1
|
Guo X, Wang H, Lin D, Wang Y, Jin X. Cytonuclear evolution in fully heterotrophic plants: lifestyles and gene function determine scenarios. BMC PLANT BIOLOGY 2024; 24:989. [PMID: 39428472 PMCID: PMC11492565 DOI: 10.1186/s12870-024-05702-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Evidence shows that full mycoheterotrophs and holoparasites often have reduced plastid genomes with rampant gene loss, elevated substitution rates, and deeply altered to conventional evolution in mitochondrial genomes, but mechanisms of cytonuclear evolution is unknown. Endoparasitic Sapria himalayana and mycoheterotrophic Gastrodia and Platanthera guangdongensis represent different heterotrophic types, providing a basis to illustrate cytonuclear evolution. Here, we focused on nuclear-encoded plastid / mitochondrial (N-pt / mt) -targeting protein complexes, including caseinolytic protease (ClpP), ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCo), oxidative phosphorylation system (OXPHOS), DNA recombination, replication, and repair (DNA-RRR) system, and pentatricopeptide repeat (PPR) proteins, to identify evolutionary drivers for cytonuclear interaction. RESULTS The severity of gene loss of N-pt PPR and pt-RRR genes was positively associated with increased degree of heterotrophy in full mycoheterotrophs and S. himalayana, while N-mt PPR and mt-RRR genes were retained. Substitution rates of organellar and nuclear genes encoding N-pt/mt subunits in protein complexes were evaluated, cytonuclear coevolution was identified in S. himalayana, whereas disproportionate rates of evolution were observed in the OXPHOS complex in full mycoheterotrophs, only slight accelerations in substitution rates were identified in N-mt genes of full mycoheterotrophs. CONCLUSIONS Nuclear compensatory evolution was identified in protein complexes encoded by plastid and N-pt genes. Selection shaping codon preferences, functional constraint, mt-RRR gene regulation, and post-transcriptional regulation of PPR genes all facilitate mito-nuclear evolution. Our study enriches our understanding of genomic coevolution scenarios in fully heterotrophic plants.
Collapse
Affiliation(s)
- Xuelian Guo
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Hanchen Wang
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Dongliang Lin
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Yajun Wang
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Xiaohua Jin
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China.
| |
Collapse
|
2
|
Jost M, Wanke S. A comparative analysis of plastome evolution in autotrophic Piperales. AMERICAN JOURNAL OF BOTANY 2024; 111:e16300. [PMID: 38469876 DOI: 10.1002/ajb2.16300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 03/13/2024]
Abstract
PREMISE Many plastomes of autotrophic Piperales have been reported to date, describing a variety of differences. Most studies focused only on a few species or a single genus, and extensive, comparative analyses have not been done. Here, we reviewed publicly available plastome reconstructions for autotrophic Piperales, reanalyzed publicly available raw data, and provided new sequence data for all previously missing genera. Comparative plastome genomics of >100 autotrophic Piperales were performed. METHODS We performed de novo assemblies to reconstruct the plastomes of newly generated sequence data. We used Sanger sequencing and read mapping to verify the assemblies and to bridge assembly gaps. Furthermore, we reconstructed the phylogenetic relationships as a foundation for comparative plastome genomics. RESULTS We identified a plethora of assembly and annotation issues in published plastome data, which, if unattended, will lead to an artificial increase of diversity. We were able to detect patterns of missing and incorrect feature annotation and determined that the inverted repeat (IR) boundaries were the major source for erroneous assembly. Accounting for the aforementioned issues, we discovered relatively stable junctions of the IRs and the small single-copy region (SSC), whereas the majority of plastome variations among Piperales stems from fluctuations of the boundaries of the IR and the large single-copy (LSC) region. CONCLUSIONS This study of all available plastomes of autotrophic Piperales, expanded by new data for previously missing genera, highlights the IR-LSC junctions as a potential marker for discrimination of various taxonomic levels. Our data indicates a pseudogene-like status for cemA and ycf15 in various Piperales. Based on a review of published data, we conclude that incorrect IR-SSC boundary identification is the major source for erroneous plastome assembly. We propose a gold standard for assembly and annotation of high-quality plastomes based on de novo assembly methods and appropriate references for gene annotation.
Collapse
Affiliation(s)
- Matthias Jost
- Institut für Botanik, Technische Universität Dresden, Dresden, Germany
- Departamento de Botánica, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Stefan Wanke
- Institut für Botanik, Technische Universität Dresden, Dresden, Germany
- Departamento de Botánica, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Botanik und Molekulare Evolutionsforschung, Senckenberg Forschungsinstitut und Naturmuseum, Frankfurt am Main, Germany
- Institut für Ökologie, Evolution und Biodiversität, Goethe-Universität, Frankfurt am Main, Germany
| |
Collapse
|
3
|
Sanchez-Puerta MV, Ceriotti LF, Gatica-Soria LM, Roulet ME, Garcia LE, Sato HA. Invited Review Beyond parasitic convergence: unravelling the evolution of the organellar genomes in holoparasites. ANNALS OF BOTANY 2023; 132:909-928. [PMID: 37503831 PMCID: PMC10808021 DOI: 10.1093/aob/mcad108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/27/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND The molecular evolution of organellar genomes in angiosperms has been studied extensively, with some lineages, such as parasitic ones, displaying unique characteristics. Parasitism has emerged 12 times independently in angiosperm evolution. Holoparasitism is the most severe form of parasitism, and is found in ~10 % of parasitic angiosperms. Although a few holoparasitic species have been examined at the molecular level, most reports involve plastomes instead of mitogenomes. Parasitic plants establish vascular connections with their hosts through haustoria to obtain water and nutrients, which facilitates the exchange of genetic information, making them more susceptible to horizontal gene transfer (HGT). HGT is more prevalent in the mitochondria than in the chloroplast or nuclear compartments. SCOPE This review summarizes current knowledge on the plastid and mitochondrial genomes of holoparasitic angiosperms, compares the genomic features across the different lineages, and discusses their convergent evolutionary trajectories and distinctive features. We focused on Balanophoraceae (Santalales), which exhibits extraordinary traits in both their organelles. CONCLUSIONS Apart from morphological similarities, plastid genomes of holoparasitic plants also display other convergent features, such as rampant gene loss, biased nucleotide composition and accelerated evolutionary rates. In addition, the plastomes of Balanophoraceae have extremely low GC and gene content, and two unexpected changes in the genetic code. Limited data on the mitochondrial genomes of holoparasitic plants preclude thorough comparisons. Nonetheless, no obvious genomic features distinguish them from the mitochondria of free-living angiosperms, except for a higher incidence of HGT. HGT appears to be predominant in holoparasitic angiosperms with a long-lasting endophytic stage. Among the Balanophoraceae, mitochondrial genomes exhibit disparate evolutionary paths with notable levels of heteroplasmy in Rhopalocnemis and unprecedented levels of HGT in Lophophytum. Despite their differences, these Balanophoraceae share a multichromosomal mitogenome, a feature also found in a few free-living angiosperms.
Collapse
Affiliation(s)
- M Virginia Sanchez-Puerta
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA, Mendoza, Argentina
| | - Luis F Ceriotti
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA, Mendoza, Argentina
| | - Leonardo M Gatica-Soria
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA, Mendoza, Argentina
| | - M Emilia Roulet
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
| | - Laura E Garcia
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA, Mendoza, Argentina
| | - Hector A Sato
- Facultad de Ciencias Agrarias, Cátedra de Botánica General–Herbario JUA, Alberdi 47, Universidad Nacional de Jujuy, 4600 Jujuy, Argentina
| |
Collapse
|
4
|
Nhat Nam N, Hoang Danh N, Minh Thiet V, Do HDK. New Insights Into The Evolution of Chloroplast Genomes in Ochna Species (Ochnaceae, Malpighiales). Evol Bioinform Online 2023; 19:11769343231210756. [PMID: 38020533 PMCID: PMC10655658 DOI: 10.1177/11769343231210756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Ochnaceae DC. includes more than 600 species that exhibit potential values for environmental ecology, ornamental, pharmaceutical, and timber industries. Although studies on phylogeny and phytochemicals have been intensively conducted, chloroplast genome data of Ochnaceae species have not been fully explored. In this study, the next-generation sequencing method was used to sequence the chloroplast genomes of Ochna integerrima and Ochna serrulata which were 157 329 and 157 835 bp in length, respectively. These chloroplast genomes had a quadripartite structure and contained 78 protein-coding genes, 30 tRNAs, and 4 rRNAs. Comparative analysis revealed 8 hypervariable regions, including trnK_UUU-trnQ_UUG, rpoB-psbM, trnS_GGA-rps4, accD-psaI, rpl33-rps18, rpl14-rpl16, ndhF-trnL_UAG, and rps15-ycf1 among 6 Ochnaceae taxa. Additionally, there were shared and unique repeats among 6 examined chloroplast genomes. The notable changes were the loss of rpl32 in Ochna species and the deletion of rps16 exon 2 in O. integerrima compared to other taxa. This study is the first comprehensive comparative genomic analysis of complete chloroplast genomes of Ochna species and related taxa in Ochnaceae. Consequently, the current study provides initial results for further research on genomic evolution, population genetics, and developing molecular markers in Ochnaceae and related taxa.
Collapse
Affiliation(s)
- Nguyen Nhat Nam
- Biotechnology Center, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City, Vietnam
| | - Nguyen Hoang Danh
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Vu Minh Thiet
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| |
Collapse
|
5
|
Garrett N, Viruel J, Klimpert N, Soto Gomez M, Lam VKY, Merckx VSFT, Graham SW. Plastid phylogenomics and molecular evolution of Thismiaceae (Dioscoreales). AMERICAN JOURNAL OF BOTANY 2023; 110:e16141. [PMID: 36779918 DOI: 10.1002/ajb2.16141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 05/11/2023]
Abstract
PREMISE Species in Thismiaceae can no longer photosynthesize and instead obtain carbon from soil fungi. Here we infer Thismiaceae phylogeny using plastid genome data and characterize the molecular evolution of this genome. METHODS We assembled five Thismiaceae plastid genomes from genome skimming data, adding to previously published data for phylogenomic inference. We investigated plastid-genome structural changes, considering locally colinear blocks (LCBs). We also characterized possible shifts in selection pressure in retained genes by considering changes in the ratio of nonsynonymous to synonymous changes (ω). RESULTS Thismiaceae experienced two major pulses of gene loss around the early diversification of the family, with subsequent scattered gene losses across descendent lineages. In addition to massive size reduction, Thismiaceae plastid genomes experienced occasional inversions, and there were likely two independent losses of the plastid inverted repeat (IR) region. Retained plastid genes remain under generally strong purifying selection (ω << 1), with significant and sporadic weakening or strengthening in several instances. The bifunctional trnE-UUC gene of Thismia huangii may retain a secondary role in heme biosynthesis, despite a probable loss of functionality in protein translation. Several cis-spliced group IIA introns have been retained, despite the loss of the plastid intron maturase, matK. CONCLUSIONS We infer that most gene losses in Thismiaceae occurred early and rapidly, following the initial loss of photosynthesis in its stem lineage. As a species-rich, fully mycoheterotrophic lineage, Thismiaceae provide a model system for uncovering the unique and divergent ways in which plastid genomes evolve in heterotrophic plants.
Collapse
Affiliation(s)
- Natalie Garrett
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Juan Viruel
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK
| | - Nathaniel Klimpert
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | | | - Vivienne K Y Lam
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Vincent S F T Merckx
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR, Leiden, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Sciencepark 904, 1098, XH, Amsterdam, The Netherlands
| | - Sean W Graham
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Banerjee A, Stefanović S. A comparative study across the parasitic plants of Cuscuta subgenus Grammica (Convolvulaceae) reveals a possible loss of the plastid genome in its section Subulatae. PLANTA 2023; 257:66. [PMID: 36826697 DOI: 10.1007/s00425-023-04099-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Most species in Cuscuta subgenus Grammica retain many photosynthesis-related plastid genes, generally under purifying selection. A group of holoparasitic species in section Subulatae may have lost their plastid genomes entirely. The c. 153 species of plants belonging to Cuscuta subgenus Grammica are all obligate stem parasites. However, some have completely lost the ability to conduct photosynthesis while others retain photosynthetic machinery and genes. The plastid genome that primarily encodes key photosynthesis genes functions as a bellwether for how reliant plants are on primary production. This research assembles and analyses 17 plastomes across Cuscuta subgenus Grammica with the aim of characterizing the state of the plastome in each of its sections. By comparing the structure and content of plastid genomes across the subgenus, as well as by quantifying the selection acting upon each gene, we reconstructed the patterns of plastome change within the phylogenetic context for this group. We found that species in 13 of the 15 sections that comprise Grammica retain the bulk of plastid photosynthesis genes and are thus hemiparasitic. The complete loss of photosynthesis can be traced to two clades: the entire section Subulatae and a complex of three species within section Ceratophorae. We were unable to recover any significant plastome sequences from section Subulatae, suggesting that plastomes in these species are either drastically reduced or lost entirely.
Collapse
Affiliation(s)
- Arjan Banerjee
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada.
- Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 2Z9, Canada.
| | - Saša Stefanović
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| |
Collapse
|
7
|
Turudić A, Liber Z, Grdiša M, Jakše J, Varga F, Šatović Z. Variation in Chloroplast Genome Size: Biological Phenomena and Technological Artifacts. PLANTS (BASEL, SWITZERLAND) 2023; 12:254. [PMID: 36678967 PMCID: PMC9864865 DOI: 10.3390/plants12020254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
The development of bioinformatic solutions is guided by biological knowledge of the subject. In some cases, we use unambiguous biological models, while in others we rely on assumptions. A commonly used assumption for genomes is that related species have similar genome sequences. This is even more obvious in the case of chloroplast genomes due to their slow evolution. We investigated whether the lengths of complete chloroplast sequences are closely related to the taxonomic proximity of the species. The study was performed using all available RefSeq sequences from the asterid and rosid clades. In general, chloroplast length distributions are narrow at both the family and genus levels. In addition, clear biological explanations have already been reported for families and genera that exhibit particularly wide distributions. The main factors responsible for the length variations are parasitic life forms, IR loss, IR expansions and contractions, and polyphyly. However, the presence of outliers in the distribution at the genus level is a strong indication of possible inaccuracies in sequence assembly.
Collapse
Affiliation(s)
- Ante Turudić
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska c. 25, 10000 Zagreb, Croatia
- Faculty of Agriculture, University of Zagreb, Svetošimunska c. 25, 10000 Zagreb, Croatia
| | - Zlatko Liber
- Faculty of Agriculture, University of Zagreb, Svetošimunska c. 25, 10000 Zagreb, Croatia
- Faculty of Science, University of Zagreb, Marulićev trg 9a, 10000 Zagreb, Croatia
| | - Martina Grdiša
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska c. 25, 10000 Zagreb, Croatia
- Faculty of Agriculture, University of Zagreb, Svetošimunska c. 25, 10000 Zagreb, Croatia
| | - Jernej Jakše
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Filip Varga
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska c. 25, 10000 Zagreb, Croatia
- Faculty of Agriculture, University of Zagreb, Svetošimunska c. 25, 10000 Zagreb, Croatia
| | - Zlatko Šatović
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska c. 25, 10000 Zagreb, Croatia
- Faculty of Agriculture, University of Zagreb, Svetošimunska c. 25, 10000 Zagreb, Croatia
| |
Collapse
|
8
|
Klimpert NJ, Mayer JLS, Sarzi DS, Prosdocimi F, Pinheiro F, Graham SW. Phylogenomics and plastome evolution of a Brazilian mycoheterotrophic orchid, Pogoniopsis schenckii. AMERICAN JOURNAL OF BOTANY 2022; 109:2030-2050. [PMID: 36254561 DOI: 10.1002/ajb2.16084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
PREMISE Pogoniopsis likely represents an independent photosynthesis loss in orchids. We use phylogenomic data to better identify the phylogenetic placement of this fully mycoheterotrophic taxon, and investigate its molecular evolution. METHODS We performed likelihood analysis of plastid and mitochondrial phylogenomic data to localize the position of Pogoniopsis schenckii in orchid phylogeny, and investigated the evolution of its plastid genome. RESULTS All analyses place Pogoniopsis in subfamily Epidendroideae, with strongest support from mitochondrial data, which also place it near tribe Sobralieae with moderately strong support. Extreme rate elevation in Pogoniopsis plastid genes broadly depresses branch support; in contrast, mitochondrial genes are only mildly rate elevated and display very modest and localized reductions in bootstrap support. Despite considerable genome reduction, including loss of photosynthesis genes and multiple translation apparatus genes, gene order in Pogoniopsis plastomes is identical to related autotrophs, apart from moderately shifted inverted repeat (IR) boundaries. All cis-spliced introns have been lost in retained genes. Two plastid genes (accD, rpl2) show significant strengthening of purifying selection. A retained plastid tRNA gene (trnE-UUC) of Pogoniopsis lacks an anticodon; we predict that it no longer functions in translation but retains a secondary role in heme biosynthesis. CONCLUSIONS Slowly evolving mitochondrial genes clarify the placement of Pogoniopsis in orchid phylogeny, a strong contrast with analysis of rate-elevated plastome data. We documented the effects of the novel loss of photosynthesis: for example, despite massive gene loss, its plastome is fully colinear with other orchids, and it displays only moderate shifts in selective pressure in retained genes.
Collapse
Affiliation(s)
- Nathaniel J Klimpert
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Juliana Lischka Sampaio Mayer
- Departamento de Biologia Vegetal, Universidade Estadual de Campinas, 255 Rua Monteiro Lobato, Campinas, São Paulo, 13.083-862, Brazil
| | - Deise Schroder Sarzi
- Laboratório de Genômica e Biodiversidade, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal Do Rio de Janeiro, UFRJ/CCS/Bloco B33, Rio de Janeiro, RJ, 21.941-902, Brazil
| | - Francisco Prosdocimi
- Laboratório de Genômica e Biodiversidade, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal Do Rio de Janeiro, UFRJ/CCS/Bloco B33, Rio de Janeiro, RJ, 21.941-902, Brazil
| | - Fábio Pinheiro
- Departamento de Biologia Vegetal, Universidade Estadual de Campinas, 255 Rua Monteiro Lobato, Campinas, São Paulo, 13.083-862, Brazil
| | - Sean W Graham
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|
9
|
Turudić A, Liber Z, Grdiša M, Jakše J, Varga F, Šatović Z. Chloroplast Genome Annotation Tools: Prolegomena to the Identification of Inverted Repeats. Int J Mol Sci 2022; 23:10804. [PMID: 36142721 PMCID: PMC9503105 DOI: 10.3390/ijms231810804] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/01/2022] [Accepted: 09/13/2022] [Indexed: 12/31/2022] Open
Abstract
The development of next-generation sequencing technology and the increasing amount of sequencing data have brought the bioinformatic tools used in genome assembly into focus. The final step of the process is genome annotation, which works on assembled genome sequences to identify the location of genome features. In the case of organelle genomes, specialized annotation tools are used to identify organelle genes and structural features. Numerous annotation tools target chloroplast sequences. Most chloroplast DNA genomes have a quadripartite structure caused by two copies of a large inverted repeat. We investigated the strategies of six annotation tools (Chloë, Chloroplot, GeSeq, ORG.Annotate, PGA, Plann) for identifying inverted repeats and analyzed their success using publicly available complete chloroplast sequences of taxa belonging to the asterid and rosid clades. The annotation tools use two different approaches to identify inverted repeats, using existing general search tools or implementing stand-alone solutions. The chloroplast sequences studied show that there are different types of imperfections in the assembled data and that each tool performs better on some sequences than the others.
Collapse
Affiliation(s)
- Ante Turudić
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska cesta 25, 10000 Zagreb, Croatia
- Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Zlatko Liber
- Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia
- Faculty of Science, University of Zagreb, Marulićev trg 9a, 10000 Zagreb, Croatia
| | - Martina Grdiša
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska cesta 25, 10000 Zagreb, Croatia
- Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Jernej Jakše
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Filip Varga
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska cesta 25, 10000 Zagreb, Croatia
- Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Zlatko Šatović
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska cesta 25, 10000 Zagreb, Croatia
- Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| |
Collapse
|
10
|
Jost M, Naumann J, Bolin JF, Martel C, Rocamundi N, Cocucci AA, Lupton D, Neinhuis C, Wanke S. Structural plastome evolution in holoparasitic Hydnoraceae with special focus on inverted and direct repeats. Genome Biol Evol 2022; 14:6602284. [PMID: 35660863 PMCID: PMC9168662 DOI: 10.1093/gbe/evac077] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 11/14/2022] Open
Abstract
Plastome condensation during adaptation to a heterotrophic lifestyle is generally well understood and lineage-independent models have been derived. However, understanding the evolutionary trajectories of comparatively old heterotrophic lineages, that are on the cusp of a minimal plastomes, is essential to complement and expand current knowledge. We study Hydnoraceae, one of the oldest and least investigated parasitic angiosperm lineages. Plastome comparative genomics, using seven out of eight known species of the genus Hydnora and three species of Prosopanche, reveal a high degree of structural similarity and shared gene content; contrasted by striking dissimilarities with respect to repeat content (inverted and direct repeats). We identified varying IR content and positions, likely resulting from multiple, independent evolutionary events and a direct repeat gain in Prosopanche. Considering different evolutionary trajectories and based on a fully resolved and supported species-level phylogenetic hypothesis, we describe three possible, distinct models to explain the Hydnoraceae plastome states. For comparative purposes we also report the first plastid genomes for the closely related autotrophic genera Lactoris (Lactoridaceae) and Thottea (Aristolochiaceae).
Collapse
Affiliation(s)
- Matthias Jost
- Institut für Botanik, Technische Universität Dresden, Germany
| | - Julia Naumann
- Institut für Botanik, Technische Universität Dresden, Germany
| | | | - Carlos Martel
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK.,Instituto de Ciencias Ómicas y Biotecnología Aplicada, Pontificia Universidad Católica del Perú, Peru
| | - Nicolás Rocamundi
- Laboratorio de Ecología Evolutiva y Biología Floral, IMBIV, CONICET and Universidad Nacional de Córdoba, Argentina
| | - Andrea A Cocucci
- Laboratorio de Ecología Evolutiva y Biología Floral, IMBIV, CONICET and Universidad Nacional de Córdoba, Argentina
| | - Darach Lupton
- Oman Botanic Garden, Sultanate of Oman.,National Botanic Gardens, Glasnevin, Ireland
| | | | - Stefan Wanke
- Institut für Botanik, Technische Universität Dresden, Germany.,Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
11
|
Thorogood CJ, Teixeira-Costa L, Ceccantini G, Davis C, Hiscock SJ. Endoparasitic plants and fungi show evolutionary convergence across phylogenetic divisions. THE NEW PHYTOLOGIST 2021; 232:1159-1167. [PMID: 34251722 DOI: 10.1111/nph.17556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/04/2021] [Indexed: 06/13/2023]
Abstract
Endoparasitic plants are the most reduced flowering plants, spending most of their lives as a network of filaments within the tissues of their hosts. Despite their extraordinary life form, we know little about their biology. Research into a few species has revealed unexpected insights, such as the total loss of plastome, the reduction of the vegetative phase to a proembryonic stage, and elevated information exchange between host and parasite. To consolidate our understanding, we review life history, anatomy, and molecular genetics across the four independent lineages of endoparasitic plants. We highlight convergence across these clades and a striking trans-kingdom convergence in life history among endoparasitic plants and disparate lineages of fungi at the molecular and physiological levels. We hypothesize that parasitism of woody plants preselected for the endoparasitic life history, providing parasites a stable host environment and the necessary hydraulics to enable floral gigantism and/or high reproductive output. Finally, we propose a broader view of endoparasitic plants that connects research across disciplines, for example, pollen-pistil and graft incompatibility interactions and plant associations with various fungi. We shine a light on endoparasitic plants and their hosts as under-explored ecological microcosms ripe for identifying unexpected biological processes, interactions and evolutionary convergence.
Collapse
Affiliation(s)
- Chris J Thorogood
- University of Oxford Botanic Garden, Rose Lane, Oxford, OX1 4AZ, UK
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | | | - Gregório Ceccantini
- Dp. of Botany, University of São Paulo, IB-USP, Rua do Matão 277, São Paulo, SP 05508-090, Brazil
| | - Charles Davis
- Harvard University Herbaria, 22 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Simon J Hiscock
- University of Oxford Botanic Garden, Rose Lane, Oxford, OX1 4AZ, UK
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| |
Collapse
|
12
|
Schelkunov MI, Nuraliev MS, Logacheva MD. Genomic comparison of non-photosynthetic plants from the family Balanophoraceae with their photosynthetic relatives. PeerJ 2021; 9:e12106. [PMID: 34540375 PMCID: PMC8415285 DOI: 10.7717/peerj.12106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 08/11/2021] [Indexed: 12/02/2022] Open
Abstract
The plant family Balanophoraceae consists entirely of species that have lost the ability to photosynthesize. Instead, they obtain nutrients by parasitizing other plants. Recent studies have revealed that plastid genomes of Balanophoraceae exhibit a number of interesting features, one of the most prominent of those being a highly elevated AT content of nearly 90%. Additionally, the nucleotide substitution rate in the plastid genomes of Balanophoraceae is an order of magnitude greater than that of their photosynthetic relatives without signs of relaxed selection. Currently, there are no definitive explanations for these features. Given these unusual features, we hypothesised that the nuclear genomes of Balanophoraceae may also provide valuable information in regard to understanding the evolution of non-photosynthetic plants. To gain insight into these genomes, in the present study we analysed the transcriptomes of two Balanophoraceae species (Rhopalocnemis phalloides and Balanophora fungosa) and compared them to the transcriptomes of their close photosynthetic relatives (Daenikera sp., Dendropemon caribaeus, and Malania oleifera). Our analysis revealed that the AT content of the nuclear genes of Balanophoraceae did not markedly differ from that of the photosynthetic relatives. The nucleotide substitution rate in the genes of Balanophoraceae is, for an unknown reason, several-fold larger than in the genes of photosynthetic Santalales; however, the negative selection in Balanophoraceae is likely stronger. We observed an extensive loss of photosynthesis-related genes in the Balanophoraceae family members. Additionally, we did not observe transcripts of several genes whose products function in plastid genome repair. This implies their loss or very low expression, which may explain the increased nucleotide substitution rate and AT content of the plastid genomes.
Collapse
Affiliation(s)
- Mikhail I Schelkunov
- Skolkovo Institute of Science and Technology, Moscow, Russia.,Institute for Information Transmission Problems, Moscow, Russia
| | - Maxim S Nuraliev
- Faculty of Biology, Moscow State University, Moscow, Russia.,Joint Russian-Vietnamese Tropical Scientific and Technological Center, Hanoi, Vietnam
| | | |
Collapse
|
13
|
Teixeira-Costa L, Davis CC. Life history, diversity, and distribution in parasitic flowering plants. PLANT PHYSIOLOGY 2021; 187:32-51. [PMID: 35237798 PMCID: PMC8418411 DOI: 10.1093/plphys/kiab279] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 05/25/2021] [Indexed: 06/08/2023]
Abstract
A review of parasitic plant diversity and outstanding disjunct distributions according to an updated functional classification based on these plants’ life cycles.
Collapse
|
14
|
Casadesús A, Munné-Bosch S. Holoparasitic plant-host interactions and their impact on Mediterranean ecosystems. PLANT PHYSIOLOGY 2021; 185:1325-1338. [PMID: 35237829 PMCID: PMC8133675 DOI: 10.1093/plphys/kiab030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 01/11/2021] [Indexed: 06/13/2023]
Abstract
Although photosynthesis is essential to sustain life on Earth, not all plants use sunlight to synthesize nutrients from carbon dioxide and water. Holoparasitic plants, which are important in agricultural and natural ecosystems, are dependent on other plants for nutrients. Phytohormones are crucial in holoparasitic plant-host interactions, from seed germination to senescence, not only because they act as growth and developmental regulators, but also because of their central role in the regulation of host photosynthesis and source-sink relations between the host and the holoparasitic plant. Here, we compile and discuss current knowledge on the impact and ecophysiology of holoparasitic plants (such as the broomrapes Orobanche sp. and Phelipanche sp.) that infest economically important dicotyledonous crops in Mediterranean agroecosystems (legumes [Fabaceae], sunflowers [Helianthus sp.], or tomato [Solanum lycopersicum] plants). We also highlight the role of holoparasitic plant-host interactions (such as those between Cytinus hypocistis and various shrubs of the genus Cistus) in shaping natural Mediterranean ecosystems. The roles of phytohormones in controlling plant-host interactions, abiotic factors in parasitism, and the biological significance of natural seed banks and how dormancy and germination are regulated, will all be discussed. Holoparasitic plants are unique organisms; improving our understanding of their interaction with hosts as study models will help us to better manage parasitic plants, both in agricultural and natural ecosystems.
Collapse
Affiliation(s)
- Andrea Casadesús
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
- Research Institute in Biodiversity (IrBio), University of Barcelona, Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
- Research Institute in Biodiversity (IrBio), University of Barcelona, Barcelona, Spain
- Research Institute of Nutrition and Food Safety (INSA), Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
15
|
Cytinus under the Microscope: Disclosing the Secrets of a Parasitic Plant. PLANTS 2021; 10:plants10010146. [PMID: 33445677 PMCID: PMC7828134 DOI: 10.3390/plants10010146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 11/17/2022]
Abstract
Well over 1% of all flowering plants are parasites, obtaining all or part of the nutrients they need from other plants. Among this extremely heterogeneous assemblage, the Cytinaceae form a small group of holoparasites, with Cytinus as the main representative genus. Despite the small number of known species and the fact that it doesn't attack crops or plants of economic importance, Cytinus is paradigmatic among parasitic plants. Recent research has indeed disclosed many aspects of host-parasite interactions and reproductive biology, the latter displaying a vast array of adaptive traits to lure a range of animal pollinators. Furthermore, analysis of biological activities of extracts of the most common species of Cytinus has provided evidence that this plant could be a valuable source of compounds with high potential in key applicative areas, namely food production (nutraceuticals) and the development of antimicrobial therapeutics. This article offers a complete overview of our current knowledge of Cytinus.
Collapse
|
16
|
Guo X, Liu C, Wang H, Zhang G, Yan H, Jin L, Su W, Ji Y. The complete plastomes of two flowering epiparasites (Phacellaria glomerata and P. compressa): Gene content, organization, and plastome degradation. Genomics 2020; 113:447-455. [PMID: 33370586 DOI: 10.1016/j.ygeno.2020.12.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/10/2020] [Accepted: 12/22/2020] [Indexed: 11/28/2022]
Abstract
A plant parasite obligately parasitizing another plant parasite is referred to as epiparasite, which is extremely rare in angiosperms, and their complete plastome sequences have not been characterized to date. In this study, the complete plastomes of two flowering epiparasites: Phacellaria compressa and P. glomerata (Amphorogynaceae, Santalales) were sequenced. The plastomes of both species are of similar size, structure, gene content, and arrangement of genes to other hemiparasites in Santalales. Their plastomes were characterized by the functional loss of plastid-encoded NAD(P)H-dehydrogenase and infA genes, which strongly coincides with the general pattern of plastome degradation observed in Santalales hemiparasites. Our study demonstrates that the relatively higher level of nutritional reliance on the host plants and the reduced vegetative bodies of P. compressa and P. glomerata do not appear to cause any unique plastome degradation compared with their closely related hemiparasites.
Collapse
Affiliation(s)
- Xiaorong Guo
- Institute of Ecology and Geobotany, Yunnan University, Kunming, Yunnan, China
| | - Changkun Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Hengchang Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Guangfei Zhang
- Institute of Ecology and Geobotany, Yunnan University, Kunming, Yunnan, China
| | - Hanjing Yan
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Lei Jin
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Wenhua Su
- Institute of Ecology and Geobotany, Yunnan University, Kunming, Yunnan, China
| | - Yunheng Ji
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China; Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Population, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.
| |
Collapse
|
17
|
Halabi K, Karin EL, Guéguen L, Mayrose I. A Codon Model for Associating Phenotypic Traits with Altered Selective Patterns of Sequence Evolution. Syst Biol 2020; 70:608-622. [PMID: 33252676 DOI: 10.1093/sysbio/syaa087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 01/10/2023] Open
Abstract
Detecting the signature of selection in coding sequences and associating it with shifts in phenotypic states can unveil genes underlying complex traits. Of the various signatures of selection exhibited at the molecular level, changes in the pattern of selection at protein-coding genes have been of main interest. To this end, phylogenetic branch-site codon models are routinely applied to detect changes in selective patterns along specific branches of the phylogeny. Many of these methods rely on a prespecified partition of the phylogeny to branch categories, thus treating the course of trait evolution as fully resolved and assuming that phenotypic transitions have occurred only at speciation events. Here, we present TraitRELAX, a new phylogenetic model that alleviates these strong assumptions by explicitly accounting for the uncertainty in the evolution of both trait and coding sequences. This joint statistical framework enables the detection of changes in selection intensity upon repeated trait transitions. We evaluated the performance of TraitRELAX using simulations and then applied it to two case studies. Using TraitRELAX, we found an intensification of selection in the primate SEMG2 gene in polygynandrous species compared to species of other mating forms, as well as changes in the intensity of purifying selection operating on sixteen bacterial genes upon transitioning from a free-living to an endosymbiotic lifestyle.[Evolutionary selection; intensification; $\gamma $-proteobacteria; genotype-phenotype; relaxation; SEMG2.].
Collapse
Affiliation(s)
- Keren Halabi
- School of Plant Sciences and Food Security, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Eli Levy Karin
- Quantitative and Computational Biology, Max-Planck institute for biophysical Chemistry, Göttingen 37077, Germany
| | - Laurent Guéguen
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France.,Swedish Collegium for Advanced Study, Thunbergsvägen 2 752 38 Uppsala, Sweden
| | - Itay Mayrose
- School of Plant Sciences and Food Security, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
18
|
Jin JJ, Yu WB, Yang JB, Song Y, dePamphilis CW, Yi TS, Li DZ. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol 2020; 21:241. [PMID: 32912315 PMCID: PMC7488116 DOI: 10.1186/s13059-020-02154-5] [Citation(s) in RCA: 1791] [Impact Index Per Article: 358.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022] Open
Abstract
GetOrganelle is a state-of-the-art toolkit to accurately assemble organelle genomes from whole genome sequencing data. It recruits organelle-associated reads using a modified "baiting and iterative mapping" approach, conducts de novo assembly, filters and disentangles the assembly graph, and produces all possible configurations of circular organelle genomes. For 50 published plant datasets, we are able to reassemble the circular plastomes from 47 datasets using GetOrganelle. GetOrganelle assemblies are more accurate than published and/or NOVOPlasty-reassembled plastomes as assessed by mapping. We also assemble complete mitochondrial genomes using GetOrganelle. GetOrganelle is freely released under a GPL-3 license ( https://github.com/Kinggerm/GetOrganelle ).
Collapse
Affiliation(s)
- Jian-Jun Jin
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Wen-Bin Yu
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, 05282, Myanmar
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Yu Song
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, 05282, Myanmar
| | - Claude W dePamphilis
- Department of Biology, The Pennsylvania State University, University Park, PA, 16801, USA
| | - Ting-Shuang Yi
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
| |
Collapse
|
19
|
Jin JJ, Yu WB, Yang JB, Song Y, dePamphilis CW, Yi TS, Li DZ. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol 2020. [PMID: 32912315 DOI: 10.1101/256479] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
GetOrganelle is a state-of-the-art toolkit to accurately assemble organelle genomes from whole genome sequencing data. It recruits organelle-associated reads using a modified "baiting and iterative mapping" approach, conducts de novo assembly, filters and disentangles the assembly graph, and produces all possible configurations of circular organelle genomes. For 50 published plant datasets, we are able to reassemble the circular plastomes from 47 datasets using GetOrganelle. GetOrganelle assemblies are more accurate than published and/or NOVOPlasty-reassembled plastomes as assessed by mapping. We also assemble complete mitochondrial genomes using GetOrganelle. GetOrganelle is freely released under a GPL-3 license ( https://github.com/Kinggerm/GetOrganelle ).
Collapse
Affiliation(s)
- Jian-Jun Jin
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Wen-Bin Yu
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, 05282, Myanmar
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Yu Song
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, 05282, Myanmar
| | - Claude W dePamphilis
- Department of Biology, The Pennsylvania State University, University Park, PA, 16801, USA
| | - Ting-Shuang Yi
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
| |
Collapse
|
20
|
Preuss M, Verbruggen H, Zuccarello GC. The Organelle Genomes in the Photosynthetic Red Algal Parasite Pterocladiophila hemisphaerica (Florideophyceae, Rhodophyta) Have Elevated Substitution Rates and Extreme Gene Loss in the Plastid Genome. JOURNAL OF PHYCOLOGY 2020; 56:1006-1018. [PMID: 32215918 DOI: 10.1111/jpy.12996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
Comparative organelle genome studies of parasites can highlight genetic changes that occur during the transition from a free-living to a parasitic state. Our study focuses on a poorly studied group of red algal parasites, which are often closely related to their red algal hosts and from which they presumably evolved. Most of these parasites are pigmented and some show photosynthetic capacity. Here, we assembled and annotated the complete organelle genomes of the photosynthetic red algal parasite, Pterocladiophila hemisphaerica. The plastid genome is the smallest known red algal plastid genome at 68,701 bp. The plastid genome has many genes missing, including all photosynthesis-related genes. In contrast, the mitochondrial genome is similar in architecture to that of other free-living red algae. Both organelle genomes show elevated mutation rates and significant changes in patterns of selection, measured as dN/dS ratios. This caused phylogenetic analyses, even of multiple aligned proteins, to be unresolved or give contradictory relationships. Full plastid datasets interfered by selected best gene evolution models showed the supported relationship of P. hemisphaerica within the Ceramiales, but the parasite was grouped with support as sister to the Gracilariales when interfered under the GHOST model. Nuclear rDNA showed a supported grouping of the parasite within a clade containing several red algal orders including the Gelidiales. This photosynthetic parasite, which is unable to photosynthesize with its own plastid due to the total loss of all photosynthesis genes, raises intriguing questions on parasite-host organelle genome capabilities and interactions.
Collapse
Affiliation(s)
- Maren Preuss
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Giuseppe C Zuccarello
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| |
Collapse
|
21
|
Chen X, Fang D, Wu C, Liu B, Liu Y, Sahu SK, Song B, Yang S, Yang T, Wei J, Wang X, Zhang W, Xu Q, Wang H, Yuan L, Liao X, Chen L, Chen Z, Yuan F, Chang Y, Lu L, Yang H, Wang J, Xu X, Liu X, Wicke S, Liu H. Comparative Plastome Analysis of Root- and Stem-Feeding Parasites of Santalales Untangle the Footprints of Feeding Mode and Lifestyle Transitions. Genome Biol Evol 2020; 12:3663-3676. [PMID: 31845987 PMCID: PMC6953812 DOI: 10.1093/gbe/evz271] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2019] [Indexed: 12/17/2022] Open
Abstract
In plants, parasitism triggers the reductive evolution of plastid genomes (plastomes). To disentangle the molecular evolutionary associations between feeding on other plants below- or aboveground and general transitions from facultative to obligate parasitism, we analyzed 34 complete plastomes of autotrophic, root- and stem-feeding hemiparasitic, and holoparasitic Santalales. We observed inexplicable losses of housekeeping genes and tRNAs in hemiparasites and dramatic genomic reconfiguration in holoparasitic Balanophoraceae, whose plastomes have exceptionally low GC contents. Genomic changes are related primarily to the evolution of hemi- or holoparasitism, whereas the transition from a root- to a stem-feeding mode plays no major role. In contrast, the rate of molecular evolution accelerates in a stepwise manner from autotrophs to root- and then stem-feeding parasites. Already the ancestral transition to root-parasitism coincides with a relaxation of selection in plastomes. Another significant selectional shift in plastid genes occurs as stem-feeders evolve, suggesting that this derived form coincides with trophic specialization despite the retention of photosynthetic capacity. Parasitic Santalales fill a gap in our understanding of parasitism-associated plastome degeneration. We reveal that lifestyle-genome associations unfold interdependently over trophic specialization and feeding mode transitions, where holoparasitic Balanophoraceae provide a system for exploring the functional realms of plastomes.
Collapse
Affiliation(s)
- Xiaoli Chen
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Dongming Fang
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Chenyu Wu
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Bing Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yang Liu
- BGI-Shenzhen, Shenzhen, China.,Fairylake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Sunil Kumar Sahu
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Bo Song
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Shuai Yang
- BGI-Shenzhen, Shenzhen, China.,School of Basic Medical, Qingdao University, China
| | - Tuo Yang
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Jinpu Wei
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Xuebing Wang
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Wen Zhang
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Qiwu Xu
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Huafeng Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Langxing Yuan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Xuezhu Liao
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Lipeng Chen
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Ziqiang Chen
- College of Chinese Medicine Materials, Jilin Agricultural University, China
| | - Fu Yuan
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Yue Chang
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Lihua Lu
- MGI, BGI-Shenzhen, Shenzhen, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Xin Liu
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Susann Wicke
- Institute for Evolution and Biodiversity, University of Muenster, Germany†These authors contributed equally to this work
| | - Huan Liu
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
22
|
Comprehensive genomic analyses with 115 plastomes from algae to seed plants: structure, gene contents, GC contents, and introns. Genes Genomics 2020; 42:553-570. [PMID: 32200544 DOI: 10.1007/s13258-020-00923-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Chloroplasts are a common character in plants. The chloroplasts in each plant lineage have shaped their own genomes, plastomes, by structural changes and transferring many genes to nuclear genomes during plant evolution. Some plastid genes have introns that are mostly group II introns. OBJECTIVE This study aimed to get genomic and evolutionary insights on the plastomes from green algae to flowering plants. METHODS Plastomes of 115 species from green algae, bryophytes, pteridophytes (spore bearing vascular plants), gymnosperms, and angiosperms were mined from NCBI organelle genome database. Plastome structure, gene contents and GC contents were analyzed by the in-house developed Phyton code. Intronic features including presence/absence, length, intron phases were analyzed by manually in the annotated information in NCBI. RESULTS The canonical quadripartite structures were retained in most plastomes except of a few plastomes that had lost an invert repeat (IR). Expansion or reduction or deletion of IRs resulted in the length variation of the plastomes. The number of protein coding genes ranged from 40 to 92 with an average 79.43 ± 5.84 per plastome and gene losses were apparent in specific lineages. The number of trn genes ranged from 13 to 33 with an average 21.19 ± 2.42 per plastome. Ribosomal RNA genes, rrn, were located in the IRs so that they were present in a duplicate except of the species that had lost one of the IR. GC contents were variable from 24.9 to 51.0% with an average 38.21 ± 3.27%, indicating bias to high AT contents. Plastid introns were present in 18 protein coding genes, six trn genes, and one rrn gene. Intron losses occurred among the orthologous genes in different plant lineages. The plastid introns were long compared with the nuclear introns, which might be related with the spliceosome nuclear introns and self-splicing group II plastid introns. The trnK-UUU intron contained the maturase encoding matK gene except in the chlorophyte algae and monilophyte ferns in which the trnK-UUU was lost, but matK retained. There were many annotation artefacts in the intron positions in the NCBI database. In the analysis of intron phases, phase 0 introns were more frequent than those of phase 2 and 3 introns. Phase polymorphism was observed in the introns of clpP which was derived from nucleotide insertion. Plastid trn introns were long compared to the archaeal or eukaryotic nuclear tRNA introns. Of the six plastid trn introns, one was at the D loop and other five were at the anticodon loop. The insertion sites were conserved among the trn genes in archaea, eukaryotic nuclear and plastid tRNA genes. CONCLUSIONS Current study refurbrished the previous findings of structural variations, gene contents, and GC contents of the chloroplast genomes from green algae to flowering plants. The study also included some noble findings and discussions on the plastome introns including their length variations and phase variation. We also presented and corrected some false annotations on the introns in protein coding and tRNA genes in the genome database, which might be confirmed by the chloroplast transcriptome analysis in the future.
Collapse
|
23
|
The First Plastid Genome of the Holoparasitic Genus Prosopanche (Hydnoraceae). PLANTS 2020; 9:plants9030306. [PMID: 32121567 PMCID: PMC7154897 DOI: 10.3390/plants9030306] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 02/07/2023]
Abstract
Plastomes of parasitic and mycoheterotrophic plants show different degrees of reduction depending on the plants’ level of heterotrophy and host dependence in comparison to photoautotrophic sister species, and the amount of time since heterotrophic dependence was established. In all but the most recent heterotrophic lineages, this reduction involves substantial decrease in genome size and gene content and sometimes alterations of genome structure. Here, we present the first plastid genome of the holoparasitic genus Prosopanche, which shows clear signs of functionality. The plastome of Prosopanche americana has a length of 28,191 bp and contains only 24 unique genes, i.e., 14 ribosomal protein genes, four ribosomal RNA genes, five genes coding for tRNAs and three genes with other or unknown function (accD, ycf1, ycf2). The inverted repeat has been lost. Despite the split of Prosopanche and Hydnora about 54 MYA ago, the level of genome reduction is strikingly congruent between the two holoparasites although highly dissimilar nucleotide sequences are observed. Our results lead to two possible evolutionary scenarios that will be tested in the future with a larger sampling: 1) a Hydnoraceae plastome, similar to those of Hydnora and Prosopanche today, existed already in the most recent common ancestor and has not changed much with respect to gene content and structure, or 2) the genome similarities we observe today are the result of two independent evolutionary trajectories leading to almost the same endpoint. The first hypothesis would be most parsimonious whereas the second would point to taxon dependent essential gene sets for plants released from photosynthetic constraints.
Collapse
|
24
|
Liu X, Fu W, Tang Y, Zhang W, Song Z, Li L, Yang J, Ma H, Yang J, Zhou C, Davis CC, Wang Y. Diverse trajectories of plastome degradation in holoparasitic Cistanche and genomic location of the lost plastid genes. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:877-892. [PMID: 31639183 DOI: 10.1093/jxb/erz456] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
The plastid genomes (plastomes) of non-photosynthetic plants generally undergo gene loss and pseudogenization. Despite massive plastomes reported in different parasitism types of the broomrape family (Orobanchaceae), more plastomes representing different degradation patterns in a single genus are expected to be explored. Here, we sequence and assemble the complete plastomes of three holoparasitic Cistanche species (C. salsa, C. mongolica, and C. sinensis) and compare them with the available plastomes of Orobanchaceae. We identified that the diverse degradation trajectories under purifying selection existed among three Cistanche clades, showing obvious size differences in the entire plastome, long single copy region, and non-coding region, and different patterns of the retention/loss of functional genes. With few exceptions of putatively functional genes, massive plastid fragments, which have been lost and transferred into the mitochondrial or nuclear genomes, are non-functional. In contrast to the equivalents of the Orobanche species, some plastid-derived genes with diverse genomic locations are found in Cistanche. The early and initially diverged clades in different genera such as Cistanche and Aphyllon possess obvious patterns of plastome degradation, suggesting that such key lineages should be considered prior to comparative analysis of plastome evolution, especially in the same genus.
Collapse
Affiliation(s)
- Xiaoqing Liu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Weirui Fu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Yiwei Tang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Wenju Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhiping Song
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Linfeng Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Ji Yang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Plant Biology, Center for Evolutionary Biology, Fudan University, Shanghai, China
- Department of Biology, Institute of Molecular Evolutionary Genetics, and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Jianhua Yang
- College of Pharmacy, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, China
| | - Chan Zhou
- Department of Population and Quantitative Health Sciences, Massachusetts General Hospital, 55 Lake Ave, North Worcester, MA, USA
| | - Charles C Davis
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, 22 Divinity Avenue, Cambridge, MA, USA
| | - Yuguo Wang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Petersen G, Darby H, Lam VKY, Pedersen HÆ, Merckx VSFT, Zervas A, Seberg O, Graham SW. Mycoheterotrophic Epirixanthes (Polygalaceae) has a typical angiosperm mitogenome but unorthodox plastid genomes. ANNALS OF BOTANY 2019; 124:791-807. [PMID: 31346602 PMCID: PMC6868387 DOI: 10.1093/aob/mcz114] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 07/24/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND AND AIMS Fully mycoheterotrophic plants derive carbon and other nutrients from root-associated fungi and have lost the ability to photosynthesize. While mycoheterotroph plastomes are often degraded compared with green plants, the effect of this unusual symbiosis on mitochondrial genome evolution is unknown. By providing the first complete organelle genome data from Polygalaceae, one of only three eudicot families that developed mycoheterotrophy, we explore how both organellar genomes evolved after loss of photosynthesis. METHODS We sequenced and assembled four complete plastid genomes and a mitochondrial genome from species of Polygalaceae, focusing on non-photosynthetic Epirixanthes. We compared these genomes with those of other mycoheterotroph and parasitic plant lineages, and assessed whether organelle genes in Epirixanthes experienced relaxed or intensified selection compared with autotrophic relatives. KEY RESULTS Plastomes of two species of Epirixanthes have become substantially degraded compared with that of autotrophic Polygala. Although the lack of photosynthesis is presumably homologous in the genus, the surveyed Epirixanthes species have marked differences in terms of plastome size, structural rearrangements, gene content and substitution rates. Remarkably, both apparently replaced a canonical plastid inverted repeat with large directly repeated sequences. The mitogenome of E. elongata incorporated a considerable number of fossilized plastid genes, by intracellular transfer from an ancestor with a less degraded plastome. Both plastid and mitochondrial genes in E. elongata have increased substitution rates, but the plastid genes of E. pallida do not. Despite this, both species have similar selection patterns operating on plastid housekeeping genes. CONCLUSIONS Plastome evolution largely fits with patterns of gene degradation seen in other heterotrophic plants, but includes highly unusual directly duplicated regions. The causes of rate elevation in the sequenced Epirixanthes mitogenome and of rate differences in plastomes of related mycoheterotrophic species are not currently understood.
Collapse
Affiliation(s)
- G Petersen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- For correspondence. E-mail:
| | - H Darby
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- UBC Botanical Garden & Centre for Plant Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - V K Y Lam
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- UBC Botanical Garden & Centre for Plant Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - H Æ Pedersen
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | | | - A Zervas
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- Department of Environmental Science, Aarhus University, Denmark
| | - O Seberg
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - S W Graham
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- UBC Botanical Garden & Centre for Plant Research, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
26
|
Li X, Qian X, Yao G, Zhao Z, Zhang D. Plastome of mycoheterotrophic Burmannia itoana Mak. (Burmanniaceae) exhibits extensive degradation and distinct rearrangements. PeerJ 2019; 7:e7787. [PMID: 31608171 PMCID: PMC6788436 DOI: 10.7717/peerj.7787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/29/2019] [Indexed: 02/03/2023] Open
Abstract
Plastomes of heterotrophs went through varying degrees of degradation along with the transition from autotrophic to heterotrophic lifestyle. Here, we identified the plastome of mycoheterotrophic species Burmannia itoana and compared it with those of its reported relatives including three autotrophs and one heterotroph (Thismia tentaculata) in Dioscoreales. B. itoana yields a rampantly degraded plastome reduced in size and gene numbers at the advanced stages of degradation. Its length is 44,463 bp with a quadripartite structure. B. itoana plastome contains 33 tentatively functional genes and six tentative pseudogenes, including several unusually retained genes. These unusual retention suggest that the inverted repeats (IRs) regions and possibility of being compensated may prolong retention of genes in plastome at the advanced stage of degradation. Otherwise, six rearrangements including four inversions (Inv1/Inv2/Inv3/Inv4) and two translocations (Trans1/Trans2) were detected in B. itoana plastome vs. its autotrophic relative B. disticha. We speculate that Inv1 may be mediated by recombination of distinct tRNA genes, while Inv2 is likely consequence of extreme gene losses due to the shift to heterotrophic lifestyle. The other four rearrangements involved in IRs and small single copy region may attribute to multiple waves of IRs and overlapping inversions. Our study fills the gap of knowledge about plastomes of heterotroph in Burmannia and provides a new evidence for the convergent degradation patterns of plastomes en route to heterotrophic lifestyle.
Collapse
Affiliation(s)
- Xiaojuan Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xin Qian
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Gang Yao
- South China Limestone Plants Research Center, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Zhongtao Zhao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Dianxiang Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
27
|
Arias-Agudelo LM, González F, Isaza JP, Alzate JF, Pabón-Mora N. Plastome reduction and gene content in New World Pilostyles (Apodanthaceae) unveils high similarities to African and Australian congeners. Mol Phylogenet Evol 2019; 135:193-202. [DOI: 10.1016/j.ympev.2019.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 02/06/2023]
|
28
|
Olofsson JK, Cantera I, Van de Paer C, Hong-Wa C, Zedane L, Dunning LT, Alberti A, Christin PA, Besnard G. Phylogenomics using low-depth whole genome sequencing: A case study with the olive tribe. Mol Ecol Resour 2019; 19:877-892. [PMID: 30934146 DOI: 10.1111/1755-0998.13016] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 12/20/2022]
Abstract
Species trees have traditionally been inferred from a few selected markers, and genome-wide investigations remain largely restricted to model organisms or small groups of species for which sampling of fresh material is available, leaving out most of the existing and historical species diversity. The genomes of an increasing number of species, including specimens extracted from natural history collections, are being sequenced at low depth. While these data sets are widely used to analyse organelle genomes, the nuclear fraction is generally ignored. Here we evaluate different reference-based methods to infer phylogenies of large taxonomic groups from such data sets. Using the example of the Oleeae tribe, a worldwide-distributed group, we build phylogenies based on single nucleotide polymorphisms (SNPs) obtained using two reference genomes (the olive and ash trees). The inferred phylogenies are overall congruent, yet present differences that might reflect the effect of distance to the reference on the amount of missing data. To limit this issue, genome complexity was reduced by using pairs of orthologous coding sequences as the reference, thus allowing us to combine SNPs obtained using two distinct references. Concatenated and coalescence trees based on these combined SNPs suggest events of incomplete lineage sorting and/or hybridization during the diversification of this large phylogenetic group. Our results show that genome-wide phylogenetic trees can be inferred from low-depth sequence data sets for eukaryote groups with complex genomes, and histories of reticulate evolution. This opens new avenues for large-scale phylogenomics and biogeographical analyses covering both the extant and the historical diversity stored in museum collections.
Collapse
Affiliation(s)
- Jill K Olofsson
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Isabel Cantera
- Laboratoire Évolution and Diversité Biologique (EDB, UMR5174), CNRS, UPS, IRD, Université de Toulouse, Toulouse, France
| | - Céline Van de Paer
- Laboratoire Évolution and Diversité Biologique (EDB, UMR5174), CNRS, UPS, IRD, Université de Toulouse, Toulouse, France
| | - Cynthia Hong-Wa
- Claude E. Phillips Herbarium, Delaware State University, Dover, Delaware
| | - Loubab Zedane
- Laboratoire Évolution and Diversité Biologique (EDB, UMR5174), CNRS, UPS, IRD, Université de Toulouse, Toulouse, France
| | - Luke T Dunning
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Adriana Alberti
- Genoscope, CEA - Institut de biologie François-Jacob, Evry Cedex, France
| | | | - Guillaume Besnard
- Laboratoire Évolution and Diversité Biologique (EDB, UMR5174), CNRS, UPS, IRD, Université de Toulouse, Toulouse, France
| |
Collapse
|
29
|
Zervas A, Petersen G, Seberg O. Mitochondrial genome evolution in parasitic plants. BMC Evol Biol 2019; 19:87. [PMID: 30961535 PMCID: PMC6454704 DOI: 10.1186/s12862-019-1401-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/22/2019] [Indexed: 11/10/2022] Open
Abstract
Background Parasitic plants rely on their host to cover their nutritional requirements either for their entire life or a smaller part of it. Depending on the level of parasitism, a proportional reduction on the plastid genome has been found. However, knowledge on gene loss and evolution of the mitogenome of parasitic plants is only available for four hemiparasitic Viscum species (Viscaceae), which lack many of the mitochondrial genes, while the remaining genes exhibit very fast molecular evolution rates. In this study, we include another genus, Phoradendron, from the Viscaceae, as well as 10 other hemiparasitic or holoparasitic taxa from across the phylogeny of the angiosperms to investigate how fast molecular evolution works on their mitogenomes, and the extent of gene loss. Results Our observations from Viscum were replicated in Phoradendron liga, whereas the remaining parasitic plants in the study have a complete set of the core mitochondrial genes and exhibit moderate or only slightly raised substitution rates compared to most autotrophic taxa, without any statistically significant difference between the different groups (autotrophs, hemiparasites and holoparasites). Additionally, further evidence is provided for the placement of Balanophoraceae within the order Santalales, while the exact placement of Cynomoriaceae still remains elusive. Conclusions We examine the mitochondrial gene content of 11 hemiparasitic and holoparasitic plants and confirm previous observations in Viscaceae. We show that the remaining parasitic plants do not have significantly higher substitution rates than autotrophic plants in their mitochondrial genes. We provide further evidence for the placement of Balanophoraceae in the Santalales. Electronic supplementary material The online version of this article (10.1186/s12862-019-1401-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Athanasios Zervas
- The Natural History Museum of Denmark, Faculty of Science, University of Copenhagen, Sølvgade 83, opg. S, DK-1307, Copenhagen K, Denmark.
| | - Gitte Petersen
- The Natural History Museum of Denmark, Faculty of Science, University of Copenhagen, Sølvgade 83, opg. S, DK-1307, Copenhagen K, Denmark
| | - Ole Seberg
- The Natural History Museum of Denmark, Faculty of Science, University of Copenhagen, Sølvgade 83, opg. S, DK-1307, Copenhagen K, Denmark
| |
Collapse
|
30
|
Tannin profile, antioxidant properties, and antimicrobial activity of extracts from two Mediterranean species of parasitic plant Cytinus. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:82. [PMID: 30952208 PMCID: PMC6451225 DOI: 10.1186/s12906-019-2487-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/21/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Cytinus is small genus of endophytic parasitic plants distributed in South Africa, Madagascar, and in the Mediterranean region. In the latter area, two species occur, Cytinus hypocistis and C. ruber, distinguished by both morphological characters and ecological traits. We characterized the ethanolic and aqueous extracts obtained from the inflorescences of C. hypocistis and C. ruber collected in Sardinia, Italy, and explored their tannin content, antioxidant properties and antimicrobial activities. METHODS Total phenolic contents were determined by Folin-Ciocalteu spectrophotometric method. Tannin content was determined by HPLC. Antioxidant activity of the extracts was tested with both electron transfer-based (FRAP, TEAC, DPPH) and spectrophotometric HAT methods (ORAC-PYR). The antimicrobial activities of extracts/compounds were evaluated using the broth microdilution method. The bactericidal activity was evaluated using the time-kill method. Biofilm formation was evaluated by crystal violet (CV) staining assay. RESULTS Characterization of the tannin profile of C. hypocistis and C. ruber revealed a significant amount of gallotannins, in particular 1-O-galloyl-β-D-glucose. In addition, pentagalloyl-O-β-D-glucose was present in all extracts, reaching the concentration of 0.117 g/kg in the ethanolic extract of C. hypocistis. C. hypocistis extracts displayed a strongest antioxidant activity than C. ruber extracts. Three Gram-positive bacterial species tested (Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecium) resulted sensitive to both Cytinus extracts, with MICs ranging from 125 to 500 μg/ml for aqueous extracts and from 31.25 to 250 μg/ml for ethanolic extracts; on the contrary, Gram-negative strains (Pseudomonas aeruginosa and Klebsiella pneumoniae) were not affected by Cytinus extracts. Intriguingly, we observed the suppressive activity of ethanolic extracts of C. hypocistis and C. ruber on biofilm formation of S. epidermidis. Experiments performed with synthetic compounds indicated that pentagalloyl-O-β-D-glucose is likely to be one of the active antimicrobial components of Cytinus extracts. CONCLUSIONS These findings show that Cytinus extracts have antimicrobial and antioxidant activities, suggesting a possible application of Cytinus as sources of natural antimicrobials and antioxidants.
Collapse
|
31
|
Gomes Pacheco T, de Santana Lopes A, Monteiro Viana GD, Nascimento da Silva O, Morais da Silva G, do Nascimento Vieira L, Guerra MP, Nodari RO, Maltempi de Souza E, de Oliveira Pedrosa F, Otoni WC, Rogalski M. Genetic, evolutionary and phylogenetic aspects of the plastome of annatto (Bixa orellana L.), the Amazonian commercial species of natural dyes. PLANTA 2019; 249:563-582. [PMID: 30310983 DOI: 10.1007/s00425-018-3023-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 10/01/2018] [Indexed: 06/08/2023]
Abstract
The plastome of B. orellana reveals specific evolutionary features, unique RNA editing sites, molecular markers and the position of Bixaceae within Malvales. Annatto (Bixa orellana L.) is a native species of tropical Americas with center of origin in Brazilian Amazonia. Its seeds accumulate the apocarotenoids, bixin and norbixin, which are only found in high content in this species. The seeds of B. orellana are commercially valued by the food industry because its dyes replace synthetic ones from the market due to potential carcinogenic risks. The increasing consumption of B. orellana seeds for dye extraction makes necessary the increase of productivity, which is possible accessing the genetic basis and searching for elite genotypes. The identification and characterization of molecular markers are essential to analyse the genetic diversity of natural populations and to establish suitable strategies for conservation, domestication, germplasm characterization and genetic breeding. Therefore, we sequenced and characterized in detail the plastome of B. orellana. The plastome of B. orellana is a circular DNA molecule of 159,708 bp with a typical quadripartite structure and 112 unique genes. Additionally, a total of 312 SSR loci were identified in the plastome of B. orellana. Moreover, we predicted in 23 genes a total of 57 RNA-editing sites of which 11 are unique for B. orellana. Furthermore, our plastid phylogenomic analyses, using the plastome sequences available in the plastid database belonging to species of order Malvales, indicate a closed relationship between Bixaceae and Malvaceae, which formed a sister group to Thymelaeaceae. Finally, our study provided useful data to be employed in several genetic and biotechnological approaches in B. orellana and related species of the family Bixaceae.
Collapse
Affiliation(s)
- Túlio Gomes Pacheco
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Amanda de Santana Lopes
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Gélia Dinah Monteiro Viana
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Odyone Nascimento da Silva
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Gleyson Morais da Silva
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Leila do Nascimento Vieira
- Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Programa de Pós-graduação em Recursos Genéticos Vegetais, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Miguel Pedro Guerra
- Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Programa de Pós-graduação em Recursos Genéticos Vegetais, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Rubens Onofre Nodari
- Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Programa de Pós-graduação em Recursos Genéticos Vegetais, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Emanuel Maltempi de Souza
- Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação Biológica de Nitrogênio, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Fábio de Oliveira Pedrosa
- Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação Biológica de Nitrogênio, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Wagner Campos Otoni
- Laboratório de Cultura de Tecidos Vegetais, Departamento de Biologia Vegetal, BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Marcelo Rogalski
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
32
|
Su HJ, Barkman TJ, Hao W, Jones SS, Naumann J, Skippington E, Wafula EK, Hu JM, Palmer JD, dePamphilis CW. Novel genetic code and record-setting AT-richness in the highly reduced plastid genome of the holoparasitic plant Balanophora. Proc Natl Acad Sci U S A 2019; 116:934-943. [PMID: 30598433 PMCID: PMC6338844 DOI: 10.1073/pnas.1816822116] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Plastid genomes (plastomes) vary enormously in size and gene content among the many lineages of nonphotosynthetic plants, but key lineages remain unexplored. We therefore investigated plastome sequence and expression in the holoparasitic and morphologically bizarre Balanophoraceae. The two Balanophora plastomes examined are remarkable, exhibiting features rarely if ever seen before in plastomes or in any other genomes. At 15.5 kb in size and with only 19 genes, they are among the most reduced plastomes known. They have no tRNA genes for protein synthesis, a trait found in only three other plastid lineages, and thus Balanophora plastids must import all tRNAs needed for translation. Balanophora plastomes are exceptionally compact, with numerous overlapping genes, highly reduced spacers, loss of all cis-spliced introns, and shrunken protein genes. With A+T contents of 87.8% and 88.4%, the Balanophora genomes are the most AT-rich genomes known save for a single mitochondrial genome that is merely bloated with AT-rich spacer DNA. Most plastid protein genes in Balanophora consist of ≥90% AT, with several between 95% and 98% AT, resulting in the most biased codon usage in any genome described to date. A potential consequence of its radical compositional evolution is the novel genetic code used by Balanophora plastids, in which TAG has been reassigned from stop to tryptophan. Despite its many exceptional properties, the Balanophora plastome must be functional because all examined genes are transcribed, its only intron is correctly trans-spliced, and its protein genes, although highly divergent, are evolving under various degrees of selective constraint.
Collapse
Affiliation(s)
- Huei-Jiun Su
- Department of Earth and Life Sciences, University of Taipei, 100 Taipei, Taiwan
- Department of Biology, Pennsylvania State University, University Park, PA 16802
- Institute of Molecular Evolutionary Genetics, Pennsylvania State University, University Park, PA 16802
| | - Todd J Barkman
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Weilong Hao
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202
| | - Samuel S Jones
- Graduate Program in Plant Biology, Pennsylvania State University, University Park, PA 16802
| | - Julia Naumann
- Department of Biology, Pennsylvania State University, University Park, PA 16802
- Institute of Molecular Evolutionary Genetics, Pennsylvania State University, University Park, PA 16802
| | | | - Eric K Wafula
- Department of Biology, Pennsylvania State University, University Park, PA 16802
- Institute of Molecular Evolutionary Genetics, Pennsylvania State University, University Park, PA 16802
| | - Jer-Ming Hu
- Institute of Ecology and Evolutionary Biology, National Taiwan University, 106 Taipei, Taiwan
| | - Jeffrey D Palmer
- Department of Biology, Indiana University, Bloomington, IN 47405;
| | - Claude W dePamphilis
- Department of Biology, Pennsylvania State University, University Park, PA 16802;
- Institute of Molecular Evolutionary Genetics, Pennsylvania State University, University Park, PA 16802
- Graduate Program in Plant Biology, Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
33
|
Schneider AC, Braukmann T, Banerjee A, Stefanovic S. Convergent Plastome Evolution and Gene Loss in Holoparasitic Lennoaceae. Genome Biol Evol 2018; 10:2663-2670. [PMID: 30169817 PMCID: PMC6178340 DOI: 10.1093/gbe/evy190] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2018] [Indexed: 11/15/2022] Open
Abstract
The Lennoaceae, a small monophyletic plant family of root parasites endemic to the Americas, are one of the last remaining independently evolved lineages of parasitic angiosperms lacking a published plastome. In this study, we present the assembled and annotated plastomes of two species spanning the crown node of Lennoaceae, Lennoa madreporoides and Pholisma arenarium, as well as their close autotrophic relative from the sister family Ehretiaceae, Tiquilia plicata. We find that the plastomes of L. madreporoides and P. arenarium are similar in size and gene content, and substantially reduced compared to T. plicata, consistent with trends seen in other holoparasitic lineages. In particular, most plastid genes involved in photosynthesis function have been lost, whereas housekeeping genes (ribosomal protein-coding genes, rRNAs, and tRNAs) are retained. One notable exception is the persistence of a rbcL open reading frame in P. arenarium but not L. madreporoides suggesting a nonphotosynthetic function for this gene. Of the retained coding genes, dN/dS ratios indicate that some remain under purifying selection, whereas others show relaxed selection. Overall, this study supports the mounting evidence for convergent plastome evolution in flowering plants following the shift to heterotrophy.
Collapse
Affiliation(s)
- Adam C Schneider
- Department of Biology, University of Toronto Mississauga, Ontario, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, Canada.,Department of Biology, Hendrix College, Conway, AR
| | - Thomas Braukmann
- Centre for Biodiversity Genomics, University of Guelph, Ontario, Canada
| | - Arjan Banerjee
- Department of Biology, University of Toronto Mississauga, Ontario, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, Canada
| | - Saša Stefanovic
- Department of Biology, University of Toronto Mississauga, Ontario, Canada
| |
Collapse
|
34
|
Shin HW, Lee NS. Understanding plastome evolution in Hemiparasitic Santalales: Complete chloroplast genomes of three species, Dendrotrophe varians, Helixanthera parasitica, and Macrosolen cochinchinensis. PLoS One 2018; 13:e0200293. [PMID: 29975758 PMCID: PMC6033455 DOI: 10.1371/journal.pone.0200293] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 06/22/2018] [Indexed: 01/31/2023] Open
Abstract
Santalales is a large order, with over 2200 species, most of which are root or aerial (stem) hemiparasites. In this study, we report the newly assembled chloroplast genome of Dendrotrophe varians (140,666 bp) in the family Amphorogynaceae and the cp genomes of Helixanthera parasitica (124,881 bp) and Macrosolen cochinchinensis (122,986 bp), both in the family Loranthaceae. We compared the cp genomes of 11 Santalales including eight currently available cp genomes. Santalales cp genomes are slightly or not reduced in size (119-147 kb), similar to other hemiparasitic species, when compared with typical angiosperm cp genomes (120-170 kb). In a phylogeny examining gene content, the NADH dehydrogenase gene group is the only one among eight functional gene groups that lost complete functionally in all examined Santalales. This supports the idea that the functional loss of ndh genes is the initial stage in the evolution of the plastome of parasitic plants, but the loss has occurred independently multiple times in angiosperms, while they are not found in some parasites. This suggests that the functional loss of ndh genes is not essential for the transition from autotroph to parasite. We additionally examined the correlation between gene content and type of parasitism (obligate/facultative and stem/root parasites) of all hemiparasitic species in which cp genomes have been reported to date. Correlation was not found in any types of parasitism.
Collapse
Affiliation(s)
- Hye Woo Shin
- Interdisciplinary Program of EcoCreative, The Graduate School, Ewha Womans University, Seoul, Korea
| | - Nam Sook Lee
- Department of Life Science, Ewha Womans University, Seoul, Korea
| |
Collapse
|
35
|
Xu Z, Xin T, Bartels D, Li Y, Gu W, Yao H, Liu S, Yu H, Pu X, Zhou J, Xu J, Xi C, Lei H, Song J, Chen S. Genome Analysis of the Ancient Tracheophyte Selaginella tamariscina Reveals Evolutionary Features Relevant to the Acquisition of Desiccation Tolerance. MOLECULAR PLANT 2018; 11:983-994. [PMID: 29777775 DOI: 10.1016/j.molp.2018.05.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/30/2018] [Accepted: 05/07/2018] [Indexed: 05/18/2023]
Abstract
Resurrection plants, which are the "gifts" of natural evolution, are ideal models for studying the genetic basis of plant desiccation tolerance. Here, we report a high-quality genome assembly of 301 Mb for the diploid spike moss Selaginella tamariscina, a primitive vascular resurrection plant. We predicated 27 761 protein-coding genes from the assembled S. tamariscina genome, 11.38% (2363) of which showed significant expression changes in response to desiccation. Approximately 60.58% of the S. tamariscina genome was annotated as repetitive DNA, which is an almost 2-fold increase of that in the genome of desiccation-sensitive Selaginella moellendorffii. Genomic and transcriptomic analyses highlight the unique evolution and complex regulations of the desiccation response in S. tamariscina, including species-specific expansion of the oleosin and pentatricopeptide repeat gene families, unique genes and pathways for reactive oxygen species generation and scavenging, and enhanced abscisic acid (ABA) biosynthesis and potentially distinct regulation of ABA signaling and response. Comparative analysis of chloroplast genomes of several Selaginella species revealed a unique structural rearrangement and the complete loss of chloroplast NAD(P)H dehydrogenase (NDH) genes in S. tamariscina, suggesting a link between the absence of the NDH complex and desiccation tolerance. Taken together, our comparative genomic and transcriptomic analyses reveal common and species-specific desiccation tolerance strategies in S. tamariscina, providing significant insights into the desiccation tolerance mechanism and the evolution of resurrection plants.
Collapse
Affiliation(s)
- Zhichao Xu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Tianyi Xin
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Dorothea Bartels
- Institute of Molecular Plant Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Ying Li
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Wei Gu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hui Yao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Sai Liu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Haoying Yu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Xiangdong Pu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Jianguo Zhou
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Caicai Xi
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hetian Lei
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Jingyuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China.
| | - Shilin Chen
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
36
|
Barrett CF, Wicke S, Sass C. Dense infraspecific sampling reveals rapid and independent trajectories of plastome degradation in a heterotrophic orchid complex. THE NEW PHYTOLOGIST 2018; 218:1192-1204. [PMID: 29502351 PMCID: PMC5902423 DOI: 10.1111/nph.15072] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/23/2018] [Indexed: 05/08/2023]
Abstract
Heterotrophic plants provide excellent opportunities to study the effects of altered selective regimes on genome evolution. Plastid genome (plastome) studies in heterotrophic plants are often based on one or a few highly divergent species or sequences as representatives of an entire lineage, thus missing important evolutionary-transitory events. Here, we present the first infraspecific analysis of plastome evolution in any heterotrophic plant. By combining genome skimming and targeted sequence capture, we address hypotheses on the degree and rate of plastome degradation in a complex of leafless orchids (Corallorhiza striata) across its geographic range. Plastomes provide strong support for relationships and evidence of reciprocal monophyly between C. involuta and the endangered C. bentleyi. Plastome degradation is extensive, occurring rapidly over a few million years, with evidence of differing rates of genomic change among the two principal clades of the complex. Genome skimming and targeted sequence capture differ widely in coverage depth overall, with depth in targeted sequence capture datasets varying immensely across the plastome as a function of GC content. These findings will help to fill a knowledge gap in models of heterotrophic plastid genome evolution, and have implications for future studies in heterotrophs.
Collapse
Affiliation(s)
- Craig F. Barrett
- Department of Biology, West Virginia University, 5218 Life Sciences Building, 53 Campus Drive, Morgantown, WV 26501, USA
| | - Susann Wicke
- Institute for Evolution and Biodiversity, University of Muenster, Huefferstr. 1, 48149 Muenster, Germany
| | - Chodon Sass
- Department of Plant and Microbial Biology, University of California, Berkeley, 431 Koshland Hall, Berkeley, California 94720, USA
| |
Collapse
|
37
|
Frailey DC, Chaluvadi SR, Vaughn JN, Coatney CG, Bennetzen JL. Gene loss and genome rearrangement in the plastids of five Hemiparasites in the family Orobanchaceae. BMC PLANT BIOLOGY 2018; 18:30. [PMID: 29409454 PMCID: PMC5801802 DOI: 10.1186/s12870-018-1249-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/30/2018] [Indexed: 05/09/2023]
Abstract
BACKGROUND The chloroplast genomes (plastome) of most plants are highly conserved in structure, gene content, and gene order. Parasitic plants, including those that are fully photosynthetic, often contain plastome rearrangements. These most notably include gene deletions that result in a smaller plastome size. The nature of gene loss and genome structural rearrangement has been investigated in several parasitic plants, but their timing and contributions to the adaptation of these parasites requires further investigation, especially among the under-studied hemi-parasites. RESULTS De novo sequencing, assembly and annotation of the chloroplast genomes of five photosynthetic parasites from the family Orobanchaceae were employed to investigate plastome dynamics. Four had major structural rearrangements, including gene duplications and gene losses, that differentiated the taxa. The facultative parasite Aureolaria virginica had the most similar genome content to its close non-parasitic relative, Lindenbergia philippensis, with similar genome size and organization, and no differences in gene content. In contrast, the facultative parasite Buchnera americana and three obligate parasites in the genus Striga all had enlargements of their plastomes, primarily caused by expansion within the large inverted repeats (IRs) that are a standard plastome feature. Some of these IR increases were shared by multiple investigated species, but others were unique to particular lineages. Gene deletions and pseudogenization were also both shared and lineage-specific, with particularly frequent and independent loss of the ndh genes involved in electron recycling. CONCLUSIONS Five new plastid genomes were fully assembled and compared. The results indicate that plastome instability is common in parasitic plants, even those that retain the need to perform essential plastid functions like photosynthesis. Gene losses were slow and not identical across taxa, suggesting that different lineages had different uses or needs for some of their plastome gene content, including genes involved in some aspects of photosynthesis. Recent repeat region extensions, some unique to terminal species branches, were observed after the divergence of the Buchnera/Striga clade, suggesting that this otherwise rare event has some special value in this lineage.
Collapse
Affiliation(s)
| | | | - Justin N. Vaughn
- Department of Genetics, University of Georgia, Athens, GA 30677 USA
| | | | | |
Collapse
|
38
|
Qu Y, Legen J, Arndt J, Henkel S, Hoppe G, Thieme C, Ranzini G, Muino JM, Weihe A, Ohler U, Weber G, Ostersetzer O, Schmitz-Linneweber C. Ectopic Transplastomic Expression of a Synthetic MatK Gene Leads to Cotyledon-Specific Leaf Variegation. FRONTIERS IN PLANT SCIENCE 2018; 9:1453. [PMID: 30337934 PMCID: PMC6180158 DOI: 10.3389/fpls.2018.01453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 09/12/2018] [Indexed: 05/20/2023]
Abstract
Chloroplasts (and other plastids) harbor their own genetic material, with a bacterial-like gene-expression systems. Chloroplast RNA metabolism is complex and is predominantly mediated by nuclear-encoded RNA-binding proteins. In addition to these nuclear factors, the chloroplast-encoded intron maturase MatK has been suggested to perform as a splicing factor for a subset of chloroplast introns. MatK is essential for plant cell survival in tobacco, and thus null mutants have not yet been isolated. We therefore attempted to over-express MatK from a neutral site in the chloroplast, placing it under the control of a theophylline-inducible riboswitch. This ectopic insertion of MatK lead to a variegated cotyledons phenotype. The addition of the inducer theophylline exacerbated the phenotype in a concentration-dependent manner. The extent of variegation was further modulated by light, sucrose and spectinomycin, suggesting that the function of MatK is intertwined with photosynthesis and plastid translation. Inhibiting translation in the transplastomic lines has a profound effect on the accumulation of several chloroplast mRNAs, including the accumulation of an RNA antisense to rpl33, a gene coding for an essential chloroplast ribosomal protein. Our study further supports the idea that MatK expression needs to be tightly regulated to prevent detrimental effects and establishes another link between leaf variegation and chloroplast translation.
Collapse
Affiliation(s)
- Yujiao Qu
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julia Legen
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jürgen Arndt
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stephanie Henkel
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Galina Hoppe
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Giovanna Ranzini
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jose M. Muino
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Weihe
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Uwe Ohler
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Gert Weber
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
- Helmholtz-Zentrum Berlin für Materialien und Energie, Joint Research Group Macromolecular Crystallography, Berlin, Germany
| | - Oren Ostersetzer
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Christian Schmitz-Linneweber
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
- *Correspondence: Christian Schmitz-Linneweber,
| |
Collapse
|
39
|
Twyford AD, Ness RW. Strategies for complete plastid genome sequencing. Mol Ecol Resour 2017; 17:858-868. [PMID: 27790830 PMCID: PMC6849563 DOI: 10.1111/1755-0998.12626] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/14/2016] [Accepted: 10/21/2016] [Indexed: 12/01/2022]
Abstract
Plastid sequencing is an essential tool in the study of plant evolution. This high-copy organelle is one of the most technically accessible regions of the genome, and its sequence conservation makes it a valuable region for comparative genome evolution, phylogenetic analysis and population studies. Here, we discuss recent innovations and approaches for de novo plastid assembly that harness genomic tools. We focus on technical developments including low-cost sequence library preparation approaches for genome skimming, enrichment via hybrid baits and methylation-sensitive capture, sequence platforms with higher read outputs and longer read lengths, and automated tools for assembly. These developments allow for a much more streamlined assembly than via conventional short-range PCR. Although newer methods make complete plastid sequencing possible for any land plant or green alga, there are still challenges for producing finished plastomes particularly from herbarium material or from structurally divergent plastids such as those of parasitic plants.
Collapse
Affiliation(s)
- Alex D. Twyford
- Institute of Evolutionary BiologyAshworth LaboratoriesUniversity of EdinburghEdinburghEH9 3FLUK
| | - Rob W. Ness
- Department of BiologyUniversity of Toronto MississaugaMississaugaONCanada
| |
Collapse
|
40
|
Lam VKY, Soto Gomez M, Graham SW. The Highly Reduced Plastome of Mycoheterotrophic Sciaphila (Triuridaceae) Is Colinear with Its Green Relatives and Is under Strong Purifying Selection. Genome Biol Evol 2015; 105:480-494. [PMID: 26170229 DOI: 10.1002/ajb2.1070] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/02/2018] [Indexed: 05/03/2023] Open
Abstract
The enigmatic monocot family Triuridaceae provides a potentially useful model system for studying the effects of an ancient loss of photosynthesis on the plant plastid genome, as all of its members are mycoheterotrophic and achlorophyllous. However, few studies have placed the family in a comparative context, and its phylogenetic placement is only partly resolved. It was also unclear whether any taxa in this family have retained a plastid genome. Here, we used genome survey sequencing to retrieve plastid genome data for Sciaphila densiflora (Triuridaceae) and ten autotrophic relatives in the orders Dioscoreales and Pandanales. We recovered a highly reduced plastome for Sciaphila that is nearly colinear with Carludovica palmata, a photosynthetic relative that belongs to its sister group in Pandanales, Cyclanthaceae-Pandanaceae. This phylogenetic placement is well supported and robust to a broad range of analytical assumptions in maximum-likelihood inference, and is congruent with recent findings based on nuclear and mitochondrial evidence. The 28 genes retained in the S. densiflora plastid genome are involved in translation and other nonphotosynthetic functions, and we demonstrate that nearly all of the 18 protein-coding genes are under strong purifying selection. Our study confirms the utility of whole plastid genome data in phylogenetic studies of highly modified heterotrophic plants, even when they have substantially elevated rates of substitution.
Collapse
Affiliation(s)
- Vivienne K Y Lam
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada UBC Botanical Garden & Centre for Plant Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marybel Soto Gomez
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada UBC Botanical Garden & Centre for Plant Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sean W Graham
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada UBC Botanical Garden & Centre for Plant Research, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|