018, People's Republic of China
| | - Xiufang Hu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Road 2, Xiasha, Hangzhou, 310018, People's Republic of China.
| | - Lin Li
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
5
|
Jasso-Arreola Y, Ibarra JA, Rosas-Cárdenas FDF, Estrada-de los Santos P. Beneficial Effects of ACC Deaminase-Producing Rhizobacteria on the Drought Stress Resistance of Coffea arabica L. PLANTS (BASEL, SWITZERLAND) 2025; 14:1084. [PMID: 40219151 PMCID: PMC11991408 DOI: 10.3390/plants14071084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025]
Abstract
Given the challenges of climate change, effective adaptation strategies for crops like coffee are crucial. This study evaluated twelve 1-aminocyclopropane-1-carboxylate deaminase-producing bacterial strains selectively isolated from the rhizosphere of Coffea arabica L. cv. Costa Rica 95 in a plantation located in Veracruz, Mexico, focusing on their potential to enhance drought resistance. The strains, representing seven genera from the Gamma-proteobacteria and Bacteroidota groups, were characterized for growth-promoting traits, including ACC deaminase activity, indole-3-acetic acid (IAA) synthesis, phosphates solubilization, siderophore production, and nitrogen fixation. Strains of the genus Pantoea exhibited higher ACC deaminase activity, phosphate solubilization, and IAA synthesis, while others, such as Sphingobacterium and Chryseobacterium, showed limited plant growth-promoting traits. A pot experiment was conducted with coffee plants subjected to either full irrigation (soil with 85% volumetric water content) or drought (soil with 55% volumetric water content) conditions, along with inoculation with the isolated strains. Plants inoculated with Pantoea sp. RCa62 demonstrated improved growth metrics and physiological traits under drought, including higher leaf area, relative water content (RWC), biomass, and root development compared to uninoculated controls. Similar results were observed with Serratia sp. RCa28 and Pantoea sp. RCa31 under full irrigation conditions. Pantoea sp. RCa62 exhibited superior root development under stress, contributing to overall plant development. Proline accumulation was significantly higher in drought-stressed, non-inoculated plants compared to those inoculated with Pantoea sp. RCa62. This research highlights the potential of Pantoea sp. RCa62 to enhance coffee plant resilience to drought and underscores the need for field application and further validation of these bioinoculants in sustainable agricultural practices.
Collapse
Affiliation(s)
- Yesenia Jasso-Arreola
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala s/n, Col. Santo Tomás, Alcaldía Miguel Hidalgo, Ciudad de México 11340, Mexico; (Y.J.-A.); (J.A.I.)
- Instituto Politécnico Nacional, Centro de Estudios Científicos y Tecnológicos 16 “Hidalgo”, Carretera Pachuca-Actopan km 1+500, San Agustín Tlaxiaca 42162, Mexico
| | - J. Antonio Ibarra
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala s/n, Col. Santo Tomás, Alcaldía Miguel Hidalgo, Ciudad de México 11340, Mexico; (Y.J.-A.); (J.A.I.)
| | - Flor de Fátima Rosas-Cárdenas
- Instituto Politécnico Nacional, Centro de Investigaciónen Biotecnología Aplicada, Ex-Hacienda SanJuan Molino Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, Tepetitla 90700, Mexico;
| | - Paulina Estrada-de los Santos
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala s/n, Col. Santo Tomás, Alcaldía Miguel Hidalgo, Ciudad de México 11340, Mexico; (Y.J.-A.); (J.A.I.)
| |
Collapse
|
6
|
Wu Q, Chen Y, Bi W, Tong B, Wang A, Zhan J, He L, Xiao D. Comprehensive analysis of small RNA, transcriptome, and degradome sequencing: Mapping the miRNA-gene regulatory network for the development of sweet potato tuber roots. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109510. [PMID: 39837210 DOI: 10.1016/j.plaphy.2025.109510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/23/2025]
Abstract
As an important starch crop, sweet potato has significant practical importance for maintaining food security worldwide. This study identified differential expressed genes associated with the expansion of tuberous roots by comparing the transcriptome across tuberous roots at the initial period (initiated tuberous roots (ITRs), rapid expansion period (tuberous roots (TRs), fibrous roots (FRs) at the seedling stage, and fibrous roots at the adult stage (unexpanded FRs (UFRs)). sRNA-seq and degradome analyses were performed to reveal the role of miRNAs in tuberous root development in sweet potato. A total of 29,633 genes and 510 miRNAs were differential expressed among FRs, ITRs, TRs, and UFRs. Integrated analyses of these data revealed genes involved in metabolism, hormone response, and signal transduction that might participate in the induction of tuberous root formation, while genes involved in carbohydrate and energy metabolism that might participate in the tuberous root swelling. A joint analysis of miRNAs and DEGs related to tuber development revealed by degradome-seq identified twelve miRNA-target gene pairs involved in gene expression process, hormone response, and metabolism of secondary metabolites that might be key regulators of root tuber development in sweet potato. Moreover, the functions of many miRNA-target gene pairs involved in the initiation of root tuber were related to auxin signaling response, and an exogenous hormone treatment experiment was further performed. The results indicated that auxin treatment had the most significant effect on increasing sweet potato yield, suggesting a dominant role of the auxin pathway in the regulation of sweet potato tuberous root development. Additionally, two miRNA-target pairs, miR319-TCP4 and miR172-AP2, which were identified from the degradome, were verified via 5' RNA ligase-mediated rapid amplification of cDNA ends (RLR-RACE) and tobacco transient cotransformation tests, and their expression was impacted by auxin treatment, which further validated the reliability of our multiomics analysis results. Our research provides new insights into the role of miRNAs in sweet potato root tuber development.
Collapse
Affiliation(s)
- Qiang Wu
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi University Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, China; Zhengzhou Academy of Agricultural Science and Technology, Zhengzhou, 450006, China
| | - Yuxi Chen
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi University Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, China
| | - Wenqing Bi
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi University Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, China
| | - Bin Tong
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China; Jilin Province Crop Introduction and Breeding Center of New Varieties, Changchun, 130000, China
| | - Aiqin Wang
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi University Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, China
| | - Jie Zhan
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi University Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, China
| | - Longfei He
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi University Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, China.
| | - Dong Xiao
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi University Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, China.
| |
Collapse
|
7
|
Zhang H, Liu Z, Zheng C, Ma H, Zeng M, Yang X. Root system architecture plasticity with beneficial rhizosphere microbes: Current findings and future perspectives. Microbiol Res 2025; 292:128028. [PMID: 39740636 DOI: 10.1016/j.micres.2024.128028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/02/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025]
Abstract
The rhizosphere microbiota, often referred to as the plant's "second genome" plays a critical role in modulating root system architecture (RSA). Despite this, existing methods to analyze root phenotypes in the context of root-microbe interactions remain limited, and the precise mechanisms affecting RSA by microbes are still not fully understood. This review comprehensively evaluates current root phenotyping techniques relevant to plant-microbe interactions, discusses their limitations, and explores future directions for integrating advanced technologies to elucidate microbial roles in altering RSA. Here, we summarized that microbial metabolite, primarily through auxin signaling pathways, drive root development changes. By harnessing advanced phenotyping tools, we aim to uncover more detailed mechanisms by which microbes modify RSA, providing valuable insights into strategies for optimizing nutrient uptake, bolstering food security, and enhancing resilience against climate-induced environmental stresses.
Collapse
Affiliation(s)
- Hualiang Zhang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Zilin Liu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | | | - Huimin Ma
- Faculty of Agronomy, Jilin Agricultural University, Chang Chun 130118, China
| | - Ming Zeng
- Université de Bordeaux, INRAE, BFP, UMR 1332, Villenave d'Ornon 33140, France
| | - Xuechen Yang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China.
| |
Collapse
|
8
|
Pandey M, Verma L, Kohli PS, Singh B, Kochi A, Giri J. A lipid synthase maintains metabolic flux for jasmonate synthesis to regulate root growth and phosphate homeostasis. PLANT PHYSIOLOGY 2025; 197:kiae453. [PMID: 39190806 DOI: 10.1093/plphys/kiae453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024]
Abstract
Plants require phosphate (Pi) for proper growth and development but often face scarcity of this vital nutrient in the soil. Pi starvation triggers membrane lipid remodeling to utilize the membrane phospholipid-bound Pi in plants. In this process, phospholipids are replaced by non-Pi-containing galactolipids (monogalactosyldiacylglycerol, MGDG; digalactosyldiacylglycerol, DGDG) and sulfolipids. The galactolipids ratio (MGDG:DGDG) is suggested to influence jasmonic acid (JA) biosynthesis. However, how the MGDG:DGDG ratio, JA levels, and root growth are coordinated under Pi deficiency in rice (Oryza sativa) remains unknown. Here, we characterized DGDG synthase 1 (OsDGD1) for its role in regulating root development by maintaining metabolic flux for JA biosynthesis. We showed that OsDGD1 is responsive under low Pi and is under the direct control of Phosphate Starvation Response 2, the master regulator of low Pi adaptations. Further, OsDGD1 knockout (KO) lines showed marked phenotypic differences compared to the wild type, including a significant reduction in root length and biomass, leading to reduced Pi uptake. Further, lipidome analyses revealed reduced DGDG levels in the KO line, leading to reduced membrane remodeling, thus affecting P utilization efficiency. We also observed an increase in the MGDG:DGDG ratio in KO lines, which enhanced the endogenous JA levels and signaling. This imbalance of JA in KO plants led to changes in auxin levels, causing drastic root growth inhibition. These findings indicate the critical role of OsDGD1 in maintaining optimum levels of JA during Pi deficiency for conducive root growth. Besides acting as signaling molecules and structural components, our study widens the role of lipids as metabolic flux controllers for phytohormone biosynthesis.
Collapse
Affiliation(s)
- Mandavi Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Lokesh Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Pawandeep Singh Kohli
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Bhagat Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Abhijith Kochi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Jitender Giri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
9
|
Li K, Li H, Liang WL, Liu JJ, Tian HY, Wang LH, Wei YH. Identification of the AHP family reveals their critical response to cytokinin regulation during adventitious root formation in apple rootstock. FRONTIERS IN PLANT SCIENCE 2025; 15:1511713. [PMID: 39881729 PMCID: PMC11776435 DOI: 10.3389/fpls.2024.1511713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/18/2024] [Indexed: 01/31/2025]
Abstract
Adventitious root (AR) formation is a bottleneck for vegetative proliferation. In this study, 13 AHP genes (MdAHPs) were identified in the apple genome. Phylogenetic analysis grouped them into 3 clusters (I, II, III), with 4, 4, and 5 genes respectively. The 13 MdAHPs family members were named MdAHP1 to MdAHP13 by chromosome positions. The physicochemical properties, phylogenetic relationship, motifs, and elements of their proteins were also analyzed. The amino acid quantity varied from 60~189 aa, isoelectric point lay between 4.10 and 8.93, and there were 3~7 protein-conserving motifs. Excluding MdAHP6, other members' promoter sequences behaved 2-4 CTK response elements. Additionally, the expression characteristics of MdAHPs family members at key stages of AR formation and in different tissues were also examined with exogenous 6-BA and Lov treatments. The results showed that MdAHP3 might be a key member in AR formation. GUS staining indicated that the activity of the MdAHP3 promoter was also significantly enhanced by CTK treatment. The protein interactions of MdAHP3/MdAHP1 and MdAHP3/MdAHP6 were verified. Compared with WT, 35S::MdAHP3 transgenic poplars inhibited AR formation. The above experimental results suggested that MdAHP3, as a key family member, interacts with MdAHP1 and MdAHP6 proteins to jointly mediate AR formation in apple rootstocks.
Collapse
Affiliation(s)
- Ke Li
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, Hebei, China
- Institute of Forestry and Fruit Science, Hebei University of Engineering, Handan, Hebei, China
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture & Forestry University, Yangling, China
| | - Huan Li
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, Hebei, China
| | - Wei Ling Liang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, Hebei, China
| | - Jing Ju Liu
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, Hebei, China
| | - Hui Yue Tian
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture & Forestry University, Yangling, China
| | - Li Hu Wang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, Hebei, China
- Institute of Forestry and Fruit Science, Hebei University of Engineering, Handan, Hebei, China
| | - Yan Hong Wei
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, Hebei, China
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture & Forestry University, Yangling, China
| |
Collapse
|
10
|
Li L, Jia L, Duan X, Lv Y, Ye C, Ding C, Zhang Y, Qi W, Motte H, Beeckman T, Luo L, Xuan W. A nitrogen-responsive cytokinin oxidase/dehydrogenase regulates root response to high ammonium in rice. THE NEW PHYTOLOGIST 2024; 244:1391-1407. [PMID: 39297368 DOI: 10.1111/nph.20128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/27/2024] [Indexed: 10/18/2024]
Abstract
Plant root system is significantly influenced by high soil levels of ammonium nitrogen, leading to reduced root elongation and enhanced lateral root branching. In Arabidopsis, these processes have been reported to be mediated by phytohormones and their downstream signaling pathways, while the controlling mechanisms remain elusive in crops. Through a transcriptome analysis of roots subjected to high/low ammonium treatments, we identified a cytokinin oxidase/dehydrogenase encoding gene, CKX3, whose expression is induced by high ammonium. Knocking out CKX3 and its homologue CKX8 results in shorter seminal roots, fewer lateral roots, and reduced sensitivity to high ammonium. Endogenous cytokinin levels are elevated by high ammonium or in ckx3 mutants. Cytokinin application results in shorter seminal roots and fewer lateral roots in wild-type, mimicking the root responses of ckx3 mutants to high ammonium. Furthermore, CKX3 is transcriptionally activated by type-B RR25 and RR26, and ckx3 mutants have reduced auxin content and signaling in roots under low ammonium. This study identified RR25/26-CKX3-cytokinin as a signal module that mediates root responses to external ammonium by modulating of auxin signaling in the root meristem and lateral root primordium. This highlights the critical role of cytokinin metabolism in regulating rice root development in response to ammonium.
Collapse
Affiliation(s)
- Lun Li
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Letian Jia
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xingliang Duan
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanda Lv
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Chengyu Ye
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chengqiang Ding
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing, 210095, China
- Collaborative Innovation Center for Modern Crop Production Co-sponsored by Province and Ministry, Nanjing, 210095, China
| | - Yuwen Zhang
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weicong Qi
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Hans Motte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, B-9052, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark 71, Ghent, B-9052, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, B-9052, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark 71, Ghent, B-9052, Belgium
| | - Le Luo
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Xuan
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
11
|
Samarina L, Malyukova L, Wang S, Bobrovskikh A, Doroshkov A, Shkhalakhova R, Manakhova K, Koninskaya N, Matskiv A, Ryndin A, Khlestkina E, Orlov Y. In Vitro vs. In Vivo Transcriptomic Approach Revealed Core Pathways of Nitrogen Deficiency Response in Tea Plant ( Camellia sinensis (L.) Kuntze). Int J Mol Sci 2024; 25:11726. [PMID: 39519276 PMCID: PMC11547157 DOI: 10.3390/ijms252111726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
For the first time, we used an in vitro vs. in vivo experimental design to reveal core pathways under nitrogen deficiency (ND) in an evergreen tree crop. These pathways were related to lignin biosynthesis, cell redox homeostasis, the defense response to fungus, the response to Karrikin, amino acid transmembrane transport, the extracellular region, the cellular protein catabolic process, and aspartic-type endopeptidase activity. In addition, the mitogen-activated protein kinase pathway and ATP synthase (ATP)-binding cassette transporters were significantly upregulated under nitrogen deficiency in vitro and in vivo. Most of the MAPK downstream genes were related to calcium signaling (818 genes) rather than hormone signaling (157 genes). Moreover, the hormone signaling pathway predominantly contained auxin- and abscisic acid-related genes, indicating the crucial role of these hormones in ND response. Overall, 45 transcription factors were upregulated in both experiments, 5 WRKYs, 3 NACs, 2 MYBs, 2 ERFs, HD-Zip, RLP12, bHLH25, RADIALIS-like, and others, suggesting their ND regulation is independent from the presence of a root system. Gene network reconstruction displayed that these transcription factors participate in response to fungus/chitin, suggesting that nitrogen response and pathogen response have common regulation. The upregulation of lignin biosynthesis genes, cytochrome genes, and strigalactone response genes was much more pronounced under in vitro ND as compared to in vivo ND. Several cell wall-related genes were closely associated with cytochromes, indicating their important role in flavanols biosynthesis in tea plant. These results clarify the signaling mechanisms and regulation of the response to nitrogen deficiency in evergreen tree crops.
Collapse
Affiliation(s)
- Lidiia Samarina
- Federal Research Centre, The Subtropical Scientific Centre of the Russian Academy of Sciences, 354002 Sochi, Russia; (L.M.); (S.W.); (R.S.); (K.M.); (N.K.); (A.M.); (A.R.)
- Center of Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sirius, Russia;
| | - Lyudmila Malyukova
- Federal Research Centre, The Subtropical Scientific Centre of the Russian Academy of Sciences, 354002 Sochi, Russia; (L.M.); (S.W.); (R.S.); (K.M.); (N.K.); (A.M.); (A.R.)
| | - Songbo Wang
- Federal Research Centre, The Subtropical Scientific Centre of the Russian Academy of Sciences, 354002 Sochi, Russia; (L.M.); (S.W.); (R.S.); (K.M.); (N.K.); (A.M.); (A.R.)
| | - Aleksandr Bobrovskikh
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.B.); (A.D.)
| | - Alexey Doroshkov
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.B.); (A.D.)
| | - Ruset Shkhalakhova
- Federal Research Centre, The Subtropical Scientific Centre of the Russian Academy of Sciences, 354002 Sochi, Russia; (L.M.); (S.W.); (R.S.); (K.M.); (N.K.); (A.M.); (A.R.)
| | - Karina Manakhova
- Federal Research Centre, The Subtropical Scientific Centre of the Russian Academy of Sciences, 354002 Sochi, Russia; (L.M.); (S.W.); (R.S.); (K.M.); (N.K.); (A.M.); (A.R.)
- Center of Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sirius, Russia;
| | - Natalia Koninskaya
- Federal Research Centre, The Subtropical Scientific Centre of the Russian Academy of Sciences, 354002 Sochi, Russia; (L.M.); (S.W.); (R.S.); (K.M.); (N.K.); (A.M.); (A.R.)
| | - Alexandra Matskiv
- Federal Research Centre, The Subtropical Scientific Centre of the Russian Academy of Sciences, 354002 Sochi, Russia; (L.M.); (S.W.); (R.S.); (K.M.); (N.K.); (A.M.); (A.R.)
| | - Alexey Ryndin
- Federal Research Centre, The Subtropical Scientific Centre of the Russian Academy of Sciences, 354002 Sochi, Russia; (L.M.); (S.W.); (R.S.); (K.M.); (N.K.); (A.M.); (A.R.)
| | - Elena Khlestkina
- Center of Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sirius, Russia;
- Federal Research Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 Saint Petersburg, Russia
| | - Yuriy Orlov
- Agrarian and Technological Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| |
Collapse
|
12
|
Broad Z, Lefreve J, Wilkinson MJ, Barton S, Barbier F, Jung H, Donovan D, Ortiz-Barrientos D. Gravitropic Gene Expression Divergence Associated With Adaptation to Contrasting Environments in an Australian Wildflower. Mol Ecol 2024:e17543. [PMID: 39444280 DOI: 10.1111/mec.17543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 08/27/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Plants adapt to their local environment through complex interactions between genes, gene networks and hormones. Although the impact of gene expression on trait regulation and evolution has been recognised for many decades, its role in the evolution of adaptation is still a subject of intense exploration. We used a Multi-parent Advanced Generation Inter-Cross (MAGIC) population, which we derived from crossing multiple parents from two distinct coastal ecotypes of an Australia wildflower, Senecio lautus. We focused on studying the contrasting gravitropic behaviours of these ecotypes, which have evolved independently multiple times and show strong responses to natural selection in field experiments, emphasising the role of natural selection in their evolution. Here, we investigated how gene expression differences have contributed to the adaptive evolution of gravitropism. We studied gene expression in 60 pools at five time points (30, 60, 120, 240 and 480 min) after rotating half of the pools 90°. We found 428 genes with differential expression in response to the 90° rotation treatment. Of these, 81 genes (~19%) have predicted functions related to the plant hormones auxin and ethylene, which are crucial for the gravitropic response. By combining insights from Arabidopsis mutant studies and analysing our gene networks, we propose a preliminary model to explain the differences in gravitropism between ecotypes. This model suggests that the differences arise from changes in the transport and availability of the two hormones auxin and ethylene. Our findings indicate that the genetic basis of adaptation involves interconnected signalling pathways that work together to give rise to new ecotypes.
Collapse
Affiliation(s)
- Zoe Broad
- School of the Environment, The University of Queensland, St Lucia, Queensland, Australia
- Australian Research Centre of Excellence in Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Queensland, Australia
| | - James Lefreve
- Australian Research Centre of Excellence in Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Queensland, Australia
- School of Mathematics and Physics, The University of Queensland, St Lucia, Queensland, Australia
| | - Melanie J Wilkinson
- School of the Environment, The University of Queensland, St Lucia, Queensland, Australia
- Australian Research Centre of Excellence in Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Queensland, Australia
| | - Samuel Barton
- Australian Research Centre of Excellence in Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Queensland, Australia
- School of Mathematics and Physics, The University of Queensland, St Lucia, Queensland, Australia
| | - Francois Barbier
- Australian Research Centre of Excellence in Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Queensland, Australia
- School of Agriculture and Food Sustainability, St Lucia, Queensland, Australia
| | - Hyungtaek Jung
- Australian National University, College of Health and Medicine, Canberra, Australian Capital Territory, Australia
| | - Diane Donovan
- Australian Research Centre of Excellence in Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Queensland, Australia
- School of Mathematics and Physics, The University of Queensland, St Lucia, Queensland, Australia
| | - Daniel Ortiz-Barrientos
- School of the Environment, The University of Queensland, St Lucia, Queensland, Australia
- Australian Research Centre of Excellence in Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
13
|
Dziewit K, Amakorová P, Novák O, Szal B, Podgórska A. Systemic strategies for cytokinin biosynthesis and catabolism in Arabidopsis roots and leaves under prolonged ammonium nutrition. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108858. [PMID: 38924907 DOI: 10.1016/j.plaphy.2024.108858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
Cytokinins are growth-regulating plant hormones that are considered to adjust plant development under environmental stresses. During sole ammonium nutrition, a condition known to induce growth retardation of plants, altered cytokinin content can contribute to the characteristic ammonium toxicity syndrome. To understand the metabolic changes in cytokinin pools, cytokinin biosynthesis and degradation were analyzed in the leaves and roots of mature Arabidopsis plants. We found that in leaves of ammonium-grown plants, despite induction of biosynthesis on the expression level, there was no active cytokinin build-up because they were effectively routed toward their downstream catabolites. In roots, cytokinin conjugation was also induced, together with low expression of major synthetic enzymes, resulting in a decreased content of the trans-zeatin form under ammonium conditions. Based on these results, we hypothesized that in leaves and roots, cytokinin turnover is the major regulator of the cytokinin pool and does not allow active cytokinins to accumulate. A potent negative-regulator of root development is trans-zeatin, therefore its low level in mature root tissues of ammonium-grown plants may be responsible for occurrence of a wide root system. Additionally, specific cytokinin enhancement in apical root tips may evoke a short root phenotype in plants under ammonium conditions. The ability to flexibly regulate cytokinin metabolism and distribution in root and shoot tissues can contribute to adjusting plant development in response to ammonium stress.
Collapse
Affiliation(s)
- Kacper Dziewit
- Department of Plant Bioenergetics, Faculty of Biology, University of Warsaw, I. Miecznikowa 01, 02-096, Warsaw, Poland.
| | - Petra Amakorová
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic.
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic.
| | - Bożena Szal
- Department of Plant Bioenergetics, Faculty of Biology, University of Warsaw, I. Miecznikowa 01, 02-096, Warsaw, Poland.
| | - Anna Podgórska
- Department of Plant Bioenergetics, Faculty of Biology, University of Warsaw, I. Miecznikowa 01, 02-096, Warsaw, Poland.
| |
Collapse
|
14
|
Wexler Y, Schroeder JI, Shkolnik D. Hydrotropism mechanisms and their interplay with gravitropism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1732-1746. [PMID: 38394056 DOI: 10.1111/tpj.16683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024]
Abstract
Plants partly optimize their water recruitment from the growth medium by directing root growth toward a moisture source, a phenomenon termed hydrotropism. The default mechanism of downward growth, termed gravitropism, often functions to counteract hydrotropism when the water-potential gradient deviates from the gravity vector. This review addresses the identity of the root sites in which hydrotropism-regulating factors function to attenuate gravitropism and the interplay between these various factors. In this context, the function of hormones, including auxin, abscisic acid, and cytokinins, as well as secondary messengers, calcium ions, and reactive oxygen species in the conflict between these two opposing tropisms is discussed. We have assembled the available data on the effects of various chemicals and genetic backgrounds on both gravitropism and hydrotropism, to provide an up-to-date perspective on the interactions that dictate the orientation of root tip growth. We specify the relevant open questions for future research. Broadening our understanding of root mechanisms of water recruitment holds great potential for providing advanced approaches and technologies that can improve crop plant performance under less-than-optimal conditions, in light of predicted frequent and prolonged drought periods due to global climate change.
Collapse
Affiliation(s)
- Yonatan Wexler
- Faculty of Life Sciences, School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Julian I Schroeder
- Cell and Developmental Biology Department, School of Biological Sciences, University of California San Diego, La Jolla, California, 92093-0116, USA
| | - Doron Shkolnik
- Faculty of Agriculture, Food and Environment, Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| |
Collapse
|
15
|
Latif A, Yang CG, Zhang LX, Yang XY, Liu XY, Ai LF, Noman A, Pu CX, Sun Y. The Receptor Kinases DRUS1 and DRUS2 Behave Distinctly in Osmotic Stress Tolerance by Modulating the Root System Architecture via Auxin Signaling. PLANTS (BASEL, SWITZERLAND) 2024; 13:860. [PMID: 38592851 PMCID: PMC10974500 DOI: 10.3390/plants13060860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2024]
Abstract
Receptor kinases DRUS1 (Dwarf and Runtish Spikelet1) and DRUS2 are orthologues of the renowned Arabidopsis thaliana gene FERONIA, which play redundant roles in rice growth and development. Whether the two duplicated genes perform distinct functions in response to environmental stress is largely unknown. Here, we found that osmotic stress (OS) and ABA increased DRUS1 expression while decreasing DRUS2. When subjected to osmotic stress, the increased DRUS1 in drus2 mutants suppresses the OsIAA repressors, resulting in a robust root system with an increased number of adventitious and lateral roots as well as elongated primary, adventitious, and lateral roots, conferring OS tolerance. In contrast, the decreased DRUS2 in drus1-1 mutants are not sufficient to suppress OsIAA repressors, leading to a feeble root system with fewer adventitious and lateral roots and hindering seminal root growth, rendering OS intolerance. All these findings offer valuable insights into the biological significance of the duplication of two homologous genes in rice, wherein, if one is impaired, the other one is able to continue auxin-signaling-mediated root growth and development to favor resilience to environmental stress, such as water shortage.
Collapse
Affiliation(s)
- Ammara Latif
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (A.L.)
- Department of Botany, Government College University, Faisalabad 38000, Pakistan
| | - Chen-Guang Yang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (A.L.)
| | - Lan-Xin Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (A.L.)
| | - Xin-Yu Yang
- Technology Center of Shijiazhuang Customs, Shijiazhuang 050051, China
| | - Xin-Ye Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (A.L.)
| | - Lian-Feng Ai
- Technology Center of Shijiazhuang Customs, Shijiazhuang 050051, China
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad 38000, Pakistan
| | - Cui-Xia Pu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (A.L.)
| | - Ying Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (A.L.)
| |
Collapse
|
16
|
Chai LC, Alderson PG, Chin CF. Exogenous Cytokinin Induces Callus and Protocorm-Like-Bodies Formation in In Vitro Root Tips of Vanilla planifolia Andrews. Trop Life Sci Res 2024; 35:235-258. [PMID: 39262862 PMCID: PMC11383634 DOI: 10.21315/tlsr2024.35.1.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/01/2023] [Indexed: 09/13/2024] Open
Abstract
Vanilla is a popular flavouring essence derived from the pods of vanilla orchid plants. Due to the high demand for vanilla flavour, high yielding vanilla plantlets are necessary for establishing vanilla plantations. Clonal micropropagation is a viable technique for the mass production of high yielding vanilla plantlets. This study reports an efficient regeneration protocol by using cytokinin as the sole plant growth regulator to regenerate plantlets from the root tips of a commercial vanilla orchid species, Vanilla planifolia. Most studies to date have reported using seeds and nodes as starting explants for in vitro micropropagation of vanilla orchids. So far, regeneration from roots has not been very successful. Previous studies favoured the use of auxins only or high auxin to cytokinin ratios to induce callus, and sole cytokinins were used for direct shoot regeneration. However, it was sporadically observed in plantlets regeneration of V. planifolia that multiple shoots were regenerated from the tips of intact aerial roots submerged in media. This study therefore investigated the regeneration of excised vanilla root tips through the application of most commonly used auxins (1-naphthaleneacetic acid and 2,4-dichlorophenoxyacetic acid) and cytokinins (6-benzylaminopurine and thidiazuron). High auxin presence is known to promote callusing in in vitro plants. However, in this study, auxin treatment inhibits callusing in root tips. While cytokinin treatments, even at low levels, has promoted high rate of callusing. These callus cells regenerate into protocorm-like-body (PLB) shoots when cytokinin levels are increased to 0.5 mg/mL 6-benzylaminopurine (BAP) under light conditions. The findings of the study have the potential of providing large quantity of high yielding vanilla plantlets through clonal micropropagation.
Collapse
Affiliation(s)
- Li Chin Chai
- School of Biosciences, Faculty of Science, The University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, Malaysia
| | - Peter G Alderson
- School of Biosciences, The University of Nottingham Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Chiew Foan Chin
- School of Biosciences, Faculty of Science, The University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, Malaysia
| |
Collapse
|
17
|
Zhang Z, Xu M, Fan Y, Zhang L, Wang H. Using microalgae to reduce the use of conventional fertilizers in hydroponics and soil-based cultivation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169424. [PMID: 38128652 DOI: 10.1016/j.scitotenv.2023.169424] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
The intensive use of agrochemicals has led to nutrient loss, greenhouse gas emissions, and resource depletion, thus the development of sustainable agricultural solutions is required. Microalgal biomass has the potential to provide nutrients such as nitrogen, phosphorus, and potassium, along with various plant growth promoters, to enhance crop productivity and impart disease resistance. This study provides a comprehensive assessment of the potential applications of microalgal extracts and biomass in the contexts of seed germination, hydroponic systems, and soil-based crop cultivation. The results revealed that the extracts from Chlorella sp. and Anabaena sp. have no significant impact on the germination of wheat seeds. High concentrations of Chlorella sp. and Anabaena sp. cell extracts in hydroponics enhanced the length of cucumber seedling stems by 81.7 % and 58.3 %, respectively. Additionally, the use of microalgal cell extracts hindered root elongation while stimulating the growth of lateral and fibrous roots. Furthermore, the study compared the performance of 5 different fertilizers: 1) inorganic fertilizer (IF), 2) organic fertilizer (OF), 3) microalgae-based biofertilizer (MF), 4) inorganic fertilizer + microalgae-based biofertilizer (IM), 5) organic fertilizer + microalgae-based biofertilizer (OM). The findings indicate that the plant growth and soil physicochemical properties in the groups supplied with different fertilizers are comparable and significantly higher than those in the control group. The levels of protein, chlorophyll A, and chlorophyll B in the MF group increased significantly by 40 %, 29.2 %, and 33.5 %, respectively, compared to the control group. However, it remained notably lower compared to groups supplied with inorganic and organic fertilizers (p < 0.05). Combining microalgae with organic fertilizer can simultaneously enhance the yield and quality of Chinese cabbage, representing a promising source of crop nutrition. In conclusion, this study suggests that it is promising to use microalgae to reduce the use of conventional fertilizers in hydroponics and soil-based cultivation.
Collapse
Affiliation(s)
- Zhongyi Zhang
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences (CAS), Qingdao 266101, China
| | - Mei Xu
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences (CAS), Qingdao 266101, China
| | - Yong Fan
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences (CAS), Qingdao 266101, China
| | - Lunyu Zhang
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences (CAS), Qingdao 266101, China
| | - Hui Wang
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences (CAS), Qingdao 266101, China; Shandong Energy Research Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China.
| |
Collapse
|
18
|
Kościelniak P, Glazińska P, Kęsy J, Mucha J, Zadworny M. Identification of genetics and hormonal factors involved in Quercus robur root growth regulation in different cultivation system. BMC PLANT BIOLOGY 2024; 24:123. [PMID: 38373900 PMCID: PMC10877882 DOI: 10.1186/s12870-024-04797-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/05/2024] [Indexed: 02/21/2024]
Abstract
Understanding the molecular processes and hormonal signals that govern root growth is of paramount importance for effective forest management. While Arabidopsis studies have shed light on the role of the primary root in root system development, the structure of root systems in trees is considerably more intricate, posing challenges to comprehend taproot growth in acorn-sown and nursery-cultivated seedlings. In this study, we investigated Quercus robur seedlings using rhizotrons, containers, and transplanted containers to rhizotrons, aiming to unravel the impact of forest nursery practices on processes governing taproot growth and root system development. Root samples were subjected to RNA-seq analysis to identify gene expression patterns and perform differential gene expression and phytohormone analysis. Among studied cultivation systems, differentially expressed genes (DEGs) exhibited significant diversity, where the number of co-occurring DEGs among cultivation systems was significantly smaller than the number of unique DEGs in different cultivation systems. Moreover, the results imply that container cultivation triggers the activation of several genes associated with linolenic acid and peptide synthesis in root growth. Upon transplantation from containers to rhizotrons, rapid enhancement in gene expression occurs, followed by gradual reduction as root growth progresses, ultimately reaching a similar expression pattern as observed in the taproot of rhizotron-cultivated seedlings. Phytohormone analysis revealed that taproot growth patterns under different cultivation systems are regulated by the interplay between auxin and cytokinin concentrations. Moreover, the diversification of hormone levels within the root zone and cultivation systems allows for taproot growth inhibition and prompt recovery in transplanted seedlings. Our study highlights the crucial role of hormone interactions during the early stages of taproot elongation, influencing root system formation across.
Collapse
Affiliation(s)
- Paulina Kościelniak
- Department of Ecology, Institute of Dendrology, Polish Academy of Sciences, 62-035, Kórnik, Poland.
| | - Paulina Glazińska
- Department of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100, Toruń, Poland
| | - Jacek Kęsy
- Department of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100, Toruń, Poland
| | - Joanna Mucha
- Department of Ecology, Institute of Dendrology, Polish Academy of Sciences, 62-035, Kórnik, Poland
- Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 71a, 60-625, Poznań, Poland
| | - Marcin Zadworny
- Department of Ecology, Institute of Dendrology, Polish Academy of Sciences, 62-035, Kórnik, Poland
- Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 71a, 60-625, Poznań, Poland
| |
Collapse
|
19
|
Kreisz P, Hellens AM, Fröschel C, Krischke M, Maag D, Feil R, Wildenhain T, Draken J, Braune G, Erdelitsch L, Cecchino L, Wagner TC, Ache P, Mueller MJ, Becker D, Lunn JE, Hanson J, Beveridge CA, Fichtner F, Barbier FF, Weiste C. S 1 basic leucine zipper transcription factors shape plant architecture by controlling C/N partitioning to apical and lateral organs. Proc Natl Acad Sci U S A 2024; 121:e2313343121. [PMID: 38315839 PMCID: PMC10873608 DOI: 10.1073/pnas.2313343121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/21/2023] [Indexed: 02/07/2024] Open
Abstract
Plants tightly control growth of their lateral organs, which led to the concept of apical dominance. However, outgrowth of the dormant lateral primordia is sensitive to the plant's nutritional status, resulting in an immense plasticity in plant architecture. While the impact of hormonal regulation on apical dominance is well characterized, the prime importance of sugar signaling to unleash lateral organ formation has just recently emerged. Here, we aimed to identify transcriptional regulators, which control the trade-off between growth of apical versus lateral organs. Making use of locally inducible gain-of-function as well as single and higher-order loss-of-function approaches of the sugar-responsive S1-basic-leucine-zipper (S1-bZIP) transcription factors, we disclosed their largely redundant function in establishing apical growth dominance. Consistently, comprehensive phenotypical and analytical studies of S1-bZIP mutants show a clear shift of sugar and organic nitrogen (N) allocation from apical to lateral organs, coinciding with strong lateral organ outgrowth. Tissue-specific transcriptomics reveal specific clade III SWEET sugar transporters, crucial for long-distance sugar transport to apical sinks and the glutaminase GLUTAMINE AMIDO-TRANSFERASE 1_2.1, involved in N homeostasis, as direct S1-bZIP targets, linking the architectural and metabolic mutant phenotypes to downstream gene regulation. Based on these results, we propose that S1-bZIPs control carbohydrate (C) partitioning from source leaves to apical organs and tune systemic N supply to restrict lateral organ formation by C/N depletion. Knowledge of the underlying mechanisms controlling plant C/N partitioning is of pivotal importance for breeding strategies to generate plants with desired architectural and nutritional characteristics.
Collapse
Affiliation(s)
- Philipp Kreisz
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| | - Alicia M. Hellens
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, School of Biological Sciences, The University of Queensland, Brisbane, QLD4072, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, QLD4072, Australia
| | - Christian Fröschel
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| | - Markus Krischke
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| | - Daniel Maag
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| | - Regina Feil
- Group System Regulation, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm14476, Germany
| | - Theresa Wildenhain
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| | - Jan Draken
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| | - Gabriel Braune
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| | - Leon Erdelitsch
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| | - Laura Cecchino
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| | - Tobias C. Wagner
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| | - Peter Ache
- Department of Molecular Plant Physiology and Biophysics, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| | - Martin J. Mueller
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| | - Dirk Becker
- Department of Molecular Plant Physiology and Biophysics, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| | - John E. Lunn
- Group System Regulation, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm14476, Germany
| | - Johannes Hanson
- Department of Plant Physiology, Umeå Plant Science Center, Umeå University, UmeåSE-901 87, Sweden
| | - Christine A. Beveridge
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, School of Biological Sciences, The University of Queensland, Brisbane, QLD4072, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, QLD4072, Australia
| | - Franziska Fichtner
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, School of Biological Sciences, The University of Queensland, Brisbane, QLD4072, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, QLD4072, Australia
- Department of Plant Biochemistry, Institute for Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf40225, Germany
| | - Francois F. Barbier
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, School of Biological Sciences, The University of Queensland, Brisbane, QLD4072, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, QLD4072, Australia
- Institute for Plant Sciences of Montpellier, University of Montpellier, CNRS, INRAe, Institut Agro, Montpellier34060, France
| | - Christoph Weiste
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| |
Collapse
|
20
|
Rathor P, Upadhyay P, Ullah A, Gorim LY, Thilakarathna MS. Humic acid improves wheat growth by modulating auxin and cytokinin biosynthesis pathways. AOB PLANTS 2024; 16:plae018. [PMID: 38601216 PMCID: PMC11005776 DOI: 10.1093/aobpla/plae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/22/2024] [Indexed: 04/12/2024]
Abstract
Humic acids have been widely used for centuries to enhance plant growth and productivity. The beneficial effects of humic acids have been attributed to different functional groups and phytohormone-like compounds enclosed in macrostructure. However, the mechanisms underlying the plant growth-promoting effects of humic acids are only partially understood. We hypothesize that the bio-stimulatory effect of humic acids is mainly due to the modulation of innate pathways of auxin and cytokinin biosynthesis in treated plants. A physiological investigation along with molecular characterization was carried out to understand the mechanism of bio-stimulatory effects of humic acid. A gene expression analysis was performed for the genes involved in auxin and cytokinin biosynthesis pathways in wheat seedlings. Furthermore, Arabidopsis thaliana transgenic lines generated by fusing the auxin-responsive DR5 and cytokinin-responsive ARR5 promoter to ß-glucuronidase (GUS) reporter were used to study the GUS expression analysis in humic acid treated seedlings. This study demonstrates that humic acid treatment improved the shoot and root growth of wheat seedlings. The expression of several genes involved in auxin (Tryptophan Aminotransferase of Arabidopsis and Gretchen Hagen 3.2) and cytokinin (Lonely Guy3) biosynthesis pathways were up-regulated in humic acid-treated seedlings compared to the control. Furthermore, GUS expression analysis showed that bioactive compounds of humic acid stimulate endogenous auxin and cytokinin-like activities. This study is the first report in which using ARR5:GUS lines we demonstrate the biostimulants activity of humic acid.
Collapse
Affiliation(s)
- Pramod Rathor
- Department of Agricultural, Food and Nutritional Science, Agriculture/Forestry Centre, University of Alberta, 9011-116St, NW, Edmonton, AB T6G 2P5, Canada
| | - Punita Upadhyay
- Department of Agricultural, Food and Nutritional Science, Agriculture/Forestry Centre, University of Alberta, 9011-116St, NW, Edmonton, AB T6G 2P5, Canada
| | - Aman Ullah
- Department of Agricultural, Food and Nutritional Science, Agriculture/Forestry Centre, University of Alberta, 9011-116St, NW, Edmonton, AB T6G 2P5, Canada
| | - Linda Yuya Gorim
- Department of Agricultural, Food and Nutritional Science, Agriculture/Forestry Centre, University of Alberta, 9011-116St, NW, Edmonton, AB T6G 2P5, Canada
| | - Malinda S Thilakarathna
- Department of Agricultural, Food and Nutritional Science, Agriculture/Forestry Centre, University of Alberta, 9011-116St, NW, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
21
|
Luo H, Li T, Guan Y, Zhang Z, Zhang Z, Zhang Z, Li H. FvemiR160-FveARF18A-FveAP1/FveFUL module regulates flowering time in woodland strawberry. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1130-1147. [PMID: 37967025 DOI: 10.1111/tpj.16544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/31/2023] [Indexed: 11/17/2023]
Abstract
Flowering is an indicator of plant transformation from vegetative to reproductive growth. miR160 has been shown to have a significant effect on the growth and development of fruits, leaves, and roots of plants or their stress response to environment, but the participation of miR160 in regulating flowering time in plants is unclear. In this study, we found that two FvemiR160s (FvemiR160a/FvemiR160b) mature sequences in strawberry (Fragaria vesca) were consistent. It was displayed that the miR160 mature sequence is highly conserved in various species, and the miR160 mature sequence formed by the 5' arm of the MIR160 precursor was more conserved. Three FveARFs in woodland strawberry were negatively regulated by FvemiR160a, among which FveARF18A was the most significant. Phylogenetic analysis indicated that FvemiR160 is closely related to apple (Malus domestica), grape (Vitis vinifera), and Arabidopsis thaliana, while FveARF18A is closely related to RcARF18. Subsequently, we demonstrated that FvemiR160a can target cutting FveARF18A to negatively regulate its expression by RLM-5' RACE, cleavage site mutation, and GFP fluorescence assay. Moreover, we observed that FveMIR160a overexpressed plants have advanced flowering, while mFveARF18A overexpressed plants have delayed flowering. We also verified that FveARF18A negatively regulates the expression of FveAP1 and FveFUL by binding their promoters by yeast one-hybrid, LUC, and GUS assay, and FveAP1 and FveFUL transgenic Arabidopsis showed early flowering phenotype. In addition, the expression level of FvemiR160a was decreased obviously while that of FveARF18A was increased obviously by MeJA, GA and IAA. In conclusion, our study reveals the important role of the FvemiR160-FveARF18A-FveAP1/FveFUL module in the flowering process of woodland strawberry and provides a new pathway for studying flowering.
Collapse
Affiliation(s)
- He Luo
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Tianyu Li
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yuhan Guan
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhuo Zhang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zihui Zhang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhihong Zhang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - He Li
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| |
Collapse
|
22
|
Shi Y, Ding G, Shen H, Li Z, Li H, Xiao G. Genome-wide identification and expression profiles analysis of the authentic response regulator gene family in licorice. FRONTIERS IN PLANT SCIENCE 2024; 14:1309802. [PMID: 38273943 PMCID: PMC10809405 DOI: 10.3389/fpls.2023.1309802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024]
Abstract
Introduction As one of the traditional Chinese medicinal herbs that were most generally used, licorice attracts lots of interest due to its therapeutic potential. Authentic response regulators (ARRs) are key factors in cytokinin signal transduction and crucial for plant growth and stress response processes. Nevertheless, the characteristics and functions of the licorice ARR genes are still unknown. Results In present study, a systematic genome-wide identification and expression analysis of the licorice ARR gene family were conducted and 51 ARR members were identified. Collinearity analysis revealed the significant roles of segmental duplications in the expansion of licorice ARR genes. The cis-acting elements associated with development, stress and phytohormone responses were identified, implying their pivotal roles in diverse regulatory processes. RNA-seq and qRT-PCR results suggested that A-type, but not B-type ARRs were induced by zeatin. Additionally, ARRs participated in diverse abiotic stresses and phytohormones responses. Yeast one-hybrid assay demonstrated that GuARR1, GuARR2, GuARR11, GuARR12, GuARR10-1, GuARR10-2 and GuARR14 were able to bind to the promoter of GuARR8-3, and GuARR1, GuARR12 bound to the GuARR8-1 promoter. GuARR1, GuARR2, GuARR11 and GuARR10-2 bound to the GuARR6-2 promoter as well as GuARR12 and GuARR10-2 bound to the GuARR6-1 promoter. Discussion Collectively, these findings provide a basis for future ARR genes function investigations, shedding light on the potential medicinal properties and agricultural applications of licorice.
Collapse
Affiliation(s)
- Yanping Shi
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi, China
| | - Guohua Ding
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Haitao Shen
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi, China
| | - Zihan Li
- Geosystems Research Institute, Mississippi State University, Starkville, MS, United States
| | - Hongbin Li
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi, China
| | - Guanghui Xiao
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
23
|
Li Y, Chen Y, Fu Y, Shao J, Liu Y, Xuan W, Xu G, Zhang R. Signal communication during microbial modulation of root system architecture. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:526-537. [PMID: 37419655 DOI: 10.1093/jxb/erad263] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/06/2023] [Indexed: 07/09/2023]
Abstract
Every living organism on Earth depends on its interactions with other organisms. In the rhizosphere, plants and microorganisms constantly exchange signals and influence each other's behavior. Recent studies have shown that many beneficial rhizosphere microbes can produce specific signaling molecules that affect plant root architecture and therefore could have substantial effects on above-ground growth. This review examines these chemical signals and summarizes their mechanisms of action, with the aim of enhancing our understanding of plant-microbe interactions and providing references for the comprehensive development and utilization of these active components in agricultural production. In addition, we highlight future research directions and challenges, such as searching for microbial signals to induce primary root development.
Collapse
Affiliation(s)
- Yucong Li
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
- College of Environment and Ecology, Jiangsu Open University, Nanjing 210017, China
| | - Yu Chen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yansong Fu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiahui Shao
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunpeng Liu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Xuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruifu Zhang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
24
|
Feng M, Zhang A, Nguyen V, Bisht A, Almqvist C, De Veylder L, Carlsbecker A, Melnyk CW. A conserved graft formation process in Norway spruce and Arabidopsis identifies the PAT gene family as central regulators of wound healing. NATURE PLANTS 2024; 10:53-65. [PMID: 38168607 PMCID: PMC10808061 DOI: 10.1038/s41477-023-01568-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 10/23/2023] [Indexed: 01/05/2024]
Abstract
The widespread use of plant grafting enables eudicots and gymnosperms to join with closely related species and grow as one. Gymnosperms have dominated forests for over 200 million years, and despite their economic and ecological relevance, we know little about how they graft. Here we developed a micrografting method in conifers using young tissues that allowed efficient grafting with closely related species and between distantly related genera. Conifer graft junctions rapidly connected vasculature and differentially expressed thousands of genes including auxin and cell-wall-related genes. By comparing these genes to those induced during Arabidopsis thaliana graft formation, we found a common activation of cambium, cell division, phloem and xylem-related genes. A gene regulatory network analysis in Norway spruce (Picea abies) predicted that PHYTOCHROME A SIGNAL TRANSDUCTION 1 (PAT1) acted as a core regulator of graft healing. This gene was strongly up-regulated during both spruce and Arabidopsis grafting, and Arabidopsis mutants lacking PAT genes failed to attach tissues or successfully graft. Complementing Arabidopsis PAT mutants with the spruce PAT1 homolog rescued tissue attachment and enhanced callus formation. Together, our data show an ability for young tissues to graft with distantly related species and identifies the PAT gene family as conserved regulators of graft healing and tissue regeneration.
Collapse
Affiliation(s)
- Ming Feng
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ai Zhang
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Van Nguyen
- Department of Organismal Biology, Physiological Botany, Evolutionary Biology Centre and Linnean Centre for Plant Biology, Uppsala University, Uppsala, Sweden
| | - Anchal Bisht
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Curt Almqvist
- Skogforsk (The Forestry Research Institute of Sweden), Uppsala Science Park, Uppsala, Sweden
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Annelie Carlsbecker
- Department of Organismal Biology, Physiological Botany, Evolutionary Biology Centre and Linnean Centre for Plant Biology, Uppsala University, Uppsala, Sweden
| | - Charles W Melnyk
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
25
|
Xu L, Jia W, Tao X, Ye F, Zhang Y, Ding ZJ, Zheng SJ, Qiao S, Su N, Zhang Y, Wu S, Guo J. Structures and mechanisms of the Arabidopsis cytokinin transporter AZG1. NATURE PLANTS 2024; 10:180-191. [PMID: 38172575 DOI: 10.1038/s41477-023-01590-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/10/2023] [Indexed: 01/05/2024]
Abstract
Cytokinins are essential for plant growth and development, and their tissue distributions are regulated by transmembrane transport. Recent studies have revealed that members of the 'Aza-Guanine Resistant' (AZG) protein family from Arabidopsis thaliana can mediate cytokinin uptake in roots. Here we present 2.7 to 3.3 Å cryo-electron microscopy structures of Arabidopsis AZG1 in the apo state and in complex with its substrates trans-zeatin (tZ), 6-benzyleaminopurine (6-BAP) or kinetin. AZG1 forms a homodimer and each subunit shares a similar topology and domain arrangement with the proteins of the nucleobase/ascorbate transporter (NAT) family. These structures, along with functional analyses, reveal the molecular basis for cytokinin recognition. Comparison of the AZG1 structures determined in inward-facing conformations and predicted by AlphaFold2 in the occluded conformation allowed us to propose that AZG1 may carry cytokinins across the membrane through an elevator mechanism.
Collapse
Affiliation(s)
- Lingyi Xu
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Nanhu Brain-computer Interface Institute, Hangzhou, China.
| | - Wei Jia
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
- Calibra Lab at DIAN Diagnostics, Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Provinces, Hangzhou, Zhejiang, China
| | - Xin Tao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Fan Ye
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Nanhu Brain-computer Interface Institute, Hangzhou, China
| | - Yan Zhang
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Nanhu Brain-computer Interface Institute, Hangzhou, China
| | - Zhong Jie Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shao Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shuai Qiao
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Nannan Su
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Shan Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, China.
| | - Jiangtao Guo
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Nanhu Brain-computer Interface Institute, Hangzhou, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Department of Cardiology, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China.
| |
Collapse
|
26
|
Gamit HA, Amaresan N. Methylobacterium spp. mitigation of UV stress in mung bean (Vigna radiata L.). Photochem Photobiol Sci 2023; 22:2839-2850. [PMID: 37838625 DOI: 10.1007/s43630-023-00490-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/29/2023] [Indexed: 10/16/2023]
Abstract
Methylotrophs are a diverse group of bacteria that abundantly colonize the phyllosphere and have great potential to withstand UV irradiation because of their pigmented nature and ability to promote plant growth through various mechanisms. The present study investigated the effects of UVB radiation on plant growth-promoting (PGP) properties of methylotrophic bacteria and the growth of Vigna radiata L. A total of 55 methylotrophic bacteria were isolated from desert plants, and 15 methylotrophs were resistant to UVB radiation for 4 h. All UVB-resistant methylotrophs possess a methyldehydrogenase gene. Identification based on 16S rRNA gene sequencing revealed that all 15 UVB-resistant methylotrophs belonged to the genera Methylorubrum (07), Methylobacterium (07), and Rhodococcus (01). Screening of methylotrophs for PGP activity in the presence and absence of UVB radiation revealed that all isolates showed ACC deaminase activity and growth on a nitrogen-free medium. Furthermore, the production of IAA-like substances ranged from 8.62 to 85.76 µg/mL, siderophore production increased from 3.47 to 65.75% compared to the control. Seed germination assay with V. radiata L. (mung bean) exposed to UVB radiation revealed that methylotrophs improved seed germination, root length, and shoot length compared to the control. The present findings revealed that the isolates SD3, SD2, KD1, KD5, UK1, and UK3 reduced the deleterious effects of UVB radiation on mung bean plants and can be used to protect seedlings from UVB radiation for sustainable agriculture.
Collapse
Affiliation(s)
- Harshida A Gamit
- C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Maliba Campus, Bardoli, Surat, 394 350, Gujarat, India
| | - Natarajan Amaresan
- C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Maliba Campus, Bardoli, Surat, 394 350, Gujarat, India.
| |
Collapse
|
27
|
Brescia F, Sillo F, Balestrini R, Sbrana C, Zampieri E. Characterization of endophytic bacteria isolated from root nodules of lentil in intercropping with durum wheat. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 5:100205. [PMID: 38077268 PMCID: PMC10697992 DOI: 10.1016/j.crmicr.2023.100205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025] Open
Abstract
Legumes improve soil fertility by interacting symbiotically with nitrogen-fixing rhizobia allocated in root nodules. Some bacterial endophytes can coexist with rhizobia in nodules and might help legumes by enhancing stress tolerance, producing hormones stimulating plant growth, and increasing plant nutrient intake. Twenty-six bacterial endophytes from Lens culinaris root nodules cultivated in intercropping with Triticum durum were identified and characterized molecularly and biochemically. Potential plant growth-promoting strains have been selected according to the indole acetic acid and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase production, and for their inorganic phosphate solubilization ability. The presence of genes associated to ACC deaminase and nitrogenase was evaluated. Six selected strains were grown with varying NaCl and polyethylene glycol concentrations to test their salt and osmotic stress tolerance. Priestia megaterium 11NL3 and Priestia aryabhattai 19NL1, resulted to be tolerant to salinity and osmotic stress, were tested on four genotypes of T. durum seeds in different stress conditions. The effect of strain inoculation on seed germination, vigor, and root-to-shoot ratio varied depending on the type of stress and on the durum wheat genotypes. For future research, it will be necessary to test the selected bacterial strains at different plant phenological stages and to clarify the mechanisms involved in the different outcomes of plant-microbe interactions.
Collapse
Affiliation(s)
| | - Fabiano Sillo
- CNR-IPSP, Strada delle Cacce 73, Torino 10135, Italy
| | | | | | | |
Collapse
|
28
|
Yu B, Rossi S, Su H, Zhao P, Zhang S, Hu B, Li X, Chen L, Liang H, Huang JG. Mismatch between primary and secondary growth and its consequences on wood formation in Qinghai spruce. TREE PHYSIOLOGY 2023; 43:1886-1902. [PMID: 37584475 DOI: 10.1093/treephys/tpad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/18/2023] [Accepted: 08/10/2023] [Indexed: 08/17/2023]
Abstract
The connections between the primary and secondary growth of trees allows better understanding of the dynamics of carbon sequestration in forest ecosystems. The relationship between primary and secondary growth of trees could change due to the diverging responses of meristems to climate warming. In this study, the bud phenology and radial growth dynamics of Qinghai spruce (Picea crassifolia) in arid and semi-arid areas of China in 2019 and 2020 were weekly monitored to analyze their response to different weather conditions and their links with carbon sink. Xylem anatomical traits (i.e. lumen radial diameter and cell wall thickness) were quantified along cell radial files after the end of xylem lignification to calculate the early-to-latewood transition date. Winter and early spring (January-March) were warmer in 2020 with a colder April compared with 2019. Precipitation in April-June was lower in 2020 than in 2019. In 2019, bud phenology occurred earlier, while the onset of xylem formation and the early-to-latewood transition date were delayed. The duration from the beginning of split bud and exposed shoot to the early-to-latewood transition date was positively correlated with the radial width of earlywood (accounting for ~80% of xylem width) and total xylem width. The longer duration of xylem cell division did not increase xylem cell production and radial width. Moreover, the duration from bud burst to the early-to-latewood transition date in 2020 was negatively linked with early phloem cell production as compared with 2019. Our findings suggest that warm conditions in winter and early spring promote the xylogenesis of Qinghai spruce, but might delay bud burst. However, the xylem width increments largely depend on the duration from bud burst to the start of latewood cell division rather than on the earlier xylogenesis and longer duration of xylem cell differentiation induced by warm conditions.
Collapse
Affiliation(s)
- Biyun Yu
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning 530001, China
- Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China
| | - Sergio Rossi
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Québec G7H2B1, Canada
| | - Hongxin Su
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning 530001, China
- Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China
| | - Ping Zhao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Shaokang Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Baoqing Hu
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning 530001, China
- Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China
| | - Xuebin Li
- Key Laboratory of Restoration and Reconstruction of Degraded Ecosystem in Northwest China, Ningxia University, Ministry of Education, Yinchuan 750021, China
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan 750021, China
- College of Ecology and Environment, Ningxia University, Yinchuan 750021, China
| | - Lin Chen
- Key Laboratory of Restoration and Reconstruction of Degraded Ecosystem in Northwest China, Ningxia University, Ministry of Education, Yinchuan 750021, China
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan 750021, China
- College of Ecology and Environment, Ningxia University, Yinchuan 750021, China
| | - Hanxue Liang
- Key Laboratory of Ecological Restoration of Loess Plateau, Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Jian-Guo Huang
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
29
|
Khuna S, Kumla J, Srinuanpan S, Lumyong S, Suwannarach N. Multifarious Characterization and Efficacy of Three Phosphate-Solubilizing Aspergillus Species as Biostimulants in Improving Root Induction of Cassava and Sugarcane Stem Cuttings. PLANTS (BASEL, SWITZERLAND) 2023; 12:3630. [PMID: 37896093 PMCID: PMC10610185 DOI: 10.3390/plants12203630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
Several soil fungi significantly contribute to the enhancement of plant development by improving nutrient uptake and producing growth-promoting metabolites. In the present study, three strains of phosphate-solubilizing fungi, namely, Aspergillus chiangmaiensis SDBR-CMUI4, A. pseudopiperis SDBR-CMUI1, and A. pseudotubingensis SDBR-CMUO2, were examined for their plant-growth-promoting capabilities. The findings demonstrated that all fungi showed positive siderophore production, but only A. pseudopiperis can produce indole-3-acetic acid. All fungi were able to solubilize insoluble phosphate minerals [Ca3(PO4)2 and FePO4] by producing phosphatase enzymes and organic acids (oxalic, tartaric, and succinic acids). These three fungal species were grown at a water activity ranging from 0.837 to 0.998, pH values ranging from 4 to 9, temperatures between 4 and 40 °C, and 16-17% NaCl in order to evaluate their drought, pH, temperature, and salt tolerances, respectively. Moreover, the results indicated that A. pseudopiperis and A. pseudotubingensis were able to tolerate commercial insecticides (methomyl and propargite) at the recommended dosages for field application. The viability of each fungal strain in the inoculum was higher than 50% at 4 and 20 °C after 3 months of storage. Subsequently, all fungi were characterized as plant-growth-promoting strains by improving the root inductions of cassava (Manihot esculenta Crantz) and sugarcane (Saccharum officinarum L.) stem cuttings in greenhouse experiments. No symptoms of plant disease were observed with any of the treatments involving fungal inoculation and control. The cassava and sugarcane stem cuttings inoculated with fungal strains and supplemented with Ca3(PO4)2 exhibited significantly increased root lengths, shoot and root dry biomasses, chlorophyll concentrations, and cellular inorganic phosphate contents. Therefore, the application of these phosphate-solubilizing fungi is regarded as a new frontier in the induction of roots and the promotion of growth in plants.
Collapse
Affiliation(s)
- Surapong Khuna
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (J.K.); (S.S.); (S.L.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jaturong Kumla
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (J.K.); (S.S.); (S.L.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sirasit Srinuanpan
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (J.K.); (S.S.); (S.L.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saisamorn Lumyong
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (J.K.); (S.S.); (S.L.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| | - Nakarin Suwannarach
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (J.K.); (S.S.); (S.L.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
30
|
In search of the phytohormone functions in Fungi:Cytokinins. FUNGAL BIOL REV 2023. [DOI: 10.1016/j.fbr.2023.100309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
31
|
Chieb M, Gachomo EW. The role of plant growth promoting rhizobacteria in plant drought stress responses. BMC PLANT BIOLOGY 2023; 23:407. [PMID: 37626328 PMCID: PMC10464363 DOI: 10.1186/s12870-023-04403-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
Climate change has exacerbated the effects of abiotic stresses on plant growth and productivity. Drought is one of the most important abiotic stress factors that interfere with plant growth and development. Plant selection and breeding as well as genetic engineering methods used to improve crop drought tolerance are expensive and time consuming. Plants use a myriad of adaptative mechanisms to cope with the adverse effects of drought stress including the association with beneficial microorganisms such as plant growth promoting rhizobacteria (PGPR). Inoculation of plant roots with different PGPR species has been shown to promote drought tolerance through a variety of interconnected physiological, biochemical, molecular, nutritional, metabolic, and cellular processes, which include enhanced plant growth, root elongation, phytohormone production or inhibition, and production of volatile organic compounds. Therefore, plant colonization by PGPR is an eco-friendly agricultural method to improve plant growth and productivity. Notably, the processes regulated and enhanced by PGPR can promote plant growth as well as enhance drought tolerance. This review addresses the current knowledge on how drought stress affects plant growth and development and describes how PGPR can trigger plant drought stress responses at the physiological, morphological, and molecular levels.
Collapse
Affiliation(s)
- Maha Chieb
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, 92507, USA
| | - Emma W Gachomo
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, 92507, USA.
| |
Collapse
|
32
|
Šípošová K, Labancová E, Hačkuličová D, Kollárová K, Vivodová Z. The changes in the maize root cell walls after exogenous application of auxin in the presence of cadmium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:87102-87117. [PMID: 37418187 PMCID: PMC10406670 DOI: 10.1007/s11356-023-28029-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/28/2023] [Indexed: 07/08/2023]
Abstract
Cadmium (Cd) is a transition metal and hazardous pollutant that has many toxic effects on plants. This heavy metal poses a health risk for both humans and animals. The cell wall is the first structure of a plant cell that is in contact with Cd; therefore, it can change its composition and/or ratio of wall components accordingly. This paper investigates the changes in the anatomy and cell wall architecture of maize (Zea mays L.) roots grown for 10 days in the presence of auxin indole-3-butyric acid (IBA) and Cd. The application of IBA in the concentration 10-9 M delayed the development of apoplastic barriers, decreased the content of lignin in the cell wall, increased the content of Ca2+ and phenols, and influenced the composition of monosaccharides in polysaccharide fractions when compared to the Cd treatment. Application of IBA improved the Cd2+ fixation to the cell wall and increased the endogenous concentration of auxin depleted by Cd treatment. The proposed scheme from obtained results may explain the possible mechanisms of the exogenously applied IBA and its effects on the changes in the binding of Cd2+ within the cell wall, and on the stimulation of growth that resulted in the amelioration of Cd stress.
Collapse
Affiliation(s)
- Kristína Šípošová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Eva Labancová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Diana Hačkuličová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Karin Kollárová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Zuzana Vivodová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia.
| |
Collapse
|
33
|
Del Dottore E, Mazzolai B. Perspectives on Computation in Plants. ARTIFICIAL LIFE 2023; 29:336-350. [PMID: 36787453 DOI: 10.1162/artl_a_00396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Plants thrive in virtually all natural and human-adapted environments and are becoming popular models for developing robotics systems because of their strategies of morphological and behavioral adaptation. Such adaptation and high plasticity offer new approaches for designing, modeling, and controlling artificial systems acting in unstructured scenarios. At the same time, the development of artifacts based on their working principles reveals how plants promote innovative approaches for preservation and management plans and opens new applications for engineering-driven plant science. Environmentally mediated growth patterns (e.g., tropisms) are clear examples of adaptive behaviors displayed through morphological phenotyping. Plants also create networks with other plants through subterranean roots-fungi symbiosis and use these networks to exchange resources or warning signals. This article discusses the functional behaviors of plants and shows the close similarities with a perceptron-like model that could act as a behavior-based control model in plants. We begin by analyzing communication rules and growth behaviors of plants; we then show how we translated plant behaviors into algorithmic solutions for bioinspired robot controllers; and finally, we discuss how those solutions can be extended to embrace original approaches to networking and robotics control architectures.
Collapse
Affiliation(s)
| | - Barbara Mazzolai
- Bioinspired Soft Robotics Laboratory, Istituto Italiano di Tecnologia.
| |
Collapse
|
34
|
Ayangbenro AS, Adem MR, Babalola OO. Bambara Nut Root-Nodules Bacteria from a Semi-Arid Region of South Africa and Their Plant Growth-Promoting Traits. Int J Microbiol 2023; 2023:8218721. [PMID: 37426699 PMCID: PMC10328734 DOI: 10.1155/2023/8218721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/11/2023] Open
Abstract
Rhizobial nitrogen-fixing bacteria are the main inhabitants of the root nodules of legume plants. Studying the bacterial community of legume nodules is important in understanding plant growth and nutrient requirements. Culture-based technique was used to examine the bacterial community of these underground organs from Vigna subterranea L. Verdc (Bambara nut), an underutilized legume in Africa, for plant growth-promoting traits. In this study, Bambara nuts were planted to trap root-nodule bacteria, and the bacteria were morphologically, biochemically, and molecularly characterized. Five selected isolates were screened in vitro for their plant growth-promoting traits and exhibited differences in their phenotypic traits. The polymerase chain reaction (PCR) products were subjected to partial 16S rRNA gene sequencing for phylogenetic analysis. Based on 16S rRNA gene sequence, the isolates were identified as BA1 (Stenotrophomonas maltophilia), BA2 (Chryseobacterium sp.), BA3 (Pseudomonas alcaligenes), BA4 (Pseudomonas plecoglossicida), and BA5 (Pseudomonas hibiscicola). Results showed that four of the five isolates could produce IAA. The capability to solubilize phosphate in Pikovskaya's agar plates was positively shown by four isolates (BA2, BA3, BA4, and BA5). Three isolates could produce hydrogen cyanide while isolates BA1, BA3, BA4, and BA5 were found to have ammonia-production traits. The results suggest that these plant growth-promoting isolates can be used as inoculants for plant growth and productivity.
Collapse
Affiliation(s)
- Ayansina Segun Ayangbenro
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Mohomud Rashid Adem
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| |
Collapse
|
35
|
Giannelli G, Potestio S, Visioli G. The Contribution of PGPR in Salt Stress Tolerance in Crops: Unravelling the Molecular Mechanisms of Cross-Talk between Plant and Bacteria. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112197. [PMID: 37299176 DOI: 10.3390/plants12112197] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Soil salinity is a major abiotic stress in global agricultural productivity with an estimated 50% of arable land predicted to become salinized by 2050. Since most domesticated crops are glycophytes, they cannot be cultivated on salt soils. The use of beneficial microorganisms inhabiting the rhizosphere (PGPR) is a promising tool to alleviate salt stress in various crops and represents a strategy to increase agricultural productivity in salt soils. Increasing evidence underlines that PGPR affect plant physiological, biochemical, and molecular responses to salt stress. The mechanisms behind these phenomena include osmotic adjustment, modulation of the plant antioxidant system, ion homeostasis, modulation of the phytohormonal balance, increase in nutrient uptake, and the formation of biofilms. This review focuses on the recent literature regarding the molecular mechanisms that PGPR use to improve plant growth under salinity. In addition, very recent -OMICs approaches were reported, dissecting the role of PGPR in modulating plant genomes and epigenomes, opening up the possibility of combining the high genetic variations of plants with the action of PGPR for the selection of useful plant traits to cope with salt stress conditions.
Collapse
Affiliation(s)
- Gianluigi Giannelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Silvia Potestio
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Giovanna Visioli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| |
Collapse
|
36
|
Molla F, Kundu A, DasGupta M. Sucrose-induced auxin conjugate hydrolase restores symbiosis in a Medicago cytokinin perception mutant. PLANT PHYSIOLOGY 2023; 191:2447-2460. [PMID: 36722159 PMCID: PMC10069879 DOI: 10.1093/plphys/kiad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/27/2022] [Indexed: 06/18/2023]
Abstract
Rhizobia-legume interactions recruit cytokinin for the induction of nodule primordia in the cortex. Cytokinin signaling regulates auxin transport and biosynthesis, causing local auxin accumulation, which triggers cortical cell division. Since sugar signaling can trigger auxin responses, we explored whether sugar treatments could rescue symbiosis in the Medicago truncatula cytokinin response 1 (cre1) mutant. Herein, we demonstrate that sucrose and its nonmetabolizable isomer turanose can trigger auxin response and recover functional symbiosis in cre1, indicating sucrose signaling to be necessary for the restoration of symbiosis. In both M. truncatula A17 (wild type) and cre1, sucrose signaling significantly upregulated IAA-Ala Resistant 3 (IAR33), encoding an auxin conjugate hydrolase, in rhizobia-infected as well as in uninfected roots. Knockdown of IAR33 (IAR33-KD) significantly reduced nodulation in A17, highlighting the importance of deconjugation-mediated auxin accumulation during nodule inception. In cre1, IAR33-KD restricted the sucrose-mediated restoration of functional symbiosis, suggesting that deconjugation-mediated auxin accumulation plays a key role in the absence of CRE1-mediated auxin biosynthesis and transport control. Overexpression of IAR33 also restored functional symbiosis in cre1, further suggesting that IAR33 mediates auxin accumulation in response to sucrose signaling. Since all the observed sucrose-mediated responses were common to A17 and cre1, deconjugation-mediated auxin response appeared to be independent of CRE1, which normally governs local auxin accumulation in the presence of rhizobia. We propose that sucrose-dependent restoration of symbiosis in cre1 occurs by the activation of IAR33-mediated auxin deconjugation.
Collapse
Affiliation(s)
- Firoz Molla
- Department of Biochemistry, University of Calcutta, Kolkata 700019, India
| | - Anindya Kundu
- Department of Biochemistry, University of Calcutta, Kolkata 700019, India
| | - Maitrayee DasGupta
- Department of Biochemistry, University of Calcutta, Kolkata 700019, India
| |
Collapse
|
37
|
Ji B, Xuan L, Zhang Y, Mu W, Paek KY, Park SY, Wang J, Gao W. Application of Data Modeling, Instrument Engineering and Nanomaterials in Selected Medid the Scientific Recinal Plant Tissue Culture. PLANTS (BASEL, SWITZERLAND) 2023; 12:1505. [PMID: 37050131 PMCID: PMC10096660 DOI: 10.3390/plants12071505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/10/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
At present, most precious compounds are still obtained by plant cultivation such as ginsenosides, glycyrrhizic acid, and paclitaxel, which cannot be easily obtained by artificial synthesis. Plant tissue culture technology is the most commonly used biotechnology tool, which can be used for a variety of studies such as the production of natural compounds, functional gene research, plant micropropagation, plant breeding, and crop improvement. Tissue culture material is a basic and important part of this issue. The formation of different plant tissues and natural products is affected by growth conditions and endogenous substances. The accumulation of secondary metabolites are affected by plant tissue type, culture method, and environmental stress. Multi-domain technologies are developing rapidly, and they have made outstanding contributions to the application of plant tissue culture. The modes of action have their own characteristics, covering the whole process of plant tissue from the induction, culture, and production of natural secondary metabolites. This paper reviews the induction mechanism of different plant tissues and the application of multi-domain technologies such as artificial intelligence, biosensors, bioreactors, multi-omics monitoring, and nanomaterials in plant tissue culture and the production of secondary metabolites. This will help to improve the tissue culture technology of medicinal plants and increase the availability and the yield of natural metabolites.
Collapse
Affiliation(s)
- Baoyu Ji
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Shool of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Liangshuang Xuan
- Shool of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yunxiang Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Wenrong Mu
- Shool of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Kee-Yoeup Paek
- Department of Horticultural Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - So-Young Park
- Department of Horticultural Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
38
|
Halder T, Liu H, Chen Y, Yan G, Siddique KHM. Chromosome groups 5, 6 and 7 harbor major quantitative trait loci controlling root traits in bread wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1092992. [PMID: 37021301 PMCID: PMC10067626 DOI: 10.3389/fpls.2023.1092992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
Identifying genomic regions for root traits in bread wheat can help breeders develop climate-resilient and high-yielding wheat varieties with desirable root traits. This study used the recombinant inbred line (RIL) population of Synthetic W7984 × Opata M85 to identify quantitative trait loci (QTL) for different root traits such as rooting depth (RD), root dry mass (RM), total root length (RL), root diameter (Rdia) and root surface areas (RSA1 for coarse roots and RSA2 for fine roots) under controlled conditions in a semi-hydroponic system. We detected 14 QTL for eight root traits on nine wheat chromosomes; we discovered three QTL each for RD and RSA1, two QTL each for RM and RSA2, and one QTL each for RL, Rdia, specific root length and nodal root number per plant. The detected QTL were concentrated on chromosome groups 5, 6 and 7. The QTL for shallow RD (Q.rd.uwa.7BL: Xbarc50) and high RM (Q.rm.uwa.6AS: Xgwm334) were validated in two independent F2 populations of Synthetic W7984 × Chara and Opata M85 × Cascade, respectively. Genotypes containing negative alleles for Q.rd.uwa.7BL had 52% shallower RD than other Synthetic W7984 × Chara population lines. Genotypes with the positive alleles for Q.rm.uwa.6AS had 31.58% higher RM than other Opata M85 × Cascade population lines. Further, we identified 21 putative candidate genes for RD (Q.rd.uwa.7BL) and 13 for RM (Q.rm.uwa.6AS); TraesCS6A01G020400, TraesCS6A01G024400 and TraesCS6A01G021000 identified from Q.rm.uwa.6AS, and TraesCS7B01G404000, TraesCS7B01G254900 and TraesCS7B01G446200 identified from Q.rd.uwa.7BL encoded important proteins for root traits. We found germin-like protein encoding genes in both Q.rd.uwa.7BL and Q.rm.uwa.6AS regions. These genes may play an important role in RM and RD improvement. The identified QTL, especially the validated QTL and putative candidate genes are valuable genetic resources for future root trait improvement in wheat.
Collapse
Affiliation(s)
- Tanushree Halder
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Hui Liu
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Yinglong Chen
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Guijun Yan
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Kadambot H. M. Siddique
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
39
|
Zhang M, Chen Y, Xing H, Ke W, Shi Y, Sui Z, Xu R, Gao L, Guo G, Li J, Xing J, Zhang Y. Positional cloning and characterization reveal the role of a miRNA precursor gene ZmLRT in the regulation of lateral root number and drought tolerance in maize. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:772-790. [PMID: 36354146 DOI: 10.1111/jipb.13408] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Lateral roots play essential roles in drought tolerance in maize (Zea mays L.). However, the genetic basis for the variation in the number of lateral roots in maize remains elusive. Here, we identified a major quantitative trait locus (QTL), qLRT5-1, controlling lateral root number using a recombinant inbred population from a cross between the maize lines Zong3 (with many lateral roots) and 87-1 (with few lateral roots). Fine-mapping and functional analysis determined that the candidate gene for qLRT5-1, ZmLRT, expresses the primary transcript for the microRNA miR166a. ZmLRT was highly expressed in root tips and lateral root primordia, and knockout and overexpression of ZmLRT increased and decreased lateral root number, respectively. Compared with 87-1, the ZmLRT gene model of Zong3 lacked the second and third exons and contained a 14 bp deletion at the junction between the first exon and intron, which altered the splicing site. In addition, ZmLRT expression was significantly lower in Zong3 than in 87-1, which might be attributed to the insertions of a transposon and over large DNA fragments in the Zong3 ZmLRT promoter region. These mutations decreased the abundance of mature miR166a in Zong3, resulting in increased lateral roots at the seedling stage. Furthermore, miR166a post-transcriptionally repressed five development-related class-III homeodomain-leucine zipper genes. Moreover, knockout of ZmLRT enhanced drought tolerance of maize seedlings. Our study furthers our understanding of the genetic basis of lateral root number variation in maize and highlights ZmLRT as a target for improving drought tolerance in maize.
Collapse
Affiliation(s)
- Ming Zhang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yanhong Chen
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Agronomy College of Shandong Agricultural University, Taian, 271018, China
| | - Hongyan Xing
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Crop Germplasm Resources and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wensheng Ke
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yunlu Shi
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Zhipeng Sui
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Yantai Science and Technology Innovation Promotion Center, Yantai, 264003, China
| | - Ruibin Xu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Lulu Gao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Ganggang Guo
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Crop Germplasm Resources and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiansheng Li
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Jiewen Xing
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yirong Zhang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
40
|
Zveushe OK, de Dios VR, Zhang H, Zeng F, Liu S, Shen S, Kang Q, Zhang Y, Huang M, Sarfaraz A, Prajapati M, Zhou L, Zhang W, Han Y, Dong F. Effects of Co-Inoculating Saccharomyces spp. with Bradyrhizobium japonicum on Atmospheric Nitrogen Fixation in Soybeans ( Glycine max (L.)). PLANTS (BASEL, SWITZERLAND) 2023; 12:681. [PMID: 36771765 PMCID: PMC9919766 DOI: 10.3390/plants12030681] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Crop production encounters challenges due to the dearth of nitrogen (N) and phosphorus (P), while excessive chemical fertilizer use causes environmental hazards. The use of N-fixing microbes and P-solubilizing microbes (PSMs) can be a sustainable strategy to overcome these problems. Here, we conducted a greenhouse pot experiment following a completely randomized blocked design to elucidate the influence of co-inoculating N-fixing bacteria (Bradyrhizobium japonicum) and PSMs (Saccharomyces cerevisiae and Saccharomyces exiguus) on atmospheric N2-fixation, growth, and yield. The results indicate a significant influence of interaction on Indole-3-acetic acid production, P solubilization, seedling germination, and growth. It was also found that atmospheric N2-fixation, nodule number per plant, nodule dry weight, straw, and root dry weight per plant at different growth stages were significantly increased under dual inoculation treatments relative to single inoculation or no inoculation treatment. Increased seed yield and N and P accumulation were also noticed under co-inoculation treatments. Soil available N was highest under sole bacterial inoculation and lowest under the control treatment, while soil available P was highest under co-inoculation treatments and lowest under the control treatment. We demonstrated that the co-inoculation of N-fixing bacteria and PSMs enhances P bioavailability and atmospheric N2-fixation in soybeans leading to improved soil fertility, raising crop yields, and promoting sustainable agriculture.
Collapse
Affiliation(s)
- Obey Kudakwashe Zveushe
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Victor Resco de Dios
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Department of Crop and Forest Sciences, University of Lleida, 25198 Lleida, Spain
- Joint Research Unit CTFC-AGROTECNIO, Universitat de Lleida, 25198 Lleida, Spain
| | - Hengxing Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Fang Zeng
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Siqin Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Songrong Shen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Qianlin Kang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yazhen Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Miao Huang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ahmed Sarfaraz
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Matina Prajapati
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lei Zhou
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, China
| | - Wei Zhang
- Center of Analysis and Testing, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ying Han
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Faqin Dong
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, China
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
41
|
A Potential Application of Pseudomonas psychrotolerans IALR632 for Lettuce Growth Promotion in Hydroponics. Microorganisms 2023; 11:microorganisms11020376. [PMID: 36838341 PMCID: PMC9962264 DOI: 10.3390/microorganisms11020376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Controlled environment agriculture hydroponic systems grow plants year-round without restriction from outside environmental conditions. In order to further improve crop yield, plant growth-promoting bacteria were tested on hydroponically grown lettuce (Lactuca sativa) plants. From our bacterial endophyte library, we found one bacterium, Pseudomonas psychrotolerans IALR632, that is promising in promoting lettuce growth in multiple hydroponic systems. When Green Oakleaf lettuce seeds were inoculated with IALR632 during germination, IALR632 significantly increased lateral root development by 164%. When germinated seedlings were inoculated with IALR632 and then transplanted to different hydroponic systems, shoot and root fresh weights of Green Oakleaf increased by 55.3% and 17.2% in a nutrient film technique (NFT) system in the greenhouse, 13.5% and 13.8% in an indoor vertical NFT system, and 15.3% and 13.6% in a deep water cultivation (DWC) system, respectively. IALR632 also significantly increased shoot fresh weights of Rex by 33.9%, Red Oakleaf by 21.0%, Red Sweet Crisp by 15.2%, and Nancy by 29.9%, as well as Red Rosie by 8.6% (no significant difference). Inoculation of IALR632-GFP and subsequent analysis by confocal microscopy demonstrated the endophytic nature and translocation from roots to shoots. The results indicate that P. psychrotolerans IALR632 has a potential application in hydroponically grown lettuce plants.
Collapse
|
42
|
Alahakoon D, Fennell A. Genetic analysis of grapevine root system architecture and loci associated gene networks. FRONTIERS IN PLANT SCIENCE 2023; 13:1083374. [PMID: 36816477 PMCID: PMC9932984 DOI: 10.3389/fpls.2022.1083374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
Own-rooted grapevines and grapevine rootstocks are vegetatively propagated from cuttings and have an adventitious root system. Unraveling the genetic underpinnings of the adventitious root system architecture (RSA) is important for improving own-rooted and grafted grapevine sustainability for a changing climate. Grapevine RSA genetic analysis was conducted in an Vitis sp. 'VRS-F2' population. Nine root morphology, three total root system morphology, and two biomass traits that contribute to root anchorage and water and nutrient uptake were phenotyped. Quantitative trait loci (QTL) analysis was performed using a high density integrated GBS and rhAmpSeq genetic map. Thirty-one QTL were detected for eleven of the RSA traits (surface area, root volume, total root length, fresh weight, number of tips, forks or links, longest root and average root diameter, link length, and link surface area) revealing many small effects. Several QTL were colocated on chromosomes 1, 9, 13, 18, and 19. QTL with identical peak positions on chromosomes 1 or 13 were enriched for AP2-EREBP, AS2, C2C2-CO, HMG, and MYB transcription factors, and QTL on chromosomes 9 or 13 were enriched for the ALFIN-LIKE transcription factor and regulation of autophagy pathways. QTL modeling for individual root traits identified eight models explaining 13.2 to 31.8% of the phenotypic variation. 'Seyval blanc' was the grandparent contributing to the allele models that included a greater surface area, total root length, and branching (number of forks and links) traits promoting a greater root density. In contrast, V. riparia 'Manitoba 37' contributed the allele for greater average branch length (link length) and diameter, promoting a less dense elongated root system with thicker roots. LATERAL ORGAN BOUNDARY DOMAIN (LBD or AS2/LOB) and the PROTODERMAL FACTOR (PFD2 and ANL2) were identified as important candidate genes in the enriched pathways underlying the hotspots for grapevine adventitious RSA. The combined QTL hotspot and trait modeling identified transcription factors, cell cycle and circadian rhythm genes with a known role in root cell and epidermal layer differentiation, lateral root development and cortex thickness. These genes are candidates for tailoring grapevine root system texture, density and length in breeding programs.
Collapse
Affiliation(s)
| | - Anne Fennell
- Agronomy, Horticulture, and Plant Science Department, South Dakota State University, Brookings, SD, United States
| |
Collapse
|
43
|
Das PP, Singh KR, Nagpure G, Mansoori A, Singh RP, Ghazi IA, Kumar A, Singh J. Plant-soil-microbes: A tripartite interaction for nutrient acquisition and better plant growth for sustainable agricultural practices. ENVIRONMENTAL RESEARCH 2022; 214:113821. [PMID: 35810815 DOI: 10.1016/j.envres.2022.113821] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/24/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Plants can achieve their proper growth and development with the help of microorganisms associated with them. Plant-associated microbes convert the unavailable nutrients to available form and make them useful for plants. Besides nutrient acquisition, soil microbes also inhibit the pathogens that cause harm to plant growth and induces defense response. Due to the beneficial activities of soil nutrient-microbe-plant interactions, it is necessary to study more on this topic and develop microbial inoculant technology in the agricultural field for better crop improvement. The soil microbes can be engineered, and plant growth-promoting rhizobacteria (PGPR) and plant growth-promoting bacteria (PGPB) technology can be developed as well, as its application can be improved for utilization as biofertilizer, biopesticides, etc., instead of using harmful chemical biofertilizers. Moreover, plant growth-promoting microbe inoculants can enhance crop productivity. Although, scientists have discussed several tools and techniques by omics and gene editing approaches for crop improvement to avoid biotic and abiotic stress and make the plant healthier and more nutritive. However, beneficial soil microbes that help plants with the nutrient acquisition, development, and stress resistance were ignored, and farmers started utilizing chemical fertilizers. Thus, this review attempts to summarize the interaction system of plant microbes, the role of beneficiary soil microbes in the rhizosphere zone, and their role in plant health promotion, particularly in the nutrition acquisition of the plant. The review will also provide a better understanding of soil microbes that can be exploited as biofertilizers and plant growth promoters in the field to create environmentally friendly, sustainable agriculture systems.
Collapse
Affiliation(s)
- Prajna Priyadarshini Das
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Kshitij Rb Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 211005, India
| | - Gunjan Nagpure
- Department of Biotechnology, Faculty of Science, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India
| | - Aadil Mansoori
- Department of Botany, Faculty of Science, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India
| | - Ravindra Pratap Singh
- Department of Biotechnology, Faculty of Science, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India
| | - Irfan Ahmad Ghazi
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Anirudh Kumar
- Department of Botany, Faculty of Science, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India.
| | - Jay Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 211005, India.
| |
Collapse
|
44
|
Zhang B, Gao H, Wang G, Zhang S, Shi M, Li Y, Huang Z, Xiang W, Gao W, Zhang C, Liu X. Guvermectin, a novel plant growth regulator, can promote the growth and high temperature tolerance of maize. FRONTIERS IN PLANT SCIENCE 2022; 13:1025634. [PMID: 36311060 PMCID: PMC9615569 DOI: 10.3389/fpls.2022.1025634] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/28/2022] [Indexed: 05/27/2023]
Abstract
Guvermectin is a recently discovered microbial N9-glucoside cytokinin compound extracted from Streptomyces sanjiangensis NEAU6. Although some research has reported that N9-glucoside cytokinin compounds do not have the activity of cytokinin, it has been noted that guvermectin can promote growth and antifungal activity in Arabidopsis. Maize is an important food crop in the world and exploring the effect of guvermectin on this crop could help its cultivation in regions with adverse environmental conditions such as a high temperature. Here, we investigated the effects of guvermectin seed soaking treatment on the growth of maize at the seedlings stage and its yield attributes with different temperature stresses. The maize (cv. Zhengdan 958) with guvermectin seed soaking treatment were in two systems: paper roll culture and field conditions. Guvermectin seed soaking treated plants had increased plant height, root length, and mesocotyl length at the seedlings stage, and spike weight at maturity in the field. But only root length was increased at the paper roll culture by guvermectin seed soaking treatment. Guvermectin seed soaking treatment reduced the adverse effects on maize seedling when grow at a high temperature. Further experiments showed that, in high temperature conditions, guvermectin treatment promoted the accumulation of heat shock protein (HSP) 17.0, HSP 17.4 and HSP 17.9 in maize roots. Comparative transcriptomic profiling showed there were 33 common differentially expressed genes (DEGs) in guvermectin treated plants under high temperature and room temperature conditions. The DEGs suggested that guvermectin treatment led to the differential modulation of several transcripts mainly related with plant defense, stress response, and terpenoid biosynthesis. Taken together, these results suggested that the guvermectin treatment promoted the growth and tolerance of high temperature stresses, possibly by activation of related pathways. These results show that guvermectin is a novel plant growth regulator and could be developed as an application to maize seeds to promote growth in high temperature environments.
Collapse
Affiliation(s)
- Borui Zhang
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Huige Gao
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Guozhen Wang
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Sicong Zhang
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Mengru Shi
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Yun Li
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Zhongqiao Huang
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Wensheng Xiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenna Gao
- Science and Technology Research Center of China Customs, Beijing, China
| | - Can Zhang
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Xili Liu
- Department of Plant Pathology, China Agricultural University, Beijing, China
- College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
45
|
Zhou H, Hua J, Zhang J, Luo S. Negative Interactions Balance Growth and Defense in Plants Confronted with Herbivores or Pathogens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12723-12732. [PMID: 36165611 DOI: 10.1021/acs.jafc.2c04218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Plants have evolved a series of defensive mechanisms against pathogens and herbivores, but the defense response always leads to decreases in growth or reproduction, which has serious implications for agricultural production. Growth and defense are negatively regulated not only through metabolic consumption but also through the antagonism of different phytohormones, such as jasmonic acid (JA) and salicylic acid (SA). Meanwhile, plants can limit the expression of defensive metabolites to reduce the costs of defense by producing constitutive defenses such as glandular trichomes or latex and accumulating specific metabolites, determining the activation of plant defense or the maintenance of plant growth. Interestingly, plant defense pathways might be prepared in advance which may be transmitted to descendants. Plants can also use external organisms to protect themselves, thus minimizing the costs of defense. In addition, plant relatives exhibit cooperation to deal with pathogens and herbivores, which is also a way to regulate growth and defense.
Collapse
Affiliation(s)
- Huiwen Zhou
- Key Laboratory of Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning Province, China
| | - Juan Hua
- Key Laboratory of Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning Province, China
| | - Jiaming Zhang
- Key Laboratory of Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning Province, China
| | - Shihong Luo
- Key Laboratory of Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning Province, China
| |
Collapse
|
46
|
Xu C, Wu F, Guo J, Hou S, Wu X, Xin Y. Transcriptomic analysis and physiological characteristics of exogenous naphthylacetic acid application to regulate the healing process of oriental melon grafted onto squash. PeerJ 2022; 10:e13980. [PMID: 36128197 PMCID: PMC9482769 DOI: 10.7717/peerj.13980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/10/2022] [Indexed: 01/19/2023] Open
Abstract
The plant graft healing process is an intricate development influenced by numerous endogenous and environmental factors. This process involves the histological changes, physiological and biochemical reactions, signal transduction, and hormone exchanges in the grafting junction. Studies have shown that applying exogenous plant growth regulators can effectively promote the graft healing process and improve the quality of grafted plantlets. However, the physiological and molecular mechanism of graft healing formation remains unclear. In our present study, transcriptome changes in the melon and cucurbita genomes were analyzed between control and NAA treatment, and we provided the first view of complex networks to regulate graft healing under exogenous NAA application. The results showed that the exogenous NAA application could accelerate the graft healing process of oriental melon scion grafted onto squash rootstock through histological observation, increase the SOD, POD, PAL, and PPO activities during graft union development and enhance the contents of IAA, GA3, and ZR except for the IL stage. The DEGs were identified in the plant hormone signal-transduction, phenylpropanoid biosynthesis, and phenylalanine metabolism through transcriptome analysis of CK vs. NAA at the IL, CA, and VB stage by KEGG pathway enrichment analysis. Moreover, the exogenous NAA application significantly promoted the expression of genes involved in the hormone signal-transduction pathway, ROS scavenging system, and vascular bundle formation.
Collapse
Affiliation(s)
- Chuanqiang Xu
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China,Key Laboratory of Protected Horticulture (Shenyang Agricultural University) Ministry of Education, Shenyang, China,College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Fang Wu
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China,Key Laboratory of Protected Horticulture (Shenyang Agricultural University) Ministry of Education, Shenyang, China,College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Jieying Guo
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China,Key Laboratory of Protected Horticulture (Shenyang Agricultural University) Ministry of Education, Shenyang, China,College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Shuan Hou
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China,Key Laboratory of Protected Horticulture (Shenyang Agricultural University) Ministry of Education, Shenyang, China,College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Xiaofang Wu
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China,Key Laboratory of Protected Horticulture (Shenyang Agricultural University) Ministry of Education, Shenyang, China,College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Ying Xin
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China,Key Laboratory of Protected Horticulture (Shenyang Agricultural University) Ministry of Education, Shenyang, China,College of Horticulture, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
47
|
Poveda J, Díaz-González S, Díaz-Urbano M, Velasco P, Sacristán S. Fungal endophytes of Brassicaceae: Molecular interactions and crop benefits. FRONTIERS IN PLANT SCIENCE 2022; 13:932288. [PMID: 35991403 PMCID: PMC9390090 DOI: 10.3389/fpls.2022.932288] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Brassicaceae family includes an important group of plants of great scientific interest, e.g., the model plant Arabidopsis thaliana, and of economic interest, such as crops of the genus Brassica (Brassica oleracea, Brassica napus, Brassica rapa, etc.). This group of plants is characterized by the synthesis and accumulation in their tissues of secondary metabolites called glucosinolates (GSLs), sulfur-containing compounds mainly involved in plant defense against pathogens and pests. Brassicaceae plants are among the 30% of plant species that cannot establish optimal associations with mycorrhizal hosts (together with other plant families such as Proteaceae, Chenopodiaceae, and Caryophyllaceae), and GSLs could be involved in this evolutionary process of non-interaction. However, this group of plants can establish beneficial interactions with endophytic fungi, which requires a reduction of defensive responses by the host plant and/or an evasion, tolerance, or suppression of plant defenses by the fungus. Although much remains to be known about the mechanisms involved in the Brassicaceae-endophyte fungal interaction, several cases have been described, in which the fungi need to interfere with the GSL synthesis and hydrolysis in the host plant, or even directly degrade GSLs before they are hydrolyzed to antifungal isothiocyanates. Once the Brassicaceae-endophyte fungus symbiosis is formed, the host plant can obtain important benefits from an agricultural point of view, such as plant growth promotion and increase in yield and quality, increased tolerance to abiotic stresses, and direct and indirect control of plant pests and diseases. This review compiles the studies on the interaction between endophytic fungi and Brassicaceae plants, discussing the mechanisms involved in the success of the symbiosis, together with the benefits obtained by these plants. Due to their unique characteristics, the family Brassicaceae can be seen as a fruitful source of novel beneficial endophytes with applications to crops, as well as to generate new models of study that allow us to better understand the interactions of these amazing fungi with plants.
Collapse
Affiliation(s)
- Jorge Poveda
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Sandra Díaz-González
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
| | - María Díaz-Urbano
- Group of Genetics, Breeding and Biochemistry of Brassicas, Misión Biológica de Galicia (MBG), Spanish National Research Council (CSIC), Pontevedra, Spain
| | - Pablo Velasco
- Group of Genetics, Breeding and Biochemistry of Brassicas, Misión Biológica de Galicia (MBG), Spanish National Research Council (CSIC), Pontevedra, Spain
| | - Soledad Sacristán
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| |
Collapse
|
48
|
Kumar D, Yadav A, Ahmad R, Dwivedi UN, Yadav K. CRISPR-Based Genome Editing for Nutrient Enrichment in Crops: A Promising Approach Toward Global Food Security. Front Genet 2022; 13:932859. [PMID: 35910203 PMCID: PMC9329789 DOI: 10.3389/fgene.2022.932859] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/08/2022] [Indexed: 12/21/2022] Open
Abstract
The global malnutrition burden imparts long-term developmental, economic, social, and medical consequences to individuals, communities, and countries. The current developments in biotechnology have infused biofortification in several food crops to fight malnutrition. However, these methods are not sustainable and suffer from several limitations, which are being solved by the CRISPR-Cas-based system of genome editing. The pin-pointed approach of CRISPR-based genome editing has made it a top-notch method due to targeted gene editing, thus making it free from ethical issues faced by transgenic crops. The CRISPR-Cas genome-editing tool has been extensively used in crop improvement programs due to its more straightforward design, low methodology cost, high efficiency, good reproducibility, and quick cycle. The system is now being utilized in the biofortification of cereal crops such as rice, wheat, barley, and maize, including vegetable crops such as potato and tomato. The CRISPR-Cas-based crop genome editing has been utilized in imparting/producing qualitative enhancement in aroma, shelf life, sweetness, and quantitative improvement in starch, protein, gamma-aminobutyric acid (GABA), oleic acid, anthocyanin, phytic acid, gluten, and steroidal glycoalkaloid contents. Some varieties have even been modified to become disease and stress-resistant. Thus, the present review critically discusses CRISPR-Cas genome editing-based biofortification of crops for imparting nutraceutical properties.
Collapse
Affiliation(s)
- Dileep Kumar
- Department of Biochemistry, University of Lucknow, Lucknow, India
| | - Anurag Yadav
- Department of Microbiology, College of Basic Science and Humanities, Sardarkrushinagar Dantiwada Agriculture University, Banaskantha, India
| | - Rumana Ahmad
- Department of Biochemistry, Era Medical University and Hospital, Lucknow, India
| | | | - Kusum Yadav
- Department of Biochemistry, University of Lucknow, Lucknow, India
| |
Collapse
|
49
|
Li Z, Wang S, Wang W, Gu J, Wang Y. The Hierarchy of Protoxylem Groupings in Primary Root and Their Plasticity to Nitrogen Addition in Three Tree Species. FRONTIERS IN PLANT SCIENCE 2022; 13:903318. [PMID: 35812911 PMCID: PMC9260270 DOI: 10.3389/fpls.2022.903318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Protoxylem grouping (PG), a classification based on the number of protoxylem poles, is a crucial indicator related to other functional traits in fine roots, affecting growth and survival of individual root. However, within root system, less is known about the arrangement of PG. Moreover, the responses of PG to fertilization are still unclear. Here, we selected three common hardwood species in Northeast China, Juglans mandshurica, Fraxinus mandshurica, and Phellodendron amurense, conducted root pruning and nutrient addition. In this study, we analyzed the PG, morphology, and other anatomy traits of newly formed root branches. The results showed all root length, diameter, and stele, as well as hydraulic conductivity, were significantly positive related to the PG number, and the PG number generally decreased with ascending root developmental order; these patterns were independent of species and fertilization. Additionally, we also found the plasticity of PGs to environmental changes, in terms of the increased frequency of high PG roots after fertilization, significantly in J. mandshurica and F. mandshurica. Therefore, the heterogeneity, hierarchy, and plasticity of individual roots within root system may be widespread in woody plants, which is of great significance to deepen our understanding in root growth and development, as well as the belowground ecological process.
Collapse
Affiliation(s)
- Zhongyue Li
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Siyuan Wang
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Wenna Wang
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Jiacun Gu
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Yan Wang
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, College of Forestry, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
50
|
Koyro HW, Huchzermeyer B. From Soil Amendments to Controlling Autophagy: Supporting Plant Metabolism under Conditions of Water Shortage and Salinity. PLANTS 2022; 11:plants11131654. [PMID: 35807605 PMCID: PMC9269222 DOI: 10.3390/plants11131654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/03/2022] [Accepted: 06/16/2022] [Indexed: 11/30/2022]
Abstract
Crop resistance to environmental stress is a major issue. The globally increasing land degradation and desertification enhance the demand on management practices to balance both food and environmental objectives, including strategies that tighten nutrient cycles and maintain yields. Agriculture needs to provide, among other things, future additional ecosystem services, such as water quantity and quality, runoff control, soil fertility maintenance, carbon storage, climate regulation, and biodiversity. Numerous research projects have focused on the food–soil–climate nexus, and results were summarized in several reviews during the last decades. Based on this impressive piece of information, we have selected only a few aspects with the intention of studying plant–soil interactions and methods for optimization. In the short term, the use of soil amendments is currently attracting great interest to cover the current demand in agriculture. We will discuss the impact of biochar at water shortage, and plant growth promoting bacteria (PGPB) at improving nutrient supply to plants. In this review, our focus is on the interplay of both soil amendments on primary reactions of photosynthesis, plant growth conditions, and signaling during adaptation to environmental stress. Moreover, we aim at providing a general overview of how dehydration and salinity affect signaling in cells. With the use of the example of abscisic acid (ABA) and ethylene, we discuss the effects that can be observed when biochar and PGPB are used in the presence of stress. The stress response of plants is a multifactorial trait. Nevertheless, we will show that plants follow a general concept to adapt to unfavorable environmental conditions in the short and long term. However, plant species differ in the upper and lower regulatory limits of gene expression. Therefore, the presented data may help in the identification of traits for future breeding of stress-resistant crops. One target for breeding could be the removal and efficient recycling of damaged as well as needless compounds and structures. Furthermore, in this context, we will show that autophagy can be a useful goal of breeding measures, since the recycling of building blocks helps the cells to overcome a period of imbalanced substrate supply during stress adjustment.
Collapse
Affiliation(s)
- Hans-Werner Koyro
- Institute of Plantecology, Justus-Liebig-University, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
- Correspondence:
| | - Bernhard Huchzermeyer
- Institute of Botany, Leibniz Universitaet Hannover, Herrenhaeuser Str. 2, 30416 Hannover, Germany; or
- AK Biotechnology, VDI-BV-Hannover, Hanomagstr. 12, 30449 Hannover, Germany
| |
Collapse
|