1
|
Deng R, Li Y, Feng NJ, Zheng DF, Du YW, Khan A, Xue YB, Zhang JQ, Feng YN. Integrative Analyses Reveal the Physiological and Molecular Role of Prohexadione Calcium in Regulating Salt Tolerance in Rice. Int J Mol Sci 2024; 25:9124. [PMID: 39201810 PMCID: PMC11354818 DOI: 10.3390/ijms25169124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Salinity stress severely restricts rice growth. Prohexadione calcium (Pro-Ca) modulation can effectively alleviate salt stress in rice. In this study, we explored the effects of Pro-Ca on enhancing salt tolerance in two rice varieties, IR29 and HD96-1. The results revealed that Pro-Ca markedly enhanced root and shoot morphological traits and improved plant biomass under salt stress. Chlorophyll a and b content were significantly increased, which improved photosynthetic capacity. Transcriptomic and metabolomic data showed that Pro-Ca significantly up-regulated the expression of genes involved in E3 ubiquitin ligases in IR29 and HD96-1 by 2.5-fold and 3-fold, respectively, thereby maintaining Na+ and K+ homeostasis by reducing Na+. Moreover, Pro-Ca treatment significantly down-regulated the expression of Lhcb1, Lhcb2, Lhcb3, Lhcb5, and Lhcb6 in IR29 under salt stress, which led to an increase in photosynthetic efficiency. Furthermore, salt stress + Pro-Ca significantly increased the A-AAR of IR29 and HD96-1 by 2.9-fold and 2.5-fold, respectively, and inhibited endogenous cytokinin synthesis and signal transduction, which promoted root growth. The current findings suggested that Pro-Ca effectively alleviated the harmful effects of salt stress on rice by maintaining abscisic acid content and by promoting oxylipin synthesis. This study provides a molecular basis for Pro-Ca to alleviate salt stress in rice.
Collapse
Affiliation(s)
- Rui Deng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (R.D.); (Y.L.)
- South China Center of National Saline—Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Yao Li
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (R.D.); (Y.L.)
- South China Center of National Saline—Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Nai-Jie Feng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (R.D.); (Y.L.)
- South China Center of National Saline—Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China
| | - Dian-Feng Zheng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (R.D.); (Y.L.)
- South China Center of National Saline—Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China
| | - You-Wei Du
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (R.D.); (Y.L.)
- South China Center of National Saline—Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Aaqil Khan
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (R.D.); (Y.L.)
- South China Center of National Saline—Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Ying-Bin Xue
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (R.D.); (Y.L.)
- South China Center of National Saline—Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Jian-Qin Zhang
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (R.D.); (Y.L.)
- South China Center of National Saline—Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Ya-Nan Feng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (R.D.); (Y.L.)
- South China Center of National Saline—Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| |
Collapse
|
2
|
Ning K, Sun T, Wang Z, Li H, Fang P, Cai X, Wu X, Xu M, Xu P. Selective penetration of fullerenol through pea seed coats mitigates osmosis-repressed germination via chromatin remodeling and transcriptional reprograming. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6008-6017. [PMID: 38437455 DOI: 10.1002/jsfa.13429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND The alteration of chromatin accessibility plays an important role in plant responses to abiotic stress. Carbon-based nanomaterials (CBNMs) have attracted increasing interest in agriculture due to their potential impact on crop productivity, showcasing effects on plant biological processes at transcriptional levels; however, their impact on chromatin accessibility remains unknown. RESULTS This study found that fullerenol can penetrate the seed coat of pea to mitigate the reduction of seed germination caused by osmotic stress. RNA sequencing (RNA-seq) revealed that the application of fullerenol caused the high expression of genes related to oxidoreduction to return to a normal level. Assay for transposase accessible chromatin sequencing (ATAC-seq) confirmed that fullerenol application reduced the overall levels of chromatin accessibility of numerous genes, including those related to environmental signaling, transcriptional regulation, and metabolism. CONCLUSION This study suggests that fullerenol alleviates osmotic stress on various fronts, encompassing antioxidant, transcriptional, and epigenetic levels. This advances knowledge of the working mechanism of this nanomaterial within plant cells. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kang Ning
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, People's Republic of China
| | - Ting Sun
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, People's Republic of China
| | - Zhuoyi Wang
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, People's Republic of China
| | - Hailan Li
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, People's Republic of China
| | - Pingping Fang
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, People's Republic of China
| | - Xiaoqi Cai
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, People's Republic of China
| | - Xinyang Wu
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, People's Republic of China
| | - Min Xu
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, People's Republic of China
| | - Pei Xu
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, People's Republic of China
| |
Collapse
|
3
|
Razzaque S, Juenger TE. Seed traits and recruitment interact with habitats to generate patterns of local adaptation in a perennial grass. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3111-3124. [PMID: 38381563 DOI: 10.1093/jxb/erae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 02/20/2024] [Indexed: 02/23/2024]
Abstract
A fundamental challenge in the field of ecology involves understanding the adaptive traits and life history stages regulating the population dynamics of species across diverse habitats. Seed traits and early seedling vigor are thought to be key functional traits in plants, with important consequences for recruitment, establishment, and population persistence. However, little is known about how diverse seed traits interact with seed and microsite availability to impact plant populations. Here, we performed a factorial experiment involving seed addition and surface soil disturbance to explore the combined effects of seed and site availability using genotypes characterized by varying seed mass and dormancy traits. Additionally, we included hybrids that exhibited recombined seed trait relationships compared with natural genotypes, allowing us to assess the impact of specific seed traits on establishment across different sites. We detected a significant three-way interaction between seed addition, site conditions, and soil surface disturbance, influencing both seedling establishment and adult recruitment in Panicum hallii, a perennial grass found in coastal mesic (lowland) and inland xeric (upland) habitats. This establishment/recruitment pattern suggests that mesic and xeric establishment at foreign sites is constrained by the interplay of seed and site limitations. Notably, soil surface disturbance facilitated establishment and recruitment of the xeric genotype while limiting the mesic genotype across all sites. Our results highlight the importance of seed size and dormancy as key factors impacting seedling establishment and adult recruitment, suggesting a potential interactive relationship between these traits.
Collapse
Affiliation(s)
| | - Thomas E Juenger
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
4
|
Amin F, Shah F, Ullah S, Shah W, Ahmed I, Ali B, Khan AA, Malik T, Mustafa AEZMA. The germination response of Zea mays L. to osmotic potentials across optimal temperatures via halo-thermal time model. Sci Rep 2024; 14:3225. [PMID: 38332029 PMCID: PMC11303777 DOI: 10.1038/s41598-024-53129-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/29/2024] [Indexed: 02/10/2024] Open
Abstract
The maize (Zea mays L.) is a monocot that is a member of the Poaceae family and a valuable feed for livestock, human food, and raw material for various industries. The halothermal time model determines how plants respond to salt (NaCl) stress under sub-optimal conditions. This model examines the relation between NaClb (g), GR, GP, salinity and temperature stress on germination of seeds dynamics in various crops. Five constant temperatures i.e. 20, 25, 30, 35, and 40 °C and five ψ levels (NaCl concentrations converted to ψ - 0, - 0.2, - 0.4, - 0.6, and - 0.8 MPa) were used in this experiment. In light of the results, the maximum halo-thermal time constant value was recorded at 35 °C temperature, while maximum germination percentage was detected at 30 °C in the controlled condition. Moreover, the lowermost value was recorded at 20 °C at - 0.8 MPa osmotic potential. The highest CAT, APX, and GPX activities were recorded at 15 °C at - 0.8 MPa, while the lowest values were observed for 0 MPa at 30 °C temperature. In conclusion, by employing the halo thermal time model, the germination of maize variety (var.30W52) was accurately predicted for the first time under varying levels of temperature and osmotic potentials.
Collapse
Affiliation(s)
- Fazal Amin
- Department of Botany, University of Peshawar, Peshawar, 25120, Pakistan.
| | - Fakhra Shah
- Department of Botany, University of Peshawar, Peshawar, 25120, Pakistan.
| | - Sami Ullah
- Department of Botany, University of Peshawar, Peshawar, 25120, Pakistan.
| | - Wadood Shah
- Biological Sciences Research Division, Pakistan Forest Institute, Peshawar, 25120, Pakistan.
| | - Iftikhar Ahmed
- National Agricultural Research Center, Islamabad, 45500, Pakistan.
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Amir Abdullah Khan
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang, 212013, China.
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, 378, Jimma, Ethiopia.
| | - Abd El-Zaher M A Mustafa
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia.
| |
Collapse
|
5
|
Hassan M, Ejaz U, Rashid R, Moin SF, Gulzar S, Sohail M, Hasan KA, Alswat AS, El-Bahy ZM. Utilization of wild Cressa cretica biomass for pectinase production from a halo-thermotolerant bacterium. Biotechnol J 2023; 18:e2200477. [PMID: 37458688 DOI: 10.1002/biot.202200477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 06/05/2023] [Accepted: 07/13/2023] [Indexed: 07/27/2023]
Abstract
Halophytes are the native inhabitants of saline environment. Their biomass can be considered as a potential substrate for the production of microbial enzymes. This study was intended at feasible utilization of a halophytic biomass, Cressia cretica, for pectinase production using a halo- and thermo-tolerant bacterium, Bacillus vallismortis MH 10. The data from fractionation of the C. cretica biomass revealed presence of 17% pectin in this wild biomass. Seven different factors (temperature, agitation, pH, inoculum size, peptone concentration, substrate concentration, and incubation time) affecting pectinase production using C. cretica were assessed through a statistical tool, Plackett-Burman design. Consequently, two significant factors (incubation time and peptone concentration) were optimized using the central composite design. The strain produced 20 IU mL-1 of pectinase after 24 h under optimized conditions. The enzyme production kinetics data also confirmed that 24 h is the most suitable cultivation period for pectinase production. Fourier transform infrared spectroscopy and scanning electron microscopy of C. cretica biomass ascertained utilization of pectin and structural changes after fermentation. The purification of pectinase by using DEAE column yielded specific activity and purification fold of 88.26 IU mg-1 and 3.2, respectively. The purified pectinase had a molecular weight of >65 kDa. This study offers prospects of large-scale production of pectinase by halotolerant strain in the presence of economical and locally grown substrate that makes the enzyme valuable for various industrial operations.
Collapse
Affiliation(s)
- Masooma Hassan
- Department of Microbiology, University of Karachi, Karachi, Pakistan
| | - Uroosa Ejaz
- Department of Biosciences, Faculty of Life Sciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology (SZABIST), Karachi, Pakistan
| | - Rozina Rashid
- Department of Microbiology, University of Balochistan, Balochistan, Pakistan
| | - Syed Faraz Moin
- Dr. Zafar H Zaidi Center for Proteomics (Formely National Center for Proteomics), University of Karachi, Karach, Pakistan
| | - Salman Gulzar
- Dr Muhammad Ajmal Khan Institute of Sustainable of Halophytes Utilization, University of Karachi, Karachi, Pakistan
| | - Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi, Pakistan
| | - Khwaja Ali Hasan
- Molecular and Structural Biology Research Unit, Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Amal S Alswat
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Zeinhom M El-Bahy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
6
|
Bantis F, Koukounaras A. Ascophyllum nodosum and Silicon-Based Biostimulants Differentially Affect the Physiology and Growth of Watermelon Transplants under Abiotic Stress Factors: The Case of Salinity. PLANTS (BASEL, SWITZERLAND) 2023; 12:433. [PMID: 36771518 PMCID: PMC9920198 DOI: 10.3390/plants12030433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
Salinization of cultivated soils is a global phenomenon mainly caused by agricultural practices and deteriorates plant production. Biostimulants are products which can be applied exogenously to enhance the plants' defense mechanism and improve their developmental characteristics, also under abiotic stresses. We studied the potential of two biostimulants, Ascophyllum nodosum (Asc) seaweed and a silicon-based (Si), to alleviate the saline conditions endured by watermelon transplants. Three salinity (0 mM, 50 mM, and 100 mM NaCl) treatments were applied in watermelon seedlings transplanted in pots, while the two biostimulants were sprayed in the foliar in the beginning of the experiment. Relative water content was improved by Asc in the high salinity level. The plant area, leaf number, and shoot dry weight deteriorated in relation to the salinity level. However, the root system (total root length and surface area) was enhanced by 50 mM salt, as well as Asc in some cases. The OJIP transient of the photosynthetic apparatus was also evaluated. Some OJIP parameters diminished in the high salinity level after Asc application. It is concluded that after salt stress Asc provoked a positive phenotypic response, while Si did not alleviate the salinity stress of transplanted watermelon.
Collapse
|
7
|
Visualization of Glutamate Decarboxylase Activity in Barley Seeds under Salinity Stress Using Mass Microscope. Metabolites 2022; 12:metabo12121262. [PMID: 36557299 PMCID: PMC9786171 DOI: 10.3390/metabo12121262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
γ-Aminobutyric acid (GABA) accumulates in plants in response to environmental stresses. The activity levels of glutamate decarboxylase (GAD), an enzyme involved in GABA biosynthesis, are reported to increase during germination under salinity stress. However, it is not clear which tissues of the plant seeds are affected by GAD activity in response to salinity stress. In this study, the effects of salinity stress on the distribution of barley seeds GAD activity during germination were investigated. The mass spectrometry imaging (MSI) method was optimized, and the distribution of GAD activity in germinated seeds exposed to salinity stress at different germination stages from 12 to 48 h after imbibition was investigated. In this study, MSI was successfully applied to enzyme histochemistry to visualize the relative GAD activity in germinating barley seeds for the first time. The salinity stress increased the GAD activity, mostly due to the increase in relative GAD activity in the embryo. Higher GAD activity was detected in seeds exposed to salinity stress in the scutellum or aleurone layer, which are difficult to separate for extraction. This method can be used to clarify the role of GABA shunts, including GAD enzyme responses, in barley seeds under stress.
Collapse
|
8
|
Ecophysiological and Biochemical Responses Depicting Seed Tolerance to Osmotic Stresses in Annual and Perennial Species of Halopeplis in a Frame of Global Warming. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122020. [PMID: 36556385 PMCID: PMC9785675 DOI: 10.3390/life12122020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 12/11/2022]
Abstract
Plant abundance and distribution are regulated by subtle changes in ecological factors, which are becoming more frequent under global climate change. Species with a higher tolerance to such changes, especially during early lifecycle stages, are highly likely to endure climate change. This study compared the germination adaptability of Halopeplis amplexicaulis and H. perfoliata, which differ in life-form and grow in different environments. Optimal conditions, tolerances and the biochemical responses of seeds to osmotic stresses were examined. Seeds of H. perfoliata germinated in a wider range of temperature regimes and were more tolerant to osmotic stresses than H. amplexicaulis seeds. Neither NaCl nor PEG treatment invoked the H2O2 content in germinating seeds of the tested species. Consequently, unaltered, or even decreased activities of H2O2 detoxification enzymes and non-enzymatic antioxidants were observed in germinating seeds in response to the aforementioned stresses. High and comparable levels of recovery from isotonic treatments, alongside a lack of substantial oxidative damage indicated that the osmotic stress, rather than the ionic toxicity, may be responsible for the germination inhibition. Hence, rainy periods, linked to water availability, may act as a key determinant for germination and H. perfoliata could be less affected by global warming owing to better germinability under high temperatures compared with H. amplexicaulis. Such studies involving biochemical analysis coupled with the germination ecology of congeneric species, which differ in life-form and occurrence are scarce, therefore are important in understanding the impacts of global changes on species abundance/distribution.
Collapse
|
9
|
Genome-Wide Association Study of Salt Tolerance-Related Traits during Germination and Seedling Development in an Intermedium-Spike Barley Collection. Int J Mol Sci 2022; 23:ijms231911060. [PMID: 36232362 PMCID: PMC9569600 DOI: 10.3390/ijms231911060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Increased salinity is one of the major consequences of climatic change affecting global crop production. The early stages in the barley (Hordeum vulgare L.) life cycle are considered the most critical phases due to their contributions to final crop yield. Particularly, the germination and seedling development are sensitive to numerous environmental stresses, especially soil salinity. In this study, we aimed to identify SNP markers linked with germination and seedling development at 150 mM NaCl as a salinity treatment. We performed a genome-wide association study (GWAS) using a panel of 208 intermedium-spike barley (H. vulgare convar. intermedium (Körn.) Mansf.) accessions and their genotype data (i.e., 10,323 SNPs) using the genome reference sequence of “Morex”. The phenotypic results showed that the 150 mM NaCl salinity treatment significantly reduced all recorded germination and seedling-related traits compared to the control treatment. Furthermore, six accessions (HOR 11747, HOR 11718, HOR 11640, HOR 11256, HOR 11275 and HOR 11291) were identified as the most salinity tolerant from the intermedium-spike barley collection. GWAS analysis indicated that a total of 38 highly significantly associated SNP markers under control and/or salinity traits were identified. Of these, two SNP markers on chromosome (chr) 1H, two on chr 3H, and one on chr 4H were significantly linked to seedling fresh and dry weight under salinity stress treatment. In addition, two SNP markers on chr 7H were also significantly associated with seedling fresh and dry weight but under control condition. Under salinity stress, one SNP marker on chr 1H, 5H and 7H were detected for more than one phenotypic trait. We found that in most of the accessions exhibiting the highest salinity tolerance, most of the salinity-related QTLs were presented. These results form the basis for detailed studies, leading to improved salt tolerance breeding programs in barley.
Collapse
|
10
|
Khan RWA, Khan RSA, Awan FS, Akrem A, Iftikhar A, Anwar FN, Alzahrani HAS, Alsamadany H, Iqbal RK. Genome-wide association studies of seedling quantitative trait loci against salt tolerance in wheat. Front Genet 2022; 13:946869. [PMID: 36159962 PMCID: PMC9492296 DOI: 10.3389/fgene.2022.946869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Salinity is one of the significant factors in decreasing wheat yield and quality. To counter this, it is necessary to develop salt-tolerant wheat varieties through conventional and advanced molecular techniques. The current study identified quantitative trait loci in response to salt stress among worldwide landraces and improved varieties of wheat at the seedling stage. A total of 125 landraces and wheat varieties were subjected to salt treatment (50, 100, and 150 mM) with control. Morphological seedling traits, i.e., shoot length, root length, and fresh and dry shoot and root weights for salinity tolerance were observed to assess salt tolerance and genetic analysis using SNP data through DArT-seq. The results showed that, at the seedling stage, 150 mM NaCl treatment decreased shoot length, root length, and fresh and dry weights of the shoot and root. The root length and dry root weight were the most affected traits at the seedling stage. Effective 4417 SNPs encompassing all the chromosomes of the wheat genome with marker density, i.e., 37%, fall in genome B, genome D (32%), and genome A (31%). Five loci were found on four chromosomes 6B, 6D, 7A, and 7D, showing strong associations with the root length, fresh shoot weight, fresh root weight, and dry root weight at the p < 0.03 significance level. The positive correlation was found among all morphological traits under study.
Collapse
Affiliation(s)
- Rao Waqar Ahmad Khan
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Rao Sohail Ahmad Khan
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | - Faisal Saeed Awan
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
- *Correspondence: Faisal Saeed Awan, , ; Rana Khalid Iqbal,
| | - Ahmed Akrem
- Botany Division, Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Arslan Iftikhar
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | | | - Hind A. S. Alzahrani
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Hameed Alsamadany
- Department of Biological Sciences, Faculty of Science, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Rana Khalid Iqbal
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
- *Correspondence: Faisal Saeed Awan, , ; Rana Khalid Iqbal,
| |
Collapse
|
11
|
Overview of Identified Genomic Regions Associated with Various Agronomic and Physiological Traits in Barley under Abiotic Stresses. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105189] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Climate change has caused breeders to focus on varieties that are able to grow under unfavorable conditions, such as drought, high and low temperatures, salinity, and other stressors. In recent decades, progress in biotechnology and its related tools has provided opportunities to dissect and decipher the genetic basis of tolerance to various stress conditions. One such approach is the identification of genomic regions that are linked with specific or multiple characteristics. Cereal crops have a key role in supplying the energy required for human and animal populations. However, crop products are dramatically affected by various environmental stresses. Barley (Hordeum vulgare L.) is one of the oldest domesticated crops that is cultivated globally. Research has shown that, compared with other cereals, barley is well adapted to various harsh environmental conditions. There is ample literature regarding these responses to abiotic stressors, as well as the genomic regions associated with the various morpho-physiological and biochemical traits of stress tolerance. This review focuses on (i) identifying the tolerance mechanisms that are important for stable growth and development, and (ii) the applicability of QTL mapping and association analysis in identifying genomic regions linked with stress-tolerance traits, in order to help breeders in marker-assisted selection (MAS) to quickly screen tolerant germplasms in their breeding cycles. Overall, the information presented here will inform and assist future barley breeding programs.
Collapse
|
12
|
Meng X, Zeng B, Wang P, Li J, Cui R, Ren L. Food waste anaerobic biogas slurry as fertilizer: Potential salinization on different soil layer and effect on rhizobacteria community. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 144:490-501. [PMID: 35462293 DOI: 10.1016/j.wasman.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/11/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Biogas slurry(BS) from food waste anaerobic fermentation coexisted a lot of salinity that could damage soil and crops health. So, this study was to explore the effect of the application of biogas slurry on soil salinization in 1 ∼ 4 cm, 4-6 cm and 6 ∼ 8 cm soil layers every 10 days, Chinese cabbage growth and rhizobacteria. The results indicated that ≤ 10% concentration of biogas slurry was uninjurious for soil and plant, the dry weight growth rate was 73.7% compared with CK, long term application should be further evaluated the potential risk of salinity on underground water and human health. As for high concentration of biogas slurry ≥ 10% concentration of biogas slurry could inhibit the seed germination and root elongation, and the germination percentage was declined from 87.6% to 2.4%, but 50% and 100% concentration of biogas slurry showed a promotion of crop growth because of sufficient nutrition. However, the potential accumulation of salinity could be seen in high concentration of biogas slurry for long term application especially in top1-4 cm soil. Correlation analysis showed that Cl- was the main factor resulting high EC in all soil layers. 16S rRNA sequencing showed that UCG-004, Ketobacter, Sphingopyxis and RB41 could be regard as the indicators for determining the potential jeopardize on soil environmental by high salinity from biogas slurry.
Collapse
Affiliation(s)
- Xingyao Meng
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Bei Zeng
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Pan Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Jinglin Li
- China IPPR International Engineering Co, Ltd, Beijing 100048, China
| | - Ruoqi Cui
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Lianhai Ren
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
13
|
Using Halothermal Time Model to Describe Barley (Hordeumvulgare L.) Seed Germination Response to Water Potential and Temperature. Life (Basel) 2022; 12:life12020209. [PMID: 35207497 PMCID: PMC8878096 DOI: 10.3390/life12020209] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/22/2022] [Accepted: 01/27/2022] [Indexed: 11/27/2022] Open
Abstract
Barley (Hordeum vulgare L.) is a salt-tolerant crop with considerable economic value in salinity-affected arid and semiarid areas. In the laboratory experiment, the halothermal time (HaloTT) model was used to examine barley seed germination (SG) at six constant cardinal temperatures (Ts) of 15, 20, 25, 30, 35, and 40 °C under five different water potentials (ψs) of 0, −0.5, −1.5, −1.0, and −2.0 MPa. Results showed that at optimum moisture (0 MPa), the highest germination percentage (GP) was recorded at 20 °C and the lowest at 40 °C. Moreover, GP increased with the accelerated aging period (AAP) and significantly (p ≤ 0.05) decreased with high T. In addition, with a decrease of ψ from 0 to −0.5, −1, 1.5, and −2.0 MPa, GP decreased by 93.33, 76.67, 46.67, and 33.33%, respectively, in comparison with 0 MPa. The maximum halftime constant (θHalo) and coefficient of determination (R2) values were recorded at 20 °C and 30 °C, respectively. The optimum temperature (To) for barley is 20 °C, base Ψ of 50th percentile (Ψb (50)) is −0.23 Mpa, and standard deviation of Ψb (σΨb) is 0.21 MPa. The cardinal Ts for germination is 15 °C (Tb), 20 °C (To), and 40 °C (Tc). The GP, germination rate index (GRI), germination index (GI), coefficient of the velocity of germination (CVG), germination energy (GE), seed vigor index I and II (SVI-I & II), Timson germination index (GI), and root shoot ratio (RSR) were recorded maximum at 0 MPa at 20 °C and minimum at −2.0 MPa at 40 °C. Mean germination time (MGT) and time to 50% germination (T 50%) were maximum at −2 MPa at 40 °C, and minimum at 20 °C, respectively. In conclusion, the HaloTT model accurately predicted the germination time course of barley in response to T, Ψ, or NaCl. Therefore, barley can be regarded as a salt-tolerant plant and suitable for cultivation in arid and semi-arid regions due to its high resistance to salinity.
Collapse
|
14
|
Salt and Drought Effect on Germination and Initial Growth of Lavandula stoechas: A Potential Candidate for Rehabilitation of the Mediterranean Disturbed Coastal Lands. EKOLÓGIA (BRATISLAVA) 2021. [DOI: 10.2478/eko-2021-0032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Abstract
Information relating to germination and seedling emergence of a plant aids in determining the species spatiotemporal distribution and also facilitates in designing appropriate plant management strategies within an ecosystem. Lavandula stoechas L. (Lamiaceae), a naturally occurring shrub, is particularly used in pharmaceutical and cosmetic industries. This species, indeed, has the potential for rehabilitation of degraded costal lands. However, various aspects of its seed biology have not yet been recognised. Here, we aimed to assess the effects of different soluble salts (NaCl, CaCl2, MgCl2 and Na2SO4) and drought (as simulated by polyethylene glycol, [PEG]6000) on seed germination patterns and early seedling growth responses. Seeds treated with five iso-concentration (0–100 mM) salinities and five PEG6000 (0 to −1 MPa) levels were incubated in a controlled germinator set at 20°C. The preliminary results revealed that seeds of L. stoechas lacked primary/innate dormancy and they germinated abundantly (89.2% germination) and fast (7.4% day−1) in the absence of stress. Regardless of the kind of salt applied, the germination percentage (GP) and germination rate index (GRI) fell significantly with increasing salinity, and germination ceased completely at 100 mM Na2SO4. In fact, the salinity tolerance index (STI) showed that, among all salts tested, Na2SO4 appeared to have more inhibitory action on germination. In addition, L. stoechas was found to be tolerant to moderate salty stress (<50 mM) in early growth phase. The salt solution parameters (i.e. concentration, electrical conductivity [EC] and salt content) were best correlated with seed/seedling metrics. pH was not a good predictor for salt effects at the germination/seedling stages. Overall, this species seems to be sensitive to drought at the germination and initial growth phases. The germination recovery potential of L. stoechas in both stresses stipulates that this species can be regarded as a promising candidate in the rehabilitation of Mediterranean disturbed coastal habitats.
Collapse
|
15
|
Aazami MA, Rasouli F, Ebrahimzadeh A. Oxidative damage, antioxidant mechanism and gene expression in tomato responding to salinity stress under in vitro conditions and application of iron and zinc oxide nanoparticles on callus induction and plant regeneration. BMC PLANT BIOLOGY 2021; 21:597. [PMID: 34915853 PMCID: PMC8675469 DOI: 10.1186/s12870-021-03379-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/03/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND Salinity is one of the most challenging abiotic stresses restricting the growth of plants. In vitro screening will increase the efficiency and speed of salinity tolerant genotypes identifications. The response of four tomato cultivars under salinity was analyzed in vitro to evaluate the seedlings growth, biochemical, and gene expression responses as well as the effect of nano zinc and iron on callus induction and plant regeneration. RESULTS The results showed that an increase in salinity stress in the medium decreased the germination percentage, fresh and dry weight of shoot, root length, chlorophyll a, b and carotenoids content, K and Ca content, and on the other hand, Na content was increased. MDA content ('Nora', 'PS-10', 'Peto' and 'Roma': 1.71, 1.78, 1.66 and 2.16 folds, respectively), electrolyte leakage ('PS-10': 33.33%; 'Roma': 56.33%), were increased with salinity of 100 mM compared to control. Proline content was increased in 50 mM NaCl (10.8 fold). The most activity of antioxidant enzymes including CAT, SOD, APX, GPX, and GR was observed in the 'PS-10' cultivar, and the lowest activity of these enzymes was observed in 'Roma' under salinity stress. The AsA and GSH were decreased and DHA and GSSG were increased with the increased intensity of salinity. The relative expression of SOD, APX, and GR genes varied in different cultivars at different salinity concentrations. The most percentage of callus induction was observed with applying iron oxide nanoparticles, and the most regeneration rate was recorded using zinc oxide nanoparticles. CONCLUSION The results showed that salt-tolerant cultivars such as 'PS-10' with better osmotic adjustment, are suitable candidates for the future production and breeding programs. The use of nutrient nanoparticles under salinity stress for different tomato cultivars increased their performance.
Collapse
Affiliation(s)
- Mohammad Ali Aazami
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh, Iran.
| | - Farzad Rasouli
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Asghar Ebrahimzadeh
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| |
Collapse
|
16
|
Liang XD, Shalapy M, Zhao SF, Liu JH, Wang JY. A stress-responsive transcription factor PeNAC1 regulating beta-D-glucan biosynthetic genes enhances salt tolerance in oat. PLANTA 2021; 254:130. [PMID: 34817644 DOI: 10.1007/s00425-021-03770-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
A Populus euphratica NAC gene regulates (1,3; 1,4)-β-D-glucan content in oat developing seed and improves the spikelet number and grain number per spike in transgenic oat under salinity conditions Salinity is the major factor affecting the production and quality of oat, and improving oat salt tolerance to increase yield and quality is vital. (1,3;1,4)-β-D-glucan in Gramineae is the key component in response to various environmental signals, and it is the most important functional ingredient in oat grain. The NAC transcription factors are important candidate genes used in genetic engineering to improve plant abiotic stress tolerance. In this study, we introduced Populus euphratica PeNAC1, controlled by its own promoter, into hexaploid cultivated oat and produced six transgenic lines. Compared to the non-transgenic control, the expression of PeNAC1 significantly improved the seed germination rate, seedling survival rate, and leaf chlorophyll content in the transgenic plants under salt stress. These physiological changes increased the spikelet number and grain number per spike in the transgenic oat under salinity conditions and reduced the yield loss per plant. The results indicated that the heterologous expression of PeNAC1 plays an effective role in improving the salt tolerance in transgenic oat. In addition, overexpressing PeNAC1 significantly increased the (1,3;1,4)-β-D-glucan content as well as the expression level of the (1,3;1,4)-β-D-glucan biosynthetic genes AsCslF3, AsCslF6, and AsCslF9 in the transgenic lines under salt stress, which suggested that PeNAC1 regulates the synthesis of (1,3;1,4)-β-D-glucan. Our research should assist in the discovery of the diverse action modes of NAC proteins, while PeNAC1 will be useful for improving the salt tolerance and quality of oat through molecular breeding.
Collapse
Affiliation(s)
- Xiao-Dong Liang
- XinJiang Academy of Agricultural Sciences Grain Crops Institute, No. 403 Nanchang Road, Urumqi, 830091, China
- Biotechnology Research Institute of Chinese Academy of Agricultural Sciences, No. 12 Zhong Guan Cun South Street, Beijing, 100081, China
| | - Mohamed Shalapy
- XinJiang Academy of Agricultural Sciences Grain Crops Institute, No. 403 Nanchang Road, Urumqi, 830091, China
| | - Shi-Feng Zhao
- Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou, 075000, China
| | - Jing-Hui Liu
- Inner Mongolia Agriculture University, No. 275 Xue Yuan East Street, Hohhot, 010019, China.
| | - Jun-Ying Wang
- XinJiang Academy of Agricultural Sciences Grain Crops Institute, No. 403 Nanchang Road, Urumqi, 830091, China.
| |
Collapse
|
17
|
Gholizadeh F, Mirzaghaderi G, Danish S, Farsi M, Marashi SH. Evaluation of morphological traits of wheat varieties at germination stage under salinity stress. PLoS One 2021; 16:e0258703. [PMID: 34735471 PMCID: PMC8568147 DOI: 10.1371/journal.pone.0258703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/02/2021] [Indexed: 12/04/2022] Open
Abstract
Salinity stress is one of the major plant growth-limiting factors in agriculture. It causes ionic imbalance, thus decrease the growth and yield attributes of crops especially wheat. Seedling stage is considered as one of the most sensitive stages under salinity stress. Survival of seeds at seedling stage can overcome the adverse impacts of salinity stress to some extent. Selection of salt tolerant varieties in seedling stage is considered as an effective strategy. Hence, current study was conducted to examine the seed germination responses of four wheat varieties under different levels of salinity. The wheat varieties such as ‘Rakhshan’, ‘Sirvan’, ‘Pishgam’ and ‘Heidari’ were grown and four salinity levels of 0, 4, 8 and 12 dS/m were applied under completely randomized design. The varieties such as ‘Sirvan’, ‘Rakhshan’ and ‘Heidari’ showed significant response for germination compared to ‘Pishgam’ at 12 dS/m salinity. Furthermore, the variety ‘Rakhshan’ showed significantly higher germination rate (20.3%), higher root length (33.4%) and higher shoot length (84.3%) than ‘Pishgam’, ‘Sirvan’ and ‘Sirvan’ respectively. However, contrasting results were obtained for dry weight of seedlings where 12.2% increase was observed in ‘Pishgam’ over ‘Rakhshan’ at 12 dS/m salinity that might be due to higher capability to uptake of Na and Cl ions. In conclusion, ‘Rakhshan’ wheat variety proved to be the most salinity tolerant as it grew better under saline soil conditions. More investigations at field level are recommended to declare ‘Rakhshan’ as salinity tolerant cultivar.
Collapse
Affiliation(s)
- Fatemeh Gholizadeh
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Ghader Mirzaghaderi
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University Multan, Multan, Punjab, Pakistan
- * E-mail:
| | - Mohammad Farsi
- Department of Crop Biotechnology and Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Seyed Hasan Marashi
- Department of Crop Biotechnology and Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
18
|
Siddiqui ZH, Abbas ZK. Assessment of phytotoxicity of treated water of Tabuk wastewater plant by different technologies on seed germination of chick pea (Cicer arietinum). WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:2968-2979. [PMID: 34850707 PMCID: wst_2021_287 DOI: 10.2166/wst.2021.287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The use of reclaimed water as an alternative source is a sustainable way forward for an arid country like The Kingdom of Saudi Arabia. The sewage contains organic and inorganic pollutants from households and industrial sources that may not be removed during treatment. In this study, seeds of Cicer arietinum were germinated using six different concentrations of treated water from the Tabuk wastewater treatment plant and tap water was used as control. The physicochemical properties such as total dissolved solids, electrical conductivity, total suspended solids, and turbidity values of treated water were higher, which gradually decreased on dilution with tap water. The amount of ammonia, nitrite, nitrate, and phosphate was in higher concentration in treated water as compared to control. The use of 40% treated water (T3) improved the germination percentage, speed of germination and germination index of C. arietinum. The phytotoxicity test reveals that undiluted treated water (T6) is not fit for direct use on plants. All the investigated treatments confirmed that the use of more than 40% of treated water decreased the fresh weight and dry weight of the seedlings as compared to control. The results are encouraging and help in attaining water sustainability in the Tabuk region.
Collapse
Affiliation(s)
- Zahid Hameed Siddiqui
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, KSA E-mail: ;
| | - Zahid Khorshid Abbas
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, KSA E-mail: ;
| |
Collapse
|
19
|
Sayed MA, Tarawneh R, Youssef HM, Pillen K, Börner A. Detection and Verification of QTL for Salinity Tolerance at Germination and Seedling Stages Using Wild Barley Introgression Lines. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112246. [PMID: 34834608 PMCID: PMC8624391 DOI: 10.3390/plants10112246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Salinity is one of the major environmental factors that negatively affect crop development, particularly at the early growth stage of a plant and consequently the final yield. Therefore, a set of 50 wild barley (Hordeum vulgare ssp. spontaneum, Hsp) introgression lines (ILs) was used to detect QTL alleles improving germination and seedling growth under control, 75 mM, and 150 mM NaCl conditions. Large variation was observed for germination and seedling growth related traits that were highly heritable under salinity stress. In addition, highly significant differences were obtained for five salinity tolerance indices and between treatments as well. A total of 90 and 35 significant QTL were identified for ten investigated traits and for tolerance indices, respectively. The Hsp introgression alleles are involved in improving salinity tolerance at forty (43.9%) out of 90 QTL including introgression lines S42IL-109 (2H), S42IL-116 (4H), S42IL-132 (6H), S42IL-133 (7H), S42IL-148 (6H), and S42IL-176 (5H). Interestingly, seven exotic QTL alleles were successfully validated in the wild barley ILs including S42IL-127 (5H), 139 (7H), 125 (5H), 117 (4H), 118 (4H), 121 (4H), and 137 (7H). We conclude that the barley introgression lines contain numerous germination and seedling growth-improving novel QTL alleles, which are effective under salinity conditions.
Collapse
Affiliation(s)
- Mohammed Abdelaziz Sayed
- Agronomy Department, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
- Resources Genetics and Reproduction, Gene Bank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, D-06466 Seeland, Germany;
| | - Rasha Tarawneh
- Resources Genetics and Reproduction, Gene Bank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, D-06466 Seeland, Germany;
| | - Helmy Mohamed Youssef
- Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
- Plant Breeding, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120 Halle, Germany;
| | - Klaus Pillen
- Plant Breeding, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120 Halle, Germany;
| | - Andreas Börner
- Resources Genetics and Reproduction, Gene Bank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, D-06466 Seeland, Germany;
| |
Collapse
|
20
|
Dermendjiev G, Schnurer M, Weiszmann J, Wilfinger S, Ott E, Gebert C, Weckwerth W, Ibl V. Tissue-Specific Proteome and Subcellular Microscopic Analyses Reveal the Effect of High Salt Concentration on Actin Cytoskeleton and Vacuolization in Aleurone Cells during Early Germination of Barley. Int J Mol Sci 2021; 22:9642. [PMID: 34502558 PMCID: PMC8431815 DOI: 10.3390/ijms22179642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 01/03/2023] Open
Abstract
Cereal grain germination provides the basis for crop production and requires a tissue-specific interplay between the embryo and endosperm during heterotrophic germination involving signalling, protein secretion, and nutrient uptake until autotrophic growth is possible. High salt concentrations in soil are one of the most severe constraints limiting the germination of crop plants, affecting the metabolism and redox status within the tissues of germinating seed. However, little is known about the effect of salt on seed storage protein mobilization, the endomembrane system, and protein trafficking within and between these tissues. Here, we used mass spectrometry analyses to investigate the protein dynamics of the embryo and endosperm of barley (Hordeum vulgare, L.) at five different early points during germination (0, 12, 24, 48, and 72 h after imbibition) in germinated grains subjected to salt stress. The expression of proteins in the embryo as well as in the endosperm was temporally regulated. Seed storage proteins (SSPs), peptidases, and starch-digesting enzymes were affected by salt. Additionally, microscopic analyses revealed an altered assembly of actin bundles and morphology of protein storage vacuoles (PSVs) in the aleurone layer. Our results suggest that besides the salt-induced protein expression, intracellular trafficking and actin cytoskeleton assembly are responsible for germination delay under salt stress conditions.
Collapse
Affiliation(s)
- Georgi Dermendjiev
- Department of Functional and Evolutionary Ecology, Molecular Systems Biology (MoSys), Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Wien, Austria
| | - Madeleine Schnurer
- Department of Functional and Evolutionary Ecology, Molecular Systems Biology (MoSys), Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Wien, Austria
| | - Jakob Weiszmann
- Department of Functional and Evolutionary Ecology, Molecular Systems Biology (MoSys), Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Wien, Austria
| | - Sarah Wilfinger
- Department of Functional and Evolutionary Ecology, Molecular Systems Biology (MoSys), Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Wien, Austria
| | - Emanuel Ott
- Department of Functional and Evolutionary Ecology, Molecular Systems Biology (MoSys), Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Wien, Austria
| | - Claudia Gebert
- Department of Functional and Evolutionary Ecology, Molecular Systems Biology (MoSys), Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Wien, Austria
| | - Wolfram Weckwerth
- Department of Functional and Evolutionary Ecology, Molecular Systems Biology (MoSys), Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Wien, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Djerassiplatz 1, 1030 Wien, Austria
| | - Verena Ibl
- Department of Functional and Evolutionary Ecology, Molecular Systems Biology (MoSys), Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Wien, Austria
| |
Collapse
|
21
|
Bakhshandeh E, Jamali M. Halothermal and hydrothermal time models describe germination responses of canola seeds to ageing. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:621-629. [PMID: 33683764 DOI: 10.1111/plb.13251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Hydrothermal time (HTT) and halothermal time (HaloTT) models were used to quantitatively characterize the combined effects of temperature (T), water potential (ψ) and NaCl concentration on seed germination of canola after different accelerated ageing periods (AAP) at 42 °C and 100% humidity. Seed germination time courses were observed and electrical conductivities of seed leachates were measured in all experiments. The cardinal temperatures estimated by both models were 4.6, 28 and 35 °C for the base (Tb ), optimum (To ) and ceiling (Tc ) temperatures in water (0 MPa), respectively, when the seeds were not aged. The Tb increased with AAP, while the Tc decreased and the To remained constant at all AAP. Below To , the median base water potentials (ψb (50)) were -1.07, -0.73, -0.48 and -0.39 MPa for the AAP levels of 0, 24, 36 and 48 h, respectively. These values were more negative when germination occurred in salt solutions (the base NaCl concentrations converted to ψ were -1.25, -0.81, -0.51 and -0.41 MPa, respectively), due to uptake of salt ions. Thresholds became more positive above To and reached zero at Tc in all AAP. Seed osmotic adjustment capacity declined linearly with increasing AAP while the conductivity of seed leachates increased in association with the loss of seed vigour. Significant correlations between conductivity results and the parameters of HTT and HaloTT models suggest that they could be considered as effective descriptors of canola seed vigour.
Collapse
Affiliation(s)
- E Bakhshandeh
- Genetics and Agricultural Biotechnology Institute of Tabarestan & Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - M Jamali
- Department of Agroecology, Environmental Sciences Research Institute, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
22
|
An Y, Gao Y, Tong S, Liu B. Morphological and Physiological Traits Related to the Response and Adaption of Bolboschoenus planiculmis Seedlings Grown Under Salt-Alkaline Stress Conditions. FRONTIERS IN PLANT SCIENCE 2021; 12:567782. [PMID: 33746992 PMCID: PMC7973282 DOI: 10.3389/fpls.2021.567782] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 02/09/2021] [Indexed: 05/22/2023]
Abstract
Soil saline-alkalization is expanding and becoming a serious threat to the initial establishment of plants in inland salt marshes on the Songnen Plain in Northeast China. Bolboschoenus planiculmis is a key wetland plant in this area, and its root tubers provide food for an endangered migratory Siberian crane (Grus leucogeranus). However, the survival of this plant in many wetlands is threatened by increased soil saline-alkalization. The early establishment of B. planiculmis populations under salt and alkaline stress conditions has not been well understood. The aim of this study was to investigate the response and adaption of the seedling emergence and growth of B. planiculmis to salt-alkaline mixed stress. In this study, B. planiculmis root tubers were planted into saline-sodic soils with five pH levels (7.31-7.49, 8.48-8.59, 9.10-9.28, 10.07-10.19, and 10.66-10.73) and five salinity levels (40, 80, 120, 160, and 200 mmol⋅L-1). The emergence and growth metrics, as well as the underlying morphological and physiological traits in response to salt-alkaline stress were explored for 2-week-old seedlings. The seedling emergence, growth, and leaf and root traits showed distinct responses to the pH and salt gradients. Under the lower saline-alkaline condition (pH ≤ 9.10-9.28 and salinity ≤ 80 mmol⋅L-1), the seedling growth was substantially facilitated or not significantly altered. Salinity affected the seedlings more significantly than alkalinity did. In particular, among the salt ions, the Na+ concentration had predominantly negative effects on all the morphological and physiological traits of the seedlings. Seedling emergence was more tolerant to salinity and, based on its observed close relationships with pH and the alkaline ion CO3 2-, was highly alkalinity-dependent. Moreover, the leaf area and photosynthetic rate, as well as the root surface area and tip number mainly accounted for the response of the seedling biomass to salt-alkaline stress. This is evidence of the adaption of B. planiculmis to saline-alkaline conditions largely due to the responses of its morphological and physiological traits. This study provides a mechanistic process-based understanding of the early seedling establishment of B. planiculmis populations in response to increased soil saline-alkalization in natural wetlands.
Collapse
Affiliation(s)
- Yu An
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Yang Gao
- Jilin Academy of Agricultural Science, Changchun, China
| | - Shouzheng Tong
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Bo Liu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
23
|
Liu B, Liu X, Liu F, Ma H, Ma B, Peng L. Stress tolerance of Xerocomus badius and its promotion effect on seed germination and seedling growth of annual ryegrass under salt and drought stresses. AMB Express 2021; 11:15. [PMID: 33415525 PMCID: PMC7790950 DOI: 10.1186/s13568-020-01172-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 12/24/2020] [Indexed: 01/01/2023] Open
Abstract
Comparative evaluations were conducted to assess the effects of different pH levels, NaCl-induced salt stress, and PEG-induced drought stress on the mycelial growth of Xerocomus badius. The results showed that X. badius mycelium grew well at a wide pH range of 5.00 ~ 9.00. Although the mycelium remained viable, mycelial growth of X. badius was significantly inhibited with increasing salt and drought stresses. Furthermore, a soilless experiment in Petri dishes was performed to investigate the potential of X. badius to induce beneficial effects on seed germination and seedling growth of annual ryegrass (Lolium multiflorum Lam.) under salt and drought stresses. Seed priming with X. badius enhanced the seedling growth of L. multiflorum Lam. under NaCl-induced salt stress and PEG-induced drought stress. However, X. badius did not significantly improve the seed germination under non-stress and mild stress conditions. It suggested that X. badius inoculation with seeds was not essential for seed germination under non-stress and mild stress conditions, but contributed highly to seedling growth under severe stress conditions. Therefore, seed priming with X. badius on ryegrass could be an effective approach to enhance plant tolerance against drought and salt stresses. X. badius could be a good candidate for the inoculation of ectomycorrhizal plants cultivation programs in mild saline and semiarid areas.
Collapse
|
24
|
Noreen S, Sultan M, Akhter MS, Shah KH, Ummara U, Manzoor H, Ulfat M, Alyemeni MN, Ahmad P. Foliar fertigation of ascorbic acid and zinc improves growth, antioxidant enzyme activity and harvest index in barley (Hordeum vulgare L.) grown under salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:244-254. [PMID: 33221118 DOI: 10.1016/j.plaphy.2020.11.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/05/2020] [Indexed: 05/04/2023]
Abstract
Crop productivity is limited by several environmental constraints. Among these, salt stress plays a key role in limiting the growth and yield production of economically important agricultural crops. However, the exogenous fertigation of vitamins and minerals could serve as a "shot-gun" approach for offsetting the deleterious effects of salts present in the rhizosphere. Therefore, an experiment was conducted to quantify the efficacy of foliar fertigation of ascorbic acid (vitamin-C) and zinc (Zn) on the physio-biochemical attributes of barley (Hordeum vulgare L. Genotype B-14011) grown in a saline environment. The salt stress resulted in a reduced biological yield associated with a decrease in chlorophyll pigment, while a significant enhancement in Na+ and Zn2+ was observed under salinity stress. Similarly, the contents of total soluble proteins, total free amino acids, lipid peroxidation, and H2O2 and the activities of antioxidative enzymes (SOD, POD, CAT, APX and proline) were significantly enhanced under salinity stress. Moreover, salinity negatively affected the yield attributes and ion uptake of plants. However, foliar fertigation with AsA +0.03% Zn enhanced vegetative growth, photosynthetic pigments, synchronized ion uptake, the synthesis of enzymatic and non-enzymatic antioxidants, and the harvest index. It is inferred from this study that among all treatments, the effect of foliar fertigation with the AsA+0.03% Zn combination not only improved the salt stress tolerance but also improved the yield attributes, which will aid in the improvement in barley seed yield and is a step to solve the problem of malnutrition through biofortification of vitamin-C and zinc.
Collapse
Affiliation(s)
- Sibgha Noreen
- Institute of Pure and Applied Biology, Bahauddin Zakariya University Multan, Multan, Pakistan.
| | - Maham Sultan
- Institute of Pure and Applied Biology, Bahauddin Zakariya University Multan, Multan, Pakistan
| | - Muhammad Salim Akhter
- Institute of Pure and Applied Biology, Bahauddin Zakariya University Multan, Multan, Pakistan
| | - Kausar Hussain Shah
- Institute of Pure and Applied Biology, Bahauddin Zakariya University Multan, Multan, Pakistan
| | - Ume Ummara
- Institute of Pure and Applied Biology, Bahauddin Zakariya University Multan, Multan, Pakistan
| | - Hamid Manzoor
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University Multan, Multan, Pakistan
| | - Mobina Ulfat
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia; Department of Botany, S.P. College, Srinagar, Jammu and Kashmir, India.
| |
Collapse
|
25
|
He F, Wei C, Zhang Y, Long R, Li M, Wang Z, Yang Q, Kang J, Chen L. Genome-Wide Association Analysis Coupled With Transcriptome Analysis Reveals Candidate Genes Related to Salt Stress in Alfalfa ( Medicago sativa L.). FRONTIERS IN PLANT SCIENCE 2021; 12:826584. [PMID: 35185967 PMCID: PMC8850473 DOI: 10.3389/fpls.2021.826584] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/28/2021] [Indexed: 05/12/2023]
Abstract
Salt stress is the main abiotic factor affecting alfalfa yield and quality. However, knowledge of the genetic basis of the salt stress response in alfalfa is still limited. Here, a genome-wide association study (GWAS) involving 875,023 single-nucleotide polymorphisms (SNPs) was conducted on 220 alfalfa varieties under both normal and salt-stress conditions. Phenotypic analysis showed that breeding status and geographical origin play important roles in the alfalfa salt stress response. For germination ability under salt stress, a total of 15 significant SNPs explaining 9%-14% of the phenotypic variation were identified. For tolerance to salt stress in the seedling stage, a total of 18 significant SNPs explaining 12%-23% of the phenotypic variation were identified. Transcriptome analysis revealed 2,097 and 812 differentially expressed genes (DEGs) that were upregulated and 2,445 and 928 DEGs that were downregulated in the leaves and roots, respectively, under salt stress. Among these DEGs, many encoding transcription factors (TFs) were found, including MYB-, CBF-, NAC-, and bZIP-encoding genes. Combining the results of our GWAS analysis and transcriptome analysis, we identified a total of eight candidate genes (five candidate genes for tolerance to salt stress and three candidate genes for germination ability under salt stress). Two SNPs located within the upstream region of MsAUX28, which encodes an auxin response protein, were significantly associated with tolerance to salt stress. The two significant SNPs within the upstream region of MsAUX28 existed as three different haplotypes in this panel. Hap 1 (G/G, A/A) was under selection in the alfalfa domestication and improvement process.
Collapse
|
26
|
Seed Priming with Phytohormones: An Effective Approach for the Mitigation of Abiotic Stress. PLANTS 2020; 10:plants10010037. [PMID: 33375667 PMCID: PMC7824124 DOI: 10.3390/plants10010037] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022]
Abstract
Plants are often exposed to abiotic stresses such as drought, salinity, heat, cold, and heavy metals that induce complex responses, which result in reduced growth as well as crop yield. Phytohormones are well known for their regulatory role in plant growth and development, and they serve as important chemical messengers, allowing plants to function during exposure to various stresses. Seed priming is a physiological technique involving seed hydration and drying to improve metabolic processes prior to germination, thereby increasing the percentage and rate of germination and improving seedling growth and crop yield under normal and various biotic and abiotic stresses. Seed priming allows plants to obtain an enhanced capacity for rapidly and effectively combating different stresses. Thus, seed priming with phytohormones has emerged as an important tool for mitigating the effects of abiotic stress. Therefore, this review discusses the potential role of priming with phytohormones to mitigate the harmful effects of abiotic stresses, possible mechanisms for how mitigation is accomplished, and roles of priming on the enhancement of crop production.
Collapse
|
27
|
CERİTOĞLU M, ERMAN M. Nohut Çimlenmesi Üzerine Tuzluluk Stresinin Salisilik Asit Priming ile Azaltılması. ULUSLARARASI TARIM VE YABAN HAYATI BILIMLERI DERGISI 2020. [DOI: 10.24180/ijaws.774969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
28
|
Current Advances in Plant Growth Promoting Bacteria Alleviating Salt Stress for Sustainable Agriculture. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10207025] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Humanity in the modern world is confronted with diverse problems at several levels. The environmental concern is probably the most important as it threatens different ecosystems, food, and farming as well as humans, animals, and plants. More specifically, salinization of agricultural soils is a global concern because of on one side, the permanent increase of the areas affected, and on the other side, the disastrous damage caused to various plants affecting hugely crop productivity and yields. Currently, great attention is directed towards the use of Plant Growth Promoting Bacteria (PGPB). This alternative method, which is healthy, safe, and ecological, seems to be very promising in terms of simultaneous salinity alleviation and improving crop productivity. This review attempts to deal with different aspects of the current advances concerning the use of PGPBs for saline stress alleviation. The objective is to explain, discuss, and present the current progress in this area of research. We firstly discuss the implication of PGPB on soil desalinization. We present the impacts of salinity on crops. We look for the different salinity origin and its impacts on plants. We discuss the impacts of salinity on soil. Then, we review various recent progress of hemophilic PGPB for sustainable agriculture. We categorize the mechanisms of PGPB toward salinity tolerance. We discuss the use of PGPB inoculants under salinity that can reduce chemical fertilization. Finally, we present some possible directions for future investigation. It seems that PGPBs use for saline stress alleviation gain more importance, investigations, and applications. Regarding the complexity of the mechanisms implicated in this domain, various aspects remain to be elucidated.
Collapse
|
29
|
What is the Difference between the Response of Grass Pea (Lathyrus sativus L.) to Salinity and Drought Stress?—A Physiological Study. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10060833] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Understanding the mechanisms of plant tolerance to osmotic and chemical stress is fundamental to maintaining high crop productivity. Soil drought often occurs in combination with physiological drought, which causes chemical stress due to high concentrations of ions. Hence, it is often assumed that the acclimatization of plants to salinity and drought follows the same mechanisms. Grass pea (Lathyrus sativus L.) is a legume plant with extraordinary tolerance to severe drought and moderate salinity. The aim of the presented study was to compare acclimatization strategies of grass pea seedlings to osmotic (PEG) and chemical (NaCl) stress on a physiological level. Concentrations of NaCl and PEG were adjusted to create an osmotic potential of a medium at the level of 0.0, −0.45 and −0.65 MPa. The seedlings on the media with PEG were much smaller than those growing in the presence of NaCl, but had a significantly higher content percentage of dry weight. Moreover, the stressors triggered different accumulation patterns of phenolic compounds, soluble and insoluble sugars, proline and β-N-oxalyl-L-α,β-diamino propionic acid, as well as peroxidase and catalase activity. Our results showed that drought stress induced a resistance mechanism consisting of growth rate limitation in favor of osmotic adjustment, while salinity stress induced primarily the mechanisms of efficient compartmentation of harmful ions in the roots and shoots. Furthermore, our results indicated that grass pea plants differed in their response to drought and salinity from the very beginning of stress occurrence.
Collapse
|
30
|
Mwando E, Han Y, Angessa TT, Zhou G, Hill CB, Zhang XQ, Li C. Genome-Wide Association Study of Salinity Tolerance During Germination in Barley ( Hordeum vulgare L.). FRONTIERS IN PLANT SCIENCE 2020; 11:118. [PMID: 32153619 PMCID: PMC7047234 DOI: 10.3389/fpls.2020.00118] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 01/27/2020] [Indexed: 05/21/2023]
Abstract
Barley seeds need to be able to germinate and establish seedlings in saline soils in Mediterranean-type climates. Despite being a major cereal crop, barley has few reported quantitative trait loci (QTL) and candidate genes underlying salt tolerance at the germination stage. Breeding programs targeting salinity tolerance at germination require an understanding of genetic loci and alleles in the current germplasm. In this study, we investigated seed-germination-related traits under control and salt stress conditions in 350 diverse barley accessions. A genome-wide association study, using ~24,000 genetic markers, was undertaken to detect marker-trait associations (MTA) and the underlying candidate genes for salinity tolerance during germination. We detected 19 loci containing 52 significant salt-tolerance-associated markers across all chromosomes, and 4 genes belonging to 4 family functions underlying the predicted MTAs. Our results provide new genetic resources and information to improve salt tolerance at germination in future barley varieties via genomic and marker-assisted selection and to open up avenues for further functional characterization of the identified candidate genes.
Collapse
Affiliation(s)
- Edward Mwando
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, Australia
| | - Yong Han
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, Australia
| | - Tefera Tolera Angessa
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, Australia
- Department of Primary Industries and Regional Development Government of Western Australia, Perth, WA, Australia
| | - Gaofeng Zhou
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Department of Primary Industries and Regional Development Government of Western Australia, Perth, WA, Australia
| | - Camilla Beate Hill
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, Australia
| | - Xiao-Qi Zhang
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, Australia
| | - Chengdao Li
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, Australia
- Department of Primary Industries and Regional Development Government of Western Australia, Perth, WA, Australia
| |
Collapse
|
31
|
Mwando E, Angessa TT, Han Y, Li C. Salinity tolerance in barley during germination- homologs and potential genes. J Zhejiang Univ Sci B 2020; 21:93-121. [PMID: 32115909 PMCID: PMC7076347 DOI: 10.1631/jzus.b1900400] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/25/2019] [Indexed: 12/13/2022]
Abstract
Salinity affects more than 6% of the world's total land area, causing massive losses in crop yield. Salinity inhibits plant growth and development through osmotic and ionic stresses; however, some plants exhibit adaptations through osmotic regulation, exclusion, and translocation of accumulated Na+ or Cl-. Currently, there are no practical, economically viable methods for managing salinity, so the best practice is to grow crops with improved tolerance. Germination is the stage in a plant's life cycle most adversely affected by salinity. Barley, the fourth most important cereal crop in the world, has outstanding salinity tolerance, relative to other cereal crops. Here, we review the genetics of salinity tolerance in barley during germination by summarizing reported quantitative trait loci (QTLs) and functional genes. The homologs of candidate genes for salinity tolerance in Arabidopsis, soybean, maize, wheat, and rice have been blasted and mapped on the barley reference genome. The genetic diversity of three reported functional gene families for salt tolerance during barley germination, namely dehydration-responsive element-binding (DREB) protein, somatic embryogenesis receptor-like kinase and aquaporin genes, is discussed. While all three gene families show great diversity in most plant species, the DREB gene family is more diverse in barley than in wheat and rice. Further to this review, a convenient method for screening for salinity tolerance at germination is needed, and the mechanisms of action of the genes involved in salt tolerance need to be identified, validated, and transferred to commercial cultivars for field production in saline soil.
Collapse
Affiliation(s)
- Edward Mwando
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150, Australia
| | - Tefera Tolera Angessa
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150, Australia
- Department of Primary Industries and Regional Development, 3 Baron-Hay Court, South Perth, WA 6151, Australia
| | - Yong Han
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150, Australia
| | - Chengdao Li
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150, Australia
- Department of Primary Industries and Regional Development, 3 Baron-Hay Court, South Perth, WA 6151, Australia
| |
Collapse
|
32
|
Using a Taguchi DOE to investigate factors and interactions affecting germination in Miscanthus sinensis. Sci Rep 2020; 10:1602. [PMID: 32005862 PMCID: PMC6994594 DOI: 10.1038/s41598-020-58322-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/20/2019] [Indexed: 11/17/2022] Open
Abstract
The Miscanthus genus of perennial grasses is grown for bioenergy and biorenewable feedstocks. Most Miscanthus crop is M × giganteus which is rhizome propagated and therefore difficult to multiply at large scale. Seed-based propagation of new hybrids is being developed, but Miscanthus is difficult to establish from seed especially in the field. Miscanthus is often grown on marginal land adding to the challenge of successfully establishing the crop. Improved understanding of the limits and biology of germination in Miscanthus species is needed. Seed germination is affected by physical and chemical factors that impact germination differently depending on level of exposure. In this investigation of Miscanthus germination, four hormones plus water stress were investigated and the range over which these factors affect germination was determined. An efficient Taguchi experimental design was used to assess the five factors in combination with the effects of light and seed priming. This determined an example of a set of optimum conditions for Miscanthus germination and demonstrated how this could change based on fixing one condition. The experiment showed how environmental stress impacted germination and how treatments such as gibberellic acid could be used to mitigate stress.
Collapse
|
33
|
Lai Y, Zhang D, Wang J, Wang J, Ren P, Yao L, Si E, Kong Y, Wang H. Integrative Transcriptomic and Proteomic Analyses of Molecular Mechanism Responding to Salt Stress during Seed Germination in Hulless Barley. Int J Mol Sci 2020; 21:ijms21010359. [PMID: 31935789 PMCID: PMC6981547 DOI: 10.3390/ijms21010359] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 12/19/2022] Open
Abstract
Hulless barley (Hordeum vulgare L. var. nudum) is one of the most important crops in the Qinghai-Tibet Plateau. Soil salinity seriously affects its cultivation. To investigate the mechanism of salt stress response during seed germination, two contrasting hulless barley genotypes were selected to first investigate the molecular mechanism of seed salinity response during the germination stage using RNA-sequencing and isobaric tags for relative and absolute quantitation technologies. Compared to the salt-sensitive landrace lk621, the salt-tolerant one lk573 germinated normally under salt stress. The changes in hormone contents also differed between lk621 and lk573. In lk573, 1597 differentially expressed genes (DEGs) and 171 differentially expressed proteins (DEPs) were specifically detected at 4 h after salt stress, and correspondingly, 2748 and 328 specifically detected at 16 h. Most specific DEGs in lk573 were involved in response to oxidative stress, biosynthetic process, protein localization, and vesicle-mediated transport, and most specific DEPs were assigned to an oxidation-reduction process, carbohydrate metabolic process, and protein phosphorylation. There were 96 genes specifically differentially expressed at both transcriptomic and proteomic levels in lk573. These results revealed the molecular mechanism of salt tolerance and provided candidate genes for further study and salt-tolerant improvement in hulless barley.
Collapse
Affiliation(s)
- Yong Lai
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (Y.L.); (D.Z.)
| | - Dangquan Zhang
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (Y.L.); (D.Z.)
| | - Jinmin Wang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Juncheng Wang
- Gansu Provincial Key Lab of Aridland Crop Science, Lanzhou 730070, China
| | - Panrong Ren
- Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lirong Yao
- Gansu Provincial Key Lab of Aridland Crop Science, Lanzhou 730070, China
| | - Erjing Si
- Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
| | - Yuhua Kong
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (Y.L.); (D.Z.)
- Correspondence: (Y.K.); (H.W.)
| | - Huajun Wang
- Gansu Provincial Key Lab of Aridland Crop Science, Lanzhou 730070, China
- Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
- Correspondence: (Y.K.); (H.W.)
| |
Collapse
|
34
|
Wang X, Cheng R, Zhu H, Cheng X, Shutes B, Yan B. Seed germination and early seedling growth of six wetland plant species in saline-alkaline environment. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 22:1185-1194. [PMID: 32281893 DOI: 10.1080/15226514.2020.1748565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
This study focused on the effect of saline and alkaline stress on six typical wetland plant species during seed germination and early seedling growth stages. Based on the indicators of germination, seedling growth and ionic absorption in seedlings, relatively saline and alkaline tolerant plant species were selected and tolerance mechanism was discussed. Results showed that the existence of saline and alkaline stress inhibited the capacity of germination and early seedling growth of most tested plant species to varying degrees, therein effects of saline-alkaline stress were greater than saline stress. Based on the results of principal component analysis (PCA), germination percentage, K+ content, plant height, Na+ content and Na+/K+ ratios can be selected as representative indicators for saline and alkaline tolerance evaluation during seed germination and early seedling growth stages. Among tested species, Juncus effusus and Vetiveria zizanioides exhibited relatively higher saline and alkaline tolerant capacity during their seed germination and early seedling growth. Additionally, both species increase K+ accumulation and retain lower Na+/K+ ratios, which might be their tolerance mechanisms at ion level. In conclusion, V. zizaniodes and J. effusus were recommended as potential plant species for restoring degraded saline-alkaline wetlands and/or establishing constructed wetlands for treating saline wastewater.
Collapse
Affiliation(s)
- Xinyi Wang
- School of Environmental Science, Liaoning University, Shenyang, China
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Rui Cheng
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- Department of Resource and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Hui Zhu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Xianwei Cheng
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Brian Shutes
- Department of Natural Sciences, Middlesex University, Hendon, UK
| | - Baixing Yan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
35
|
Gupta S, Rupasinghe T, Callahan DL, Natera SHA, Smith PMC, Hill CB, Roessner U, Boughton BA. Spatio-Temporal Metabolite and Elemental Profiling of Salt Stressed Barley Seeds During Initial Stages of Germination by MALDI-MSI and µ-XRF Spectrometry. FRONTIERS IN PLANT SCIENCE 2019; 10:1139. [PMID: 31608088 PMCID: PMC6774343 DOI: 10.3389/fpls.2019.01139] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/21/2019] [Indexed: 05/05/2023]
Abstract
Seed germination is the essential first step in crop establishment, and can be severely affected by salinity stress which can inhibit essential metabolic processes during the germination process. Salt stress during seed germination can trigger lipid-dependent signalling cascades that activate plant adaptation processes, lead to changes in membrane fluidity to help resist the stress, and cause secondary metabolite responses due to increased oxidative stress. In germinating barley (Hordeum vulgare), knowledge of the changes in spatial distribution of lipids and other small molecules at a cellular level in response to salt stress is limited. In this study, mass spectrometry imaging (MSI), liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QToF-MS), inductively coupled plasma mass spectrometry (ICP-MS), and X-ray fluorescence (XRF) were used to determine the spatial distribution of metabolites, lipids and a range of elements, such as K+ and Na+, in seeds of two barley genotypes with contrasting germination phenology (Australian barley varieties Mundah and Keel). We detected and tentatively identified more than 200 lipid species belonging to seven major lipid classes (fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, prenol lipids, sterol lipids, and polyketides) that differed in their spatial distribution based on genotype (Mundah or Keel), time post-imbibition (0 to 72 h), or treatment (control or salt). We found a tentative flavonoid was discriminant in post-imbibed Mundah embryos under saline conditions, and a delayed flavonoid response in Keel relative to Mundah. We further employed MSI-MS/MS and LC-QToF-MS/MS to explore the identity of the discriminant flavonoid and study the temporal pattern in five additional barley genotypes. ICP-MS was used to quantify the elemental composition of both Mundah and Keel seeds, showing a significant increase in Na+ in salt treated samples. Spatial mapping of elements using µ-XRF localized the elements within the seeds. This study integrates data obtained from three mass spectrometry platforms together with µ-XRF to yield information on the localization of lipids, metabolites and elements improving our understanding of the germination process under salt stress at a molecular level.
Collapse
Affiliation(s)
- Sneha Gupta
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Thusitha Rupasinghe
- Metabolomics Australia, School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Damien L. Callahan
- School of Life and Environmental Sciences, Deakin University, Burwood, VIC, Australia
| | - Siria H. A. Natera
- Metabolomics Australia, School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Penelope M. C. Smith
- AgriBio, Centre for AgriBiosciences, Department of Animal, Plant and Soil Sciences, School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Camilla B. Hill
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Ute Roessner
- Metabolomics Australia, School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Berin A. Boughton
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
- Metabolomics Australia, School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
36
|
Effect of salinity stress on bioactive compounds and antioxidant activity of wheat microgreen extract under organic cultivation conditions. Int J Biol Macromol 2019; 140:631-636. [PMID: 31415860 DOI: 10.1016/j.ijbiomac.2019.08.090] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/08/2019] [Accepted: 08/10/2019] [Indexed: 11/22/2022]
Abstract
This study was conducted to confirm the effects of salinity stress on bioactive compounds and antioxidant activity of wheat microgreen extract. The microgreens were cultivated for 8 days in organic media with different concentrations of Na [0 (control), 12.5, 25, 50, and 100 mM from sodium chloride] which was contained in a growth chamber with controlled temperature (20/15 °C, day/night), light (14/10 h, light/dark; intensity 150 μmol·m-2·s-1 with quantum dot light-emitting diodes), and humidity (60%). Treatment with increasing concentrations of Na resulted in an increase in the Na content of microgreens. Treatment with 12.5 mM of NaCl significantly maximized β-carotene (1.21 μg/mL), phenolic acid (41.70 μg/mL), flavonoid (165.47 μg/mL), and vitamin C (29.51 μg/mL) levels and the nitrite-scavenging activities (37.33%) in wheat microgreen extracts. In addition, the salt-stress caused due to treatment with 25 mM of NaCl resulted in the highest anthocyanin (51.43 μg/mL), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (89.31%), and 2,2-diphenyl-1-picrylhydrazyl (63.28%) radical-scavenging activity. Therefore, attaining adequate levels of salt-stress may be useful for the industrial manufacturing of new products from wheat microgreen extract.
Collapse
|
37
|
Heidari H, Yosefi M, Sasani S, Nosratti I. Effect of irrigation with detergent-containing water on foxtail millet shoot biomass and ion accumulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:6328-6335. [PMID: 30617893 DOI: 10.1007/s11356-018-3966-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
Water shortage leads farmers to use sewages for irrigation. Sewages contain a large amount of laundry detergent. In this study the impact of irrigation by contaminated water on shoot biomass and seed germination of foxtail millet (Setaria italica) was investigated. The research was conducted as laboratory and pot experiments. Iso-potentials (- 0.042, - 0.077, and - 0.415 MPa) of polyethylene glycol (PEG, water deficit treatment) and laundry detergent (contamination treatment) made the laboratory experiment treatments. The pot experiment included contamination factor (0, 0.1, 1, and 10 g L-1 of laundry detergent) and deficit irrigation factor (irrigation interval of 1, 2, and 3 days). Results of this study showed that at the iso-potential, laundry detergent had more negative effect on seed germination traits when compared with PEG. There was no germination at - 0.415 MPa of laundry detergent. Both drought and contamination reduced dry forage yield, plant height, leaf number, leaf area, leaf dry and fresh weight, stem dry, and fresh weight. Detergent concentration of 10 g L-1 with irrigation interval of 3 days had a forage yield reduction of 63% compared to control (laundry detergent concentration of 0 g L-1 with irrigation interval of 1 day). Detergent concentration of 10 g L-1 with irrigation interval of 1 day had a sodium increase of 1847% compared to control. Based on the results of this study, it is recommended not to irrigate foxtail millet farm by contaminated water with laundry detergent higher than 1 g L-1.
Collapse
Affiliation(s)
- Hassan Heidari
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Razi University, Kermanshah, Iran.
| | - Maliheh Yosefi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Razi University, Kermanshah, Iran
| | - Shahryar Sasani
- Horticultural Crops Research Department, Kermanshah Agricultural and Natural Resources Research and Education Center, AREEO, Kermanshah, Iran
| | - Iraj Nosratti
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Razi University, Kermanshah, Iran
| |
Collapse
|
38
|
Vandelook F, Janssens SB, Matthies D. Ecological niche and phylogeny explain distribution of seed mass in the central European flora. OIKOS 2018. [DOI: 10.1111/oik.05239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Filip Vandelook
- Botanic Garden Meise; Nieuwelaan 38 BE-1860 Meise Belgium
- Plant Ecology; Dept of Biology, Univ. of Marburg; Marburg Germany
| | | | | |
Collapse
|
39
|
Wang M, Li E, Liu C, Jousset A, Salles JF. Functionality of Root-Associated Bacteria along a Salt Marsh Primary Succession. Front Microbiol 2017; 8:2102. [PMID: 29163397 PMCID: PMC5670159 DOI: 10.3389/fmicb.2017.02102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/13/2017] [Indexed: 01/23/2023] Open
Abstract
Plant-associated bacteria are known for their high functional trait diversity, from which many are likely to play a role in primary and secondary succession, facilitating plant establishment in suboptimal soils conditions. Here we used an undisturbed salt marsh chronosequence that represents over 100 years of soil development to assess how the functional traits of plant associated bacteria respond to soil type, plant species and plant compartment. We isolated and characterized 808 bacterial colonies from the rhizosphere soil and root endosphere of two salt marsh plants, Limonium vulgare and Artemisia maritima, along the chronosequence. From these, a set of 59 strains (with unique BOX-PCR patterns, 16S rRNA sequence and unique to one of the treatments) were further screened for their plant growth promoting traits (siderophore production, IAA production, exoprotease production and biofilm formation), traits associated with bacterial fitness (antibiotic and abiotic stress resistance - pH, osmotic and oxidative stress, and salinity) and metabolic potential. An overall view of functional diversity (multivariate analysis) indicated that the distributional pattern of bacterial functional traits was driven by soil type. Samples from the late succession (Stage 105 year) showed the most restricted distribution, harboring strains with relatively low functionalities, whereas the isolates from intermediate stage (35 year) showed a broad functional profiles. However, strains with high trait performance were largely from stage 65 year. Grouping the traits according to category revealed that the functionality of plant endophytes did not vary along the succession, thus being driven by plant rather than soil type. In opposition, the functionality of rhizosphere isolates responded strongly to variations in soil type as observed for antibiotic resistance (P = 0.014). Specifically, certain Pseudomonas sp. and Serratia sp. strains revealed high resistance against abiotic stress and antibiotics and produce more siderophores, confirming the high plant-growth promoting activity of these two genera. Overall, this study contributes to a better understanding of the functional diversity and adaptation of the microbiome at typical salt marsh plant species across soil types. Specifically, soil type was influential only in the rhizosphere but not on the endosphere, indicating a strong plant-driven effect on the functionality of endophytes.
Collapse
Affiliation(s)
- Miao Wang
- Research Group of Microbial Community Ecology, Genomics Research in Ecology and Evolution in Nature, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Erqin Li
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Chen Liu
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Utrecht, Netherlands
| | | | - Joana F. Salles
- Research Group of Microbial Community Ecology, Genomics Research in Ecology and Evolution in Nature, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| |
Collapse
|
40
|
Angessa TT, Zhang XQ, Zhou G, Broughton S, Zhang W, Li C. Early growth stages salinity stress tolerance in CM72 x Gairdner doubled haploid barley population. PLoS One 2017. [PMID: 28640858 PMCID: PMC5480976 DOI: 10.1371/journal.pone.0179715] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A doubled haploid (DH) population of barley (Hordeum vulgare L.) generated from salinity tolerant genotype CM72 and salinity sensitive variety Gairdner was studied for salinity stress tolerance at germination, seedling emergence and first leaf full expansion growth stages. Germination study was conducted with deionized water, 150 mM and 300 mM NaCl treatments. Seedling stage salinity tolerance was conducted with three treatments: control, 150 mM NaCl added at seedling emergence and first leaf full expansion growth stages. Results from this study revealed transgressive phenotypic segregations for germination percentage and biomass at seedling stage. Twelve QTL were identified on chromosomes 2H-6H each explaining 10-25% of the phenotypic variations. A QTL located at 176.5 cM on chromosome 3H was linked with fresh weight per plant and dry weight per plant in salinity stress induced at first leaf full expansion growth stage, and dry weight per plant in salinity stress induced at seedling emergence. A stable QTL for germination at both 150 and 300 mM salinity stress was mapped on chromosome 2H but distantly located from a QTL linked with seedling stage salinity stress tolerance. QTL, associated markers and genotypes identified in this study play important roles in developing salinity stress tolerant barley varieties.
Collapse
Affiliation(s)
- Tefera Tolera Angessa
- Western Barley Genetics Alliance, School of Veterinary and Life Sciences (VLS), Murdoch University, Murdoch, WA, Australia
| | - Xiao-Qi Zhang
- Western Barley Genetics Alliance, School of Veterinary and Life Sciences (VLS), Murdoch University, Murdoch, WA, Australia
| | - Gaofeng Zhou
- Western Barley Genetics Alliance, School of Veterinary and Life Sciences (VLS), Murdoch University, Murdoch, WA, Australia
| | - Sue Broughton
- Grains Industry, Department of Agriculture and Food WA, South Perth, WA, Australia
| | - Wenying Zhang
- Hubei Collaborative Innovation Centre for Grain Industry/College of Agriculture, Yangtze University, Jingzhou, Hubei, China
- * E-mail: (CL); (WZ)
| | - Chengdao Li
- Western Barley Genetics Alliance, School of Veterinary and Life Sciences (VLS), Murdoch University, Murdoch, WA, Australia
- Grains Industry, Department of Agriculture and Food WA, South Perth, WA, Australia
- * E-mail: (CL); (WZ)
| |
Collapse
|
41
|
Chamorro D, Luna B, Ourcival JM, Kavgacı A, Sirca C, Mouillot F, Arianoutsou M, Moreno JM. Germination sensitivity to water stress in four shrubby species across the Mediterranean Basin. PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:23-31. [PMID: 26998911 DOI: 10.1111/plb.12450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 03/14/2016] [Indexed: 06/05/2023]
Abstract
Mediterranean shrublands are generally water-limited and fire-driven ecosystems. Seed-based post-fire regeneration may be affected by varying rainfall patterns, depending on species sensitivity to germinate under water stress. In our study, we considered the germination response to water stress in four species from several sites across the Mediterranean Basin. Seeds of species with a hard coat (Cistus monspeliensis, C. salviifolius, Cistaceae, Calicotome villosa, Fabaceae) or soft coat (Erica arborea, Ericaceae), which were exposed or not to a heat shock and smoke (fire cues), were made to germinate under water stress. Final germination percentage, germination speed and viability of seeds were recorded. Germination was modelled using hydrotime analysis and correlated to the water balance characteristics of seed provenance. Water stress was found to decrease final germination in the three hard-seeded species, as well as reduce germination speed. Moreover, an interaction between fire cues and water stress was found, whereby fire cues increased sensitivity to water stress. Seed viability after germination under water stress also declined in two hard-seeded species. Conversely, E. arborea showed little sensitivity to water stress, independent of fire cues. Germination responses varied among populations of all species, and hydrotime parameters were not correlated to site water balance, except in E. arborea when not exposed to fire cues. In conclusion, the species studied differed in germination sensitivity to water stress; furthermore, fire cues increased this sensitivity in the three hard-seeded species, but not in E. arborea. Moreover, populations within species consistently differed among themselves, but these differences could only be related to the provenance locality in E. arborea in seeds not exposed to fire cues.
Collapse
Affiliation(s)
- D Chamorro
- Departamento de Ciencias Ambientales, Universidad de Castilla-La Mancha, Toledo, Spain
| | - B Luna
- Departamento de Ciencias Ambientales, Universidad de Castilla-La Mancha, Toledo, Spain
| | - J-M Ourcival
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175 CNRS/Université de Montpellier/Université Paul Valery Montpellier/EPHE, Montpellier, France
| | - A Kavgacı
- Batı Akdeniz Ormancılık Arastirma Enstitüsü, Southwest Anatolia Forest Research Institute, Antalya, Turkey
| | - C Sirca
- DIPNET, Dipartimento di Scienze della Natura e del Territorio, University of Sassari, Sassari, Italy
- IAFES Division of the CMCC, Euro-Mediterranean Centre on Climate Change, Sassari, Italy
| | - F Mouillot
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175 CNRS/Université de Montpellier/Université Paul Valery Montpellier/EPHE/IRD, Montpellier, France
| | - M Arianoutsou
- Department of Ecology and Systematics, Faculty of Biology, University of Athens, Athens, Greece
| | - J M Moreno
- Departamento de Ciencias Ambientales, Universidad de Castilla-La Mancha, Toledo, Spain
| |
Collapse
|
42
|
Skorupa M, Gołębiewski M, Domagalski K, Kurnik K, Abu Nahia K, Złoch M, Tretyn A, Tyburski J. Transcriptomic profiling of the salt stress response in excised leaves of the halophyte Beta vulgaris ssp. maritima. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 243:56-70. [PMID: 26795151 DOI: 10.1016/j.plantsci.2015.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/20/2015] [Accepted: 11/21/2015] [Indexed: 05/21/2023]
Abstract
Beta vulgaris ssp. maritima is a halophytic relative of cultivated beets. In the present work a transcriptome response to acute salt stress imposed to excised leaves of sea beet was investigated. Salt treatments consisted of adding NaCl directly to the transpiration stream by immersing the petioles of excised leaves into the salt solutions. Sequencing libraries were generated from leaves subjected to either moderate or strong salt stress. Control libraries were constructed from untreated leaves. Sequencing was performed using the Illumina MiSeq platform. We obtained 32970 unigenes by assembling the pooled reads from all the libraries with Trinity software. Screening the nr database returned 18,362 sequences with functional annotation. Using the reference transcriptome we identified 1,246 genes that were differentially expressed after 48 h of NaCl stress. Genes related to several cellular functions such as membrane transport, osmoprotection, molecular chaperoning, redox metabolism or protein synthesis were differentially expressed in response to salt stress. The response of sea beet leaves to salt treatments was marked out by transcriptomic up-regulation of genes related to photosynthetic carbon fixation, ribosome biogenesis, cell wall-building and cell wall expansion. Furthermore, several novel and undescribed transcripts were responsive to salinity in leaves of sea beet.
Collapse
Affiliation(s)
- Monika Skorupa
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
| | - Marcin Gołębiewski
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | - Krzysztof Domagalski
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | - Katarzyna Kurnik
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
| | - Karim Abu Nahia
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
| | - Michał Złoch
- Department of Microbiology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
| | - Andrzej Tretyn
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | - Jarosław Tyburski
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland.
| |
Collapse
|
43
|
Rusan MJM, Albalasmeh AA, Zuraiqi S, Bashabsheh M. Evaluation of phytotoxicity effect of olive mill wastewater treated by different technologies on seed germination of barley (Hordeum vulgare L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:9127-9135. [PMID: 25874415 DOI: 10.1007/s11356-014-4004-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 12/15/2014] [Indexed: 06/04/2023]
Abstract
Olive-mill wastewater (OMW) is a by-product effluent of olive oil extraction process that is produced in large amount in the Mediterranean region. OMW is believed to induce phytotoxic effect on organisms including seed germination and plant growth. The objective of this study was to evaluate the impact of untreated and treated OMW with different techniques on seed germination of barley (Hordeum vulgare L.). The following treatments were investigated: (1) tap water (control); (2) OMW treated by aerobic biological technology in a Jacto Reactor (JR); (3) OMW treated by solar fenton oxidation (SFO); (4) OMW treated by microfiltration followed by nanofiltration (MF+NF); (5) OMW treated by microfiltration followed by reverse osmosis (MF+RO) process; (6) diluted OMW with tap water (25 % OMW); (7) diluted OMW with tap water (50 % OMW); (8) diluted OMW with tap water (75 % OMW); and (9) untreated OMW (100 % OMW). A germination test was conducted in an incubator at temperature of 23 (∘)C. In each petri dish, a filter paper was mounted and ten seeds of barley were placed on the filter paper. Five milliliter of water were added to each petri dish. The seed germination was determined by counting the number of germinated seeds to calculate the percentage of germination (G %). Germination rate index (GRI), seed vigor index (SVI), and phytotoxicity index (PI) were also calculated. Then, the dry weights and lengths of the shoots and the roots of the germinated seeds were measured. The results show that 100, 75, and 50 %OMW were very phytotoxic and completely prohibited seed germination. However, phytotoxicity decreased significantly following treatments of OMW with all techniques investigated and by the 25 % OMW dilution, as results of removing the phenols and other phytotoxic organic compounds from the OMW or by diluting it. This was evidenced by relative enhancement of the dry weights and lengths of shoot and root as well as the G %, GRI, SVG, and PI. It was concluded that if OMW will be used for irrigating crops, it has to be first treated or diluted with tap water at a ratio of 1:3 OMW:water at least. The most efficient treatment techniques in reducing the phytotoxicity of OMW were the MF+RO, followed by SFO and JR.
Collapse
Affiliation(s)
- Munir J M Rusan
- Department of Natural Resources and Environment, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan,
| | | | | | | |
Collapse
|
44
|
Effects of salinity, temperature, and polyethylene glycol on the seed germination of sunflower (Helianthus annuus L.). ScientificWorldJournal 2014; 2014:170418. [PMID: 25610896 PMCID: PMC4295597 DOI: 10.1155/2014/170418] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 12/02/2014] [Accepted: 12/04/2014] [Indexed: 11/23/2022] Open
Abstract
Salinization has severe influences on agriculture in the whole world. The main aims of this work were to evaluate osmotic effect and ion effect of NaCl on seed germination of three sunflower (Helianthus annuus L.) cultivars interacting with three alternating temperature regimes and to select the most salt tolerant cultivars to plant in the saline region. Seeds were germinated in the isotonic NaCl and polyethylene glycol (PEG) solutions of −0.45, −0.90, −1.34, −1.79, and −2.24 MPa at 10 : 20, 15 : 25, and 20 : 30°C temperature regimes. Both NaCl and PEG inhibited germination, but the effects of NaCl were less as compared to that of PEG, which means that adverse effects of PEG on germination were due to osmotic effect rather than specific ion accumulation. For the three cultivars, higher germination occurred at 10 : 20°C in NaCl treatments and at 20 : 30°C in the isotonic PEG treatments. Among the three cultivars, Sandaomei (SDM) is the most tolerant to salt and PEG stress.
Collapse
|
45
|
Pierre JS, Rae AL, Bonnett GD. Abiotic Limits for Germination of Sugarcane Seed in Relation to Environmental Spread. TROPICAL PLANT BIOLOGY 2014; 7:100-110. [PMID: 25485029 PMCID: PMC4245482 DOI: 10.1007/s12042-014-9141-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 09/08/2014] [Indexed: 06/04/2023]
Abstract
Sugarcane is a vegetatively propagated crop and hence the production of seed and its fate in the environment has not been studied. The recent development of genetically modified sugarcane, with the aim of commercial production, requires a research effort to understand sugarcane reproductive biology. This study contributes to this understanding by defining the abiotic limits for sugarcane seed germination. Using seed from multiple genetic crosses, germination was measured under different light regimes (light and dark), temperatures (from 18 °C to 42 °C) and water potentials (from 0 MPa to -1 MPa); cardinal temperatures and base water potential of germination were estimated based on the rates of germination. We found that sugarcane seed could germinate over a broad range of temperatures (from 11 °C to 42 °C) with optima ranging from 27 °C to 36 °C depending on source of seed. Water potentials below -0.5 MPa halved the proportion of seed that germinated. By comparing these limits to the environmental conditions in areas where sugarcane grows and has the potential to produce seed, water, but not temperature, will be the main limiting factor for germination. This new information can be taken into account when evaluating any risk of weediness during the assessment of GM sugarcane.
Collapse
Affiliation(s)
- J. S. Pierre
- CSIRO Agriculture Flagship, 306 Carmody Road, St Lucia, Qld 4067 Australia
| | - A. L. Rae
- CSIRO Agriculture Flagship, 306 Carmody Road, St Lucia, Qld 4067 Australia
| | - G. D. Bonnett
- CSIRO Agriculture Flagship, 306 Carmody Road, St Lucia, Qld 4067 Australia
| |
Collapse
|
46
|
Long RL, Gorecki MJ, Renton M, Scott JK, Colville L, Goggin DE, Commander LE, Westcott DA, Cherry H, Finch-Savage WE. The ecophysiology of seed persistence: a mechanistic view of the journey to germination or demise. Biol Rev Camb Philos Soc 2014; 90:31-59. [PMID: 24618017 DOI: 10.1111/brv.12095] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 01/30/2014] [Accepted: 02/04/2014] [Indexed: 11/28/2022]
Abstract
Seed persistence is the survival of seeds in the environment once they have reached maturity. Seed persistence allows a species, population or genotype to survive long after the death of parent plants, thus distributing genetic diversity through time. The ability to predict seed persistence accurately is critical to inform long-term weed management and flora rehabilitation programs, as well as to allow a greater understanding of plant community dynamics. Indeed, each of the 420000 seed-bearing plant species has a unique set of seed characteristics that determine its propensity to develop a persistent soil seed bank. The duration of seed persistence varies among species and populations, and depends on the physical and physiological characteristics of seeds and how they are affected by the biotic and abiotic environment. An integrated understanding of the ecophysiological mechanisms of seed persistence is essential if we are to improve our ability to predict how long seeds can survive in soils, both now and under future climatic conditions. In this review we present an holistic overview of the seed, species, climate, soil, and other site factors that contribute mechanistically to seed persistence, incorporating physiological, biochemical and ecological perspectives. We focus on current knowledge of the seed and species traits that influence seed longevity under ex situ controlled storage conditions, and explore how this inherent longevity is moderated by changeable biotic and abiotic conditions in situ, both before and after seeds are dispersed. We argue that the persistence of a given seed population in any environment depends on its resistance to exiting the seed bank via germination or death, and on its exposure to environmental conditions that are conducive to those fates. By synthesising knowledge of how the environment affects seeds to determine when and how they leave the soil seed bank into a resistance-exposure model, we provide a new framework for developing experimental and modelling approaches to predict how long seeds will persist in a range of environments.
Collapse
Affiliation(s)
- Rowena L Long
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia; ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Silva PO, Medina EF, Barros RS, Ribeiro DM. Germination of salt-stressed seeds as related to the ethylene biosynthesis ability in three Stylosanthes species. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:14-22. [PMID: 24120532 DOI: 10.1016/j.jplph.2013.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/01/2013] [Accepted: 09/03/2013] [Indexed: 05/06/2023]
Abstract
Stylosanthes, a genus of tropical forage legume, is known to exhibit good persistence in saline soils, yet mechanisms for regulation of seed germination under salt stress are poorly understood. This study was carried out to evaluate the mode of action of salt stress on seed germination of Stylosanthes. 1-Aminocyclopropane-1-carboxylic acid (ACC) increased ethylene biosynthesis and germination of NaCl-inhibited seeds in a dose-dependent manner. Contents of ACC and germination of Stylosanthes humilis seeds increased following transfer from NaCl solution to deionised water, but not after transfer to l-α-(2-aminoethoxyvinyl)-glycine (AVG) solution, an inhibitor of ethylene biosynthesis. Ethylene biosynthesis was much larger in NaCl-treated seeds of Stylosanthes guianensis than in seeds of S. humilis and Stylosanthes capitata, a fact which was reflected in higher germination rates. S. guianensis seedlings also displayed higher growth and survival rates than S. humilis and S. capitata under salt stress. Moreover, smaller ACC levels, as well as reduced ethylene biosynthesis of S. capitata seeds were accompanied by lower germination under salt stress. In addition, S. capitata seedlings treated with NaCl solutions exhibited relatively lower growth and survival rates in comparison with S. humilis and S. guianensis. Thus, different abilities to synthesize ethylene by S. guianensis, S. humilis and S. capitata seeds explain the differences in tolerance to salt stress of the three species.
Collapse
Affiliation(s)
- Priscila O Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-000 Viçosa, MG, Brazil
| | | | | | | |
Collapse
|
48
|
Wu D, Shen Q, Cai S, Chen ZH, Dai F, Zhang G. Ionomic responses and correlations between elements and metabolites under salt stress in wild and cultivated barley. PLANT & CELL PHYSIOLOGY 2013; 54:1976-88. [PMID: 24058150 DOI: 10.1093/pcp/pct134] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A thorough understanding of ionic detoxification and homeostasis is imperative for improvement of salt tolerance in crops. However, the homeostasis of elements and their relationship to metabolites under salt stress have not been fully elucidated in plants. In this study, Tibetan wild barley accessions, XZ16 and XZ169, differing in salt tolerance, and a salt-tolerant cultivar CM72 were used to investigate ionomic profile changes in tissues in response to 150 and 300 mM NaCl at the germination and seedling stages. At the germination stage, the contents of Ca and Fe significantly decreased in roots, while K and S contents increased, and Ca and Mg contents decreased in shoots, after 10 d of treatment. At the seedling stage, the contents of K, Mg, P and Mn in roots and of K, Ca, Mg and S in shoots decreased significantly after 21 d of treatment. Moreover, Na had a significant negative correlation with metabolites involved in glycolysis, α-ketoglutaric acid, maleic acid and alanine in roots, and metabolites associated with the tricarboxylic acid (TCA) cycle, sucrose, polyols and aspartate in leaves. The salt-tolerant genotypes XZ16 and CM72 showed a lower Na content in tissues, and less reduction in Zn and Cu in roots, of Ca, Mg and S in leaves, and shoot DW than the sensitive genotype XZ169, when exposed to a higher salt level. The results indicated that restriction of Na accumulation and rearrangement of nutrient elements and metabolites in barley tissues are possibly attributable to development of salt tolerance.
Collapse
Affiliation(s)
- Dezhi Wu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | |
Collapse
|
49
|
Hu T, Li HY, Zhang XZ, Luo HJ, Fu JM. Toxic effect of NaCl on ion metabolism, antioxidative enzymes and gene expression of perennial ryegrass. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2011; 74:2050-6. [PMID: 21813179 DOI: 10.1016/j.ecoenv.2011.07.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 07/05/2011] [Accepted: 07/16/2011] [Indexed: 05/04/2023]
Abstract
Two-month old seedlings of perennial ryegrass (Lolium perenne L.) were subjected to four different levels of salinity for 7 days. The NaCl treatments reduced turf quality and normalized transpiration rates. Both chlorophyll (Chl) a and Chl b contents decreased in the grass exposed to 255 mM relative to the control. An increase in the lipid peroxidationin was observed. The activity of leaf superoxide dismutase increased while, peroxidase and catalase activities decreased in response to NaCl treatments. The expression of Chl Cu/ZnSOD, Cyt Cu/ZnSOD, FeSOD, CAT, POD, GPX and GR was up-regulated for NaCl-treated grass. Salt stress increased accumulation of Na(+) and decreased K(+)/Na(+) ratio, Mg(2+) and P content in both shoots and roots of perennial ryegrass. The findings of this study suggest that salt stress may cause toxicity to perennial ryegrass through oxidative injury and damage to Chl and cell membrane integrity.
Collapse
Affiliation(s)
- Tao Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Science, Wuhan City, Hubei 430074, PR China
| | | | | | | | | |
Collapse
|