1
|
Kumar S. Enabling data-driven discoveries in evolutionary genetics and genomics. Genetics 2025:iyaf084. [PMID: 40391715 DOI: 10.1093/genetics/iyaf084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025] Open
Abstract
The George W. Beadle Award honors individuals who have made outstanding contributions to the community of genetics researchers as a whole and led an exemplary research career. The 2025 awardee is Sudhir Kumar from Temple University, who has not only pushed the intellectual frontier of evolutionary genetics but has also served the community through numerous contributions to creating, disseminating, maintaining, and advancing invaluable software for molecular evolutionary genetics analyses (MEGA) and a web-accessible resource for species divergence times (TimeTree). In the essay below, Kumar traces the initiation and evolution of these resources and explains how these developments have driven his research program to develop computationally efficient and environmentally friendly innovations to address the growing need to analyze increasingly larger sequence data sets.
Collapse
Affiliation(s)
- Sudhir Kumar
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122, USA
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
2
|
Li J, Shao Z, Cheng K, Yang Q, Ju H, Tang X, Zhang S, Li J. Coral-associated Symbiodiniaceae exhibit host specificity but lack phylosymbiosis, with Cladocopium and Durusdinium showing different cophylogenetic patterns. THE NEW PHYTOLOGIST 2025. [PMID: 40317738 DOI: 10.1111/nph.70184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 04/09/2025] [Indexed: 05/07/2025]
Abstract
Altering the composition of the Symbiodiniaceae community to adapt to anomalous sea water warming represents a potential survival mechanism for scleractinian corals. However, the processes of Symbiodiniaceae assembly and long-standing evolution of coral-Symbiodiniaceae interactions remain unclear. Here, we utilized ITS2 (internal transcribed spacer 2) amplicon sequencing and the SymPortal framework to investigate the diversity and specificity of Symbiodiniaceae across 39 scleractinian coral species. Furthermore, we tested phylosymbiosis and cophylogeny between coral hosts and their Symbiodiniaceae. In our study, environmental samples exhibited the highest Symbiodiniaceae diversity. Cladocopium and Durusdinium dominated the Symbiodiniaceae communities, with significant β-diversity differences among coral species. Additionally, host specificity was widespread in Symbiodiniaceae, especially Durusdinium spp., yet lacked a phylosymbiotic pattern. Moreover, Cladocopium spp. showed cophylogenetic congruence with their hosts, while there was no evidence for Durusdinium spp. Furthermore, host switching was the predominant evolutionary event, implying its contribution to Cladocopium diversification. These findings suggest that Symbiodiniaceae assembly does not recapitulate host phylogeny, and host specificity alone does not drive phylosymbiosis or cophylogeny. As environmental reservoirs, free-living Symbiodiniaceae may influence symbiotic communities. Additionally, Durusdinium-coral associations lack cophylogenetic signals, indicating more flexible partnerships than Cladocopium. Overall, our results enhance understanding of Symbiodiniaceae assembly and coral-Symbiodiniaceae evolutionary interactions.
Collapse
Affiliation(s)
- Jiaxin Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Zhuang Shao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Keke Cheng
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Qingsong Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Huimin Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xiaoyu Tang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Sanya National Marine Ecosystem Research Station, Chinese Academy of Sciences, Sanya, 572000, China
| | - Jie Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Sanya National Marine Ecosystem Research Station, Chinese Academy of Sciences, Sanya, 572000, China
| |
Collapse
|
3
|
Singh AK, Sathaye SB, Rai AK, Singh SP. Novel Cellobiose 2-Epimerase from Thermal Aquatic Metagenome for the Production of Epilactose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9690-9700. [PMID: 40202861 DOI: 10.1021/acs.jafc.4c09753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Epilactose is a prebiotic molecule that exerts a bifidogenic effect and increases calcium and iron absorption in the small intestine. This study identifies a novel cellobiose 2-epimerase gene (ceM) by investigating metagenomic data generated from a thermal aquatic habitat. The computation of secondary and tertiary structure analysis, molecular docking, and MD simulation analysis indicated the protein CEM to be a novel cellobiose 2-epimerase. The gene was expressed in Escherichia coli, followed by biochemical characterization of the purified protein. CEM is capable of transforming lactose into the high-value rare sugar, epilactose, in a wide range of temperatures (4-70 °C) and pH (6.0-10.0). The enzyme was exposed to 50 °C, and hardly a 10% loss in activity was recorded after 32 h of heat treatment, suggesting that CEM is a thermostable protein. CEM is a kinetically highly efficient enzyme, with a turnover number of 9832 ± 490 s-1 for lactose to epilactose epimerization. The maximum conversion yield of 26% epilactose was obtained in 15 min of catalytic reaction. Further, the enzyme was successfully tested to transform lactose in milk and whey samples.
Collapse
Affiliation(s)
- Ashutosh Kumar Singh
- Center of Innovative and Applied Bioprocessing (BRIC-NABI), Sector 81, SAS Nagar, Mohali 140306, India
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Shantanu B Sathaye
- Center of Innovative and Applied Bioprocessing (BRIC-NABI), Sector 81, SAS Nagar, Mohali 140306, India
- Department of Industrial Biotechnology, Gujarat Biotechnology University, Near GIFT City, Shahpur, Gandhinagar, Gujarat 382355, India
| | - Amit Kumar Rai
- National Agri-Food and Biomanufacturing Institute (BRIC-NABI), Sector 81, SAS Nagar, Mohali 140306, India
| | - Sudhir Pratap Singh
- Center of Innovative and Applied Bioprocessing (BRIC-NABI), Sector 81, SAS Nagar, Mohali 140306, India
- Department of Industrial Biotechnology, Gujarat Biotechnology University, Near GIFT City, Shahpur, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
4
|
Kim DH, Choi YM, Jang J, Kim Z, Kim BJ. Distinct phylogeographic distributions and frequencies of precore and basal core promoter mutations between HBV subgenotype C1 rt269L and rt269I types. Sci Rep 2025; 15:9315. [PMID: 40102552 PMCID: PMC11920224 DOI: 10.1038/s41598-025-94286-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/12/2025] [Indexed: 03/20/2025] Open
Abstract
Hepatitis B virus (HBV) genotype C exhibits two distinct polymorphisms in its viral polymerase: rt269I and rt269L. Recently, we reported that there are distinct virological and clinical profiles between chronic patients with subgenotype C2 with the rt269I polymorphism and those with the rt269L polymorphism, with the latter being more closely related to liver disease severity. This study explored the phylogenetic and geographic distributions, as well as the mutation frequencies, of precore (T1858C/G1896A) and basal core promoter (BCP) (A1762T/G1764A) mutations between these two types within the HBV subgenotype C1. Analysis of 408 HBV/C1 full-genome sequences from GenBank revealed clear phylogenetic separation between rt269L and rt269I in subgenotype C1. Geographically, rt269I strains within subgenotype C1 are predominant in Southwest Asia (e.g., Thailand and Bangladesh), whereas rt269L strains are more common in East Asia and Southeast Asia (e.g., Vietnam, China, and Hong Kong). Notably, compared with rt269L in subgenotype C2, rt269I presented higher frequencies of the C1858 and BCP mutations but lower frequencies of the G1896A mutation. These findings suggest significantly distinct phylogeographic and mutational characteristics of the rt269L and rt269I types of subgenotype C1, impacting clinical outcomes and evolutionary trajectories.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Yu-Min Choi
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Junghwa Jang
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ziyun Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea.
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea.
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Institute of Endemic Disease, Seoul National University Medical Research Center (SNUMRC), Seoul, Republic of Korea.
| |
Collapse
|
5
|
Geng X, Wu L, Chen J, Hao R, Fan L, Jia H, Hao R. Functional identification of PmABCGs in floral scent transport of Prunus mume. PHYSIOLOGIA PLANTARUM 2025; 177:e70148. [PMID: 40059123 DOI: 10.1111/ppl.70148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/15/2025] [Accepted: 01/24/2025] [Indexed: 05/13/2025]
Abstract
Prunus mume, the only plant in the genus Prunus of the Rosaceae family with a distinctive floral scent, can release a large number of aromatic substances into the air when it blooms. Among these, benzyl acetate has been recognized as a characteristic aromatic substance. In this study, we extracted and analyzed the change in volatility and endogenous content of benzyl acetate using the 'Caizhiwufen' P. mume flowers. The volatile compounds of the paraxial abaxial surfaces and inner and outer petals were detected by gas chromatography-mass spectrometry (GC-MS). We analyzed the expression patterns of the ABCG subfamily, compared the volatilization efficiencies in spatial and temporal differences, and hypothesized PmABCG2, 9, 11, and 16 that were associated with the transmembrane transport of benzyl acetate. We then cloned the above candidate genes, constructed the pTRV2-PmABCGs gene silencing vectors, and transiently infiltrated P. mume via vacuum infiltration. The volatile amount of benzyl acetate was significantly decreased, and endogenous content was higher than that of the control, which preliminarily verified that PmABCG9 could transport benzyl acetate. Finally, we incubated tobacco plants with exogenous benzyl acetate, benzyl alcohol, and leaf acetate and found that PmABCG9 specifically selected benzyl acetate as a substrate. The results of this study could support the hypothesis that PmABCG9 could effectively promote the volatilization of benzyl acetate and elucidate the transmembrane transport mechanism of benzyl acetate in P. mume.
Collapse
Affiliation(s)
- Xiaoyun Geng
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Leyi Wu
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jingtao Chen
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Ruobing Hao
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Lina Fan
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Haotian Jia
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Ruijie Hao
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| |
Collapse
|
6
|
Hikmat H, Le Targa L, Boschi C, Py J, Morand A, Lagier J, Aherfi S, Fantini J, La Scola B, Colson P. Five-Year (2017-2022) Evolutionary Dynamics of Human Coronavirus HKU1 in Southern France With Emergence of Viruses Harboring Spike H512R Substitution. J Med Virol 2025; 97:e70217. [PMID: 39949218 PMCID: PMC11826117 DOI: 10.1002/jmv.70217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/13/2024] [Accepted: 01/21/2025] [Indexed: 02/16/2025]
Abstract
HCoV-HKU1 diversity and evolution were scarcely studied. We performed next-generation sequencing (NGS) and analysis of HCoV-HKU1 genomes over 5 years. NGS used Illumina technology on NovaSeq 6000 following whole genome PCR amplification by an in-house set of primers designed using Gemi and PrimalScheme. Genome assembly and analyses used CLC Genomics, Mafft, BioEdit, Nextstrain, Nextclade, MEGA, and iTol bioinformatic tools. Spike molecular modeling and dynamics simulations used Molegro Molecular Viewer and Hyperchem programs. Twenty-eight PCR systems allowed obtaining 158 HCoV-HKU1 genomes including 69 and 89 of genotypes A and B, respectively. Both genotypes co-circulated during the study period but one predominated each year. A total of 1683 amino acid substitutions including 80 in ≥ 10 genomes were detected in genotype A relatively to a 2004 reference. H512R in spike, first detected in 2009 and reported as involved in antibody neutralization, was found in all genotype A, almost always with V387I and K478N, and was predicted here to significantly improve cellular TMPRSS2 protein binding. Also, 1802 amino acid substitutions including 64 in ≥ 10 genomes were detected in genotype B relatively to a 2005 reference. This study substantially expands the global set of HCoV-HKU1 genomes. Genomics with protein structural analyses contributed to our understanding of HCoV-HKU1 evolution.
Collapse
Affiliation(s)
- Houmadi Hikmat
- Microbes Evolution Phylogeny and Infections (MEPHI), Aix‐Marseille Université (AMU)MarseilleFrance
- IHU Méditerranée InfectionMarseilleFrance
| | - Lorlane Le Targa
- Microbes Evolution Phylogeny and Infections (MEPHI), Aix‐Marseille Université (AMU)MarseilleFrance
- IHU Méditerranée InfectionMarseilleFrance
- BiosellalLyonFrance
| | - Céline Boschi
- Microbes Evolution Phylogeny and Infections (MEPHI), Aix‐Marseille Université (AMU)MarseilleFrance
- IHU Méditerranée InfectionMarseilleFrance
- Assistance Publique‐Hôpitaux de Marseille (AP‐HM)MarseilleFrance
| | - Justine Py
- Microbes Evolution Phylogeny and Infections (MEPHI), Aix‐Marseille Université (AMU)MarseilleFrance
- IHU Méditerranée InfectionMarseilleFrance
| | - Aurélie Morand
- Assistance Publique‐Hôpitaux de Marseille (AP‐HM)MarseilleFrance
- Service d'accueil des Urgences Pédiatriques, Hôpital NordAssistance Publique‐Hôpitaux de Marseille (AP‐HM)MarseilleFrance
- Service de Pédiatrie Générale, Hôpital TimoneAssistance Publique‐Hôpitaux de Marseille (AP‐HM)MarseilleFrance
| | - Jean‐Christophe Lagier
- Microbes Evolution Phylogeny and Infections (MEPHI), Aix‐Marseille Université (AMU)MarseilleFrance
- IHU Méditerranée InfectionMarseilleFrance
- Assistance Publique‐Hôpitaux de Marseille (AP‐HM)MarseilleFrance
| | - Sarah Aherfi
- Microbes Evolution Phylogeny and Infections (MEPHI), Aix‐Marseille Université (AMU)MarseilleFrance
- IHU Méditerranée InfectionMarseilleFrance
- Assistance Publique‐Hôpitaux de Marseille (AP‐HM)MarseilleFrance
| | | | - Bernard La Scola
- Microbes Evolution Phylogeny and Infections (MEPHI), Aix‐Marseille Université (AMU)MarseilleFrance
- IHU Méditerranée InfectionMarseilleFrance
- Assistance Publique‐Hôpitaux de Marseille (AP‐HM)MarseilleFrance
| | - Philippe Colson
- Microbes Evolution Phylogeny and Infections (MEPHI), Aix‐Marseille Université (AMU)MarseilleFrance
- IHU Méditerranée InfectionMarseilleFrance
- Assistance Publique‐Hôpitaux de Marseille (AP‐HM)MarseilleFrance
| |
Collapse
|
7
|
Qin L, Lin FK, Lv YL, Tai ZL, Zhang X, Li HL, Li Y, Wang K. Identification of Pratylenchus coffeae as a causal agent of root rot disease in Sorghum bicolor in China. BMC Microbiol 2025; 25:41. [PMID: 39856557 PMCID: PMC11759436 DOI: 10.1186/s12866-025-03759-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Sorghum (Sorghum bicolor) is an important food and feed crop. Root-lesion nematodes (Pratylenchus spp.) are a group of pathogenic nematodes that cause severe economic losses in various food and cash crops. This study identified diseased sorghum plants with stunted growth and brown, rotting roots in sorghum fields in Shanxi Province, China. A species of root-lesion nematode was isolated by modified Baermann funnel method and named the GL-1 population. Afterward, the GL-1 population of root-lesion nematodes was identified as P. coffeae through a combination of morphological, rDNA-ITS and rDNA-28 S D2-D3 region techniques for molecular biological identification. We also conducted greenhouse experiments to assess the parasitism and pathogenicity of GL-1 and four other P. coffeae populations on sorghum through pot inoculation. At 60 days after inoculation, the results indicated that all five populations of P. coffeae were capable of infecting and causing damage to the sorghum plants. Sorghum is a suitable host for P. coffeae (with a reproduction factor > 1). Moreover, compared with those in the control group, the aboveground fresh weights and root fresh weights of sorghum in the five inoculation groups were significantly lower, and brown spots or even necrotic rot appeared on the roots. All five populations were highly pathogenic to sorghum, but there were significant differences in pathogenicity among the populations. This study provides a scientific basis for identifying and detecting root-lesion nematodes in sorghum.
Collapse
Affiliation(s)
- Ling Qin
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan Province, 450046, P. R. China
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan Province, 450046, P. R. China
| | - Fan-Kang Lin
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan Province, 450046, P. R. China
| | - Yun-Long Lv
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan Province, 450046, P. R. China
| | - Ze-Lin Tai
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan Province, 450046, P. R. China
| | - Xu Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan Province, 450046, P. R. China
| | - Hong-Lian Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan Province, 450046, P. R. China
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan Province, 450046, P. R. China
| | - Yu Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan Province, 450046, P. R. China.
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan Province, 450046, P. R. China.
| | - Ke Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan Province, 450046, P. R. China.
| |
Collapse
|
8
|
Xie YJ, Bai YY, Gao H, Li YY, Su MX, Li SS, Chen JM, Li T, Yan GY. Phylotranscriptomics resolved phylogenetic relationships and divergence time between 20 golden camellia species. Sci Rep 2025; 15:699. [PMID: 39753635 PMCID: PMC11699060 DOI: 10.1038/s41598-024-83004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/10/2024] [Indexed: 01/06/2025] Open
Abstract
Golden camellia species are endangered species with great ecological significance and economic value in the section Chrysantha of the genus Camellia of the family Theaceae. Literature shows that more than 50 species of golden camellia have been found all over the world, but the exact number remains undetermined due to the complex phylogenetic background, the non-uniform classification criteria, and the presence of various synonyms and homonyms; and phylogenetic relationships among golden camellia species at the gene level are yet to be disclosed. Therefore, it is necessary to investigate the divergence time and phylogenetic relationships between all golden camellia species at the gene level to improve their classification system and achieve accurate identification of them. Phenotypic data and transcriptomic sequences of 20 golden camellia species commonly found in Guangxi, China were obtained. PCA and OPLS-DA analyses were conducted based on phenotypic data, and agglomerative clustering was performed to generate the clustering tree of the 20 golden camellia species. Single-copy homologous genes were used to generate phylogenetic trees using Neighbor-Joining, Maximum Likelihood, and Bayesian Inference methods, and the results obtained with these three methods were compared. Then the molecular dating analysis was performed to reveal the divergence time and evolutionary relationships. Rhododendron griersonianum, Diospyros lotus, and Impatiens glandulifera were used as outgroups. The phylogenetic tree based on single-copy homologous genes showed that golden camellia species with shorter geographical distances were closer phylogenetically. Phylogenetic relationships based on phenotypic traits and those based on single-copy homologous genes were inconsistent, suggesting that species with a close genetic evolutionary relationship may show high variation in phenotypic traits and thus the analysis of evolutionary relationships based on phenotypic traits may result in inaccurate outcomes. Among three phylogenetic trees constructed by the three methods, the evolutionary sequences were different, but evolutionary relationships between most species were consistent. For 6 species, the divergence time estimated by Maximum Likelihood and Bayesian Inference varied much, that estimated by Bayesian Inference later than that estimated by Maximum Likelihood. Using these two methods, the resulting divergence time of 14 species was 3.452 Mya. The divergence time predicted in our study is later than that in the literature. In the present study phylogenetic relationships among 20 golden camellia species were analyzed at the transcriptome level to provide a supplement to the phylogenetic classification and evolutionary relationships explored using morphological traits and some molecular markers. Our findings show that the 20 golden camellia species diverged at a later time than other known species in the genus Camellia. Since our analyses were based on the failed molecular clock hypothesis, our conclusions are tentative. Further research using more systematic analyses and more methods should be conducted to confirm the phylogenetic relationships among golden camellia species.
Collapse
Affiliation(s)
- Yang-Jiao Xie
- Guangxi University of Chinese Medicine School of Yao Medicine, Nanning, 530200, Guangxi, China
| | - Yan-Yuan Bai
- Guangxi University of Chinese Medicine School of Yao Medicine, Nanning, 530200, Guangxi, China
| | - Hui Gao
- Guangxi University of Chinese Medicine School of Nursing, Nanning, 530200, Guangxi, China
| | - Yao-Yan Li
- Guangxi University of Chinese Medicine School of Yao Medicine, Nanning, 530200, Guangxi, China
| | - Meng-Xue Su
- Guangxi University of Chinese Medicine School of Yao Medicine, Nanning, 530200, Guangxi, China
| | - Shuang-Shuang Li
- Guangxi University of Chinese Medicine School of Yao Medicine, Nanning, 530200, Guangxi, China
| | - Jin-Mei Chen
- Guangxi University of Chinese Medicine School of Yao Medicine, Nanning, 530200, Guangxi, China
| | - Tong Li
- Guangxi University of Chinese Medicine School of Yao Medicine, Nanning, 530200, Guangxi, China.
| | - Guo-Yue Yan
- Guangxi University of Chinese Medicine School of Yao Medicine, Nanning, 530200, Guangxi, China.
| |
Collapse
|
9
|
Li XR, Sun CH, Zhan YJ, Jia SX, Lu CH. Complete mitochondrial genome sequence of Nannostomus eques and comparative analysis with Nannostomus beckfordi. Mol Genet Genomics 2024; 300:3. [PMID: 39704846 DOI: 10.1007/s00438-024-02212-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/08/2024] [Indexed: 12/21/2024]
Abstract
The brown pencilfish, Nannostomus eques is a lebiasinid harvested for ornamental purposes; however, its complete mitochondrial genome sequence is still unknown. To enrich the molecular genetic information pertaining to Nannostomus, we present here the first report of the complete mitochondrial genome sequence of Nannostomus eques and compare it with Nannostomus beckfordi. The total lengths of the N. eques and N. beckfordi mitochondrial genomes were 16,673 bp and 16,742 bp, respectively, and there was a double-stranded ring with a heavy chain and a light chain in the whole structures of both. We used PhyloSuite v1.2.1 to construct the maximum likelihood and Bayesian Analysis trees based on tRNAs, rRNAs, and protein-coding genes (PCGs) data and compared them with other Nannostomus species by referring to other studies. Our study found that N. beckfordi has a closer genetic relationship with N. eques than with Lebiasina astrigata, which belongs to the same family, and we discovered some similarities and even rules in Nannostomus species. Our study provides a molecular basis for the conservation and sustainable use of Nannostomus species.
Collapse
Affiliation(s)
- Xian-Ru Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Cheng-He Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yi-Jing Zhan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Shuang-Xi Jia
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Chang-Hu Lu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
10
|
Pu J, Lin X, Dong W. Phylogeny and divergence time estimation of the subfamily Amphipsyllinae based on the Frontopsylla diqingensis mitogenome. Front Vet Sci 2024; 11:1494204. [PMID: 39723187 PMCID: PMC11668791 DOI: 10.3389/fvets.2024.1494204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Fleas are primarily parasites of small mammals and serve as essential vectors of the transmission of plague. The subfamily Amphipsyllinae (Siphonaptera: Leptopsyllidae) consists of 182 species across 13 genera, widely distributed worldwide. Only two species of Amphipsyllinae have been sequenced for complete mitogenomes to date. It hinders the taxonomy and evolutionary history studies of fleas. In this study, we first sequenced the Frontopsylla diqingensis mitogenome and performed comparative mitogenomic analyses with the two other species (Frontopsylla spadix and Paradoxopsyllus custodis) in Amphipsyllinae available in the NCBI database. The evolutionary process of Amphipsyllinae was comprehensively analyzed in terms of nucleotide composition, codon usage, nucleotide diversity, tRNA secondary structure, nucleotide skew, phylogeny tree, and divergence time. Nucleotide diversity and tRNAs of three species of fleas of Amphipsyllinae have differences among different species. The effective number of codon (ENC)-plot, neutrality curve, PR2, and correspondence analysis (COA) showed that the codon preference of Amphipsyllinae was influenced mainly by natural selection. For phylogenetic trees and divergence time of the order Siphonaptera, our results showed two concatenated data matrices, namely, PCG: (((Ceratophyllidae + Leptopsyllidae) + ((Vermipsyllidae + Hystrichopsyllidae) + Ctenophthalmidae)) + (Pulicidae + Pygiopsyllidae)); PCGRNA: ((((Ceratophyllidae + Leptopsyllidae) + ((Vermipsyllidae + Hystrichopsyllidae) + Ctenophthalmidae)) + Pulicidae) + Pygiopsyllidae). We concluded that P. custodis and Macrostylophora euteles from GenBank are the same species by phylogenetic trees and sequence alignment, and supported the monophyly of Amphipsyllinae. Amphipsyllinae diverged in the Cenozoic, approximately 73.37-40.32 million years ago (Mya). The majority of the species within the intraordinal divergence into extant lineages occurred after the K-Pg boundary. The common ancestor of the extant order Siphonaptera diverged during the Cretaceous. Our findings supported those of Zhu et al. (1). This study provides new insights into the evolutionary history and taxonomy of the order Siphonaptera.
Collapse
Affiliation(s)
| | | | - Wenge Dong
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Institute of Pathogens and Vectors, Dali University, Dali, China
| |
Collapse
|
11
|
Kumar S, Stecher G, Suleski M, Sanderford M, Sharma S, Tamura K. MEGA12: Molecular Evolutionary Genetic Analysis Version 12 for Adaptive and Green Computing. Mol Biol Evol 2024; 41:msae263. [PMID: 39708372 PMCID: PMC11683415 DOI: 10.1093/molbev/msae263] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024] Open
Abstract
We introduce the 12th version of the Molecular Evolutionary Genetics Analysis (MEGA12) software. This latest version brings many significant improvements by reducing the computational time needed for selecting optimal substitution models and conducting bootstrap tests on phylogenies using maximum likelihood (ML) methods. These improvements are achieved by implementing heuristics that minimize likely unnecessary computations. Analyses of empirical and simulated datasets show substantial time savings by using these heuristics without compromising the accuracy of results. MEGA12 also links-in an evolutionary sparse learning approach to identify fragile clades and associated sequences in evolutionary trees inferred through phylogenomic analyses. In addition, this version includes fine-grained parallelization for ML analyses, support for high-resolution monitors, and an enhanced Tree Explorer. MEGA12 can be downloaded from https://www.megasoftware.net.
Collapse
Affiliation(s)
- Sudhir Kumar
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122, USA
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
| | - Glen Stecher
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122, USA
| | - Michael Suleski
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122, USA
| | - Maxwell Sanderford
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122, USA
| | - Sudip Sharma
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122, USA
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
| | - Koichiro Tamura
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
- Research Center for Genomics and Bioinformatics, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|
12
|
Fan G, Gao Y, Wu X, Yu Y, Yao W, Jiang J, Liu H, Jiang T. Functional analysis of PagERF021 gene in salt stress tolerance in Populus alba × P. glandulosa. THE PLANT GENOME 2024; 17:e20521. [PMID: 39414577 PMCID: PMC11628909 DOI: 10.1002/tpg2.20521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/10/2024] [Accepted: 09/16/2024] [Indexed: 10/18/2024]
Abstract
Poplar trees are crucial for timber and greening, but high levels of salt in the soil have severely limited the yield of poplar. Ethylene response factor (ERF) transcription factors play an important role in growth, development, and stress response in eukaryotes. Our study focused on the PagERF021 gene from Populus alba × P. glandulosa, which was significantly upregulated in various tissues under salt stress [Correction added on October 4, 2024, after first online publication: "ETS2 reporter factor" is changed to "Ethylene response factor".]. Both the tissue-specific expression pattern and β-glucuronidase (GUS) staining of proPagERF021-GUS plants indicated that this gene was predominantly expressed in the roots and stems. The subcellular localization showed that the protein was only localized in the nucleus. The yeast assay demonstrated that this protein had transcriptional activation activity at its C-terminal and could specifically binding to the MYB-core cis-element. The overexpression of PagERF021 gene could scavenge the accumulation of reactive oxygen species and reduce the degree of cellular membrane damage, indicating that this gene enhanced the salt tolerance of poplars. This finding will provide a feasible insight for future research into the regulatory mechanisms of ERF genes in resisting to abiotic stress and the development of new stress-resistant varieties in plants.
Collapse
Affiliation(s)
- Gaofeng Fan
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Yuan Gao
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Xinyue Wu
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Yingying Yu
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Wenjing Yao
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
- Co‐Innovation Center for Sustainable Forestry in Southern China/Bamboo Research InstituteNanjing Forestry UniversityNanjingChina
| | - Jiahui Jiang
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Huanzhen Liu
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| |
Collapse
|
13
|
Zhang C, Wang Q, Li Y, Teng A, Hu G, Wuyun Q, Zheng W. The Historical Evolution and Significance of Multiple Sequence Alignment in Molecular Structure and Function Prediction. Biomolecules 2024; 14:1531. [PMID: 39766238 PMCID: PMC11673352 DOI: 10.3390/biom14121531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Multiple sequence alignment (MSA) has evolved into a fundamental tool in the biological sciences, playing a pivotal role in predicting molecular structures and functions. With broad applications in protein and nucleic acid modeling, MSAs continue to underpin advancements across a range of disciplines. MSAs are not only foundational for traditional sequence comparison techniques but also increasingly important in the context of artificial intelligence (AI)-driven advancements. Recent breakthroughs in AI, particularly in protein and nucleic acid structure prediction, rely heavily on the accuracy and efficiency of MSAs to enhance remote homology detection and guide spatial restraints. This review traces the historical evolution of MSA, highlighting its significance in molecular structure and function prediction. We cover the methodologies used for protein monomers, protein complexes, and RNA, while also exploring emerging AI-based alternatives, such as protein language models, as complementary or replacement approaches to traditional MSAs in application tasks. By discussing the strengths, limitations, and applications of these methods, this review aims to provide researchers with valuable insights into MSA's evolving role, equipping them to make informed decisions in structural prediction research.
Collapse
Affiliation(s)
- Chenyue Zhang
- NITFID, School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin 300071, China; (C.Z.); (Y.L.); (G.H.)
| | - Qinxin Wang
- Suzhou New & High-Tech Innovation Service Center, Suzhou 215011, China;
| | - Yiyang Li
- NITFID, School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin 300071, China; (C.Z.); (Y.L.); (G.H.)
| | - Anqi Teng
- Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511453, China;
| | - Gang Hu
- NITFID, School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin 300071, China; (C.Z.); (Y.L.); (G.H.)
| | - Qiqige Wuyun
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Wei Zheng
- NITFID, School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin 300071, China; (C.Z.); (Y.L.); (G.H.)
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
14
|
Morris O, Morris M, Jobe S, Bhargava D, Krueger JM, Arora S, Prokop JW, Stenger C. Genomic Landscape of Chromosome X Factor VIII: From Hemophilia A in Males to Risk Variants in Females. Genes (Basel) 2024; 15:1522. [PMID: 39766791 PMCID: PMC11675246 DOI: 10.3390/genes15121522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Variants within factor VIII (F8) are associated with sex-linked hemophilia A and thrombosis, with gene therapy approaches being available for pathogenic variants. Many variants within F8 remain variants of uncertain significance (VUS) or are under-explored as to their connections to phenotypic outcomes. METHODS We assessed data on F8 expression while screening the UniProt, ClinVar, Geno2MP, and gnomAD databases for F8 missense variants; these collectively represent the sequencing of more than a million individuals. RESULTS For the two F8 isoforms coding for different protein lengths (2351 and 216 amino acids), we observed noncoding variants influencing expression which are also associated with thrombosis risk, with uncertainty as to differences in females and males. Variant analysis identified a severe stratification of potential annotation issues for missense variants in subjects of non-European ancestry, suggesting a need for further defining the genetics of diverse populations. Additionally, few heterozygous female carriers of known pathogenic variants have sufficiently confident phenotyping data, leaving researchers unable to determine subtle, less defined phenotypes. Using structure movement correlations to known pathogenic variants for the VUS, we determined seven clusters of likely pathogenic variants based on screening work. CONCLUSIONS This work highlights the need to define missense variants, especially those for VUS and from subjects of non-European ancestry, as well as the roles of these variants in women's physiology.
Collapse
Affiliation(s)
- Olivia Morris
- Department of Biology, University of North Alabama, Florence, AL 35632, USA
| | - Michele Morris
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Shawn Jobe
- Center for Bleeding and Clotting Disorders, Michigan State University, College of Human Medicine, East Lansing, MI 48824, USA
- Department of Pediatrics, Michigan State University, College of Human Medicine, East Lansing, MI 48824, USA
| | - Disha Bhargava
- Department of Pediatrics, Michigan State University, College of Human Medicine, East Lansing, MI 48824, USA
| | - Jena M. Krueger
- Department of Pediatrics, Michigan State University, College of Human Medicine, East Lansing, MI 48824, USA
- Department of Neurology, Helen DeVos Children’s Hospital, Corewell Health, Grand Rapids, MI 49503, USA
| | - Sanjana Arora
- Office of Research, Corewell Health, Grand Rapids, MI 49503, USA
| | - Jeremy W. Prokop
- Department of Pediatrics, Michigan State University, College of Human Medicine, East Lansing, MI 48824, USA
- Office of Research, Corewell Health, Grand Rapids, MI 49503, USA
| | - Cynthia Stenger
- Department of Mathematics, University of North Alabama, Florence, AL 35632, USA
| |
Collapse
|
15
|
Yu B, Zeng W, Zhou Y, Li N, Liang Z. Characterization and Bioactive Metabolite Profiling of Streptomyces sp. Y009: A Mangrove-Derived Actinomycetia with Anticancer and Antioxidant Potential. Microorganisms 2024; 12:2300. [PMID: 39597689 PMCID: PMC11596135 DOI: 10.3390/microorganisms12112300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Microorganisms from poorly explored environments are promising sources for the development of novel drugs. In our continuous efforts to screen for mangrove actinomycetes that produce metabolites with potential pharmaceutical applications, Streptomyces sp. Y009 was isolated from mangrove sediments in Guangxi, China. The phenotypic, physiological, biochemical, and phylogenetic characteristics of this strain were investigated. Analysis of phylogenetic and 16S rRNA gene sequences showed that it had the highest sequence similarity to Streptomyces thermolilacinus NBRC 14274 (98.95%). Further, the Y009 extract exhibited antioxidant activity, as indicated by DPPH and superoxide dismutase assays. The extract showed broad-spectrum and potent anticancer potential against six human cancer cell lines, with IC50 values ranging from 5.61 to 72.15 μg/mL. Furthermore, the selectivity index (SI) demonstrated that the Y009 extract exhibited less toxicity toward normal cell lines in comparison to the lung cancer cell line (A549) and hepatoma cell line (HepG2). GC-MS analysis revealed that the extract contained some biologically important secondary metabolites, mainly cyclic dipeptides and esters, which might be responsible for the antioxidant and anticancer properties. 3-Isobutylhexahydropyrrolo[1,2-a]pyrazine-1,4-dione (28.32%) was the major chemical compound available in the extract. The effect on cancer cells was then confirmed using nuclear staining and in silico docking. This study suggests that further exploration of the bioactive compounds of the newly isolated strain may be a promising approach for the development of novel chemopreventive drugs.
Collapse
Affiliation(s)
| | | | | | - Nan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, China; (B.Y.)
| | - Zhiqun Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, China; (B.Y.)
| |
Collapse
|
16
|
Wang Y, Qin H, Ni J, Yang T, Lv X, Ren K, Xu X, Yang C, Dai X, Zeng J, Liu W, Xu D, Ma W. Genome-Wide Identification, Characterization and Expression Patterns of the DBB Transcription Factor Family Genes in Wheat. Int J Mol Sci 2024; 25:11654. [PMID: 39519206 PMCID: PMC11546462 DOI: 10.3390/ijms252111654] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Double B-box (DBB) proteins are plant-specific transcription factors (TFs) that play crucial roles in plant growth and stress responses. This study investigated the classification, structure, conserved motifs, chromosomal locations, cis-elements, duplication events, expression levels, and protein interaction network of the DBB TF family genes in common wheat (Triticum aestivum L.). In all, twenty-seven wheat DBB genes (TaDBBs) with two conserved B-box domains were identified and classified into six subgroups based on sequence features. A collinearity analysis of the DBB family genes among wheat, Arabidopsis, and rice revealed some duplicated gene pairs and highly conserved genes in wheat. An expression pattern analysis indicated that wheat TaDBBs were involved in plant growth, responses to drought stress, light/dark, and abscisic acid treatment. A large number of cis-acting regulatory elements related to light response are enriched in the predicted promoter regions of 27 TaDBBs. Furthermore, some of TaDBBs can interact with COP1 or HY5 based on the STRING database prediction and yeast two-hybrid (Y2H) assay, indicating the potential key roles of TaDBBs in the light signaling pathway. Conclusively, our study revealed the potential functions and regulatory mechanisms of TaDBBs in plant growth and development under drought stress, light, and abscisic acid.
Collapse
Affiliation(s)
- Yalin Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (H.Q.); (J.N.); (T.Y.); (X.L.); (K.R.); (X.X.); (C.Y.); (X.D.); (J.Z.); (W.L.)
| | - Huimin Qin
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (H.Q.); (J.N.); (T.Y.); (X.L.); (K.R.); (X.X.); (C.Y.); (X.D.); (J.Z.); (W.L.)
| | - Jinlan Ni
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (H.Q.); (J.N.); (T.Y.); (X.L.); (K.R.); (X.X.); (C.Y.); (X.D.); (J.Z.); (W.L.)
| | - Tingzhi Yang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (H.Q.); (J.N.); (T.Y.); (X.L.); (K.R.); (X.X.); (C.Y.); (X.D.); (J.Z.); (W.L.)
| | - Xinru Lv
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (H.Q.); (J.N.); (T.Y.); (X.L.); (K.R.); (X.X.); (C.Y.); (X.D.); (J.Z.); (W.L.)
| | - Kangzhen Ren
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (H.Q.); (J.N.); (T.Y.); (X.L.); (K.R.); (X.X.); (C.Y.); (X.D.); (J.Z.); (W.L.)
| | - Xinyi Xu
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (H.Q.); (J.N.); (T.Y.); (X.L.); (K.R.); (X.X.); (C.Y.); (X.D.); (J.Z.); (W.L.)
| | - Chuangyi Yang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (H.Q.); (J.N.); (T.Y.); (X.L.); (K.R.); (X.X.); (C.Y.); (X.D.); (J.Z.); (W.L.)
| | - Xuehuan Dai
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (H.Q.); (J.N.); (T.Y.); (X.L.); (K.R.); (X.X.); (C.Y.); (X.D.); (J.Z.); (W.L.)
| | - Jianbin Zeng
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (H.Q.); (J.N.); (T.Y.); (X.L.); (K.R.); (X.X.); (C.Y.); (X.D.); (J.Z.); (W.L.)
| | - Wenxing Liu
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (H.Q.); (J.N.); (T.Y.); (X.L.); (K.R.); (X.X.); (C.Y.); (X.D.); (J.Z.); (W.L.)
| | - Dengan Xu
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (H.Q.); (J.N.); (T.Y.); (X.L.); (K.R.); (X.X.); (C.Y.); (X.D.); (J.Z.); (W.L.)
| | - Wujun Ma
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (H.Q.); (J.N.); (T.Y.); (X.L.); (K.R.); (X.X.); (C.Y.); (X.D.); (J.Z.); (W.L.)
- School of Agriculture, Murdoch University, Perth, WA 4350, Australia
| |
Collapse
|
17
|
Perera D, Li E, van der Meer F, Tarah Lynch, Gill J, Church DL, Huber CD, van Marle G, Platt A, Long Q. Apollo: A comprehensive GPU-powered within-host simulator for viral evolution and infection dynamics across population, tissue, and cell. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617101. [PMID: 39416208 PMCID: PMC11482768 DOI: 10.1101/2024.10.07.617101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Modern sequencing instruments bring unprecedented opportunity to study within-host viral evolution in conjunction with viral transmissions between hosts. However, no computational simulators are available to assist the characterization of within-host dynamics. This limits our ability to interpret epidemiological predictions incorporating within-host evolution and to validate computational inference tools. To fill this need we developed Apollo, a GPU-accelerated, out-of-core tool for within-host simulation of viral evolution and infection dynamics across population, tissue, and cellular levels. Apollo is scalable to hundreds of millions of viral genomes and can handle complex demographic and population genetic models. Apollo can replicate real within-host viral evolution; accurately recapturing observed viral sequences from an HIV cohort derived from initial population-genetic configurations. For practical applications, using Apollo-simulated viral genomes and transmission networks, we validated and uncovered the limitations of a widely used viral transmission inference tool.
Collapse
Affiliation(s)
- Deshan Perera
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Evan Li
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Frank van der Meer
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Tarah Lynch
- Provincial Public Health Laboratory South, Calgary, AB T2N 4W4, Canada
| | - John Gill
- Department of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Deirdre L. Church
- Department of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Christian D. Huber
- Department of Biology, The Pennsylvania State University, University Park, 16802 PA, United States of America
| | - Guido van Marle
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Alexander Platt
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, PA 19104, United States of America
| | - Quan Long
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Medical Genetics, Department of Mathematics and Statistics, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
18
|
Li ZM, Qin XW, Zhang Q, He J, Liang MC, Li CR, Yu Y, Liu WH, Weng SP, He JG, Guo CJ. Mandarin fish von Hippel-Lindau protein regulates the NF-κB signaling pathway via interaction with IκB to promote fish ranavirus replication. Zool Res 2024; 45:990-1000. [PMID: 39147714 PMCID: PMC11491782 DOI: 10.24272/j.issn.2095-8137.2023.392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 08/17/2024] Open
Abstract
The von Hippel-Lindau tumor suppressor protein (VHL), an E3 ubiquitin ligase, functions as a critical regulator of the oxygen-sensing pathway for targeting hypoxia-inducible factors. Recent evidence suggests that mammalian VHL may also be critical to the NF-κB signaling pathway, although the specific molecular mechanisms remain unclear. Herein, the roles of mandarin fish ( Siniperca chuatsi) VHL ( scVHL) in the NF-κB signaling pathway and mandarin fish ranavirus (MRV) replication were explored. The transcription of scVHL was induced by immune stimulation and MRV infection, indicating a potential role in innate immunity. Dual-luciferase reporter gene assays and reverse transcription quantitative PCR (RT-qPCR) results demonstrated that scVHL evoked and positively regulated the NF-κB signaling pathway. Treatment with NF-κB signaling pathway inhibitors indicated that the role of scVHL may be mediated through scIKKα, scIKKβ, scIκBα, or scp65. Co-immunoprecipitation (Co-IP) analysis identified scIκBα as a novel target protein of scVHL. Moreover, scVHL targeted scIκBα to catalyze the formation of K63-linked polyubiquitin chains to activate the NF-κB signaling pathway. Following MRV infection, NF-κB signaling remained activated, which, in turn, promoted MRV replication. These findings suggest that scVHL not only positively regulates NF-κB but also significantly enhances MRV replication. This study reveals a novel function of scVHL in NF-κB signaling and viral infection in fish.
Collapse
Affiliation(s)
- Zhi-Min Li
- School of Marine Sciences, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals & Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Xiao-Wei Qin
- School of Marine Sciences, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals & Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Qi Zhang
- School of Marine Sciences, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals & Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Jian He
- School of Marine Sciences, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals & Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Min-Cong Liang
- School of Marine Sciences, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals & Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Chuan-Rui Li
- School of Marine Sciences, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals & Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Yang Yu
- School of Marine Sciences, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals & Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Weng-Hui Liu
- School of Marine Sciences, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals & Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Shao-Ping Weng
- School of Marine Sciences, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals & Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Jian-Guo He
- School of Marine Sciences, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals & Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, Guangdong 510275, China. E-mail:
| | - Chang-Jun Guo
- School of Marine Sciences, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals & Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510640, China. E-mail:
| |
Collapse
|
19
|
Wu J, Yang Q, Zhao W, Miao X, Qin Y, Qu Y, Zheng P. Assessment of Population Genetic Diversity of Medicinal Meconopsis integrifolia (Maxim.) Franch. Using Newly Developed SSR Markers. PLANTS (BASEL, SWITZERLAND) 2024; 13:2561. [PMID: 39339536 PMCID: PMC11435270 DOI: 10.3390/plants13182561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024]
Abstract
Meconopsis integrifolia is an endangered Tibetan medicinal plant with significant medicinal and ornamental value. Understanding its genetic diversity and structure is crucial for its sustainable utilization and effective conservation. Here, we develop a set of SSR markers based on transcriptome data to analyze the genetic diversity and structure of 185 individuals from 16 populations of M. integrifolia. The results indicate that M. integrifolia exhibits relatively high genetic diversity at the species level (the percentage of polymorphic bands PPB = 91.67%, Nei's genetic diversity index He = 0.2989, Shannon's information index I = 0.4514) but limited genetic variation within populations (PPB = 12.08%, He = 0.0399, I = 0.0610). The genetic differentiation among populations is relatively high (the coefficient of gene differentiation GST = 0.6902), and AMOVA analysis indicates that 63.39% of the total variation occurs among populations. This suggests that maintaining a limited number of populations is insufficient to preserve the overall diversity of M. integrifolia. Different populations are categorized into four representative subclusters, but they do not cluster strictly according to geographical distribution. Limited gene flow (Nm = 0.2244) is likely the main reason for the high differentiation among these populations. Limited seed and pollen dispersal abilities, along with habitat fragmentation, may explain the restricted gene flow among populations, highlighting the necessity of conserving as many populations in the wild as possible.
Collapse
Affiliation(s)
- Jiahao Wu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.W.); (Q.Y.)
| | - Quanyin Yang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.W.); (Q.Y.)
| | - Wanyue Zhao
- Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Science, Southwest Forestry University, Kunming 650224, China; (W.Z.); (X.M.)
| | - Xue Miao
- Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Science, Southwest Forestry University, Kunming 650224, China; (W.Z.); (X.M.)
| | - Yuan Qin
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.W.); (Q.Y.)
| | - Yan Qu
- Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Science, Southwest Forestry University, Kunming 650224, China; (W.Z.); (X.M.)
| | - Ping Zheng
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.W.); (Q.Y.)
| |
Collapse
|
20
|
Ma X, Zhu P, Du Y, Song Q, Ye W, Tang X, He J, Zhong Y, Ou J, Pang X. Transcriptome analysis and genome-wide identification of the dehydration-responsive element binding gene family in jackfruit under cold stress. BMC Genomics 2024; 25:833. [PMID: 39232675 PMCID: PMC11373402 DOI: 10.1186/s12864-024-10732-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Jackfruit (Artocarpus heterophyllus Lam.) is the world's largest and heaviest fruit and adapts to hot, humid tropical climates. Low-temperature injury in winter is a primary abiotic stress, which affects jackfruit growth and development. Therefore, breeding cold-resistant varieties and identifying the vital genes in the process of cold resistance are essential. The dehydration-responsive element binding (DREB) gene family is among the subfamily of the APETALA2/ethylene response factor transcription factor family and is significant in plant abiotic stress responses. METHODS In this study, a comparative analysis of the cold resistance property of 'GuangXi' ('GX') and 'Thailand' ('THA') jackfruit strains with different cold resistance characteristics was performed through chlorophyll fluorescence and transcriptome sequencing. RESULTS We found that differentially expressed genes (DEGs) are significantly enriched in the metabolic processes. Here, 93 DREB genes were identified in the jackfruit genome, and phylogenetic analysis was used to classify them into seven groups. Gene structure, conserved motifs, chromosomal location, and homologous relationships were used to analyze the structural characteristics of the DREB family. Transcriptomics indicated that most of the AhDREB genes exhibited down-regulated expression in 'THA.' The DEGs AhDREB12, AhDREB21, AhDREB29, and AhDREB34 were selected for quantitative real-time PCR, and the results showed that these genes also had down-regulated expression in 'THA.' CONCLUSIONS The above results suggest the significance of the DREB family in improving the cold resistance property of 'GX.'
Collapse
Affiliation(s)
- Xiangwei Ma
- Guangxi Subtropical Crops Research Institute , Nanning, 530000, China
- Guangxi Key Laboratory of Quality and Safety Control for Subtropical Fruits, Nanning, 530000, China
| | - Pengjin Zhu
- Guangxi Subtropical Crops Research Institute , Nanning, 530000, China.
- Guangxi Key Laboratory of Quality and Safety Control for Subtropical Fruits, Nanning, 530000, China.
| | - Yingjun Du
- Guangxi Subtropical Crops Research Institute , Nanning, 530000, China
- Guangxi Key Laboratory of Quality and Safety Control for Subtropical Fruits, Nanning, 530000, China
| | - Qiqi Song
- Guangxi Subtropical Crops Research Institute , Nanning, 530000, China
- Guangxi Key Laboratory of Quality and Safety Control for Subtropical Fruits, Nanning, 530000, China
| | - Weiyan Ye
- Guangxi Subtropical Crops Research Institute , Nanning, 530000, China
- Guangxi Key Laboratory of Quality and Safety Control for Subtropical Fruits, Nanning, 530000, China
| | - Xiuguan Tang
- Guangxi Subtropical Crops Research Institute , Nanning, 530000, China
- Guangxi Key Laboratory of Quality and Safety Control for Subtropical Fruits, Nanning, 530000, China
| | - Jiang He
- Guangxi Subtropical Crops Research Institute , Nanning, 530000, China
- Guangxi Key Laboratory of Quality and Safety Control for Subtropical Fruits, Nanning, 530000, China
| | - Yunjie Zhong
- Guangxi Subtropical Crops Research Institute , Nanning, 530000, China
- Guangxi Key Laboratory of Quality and Safety Control for Subtropical Fruits, Nanning, 530000, China
| | - Jingli Ou
- Guangxi Subtropical Crops Research Institute , Nanning, 530000, China
- Guangxi Key Laboratory of Quality and Safety Control for Subtropical Fruits, Nanning, 530000, China
| | - Xinhua Pang
- Guangxi Subtropical Crops Research Institute , Nanning, 530000, China
- Guangxi Key Laboratory of Quality and Safety Control for Subtropical Fruits, Nanning, 530000, China
| |
Collapse
|
21
|
Biswas R, Misra A, Ghosh S, Chakraborty A, Mukherjee P, Dam B. Pantoea tagorei sp. nov., a Rhizospheric Bacteria with Plant Growth-Promoting Activities. Indian J Microbiol 2024; 64:937-949. [PMID: 39282177 PMCID: PMC11399490 DOI: 10.1007/s12088-023-01147-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/13/2023] [Indexed: 09/18/2024] Open
Abstract
A Gram-negative, short-rod, non-motile, facultatively anaerobic, potassium-solubilizing bacterium MR1 (Mine Rhizosphere) was isolated from rhizospheric soil of an open-cast coal mine of Jharia, Jharkhand, India. Isolate MR1 can grow in a broad range of temperature, pH, and NaCl concentrations. The 16S rRNA gene sequence of the strain showed 99.24% similarity with Pantoea septica LMG 5345T. However, maximum-likelihood tree constructed using 16S rRNA gene sequence, multilocus sequence analysis using concatenated sequences of ten housekeeping genes, whole-genome based phylogenetic reconstruction, digital DNA-DNA hybridization, and average nucleotide identity (ANIm and ANIb) values indicated segregation of MR1 from its closest relatives. Fatty acid profile of MR1 also suggested the same, with clear variation in major and minor fatty acid contents, having C13:0 anteiso (10-Methyldodecanoic acid) as the unique one. Thus, considering all polyphasic data, strain MR1T (= MTCC 13265T, where 'T' stands for Type strain) is presented as a novel species of the genus Pantoea, for which the name Pantoea tagorei sp. nov. is proposed. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-023-01147-9.
Collapse
Affiliation(s)
- Raju Biswas
- Microbiology Laboratory, Department of Botany (DST-FIST & UGC-DRS Funded), Institute of Science, Visva-Bharati (A Central University), Santiniketan, West Bengal 731235 India
| | - Arijit Misra
- Microbiology Laboratory, Department of Botany (DST-FIST & UGC-DRS Funded), Institute of Science, Visva-Bharati (A Central University), Santiniketan, West Bengal 731235 India
| | - Sandip Ghosh
- Microbiology Laboratory, Department of Botany (DST-FIST & UGC-DRS Funded), Institute of Science, Visva-Bharati (A Central University), Santiniketan, West Bengal 731235 India
| | - Abhinaba Chakraborty
- Microbiology Laboratory, Department of Botany (DST-FIST & UGC-DRS Funded), Institute of Science, Visva-Bharati (A Central University), Santiniketan, West Bengal 731235 India
| | - Puja Mukherjee
- Microbiology Laboratory, Department of Botany (DST-FIST & UGC-DRS Funded), Institute of Science, Visva-Bharati (A Central University), Santiniketan, West Bengal 731235 India
| | - Bomba Dam
- Microbiology Laboratory, Department of Botany (DST-FIST & UGC-DRS Funded), Institute of Science, Visva-Bharati (A Central University), Santiniketan, West Bengal 731235 India
| |
Collapse
|
22
|
Ben Amara W, Djebbi S, Khemakhem MM. Evolutionary History of the DD41D Family of Tc1/Mariner Transposons in Two Mayetiola Species. Biochem Genet 2024:10.1007/s10528-024-10898-z. [PMID: 39117934 DOI: 10.1007/s10528-024-10898-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Tc1/mariner elements are ubiquitous in eukaryotic genomes including insects. They are diverse and divided into families and sub-families. The DD34D family including mauritiana and irritans subfamilies have already been identified in two closely related species of Cecidomyiids M. destructor and M. hordei. In the current study the de novo and similarity-based methods allowed the identification for the first time of seven consensuses in M. destructor and two consensuses in M. hordei belonging to DD41D family whereas the in vitro method allowed the amplification of two and three elements in these two species respectively. Most of identified elements accumulated different mutations and long deletions spanning the N-terminal region of the transposase. Phylogenetic analyses showed that the DD41D elements were clustered in two groups belonging to rosa and Long-TIR subfamilies. The age estimation of the last transposition events of the identified Tc1/mariner elements in M. destructor showed different evolutionary histories. Indeed, irritans elements have oscillated between periods of silencing and reappearance while rosa and mauritiana elements have shown regular activity with large recent bursts. The study of insertion sites showed that they are mostly intronic and that some recently transposed elements occurred in genes linked to putative DNA-binding domains and enzymes involved in metabolic chains. Thus, this study gave evidence of the existence of DD41D family in two Mayetiola species and an insight on their evolutionary history.
Collapse
Affiliation(s)
- Wiem Ben Amara
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, 1068, Tunis, Tunisia
| | - Salma Djebbi
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, 1068, Tunis, Tunisia
| | - Maha Mezghani Khemakhem
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, 1068, Tunis, Tunisia.
| |
Collapse
|
23
|
Liu Y, Zou K, Wang T, Guan M, Duan H, Yu H, Wu D, Du J. Genome-Wide Identification and Analysis of Family Members with Juvenile Hormone Binding Protein Domains in Spodoptera frugiperda. INSECTS 2024; 15:573. [PMID: 39194778 DOI: 10.3390/insects15080573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024]
Abstract
Juvenile hormone binding proteins (JHBPs) are carrier proteins that bind to juvenile hormone (JH) to form a complex, which then transports the JH to target organs to regulate insect growth and development. Through bioinformatics analysis, 76 genes encoding JHBP in S. frugiperda were identified from whole genome data (SfJHBP1-SfJHBP76). These genes are unevenly distributed across 8 chromosomes, with gene differentiation primarily driven by tandem duplication. Most SfJHBP proteins are acidic, and their secondary structures are mainly composed of α-helices and random coils. Gene structure and conserved motif analyses reveal significant variations in the number of coding sequences (CDS) and a high diversity in amino acid sequences. Phylogenetic analysis classified the genes into four subfamilies, with a notable presence of directly homologous genes between S. frugiperda and S. litura, suggesting a close relationship between the two species. RNA-seq data from public databases and qPCR of selected SfJHBP genes show that SfJHBP20, SfJHBP50, and SfJHBP69 are highly expressed at most developmental stages, while SfJHBP8 and SfJHBP14 exhibit specific expression during the pupal stage and in the midgut. These findings provide a theoretical basis for future studies on the biological functions of this gene family.
Collapse
Affiliation(s)
- Yang Liu
- College of Resources and Environment, Anhui Science and Technology University, Chuzhou 233100, China
| | - Kunliang Zou
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China
| | - Tonghan Wang
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China
| | - Minghui Guan
- College of Resources and Environment, Anhui Science and Technology University, Chuzhou 233100, China
| | - Haiming Duan
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China
| | - Haibing Yu
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China
| | - Degong Wu
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China
| | - Junli Du
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China
| |
Collapse
|
24
|
Akhtar MS, Kawamura S. A Protocol to Extract a Specific Genomic Region from a Public Whole-Genome Database and Modify Analytical Bin Length for Population Genetic Studies. Methods Protoc 2024; 7:57. [PMID: 39195435 DOI: 10.3390/mps7040057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/12/2024] [Accepted: 07/20/2024] [Indexed: 08/29/2024] Open
Abstract
With the advent of "next-generation" sequencing and the continuous reduction in sequencing costs, an increasing amount of genomic data has emerged, such as whole-genome, whole-exome, and targeted sequencing data. These applications are popular not only in mega sequencing projects, such as the 1000 Genomes Project and UK BioBank, but also among individual researchers. Evolutionary genetic analyses, such as the dN/dS ratio and Tajima's D, are demanded more and more for whole-genome-level population data. These analyses are often carried out under a uniform custom bin size across the genome. However, these analyses require subdivision of a genomic region into functional units, such as protein-coding regions, introns, and untranslated regions, and computing these genetic measures for large-scale data remains challenging. In a recent investigation, we successfully devised a method to address this issue. This method requires a multi-sample VCF file containing population data, a reference genome, target regions in the BED file, and a list of samples to be included in the analysis. Given that the targeted regions are extracted in a new VCF file, targeted population genetic analysis can be performed. We conducted Tajima's D analysis using this approach on intact and pseudogenes, as well as non-coding regions.
Collapse
Affiliation(s)
- Muhammad Shoaib Akhtar
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Chiba, Japan
| | - Shoji Kawamura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Chiba, Japan
| |
Collapse
|
25
|
Qi H, Yu J, Shen Q, Cai M, Gao Q, Tang Q, Yi S. Identification and characterization of olfactory gene families in Macrobrachium rosenbergii based on full-length transcripts and genome sequences. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101299. [PMID: 39068906 DOI: 10.1016/j.cbd.2024.101299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
The olfactory gene families include odorant binding proteins (OBPs), chemosensory proteins (CSPs), olfactory receptors (ORs), ionotropic receptors (IRs) and gustatory receptors (GRs). To investigate the molecular function of olfactory perception in Macrobrachium rosenbergii, we integrated the full-length transcripts and whole-genome sequences to identify the olfactory gene families. In this study, a total of 38,955 full-length transcripts with an N50 length of 3383 bp were obtained through PacBio SMRT sequencing. Through the annotation of full-length transcripts and whole-genome sequences, several olfactory gene families were identified, including 18 MrORs, 16 MrIRs, 151 MrIGluRs (ionotropic glutamate receptors), 2 MrVIGluRs (variant ionotropic glutamate receptors) and 3 MrCRs (chemosensory receptors). Notably, the CRs were first identified in prawns and shrimps. Additionally, the olfactory gene families in M. nipponense were identified, comprising 4 MnORs, 21 MnIRs, 79 MnIGluRs, 5 MnVIGluRs, 1 MnGR and 1 MnOBP, using the available whole-genome sequences. Meanwhile, the external morphology of the chemical sensory organs of M. rosenbergii was explored, and the presence of plumose setae (PS), hard thorn setae (HTS), bamboo shoot setae (BSS), soft thorn setae (STS) and aesthetascs (AE) on the antennules, HTS and BSS on the second antennae, and PS on the pereiopods were observed by scanning electron microscope. This study provides valuable insights for future functional studies into the olfactory perception of crustaceans and establishes a theoretical basis for molecular design breeding in M. rosenbergii.
Collapse
Affiliation(s)
- Hangyu Qi
- School of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Jiongying Yu
- School of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Qi Shen
- School of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Miuying Cai
- Jiangsu Shufeng Prawn Breeding Co. LTD, Gaoyou 225654, China
| | - Quanxin Gao
- School of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Qiongying Tang
- School of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Shaokui Yi
- School of Life Sciences, Huzhou University, Huzhou 313000, China.
| |
Collapse
|
26
|
Luo B, Sahito JH, Zhang H, Zhao J, Yang G, Wang W, Guo J, Zhang S, Ma P, Nie Z, Zhang X, Liu D, Wu L, Gao D, Gao S, Su S, Gishkori ZGN, Gao S. SPX family response to low phosphorus stress and the involvement of ZmSPX1 in phosphorus homeostasis in maize. FRONTIERS IN PLANT SCIENCE 2024; 15:1385977. [PMID: 39040504 PMCID: PMC11260721 DOI: 10.3389/fpls.2024.1385977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024]
Abstract
Phosphorus (P) is a crucial macronutrient for plant growth and development, and low-Pi stress poses a significant limitation to maize production. While the role of the SPX domain in encoding proteins involved in phosphate (Pi) homeostasis and signaling transduction has been extensively studied in other model plants, the molecular and functional characteristics of the SPX gene family members in maize remain largely unexplored. In this study, we identified six SPX members, and the phylogenetic analysis of ZmSPXs revealed a close relationship with SPX genes in rice. The promoter regions of ZmSPXs were abundant in biotic and abiotic stress-related elements, particularly associated with various hormone signaling pathways, indicating potential intersections between Pi signaling and hormone signaling pathways. Additionally, ZmSPXs displayed tissue-specific expression patterns, with significant and differential induction in anthers and roots, and were localized to the nucleus and cytoplasm. The interaction between ZmSPXs and ZmPHRs was established via yeast two-hybrid assays. Furthermore, overexpression of ZmSPX1 enhanced root sensitivity to Pi deficiency and high-Pi conditions in Arabidopsis thaliana. Phenotypic identification of the maize transgenic lines demonstrated the negative regulatory effect on the P concentration of stems and leaves as well as yield. Notably, polymorphic sites including 34 single-nucleotide polymorphisms (SNPs) and seven insertions/deletions (InDels) in ZmSPX1 were significantly associated with 16 traits of low-Pi tolerance index. Furthermore, significant sites were classified into five haplotypes, and haplotype5 can enhance biomass production by promoting root development. Taken together, our results suggested that ZmSPX family members possibly play a pivotal role in Pi stress signaling in plants by interacting with ZmPHRs. Significantly, ZmSPX1 was involved in the Pi-deficiency response verified in transgenic Arabidopsis and can affect the Pi concentration of maize tissues and yield. This work lays the groundwork for deeper exploration of the maize SPX family and could inform the development of maize varieties with improved Pi efficiency.
Collapse
Affiliation(s)
- Bowen Luo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Javed Hussain Sahito
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henen Agricultural University, Zhengzhou, China
| | - Haiying Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Jin Zhao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Guohui Yang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Wei Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Jianyong Guo
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Shuhao Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Peng Ma
- Maize Research Institute, Mianyang Academy of Agricultural Sciences, Mianyang, Sichuan, China
| | - Zhi Nie
- Sichuan Academy of Agricultural Sciences, Biotechnology and Nuclear Technology Research Institute, Chengdu, Sichuan, China
| | - Xiao Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Dan Liu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Ling Wu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Duojiang Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Shiqiang Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Shunzong Su
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | | | - Shibin Gao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| |
Collapse
|
27
|
Zhan L, Luo X, Xie W, Zhu XA, Xie Z, Lin J, Li L, Tang W, Wang R, Deng L, Liao Y, Liu B, Cai Y, Wang Q, Xu S, Yu G. shinyTempSignal: an R shiny application for exploring temporal and other phylogenetic signals. J Genet Genomics 2024; 51:762-768. [PMID: 38417547 DOI: 10.1016/j.jgg.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
The molecular clock model is fundamental for inferring species divergence times from molecular sequences. However, its direct application may introduce significant biases due to sequencing errors, recombination events, and inaccurately labeled sampling times. Improving accuracy necessitates rigorous quality control measures to identify and remove potentially erroneous sequences. Furthermore, while not all branches of a phylogenetic tree may exhibit a clear temporal signal, specific branches may still adhere to the assumptions, with varying evolutionary rates. Supporting a relaxed molecular clock model better aligns with the complexities of evolution. The root-to-tip regression method has been widely used to analyze the temporal signal in phylogenetic studies and can be generalized for detecting other phylogenetic signals. Despite its utility, there remains a lack of corresponding software implementations for broader applications. To address this gap, we present shinyTempSignal, an interactive web application implemented with the shiny framework, available as an R package and publicly accessible at https://github.com/YuLab-SMU/shinyTempSignal. This tool facilitates the analysis of temporal and other phylogenetic signals under both strict and relaxed models. By extending the root-to-tip regression method to diverse signals, shinyTempSignal helps in the detection of evolving features or traits, thereby laying the foundation for deeper insights and subsequent analyses.
Collapse
Affiliation(s)
- Li Zhan
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiao Luo
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Wenqin Xie
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xuan-An Zhu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China; Faculty of Computers, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Zijing Xie
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jianfeng Lin
- Ubigene Biosciences Co., Ltd., Guangzhou, Guangdong 510530, China
| | - Lin Li
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Wenli Tang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Rui Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Lin Deng
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yufan Liao
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Bingdong Liu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China; State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510070, China
| | - Yantong Cai
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qianwen Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Shuangbin Xu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Guangchuang Yu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
28
|
Samanta D, Rauniyar S, Saxena P, Sani RK. From genome to evolution: investigating type II methylotrophs using a pangenomic analysis. mSystems 2024; 9:e0024824. [PMID: 38695578 PMCID: PMC11237726 DOI: 10.1128/msystems.00248-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/04/2024] [Indexed: 06/19/2024] Open
Abstract
A comprehensive pangenomic approach was employed to analyze the genomes of 75 type II methylotrophs spanning various genera. Our investigation revealed 256 exact core gene families shared by all 75 organisms, emphasizing their crucial role in the survival and adaptability of these organisms. Additionally, we predicted the functionality of 12 hypothetical proteins. The analysis unveiled a diverse array of genes associated with key metabolic pathways, including methane, serine, glyoxylate, and ethylmalonyl-CoA (EMC) metabolic pathways. While all selected organisms possessed essential genes for the serine pathway, Methylooceanibacter marginalis lacked serine hydroxymethyltransferase (SHMT), and Methylobacterium variabile exhibited both isozymes of SHMT, suggesting its potential to utilize a broader range of carbon sources. Notably, Methylobrevis sp. displayed a unique serine-glyoxylate transaminase isozyme not found in other organisms. Only nine organisms featured anaplerotic enzymes (isocitrate lyase and malate synthase) for the glyoxylate pathway, with the rest following the EMC pathway. Methylovirgula sp. 4MZ18 stood out by acquiring genes from both glyoxylate and EMC pathways, and Methylocapsa sp. S129 featured an A-form malate synthase, unlike the G-form found in the remaining organisms. Our findings also revealed distinct phylogenetic relationships and clustering patterns among type II methylotrophs, leading to the proposal of a separate genus for Methylovirgula sp. 4M-Z18 and Methylocapsa sp. S129. This pangenomic study unveils remarkable metabolic diversity, unique gene characteristics, and distinct clustering patterns of type II methylotrophs, providing valuable insights for future carbon sequestration and biotechnological applications. IMPORTANCE Methylotrophs have played a significant role in methane-based product production for many years. However, a comprehensive investigation into the diverse genetic architectures across different genera of methylotrophs has been lacking. This study fills this knowledge gap by enhancing our understanding of core hypothetical proteins and unique enzymes involved in methane oxidation, serine, glyoxylate, and ethylmalonyl-CoA pathways. These findings provide a valuable reference for researchers working with other methylotrophic species. Furthermore, this study not only unveils distinctive gene characteristics and phylogenetic relationships but also suggests a reclassification for Methylovirgula sp. 4M-Z18 and Methylocapsa sp. S129 into separate genera due to their unique attributes within their respective genus. Leveraging the synergies among various methylotrophic organisms, the scientific community can potentially optimize metabolite production, increasing the yield of desired end products and overall productivity.
Collapse
Affiliation(s)
- Dipayan Samanta
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
| | - Shailabh Rauniyar
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
| | - Priya Saxena
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
| | - Rajesh K Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
| |
Collapse
|
29
|
Jibril SM, Yan W, Wang Y, Zhu X, Yunying Z, Wu J, Wang L, Zhang L, Li C. Highly diverse microbial community of regenerated seedlings reveals the high capacity of the bulb in lily, Lilium brownii. Front Microbiol 2024; 15:1387870. [PMID: 38903799 PMCID: PMC11188333 DOI: 10.3389/fmicb.2024.1387870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024] Open
Abstract
Lily bulbs, which have both nutrient storage and reproductive functions, are a representative group of plants for studying the maintenance and transfer of plant-associated microbiomes. In this study, a comparison of the microbial composition of bulbs and their regenerated seedlings cultured under aseptic conditions, as well as subcultured seedlings that succeeded five times, was examined by amplicon sequencing. A total of 62 bacterial taxa and 56 fungal taxa were found to be transferred to the 5th generation in seedlings, which are the core microbiome of lily. After the regeneration of seedlings from bulbs, there was a significant increase in the number of detectable microbial species, and after 1, 3, and 5 successive generations, there was a decrease in the number of detectable species. Interestingly, some "new" microorganisms appeared in each generation of samples; for instance, 167 and 168 bacterial operational taxonomic units (OTUs) in the 3rd and 5th generations of seedlings that were not detected in either bulbs or seedlings of the previous two generations. These results suggest that bulbs can maintain a high diversity of microorganisms, including some with ultra-low abundance, and have a high transfer capacity to tuck shoots through continuous subculture. The diversity and maintenance of the microbiome can provide the necessary microbial reservoir support for regenerating seedlings. This habit of maintaining low abundance and high diversity may be biologically and ecologically critical for maintaining microbiome stability and function due to the sequestration nature of the plant.
Collapse
Affiliation(s)
- Sauban Musa Jibril
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming, China
| | - Wu Yan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming, China
| | - Yi Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming, China
| | - Xishen Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming, China
| | - Zhou Yunying
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming, China
| | - Jie Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming, China
| | - Ling Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming, China
| | - Limin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming, China
| | - Chengyun Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
30
|
Onyango B, Copeland R, Mbogholi J, Wamalwa M, Kibet C, Tonnang HEZ, Senagi K. WiPFIM: A digital platform for interlinking biocollections of wild plants, fruits, associated insects, and their molecular barcodes. Ecol Evol 2024; 14:e11457. [PMID: 38826163 PMCID: PMC11143469 DOI: 10.1002/ece3.11457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 04/12/2024] [Accepted: 05/07/2024] [Indexed: 06/04/2024] Open
Abstract
The current knowledge on insects feeding on fruits is limited, and some of the scarce existing data on the fruit-associated insects are secluded within the host institutions. Consequently, their value is not fully realized. Moreover, in countries like Kenya, the integration of biocollections data within a digital framework has not been fully exploited. To address these gaps, this article presents a description of the development of a web-based platform for data sharing and integrating biodiversity historical data of wild plants, fruits, associated insects, and their molecular barcodes (WiPFIM) while leveraging data science technologies. The barcodes corresponding to the biocollections data were retrieved from BOLD database. The platform is an online resource about fruit-insect interactions that can be of interest to a worldwide community of users and can be useful in building innovative tools. The platform is accessible online at https://test-dmmg.icipe.org/wpfhi.
Collapse
Affiliation(s)
- Bonface Onyango
- Data Management, Modeling and Geo‐Information (DMMG) UnitInternational Centre of Insect Physiology and EcologyNairobiKenya
- Biochemistry and Biotechnology DepartmentPwani UniversityKilifiKenya
| | - Robert Copeland
- Data Management, Modeling and Geo‐Information (DMMG) UnitInternational Centre of Insect Physiology and EcologyNairobiKenya
| | - John Mbogholi
- Biochemistry and Biotechnology DepartmentPwani UniversityKilifiKenya
| | - Mark Wamalwa
- Data Management, Modeling and Geo‐Information (DMMG) UnitInternational Centre of Insect Physiology and EcologyNairobiKenya
| | - Caleb Kibet
- Data Management, Modeling and Geo‐Information (DMMG) UnitInternational Centre of Insect Physiology and EcologyNairobiKenya
| | - Henri E. Z. Tonnang
- Data Management, Modeling and Geo‐Information (DMMG) UnitInternational Centre of Insect Physiology and EcologyNairobiKenya
| | - Kennedy Senagi
- Data Management, Modeling and Geo‐Information (DMMG) UnitInternational Centre of Insect Physiology and EcologyNairobiKenya
| |
Collapse
|
31
|
Hikmat H, Le Targa L, Boschi C, Py J, Bedotto M, Morand A, Cassir N, Aherfi S, La Scola B, Colson P. Sequencing and characterization of human bocavirus genomes from patients diagnosed in Southern France between 2017 and 2022. J Med Virol 2024; 96:e29706. [PMID: 38888111 DOI: 10.1002/jmv.29706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024]
Abstract
The diversity and evolution of the genomes of human bocavirus (HBoV), which causes respiratory diseases, have been scarcely studied. Here, we aimed to obtain and characterize HBoV genomes from patients's nasopharyngeal samples collected between 2017 and 2022 period (5 years and 7 months). Next-generation sequencing (NGS) used Illumina technology after having implemented using GEMI an in-house multiplex PCR amplification strategy. Genomes were assembled and analyzed with CLC Genomics, Mafft, BioEdit, MeV, Nextclade, MEGA, and iTol. A total of 213 genomes were obtained. Phylogeny classified them all as of Bocavirus 1 (HBoV1) species. Five HBoV1 genotypic clusters determined by hierarchical clustering analysis of 27 variable genome positions were scattered over the study period although with differences in yearly prevalence. A total of 167 amino acid substitutions were detected. Besides, coinfection was observed for 52% of the samples, rhinoviruses then adenoviruses (HAdVs) being the most common viruses. Principal component analysis showed that HBoV1 genotypic cluster α tended to be correlated with HAdV co-infection. Subsequent HAdV typing for HBoV1-positive samples and negative controls demonstrated that HAdVC species predominated but HAdVB was that significantly HBoV1-associated. Overall, we described here the first HBoV1 genomes sequenced for France. HBoV1 and HAdVB association deserves further investigation.
Collapse
Affiliation(s)
- Houmadi Hikmat
- Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Universite, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Lorlane Le Targa
- Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Universite, Marseille, France
- IHU Méditerranée Infection, Marseille, France
- Biosellal, Lyon, France
| | - Celine Boschi
- Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Universite, Marseille, France
- IHU Méditerranée Infection, Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Justine Py
- Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Universite, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Marielle Bedotto
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Aurélie Morand
- Service d'Accueil des Urgences Pédiatriques, Hôpital Nord, AP-HM, Marseille, France
- Service de Pédiatrie Générale, Hôpital Timone, AP-HM, Marseille, France
| | - Nadim Cassir
- Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Universite, Marseille, France
- IHU Méditerranée Infection, Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Sarah Aherfi
- Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Universite, Marseille, France
- IHU Méditerranée Infection, Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Bernard La Scola
- Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Universite, Marseille, France
- IHU Méditerranée Infection, Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Philippe Colson
- Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Universite, Marseille, France
- IHU Méditerranée Infection, Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| |
Collapse
|
32
|
Wang W, Wu L, Shi Y, Yin Q, Wang X, Wang M, Li X, Qiu S, Wan H, Zhang Y, Wang B, Xiang L, Gao R, Matinur Y. Integrated Full-Length Transcriptomics and Metabolomics Reveal Glycosyltransferase Involved in the Biosynthesis of Flavonol Glycosides in Laportea bulbifera. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8269-8283. [PMID: 38557049 DOI: 10.1021/acs.jafc.4c00488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Many species of the Urticaceae family are important cultivated fiber plants that are known for their economic and industrial values. However, their secondary metabolite profiles and associated biosynthetic mechanisms have not been well-studied. Using Laportea bulbifera as a model, we conducted widely targeted metabolomics, which revealed 523 secondary metabolites, including a unique accumulation of flavonol glycosides in bulblet. Through full-length transcriptomic and RNA-seq analyses, the related genes in the flavonoid biosynthesis pathway were identified. Finally, weighted gene correlation network analysis and functional characterization revealed four LbUGTs, including LbUGT78AE1, LbUGT72CT1, LbUGT71BX1, and LbUGT71BX2, can catalyze the glycosylation of flavonol aglycones (kaempferol, myricetin, gossypetin, and quercetagetin) using UDP-Gal and UDP-Glu as the sugar donors. LbUGT78AE1 and LbUGT72CT1 showed substrate promiscuity, whereas LbUGT71BX1 and LbUGT71BX2 exhibited different substrate and sugar donor selectivity. These results provide a genetic resource for studying Laportea in the Urticaceae family, as well as key enzymes responsible for the metabolism of valuable flavonoid glycosides.
Collapse
Affiliation(s)
- Wenting Wang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lan Wu
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuhua Shi
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qinggang Yin
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaotong Wang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Mengyue Wang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiwen Li
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shi Qiu
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Huihua Wan
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yongping Zhang
- National Engineering Technology Research Center for Miao Medicine, College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Huaxi University Town, Dongqing South Road, Guiyang, Guizhou 550025, People's Republic of China
| | - Bo Wang
- National Engineering Technology Research Center for Miao Medicine, College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Huaxi University Town, Dongqing South Road, Guiyang, Guizhou 550025, People's Republic of China
| | - Li Xiang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Prescription Laboratory of Xinjiang Traditional Uyghur Medicine, Xinjiang Institute of Traditional Uyghur Medicine, Urmuqi 830000, China
| | - Ranran Gao
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yusup Matinur
- Prescription Laboratory of Xinjiang Traditional Uyghur Medicine, Xinjiang Institute of Traditional Uyghur Medicine, Urmuqi 830000, China
| |
Collapse
|
33
|
Lancaster AK, Single RM, Mack SJ, Sochat V, Mariani MP, Webster GD. PyPop: a mature open-source software pipeline for population genomics. Front Immunol 2024; 15:1378512. [PMID: 38629078 PMCID: PMC11019567 DOI: 10.3389/fimmu.2024.1378512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/08/2024] [Indexed: 04/19/2024] Open
Abstract
Python for Population Genomics (PyPop) is a software package that processes genotype and allele data and performs large-scale population genetic analyses on highly polymorphic multi-locus genotype data. In particular, PyPop tests data conformity to Hardy-Weinberg equilibrium expectations, performs Ewens-Watterson tests for selection, estimates haplotype frequencies, measures linkage disequilibrium, and tests significance. Standardized means of performing these tests is key for contemporary studies of evolutionary biology and population genetics, and these tests are central to genetic studies of disease association as well. Here, we present PyPop 1.0.0, a new major release of the package, which implements new features using the more robust infrastructure of GitHub, and is distributed via the industry-standard Python Package Index. New features include implementation of the asymmetric linkage disequilibrium measures and, of particular interest to the immunogenetics research communities, support for modern nomenclature, including colon-delimited allele names, and improvements to meta-analysis features for aggregating outputs for multiple populations. Code available at: https://zenodo.org/records/10080668 and https://github.com/alexlancaster/pypop.
Collapse
Affiliation(s)
- Alexander K. Lancaster
- Amber Biology LLC, Cambridge, MA, United States
- Ronin Institute, Montclair, NJ, United States
- Institute for Globally Distributed Open Research and Education (IGDORE), Cambridge, MA, United States
| | - Richard M. Single
- Department of Mathematics and Statistics, University of Vermont, Burlington, VT, United States
| | - Steven J. Mack
- Department of Pediatrics, University of California, San Francisco, Oakland, CA, United States
| | - Vanessa Sochat
- Livermore Computing, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Michael P. Mariani
- Department of Mathematics and Statistics, University of Vermont, Burlington, VT, United States
- Mariani Systems LLC, Hanover, NH, United States
| | - Gordon D. Webster
- Amber Biology LLC, Cambridge, MA, United States
- Ronin Institute, Montclair, NJ, United States
| |
Collapse
|
34
|
Seth M, Mondal P, Ghosh D, Biswas R, Chatterjee S, Mukhopadhyay SK. Metabolomic and genomic insights into TMA degradation by a novel halotolerant strain - Paracoccus sp. PS1. Arch Microbiol 2024; 206:201. [PMID: 38564030 DOI: 10.1007/s00203-024-03931-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
Trimethylamine N-oxide (TMAO) is a gut metabolite that acts as a biomarker for chronic diseases, and is generated by the oxidation of trimethylamine (TMA) produced by gut microflora. Since, microbial degradation of TMA is predicted to be used to restrict the production of TMAO, we aimed to isolate bacterial strains that could effectively degrade TMA before being oxidized to TMAO. As marine fish is considered to have a rich content of TMAO, we have isolated TMA degrading isolates from fish skin. Out of the fourteen isolates, depending on their rapid TMA utilization capability in mineral salt medium supplemented with TMA as a sole carbon and nitrogen source, isolate PS1 was selected as our desired isolate. Its TMA degrading capacity was further confirmed through spectrophotometric, Electrospray Ionization Time-of-Flight Mass Spectrometry (ESI TOF-MS) and High performance liquid chromatography (HPLC) analysis and in silico analysis of whole genome (WG) gave further insights of protein into its TMA degradation pathways. PS1 was taxonomically identified as Paracoccus sp. based on its 16S rRNA and whole genome sequence analysis. As PS1 possesses the enzymes required for degradation of TMA, clinical use of this isolate has the potential to reduce TMAO generation in the human gut.
Collapse
Affiliation(s)
- Madhupa Seth
- Department of Microbiology, The University of Burdwan, Burdwan, Purba Bardhaman, 713104, West Bengal, India
| | - Priyajit Mondal
- Department of Microbiology, The University of Burdwan, Burdwan, Purba Bardhaman, 713104, West Bengal, India
| | - Dhritishree Ghosh
- Department of Microbiology, The University of Burdwan, Burdwan, Purba Bardhaman, 713104, West Bengal, India
| | - Raju Biswas
- Microbiology Laboratory, Department of Botany, Institute of Science, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India
| | - Sumit Chatterjee
- Department of Biological Sciences, Bose Institute, EN 80, Sector V, Bidhan Nagar, Kolkata, 700091, West Bengal, India
| | - Subhra Kanti Mukhopadhyay
- Department of Microbiology, The University of Burdwan, Burdwan, Purba Bardhaman, 713104, West Bengal, India.
| |
Collapse
|
35
|
Gao W, Nie J, Yao J, Wang J, Wang S, Zhang X, Liu Y, Liu Y. Genomic survey and expression analysis of cellulose synthase superfamily and COBRA-like gene family in Zanthoxylum bungeanum stipule thorns. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:369-382. [PMID: 38633272 PMCID: PMC11018584 DOI: 10.1007/s12298-024-01432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 12/24/2023] [Accepted: 03/01/2024] [Indexed: 04/19/2024]
Abstract
The Cellulose Synthase gene (CS) superfamily and COBRA-like (COBL) gene family are essential for synthesizing cellulose and hemicellulose, which play a crucial role in cell wall biosynthesis and the hardening of plant tissues. Our study identified 126 ZbCS and 31 ZbCOBL genes from the Zanthoxylum bungeanum (Zb) genome. Phylogenetic analysis and conservative domain analysis unfolded that ZbCS and ZbCOBL genes were divided into seven and two subfamilies, respectively. Gene duplication data suggested that more than 75% of these genes had tandem and fragment duplications. Codon usage patterns analysis indicated that the ZbCS and ZbCOBL genes prefer ending with A/T base, with weak codon preference. Furthermore, seven key ZbCS and five key ZbCOBL genes were identified based on the content of cellulose and hemicellulose and the expression characteristics of ZbCS and ZbCOBL genes in various stages of stipule thorns. Altogether, these results improve the understanding of CS and COBL genes and provide valuable reference data for cultivating Zb with soft thorns. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01432-x.
Collapse
Affiliation(s)
- Weilong Gao
- College of Forestry, Northwest A&F University, Yangling, 712100 China
| | - Jiangbo Nie
- College of Forestry, Northwest A&F University, Yangling, 712100 China
| | - Jia Yao
- College of Forestry, Northwest A&F University, Yangling, 712100 China
| | - Jianxin Wang
- College of Forestry, Northwest A&F University, Yangling, 712100 China
| | - Shengshu Wang
- College of Forestry, Northwest A&F University, Yangling, 712100 China
| | - Xueli Zhang
- College of Forestry, Northwest A&F University, Yangling, 712100 China
| | - Yonghong Liu
- College of Forestry, Northwest A&F University, Yangling, 712100 China
| | - Yulin Liu
- College of Forestry, Northwest A&F University, Yangling, 712100 China
| |
Collapse
|
36
|
Kiraz D, Özcan A, Yibar A, Dertli E. Genetic diversity and phylogenetic relationships of Streptococcus thermophilus isolates from traditional Turkish yogurt: multilocus sequence typing (MLST). Arch Microbiol 2024; 206:121. [PMID: 38400998 DOI: 10.1007/s00203-024-03850-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 02/26/2024]
Abstract
Yogurt, a globally consumed fermented dairy product, is recognized for its taste and potential health benefits attributed to probiotic bacteria, particularly Streptococcus thermophilus. In this study, we employed Multilocus Sequence Typing (MLST) to investigate the genetic diversity and phylogenetic relationships of 13 S. thermophilus isolates from traditional Turkish yogurt samples. We also assessed potential correlations between genetic traits and geographic origins. The isolates were identified as S. thermophilus using VITEK® MALDI-TOF MS, ribotyping, and 16S rRNA analysis methods. MLST analysis revealed 13 different sequence types (STs), with seven new STs for Turkey. The most prevalent STs were ST/83 (n = 3), ST/135 (n = 2), and ST/134 (n = 2). eBURST analysis showed that these isolates mainly were singletons (n = 7) defined as sequence types (STs) that cannot be assigned to any group and differ at two or more alleles from every other ST in the sample. This information suggests that the isolates under study were genetically distinct from the other isolates in the dataset, highlighting their unique genetic profiles within the population. Genetic diversity analysis of ten housekeeping genes revealed polymorphism, with some genes showing higher allelic variation than others. Tajima's D values suggested that selection pressures differed among these genes, with some being more conserved, likely due to their vital functions. Phylogenetic analysis revealed distinct genetic diversity between Turkish isolates and European and Asian counterparts. These findings demonstrate the genetic diversity of S. thermophilus isolates in Turkish yogurt and highlight their unique evolutionary patterns. This research contributes to our understanding of local microbial diversity associated with yogurt production in Turkey and holds the potential for identifyic strains with enhanced functional attributes.
Collapse
Affiliation(s)
- Deniz Kiraz
- Animal Originated Foodstuffs Department, Central Research Institute of Food and Feed Control, Bursa, Turkey.
| | - Ali Özcan
- Animal Originated Foodstuffs Department, Central Research Institute of Food and Feed Control, Bursa, Turkey
- Food Hygiene and Technology Department, Faculty of Veterinary Medicine, Uludağ University, Bursa, Turkey
| | - Artun Yibar
- Food Hygiene and Technology Department, Faculty of Veterinary Medicine, Uludağ University, Bursa, Turkey
| | - Enes Dertli
- Faculty of Chemistry and Metallurgy, Department of Food Engineering, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
37
|
Takeuchi Y, Sato S, Nagasato C, Motomura T, Okuda S, Kasahara M, Takahashi F, Yoshikawa S. Sperm-specific histone H1 in highly condensed sperm nucleus of Sargassum horneri. Sci Rep 2024; 14:3387. [PMID: 38336896 PMCID: PMC10858212 DOI: 10.1038/s41598-024-53729-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 02/04/2024] [Indexed: 02/12/2024] Open
Abstract
Spermatogenesis is one of the most dramatic changes in cell differentiation. Remarkable chromatin condensation of the nucleus is observed in animal, plant, and algal sperm. Sperm nuclear basic proteins (SNBPs), such as protamine and sperm-specific histone, are involved in chromatin condensation of the sperm nucleus. Among brown algae, sperm of the oogamous Fucales algae have a condensed nucleus. However, the existence of sperm-specific SNBPs in Fucales algae was unclear. Here, we identified linker histone (histone H1) proteins in the sperm and analyzed changes in their gene expression pattern during spermatogenesis in Sargassum horneri. A search of transcriptomic data for histone H1 genes in showed six histone H1 genes, which we named ShH1.1a, ShH1b, ShH1.2, ShH1.3, ShH1.4, and ShH1.5. Analysis of SNBPs using SDS-PAGE and LC-MS/MS showed that sperm nuclei contain histone ShH1.2, ShH1.3, and ShH1.4 in addition to core histones. Both ShH1.2 and ShH1.3 genes were expressed in the vegetative thallus and the male and female receptacles (the organs producing antheridium or oogonium). Meanwhile, the ShH1.4 gene was expressed in the male receptacle but not in the vegetative thallus and female receptacles. From these results, ShH1.4 may be a sperm-specific histone H1 of S. horneri.
Collapse
Affiliation(s)
- Yu Takeuchi
- Faculty of Marine Science and Technology, Fukui Prefectural University, 1-1 Gakuencho, Obama, Fukui, 917-0003, Japan
| | - Shinya Sato
- Faculty of Marine Science and Technology, Fukui Prefectural University, 1-1 Gakuencho, Obama, Fukui, 917-0003, Japan
| | - Chikako Nagasato
- Field Science Center for Northern Biosphere, Muroran Marine Station, Hokkaido University, Muroran, 051-0013, Japan
| | - Taizo Motomura
- Field Science Center for Northern Biosphere, Muroran Marine Station, Hokkaido University, Muroran, 051-0013, Japan
| | - Shujiro Okuda
- Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi, Chuoku, Niigata, Niigata, 951-8501, Japan
| | - Masahiro Kasahara
- Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Fumio Takahashi
- Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
- Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba, 274-8510, Japan
| | - Shinya Yoshikawa
- Faculty of Marine Science and Technology, Fukui Prefectural University, 1-1 Gakuencho, Obama, Fukui, 917-0003, Japan.
| |
Collapse
|
38
|
Jasu A, Manna B, Das SC, Chakraborty B, Pramanik G, Ray RR. Docking assisted mechanistic elucidation of bio conversion of hexavalent chromium by Serratia marcescens AJRR-22 that is effective yet long term sustainable in bio-geosphere. BIORESOURCE TECHNOLOGY 2024; 393:130009. [PMID: 37952590 DOI: 10.1016/j.biortech.2023.130009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/18/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Environmental accumulation of hexavalent chromium [Cr(VI)] in the food chain can induce detrimental effects on plants and animals, which calls for effective remediation strategies using biological entities. The bacterium isolated from an iron mine in Odisha, India, is identified asSerratia marcescensAJRR-22. This multi-metal tolerant strain is capable of bio-converting up to 350 mg/L Cr(VI) within 72 h of incubation. Observable electron dense precipitates in transmission electron microscopic images, data patterns in fluorescence microscopy and flow cytometry clearly reveal the chromate reduction ability of the strain. The molecular study is depicted by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopic analyses. Furthermore, a simulation study to estimate the interactions of chromium bound flavin reductasewith predicted docked complexes suggests significant negative Gibbs free energy and a low inhibition constant (Ki), signifying strong spontaneous binding of Cr(VI) to the enzyme, which makes the strain an efficient candidate for chromium bioremediation.
Collapse
Affiliation(s)
- Amrita Jasu
- Microbiology Research Laboratory, Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, W.B., Simhat, Haringhta, Nadia, West Bengal, India
| | - Bharat Manna
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, India
| | - Samir Chandra Das
- Department of Bio-medical Instrumentation, University of Calcutta, India
| | - Buddhadeb Chakraborty
- Microbiology Research Laboratory, Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, W.B., Simhat, Haringhta, Nadia, West Bengal, India
| | - Goutam Pramanik
- Chemical Division, UGC-DAE Consortium for Scientific Research, Kolkata Centre, India
| | - Rina Rani Ray
- Microbiology Research Laboratory, Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, W.B., Simhat, Haringhta, Nadia, West Bengal, India.
| |
Collapse
|
39
|
Vargas-González A, Barajas M, Pérez-Sánchez T. Isolation of Lactic Acid Bacteria (LAB) from Salmonids for Potential Use as Probiotics: In Vitro Assays and Toxicity Assessment of Salmo trutta Embryonated Eggs. Animals (Basel) 2024; 14:200. [PMID: 38254369 PMCID: PMC10812622 DOI: 10.3390/ani14020200] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/26/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
This research investigates the potential of lactic acid bacteria (LAB) from freshwater salmonids as prospective probiotics for application in aquaculture. LAB and pathogenic bacteria were obtained from mucus and tissues of Oncorhynchus mykiss and Salmo trutta from fish farms in northeast Spain that had not used antibiotics for the six months preceding the study. Isolates were identified using Gram staining and sequencing of 16S rRNA and ITS-1. To assess the safety of the LAB, antibiotic susceptibility tests (ASTs) against 23 antimicrobials were performed. In vitro antagonism assays were conducted to evaluate the inhibitory effects of living LAB using the agar diffusion test method and their metabolites using the agar well diffusion method. The assays targeted six specific pathogens: Aeromonas salmonicida subsp. salmonicida, Carnobacterium maltaromaticum, Vagococcus salmoninarum, Yersinia ruckeri, Lactococcus garvieae, and the marine pathogen Vibrio jasicida. Additionally, a toxicity assay was conducted on embryonic eggs of S. trutta. The ASTs on probiotic LAB candidates revealed varied responses to antimicrobials, but no resistance to oxytetracycline or florfenicol, which are two antibiotics commonly used in aquaculture, was detected. The in vitro assays indicate that LAB exhibit antagonistic effects against pathogens, primarily when directly stimulated by their presence. In applications involving embryonic eggs or larvae, certain live strains of LAB were found to have adverse effects, with some isolates resulting in higher mortality rates compared to the control group or other isolates. Furthermore, the potential pathogenicity of certain LAB strains, typically considered safe in salmonids, warrants deeper investigation.
Collapse
Affiliation(s)
- Augusto Vargas-González
- Biochemistry Area, Health Science Department, Faculty of Health Sciences, Public University of Navarra, 31008 Pamplona, Spain;
| | - Miguel Barajas
- Biochemistry Area, Health Science Department, Faculty of Health Sciences, Public University of Navarra, 31008 Pamplona, Spain;
| | | |
Collapse
|
40
|
Levinstein Hallak K, Rosset S. Dating ancient splits in phylogenetic trees, with application to the human-Neanderthal split. BMC Genom Data 2024; 25:4. [PMID: 38166646 PMCID: PMC10759710 DOI: 10.1186/s12863-023-01185-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND We tackle the problem of estimating species TMRCAs (Time to Most Recent Common Ancestor), given a genome sequence from each species and a large known phylogenetic tree with a known structure (typically from one of the species). The number of transitions at each site from the first sequence to the other is assumed to be Poisson distributed, and only the parity of the number of transitions is observed. The detailed phylogenetic tree contains information about the transition rates in each site. We use this formulation to develop and analyze multiple estimators of the species' TMRCA. To test our methods, we use mtDNA substitution statistics from the well-established Phylotree as a baseline for data simulation such that the substitution rate per site mimics the real-world observed rates. RESULTS We evaluate our methods using simulated data and compare them to the Bayesian optimizing software BEAST2, showing that our proposed estimators are accurate for a wide range of TMRCAs and significantly outperform BEAST2. We then apply the proposed estimators on Neanderthal, Denisovan, and Chimpanzee mtDNA genomes to better estimate their TMRCA with modern humans and find that their TMRCA is substantially later, compared to values cited recently in the literature. CONCLUSIONS Our methods utilize the transition statistics from the entire known human mtDNA phylogenetic tree (Phylotree), eliminating the requirement to reconstruct a tree encompassing the specific sequences of interest. Moreover, they demonstrate notable improvement in both running speed and accuracy compared to BEAST2, particularly for earlier TMRCAs like the human-Chimpanzee split. Our results date the human - Neanderthal TMRCA to be [Formula: see text] years ago, considerably later than values cited in other recent studies.
Collapse
Affiliation(s)
- Keren Levinstein Hallak
- Department of Statistics and Operations Research, School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv, 6997801, Israel
| | - Saharon Rosset
- Department of Statistics and Operations Research, School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv, 6997801, Israel.
| |
Collapse
|
41
|
Agrawal S, Khumlianlal J, Devi SI. Uncovering the Fungal Diversity and Biodeterioration Phenomenon on Archaeological Carvings of the Badami Cave Temples: A Microcosm Study. Life (Basel) 2023; 14:28. [PMID: 38255644 PMCID: PMC10820822 DOI: 10.3390/life14010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
The Badami Caves are a significant example of ancient Indian rock-cut architecture, dating back to the 6th century. These caves are situated in the Malaprabha River valley and are part of the candidate UNESCO World Heritage Site known as the "Evolution of Temple Architecture-Aihole-Badami-Pattadakal", which is considered to be the cradle of temple architecture in India. Our study aimed to investigate the diversity, distribution, and biodeterioration phenomena of the fungal communities present on the cave surfaces. The study also conducted a comprehensive analysis of fungal biodeterioration on the cave carvings. Utilizing specialized techniques, the dissolution of calcite, alterations in pH levels, and biomineralization capabilities of isolated fungal strains were monitored. Additionally, this study analyzed fungal acid production using high-performance liquid chromatography (HPLC). Our findings revealed that the major genera of fungi found on the cave surfaces included Acremonium, Curvularia, Cladosporium, Penicillium, and Aspergillus. These isolated fungi were observed to produce acids, leading to the dissolution of calcium carbonate and subsequent decrease in pH values. Notably, the dominant genus responsible for acid production and the promotion of biomineralization was Aspergillus. These discoveries provide valuable insight into the ecology and functions of fungi inhabiting stone surfaces, contributing to our understanding of how to preserve and protect sculptures from biodeterioration.
Collapse
Affiliation(s)
- Shivankar Agrawal
- Department of Phytochemistry, ICMR-National Institute of Traditional Medicine, Belagavi 590010, India
| | - Joshua Khumlianlal
- Institute of Bioresources and Sustainable Development (Department of Biotechnology, Government of India), Imphal 795001, India
| | - Sarangthem Indira Devi
- Institute of Bioresources and Sustainable Development (Department of Biotechnology, Government of India), Imphal 795001, India
| |
Collapse
|
42
|
Konings M, Eadie K, Strepis N, Nyuykonge B, Fahal AH, Verbon A, van de Sande WWJ. The combination of manogepix and itraconazole is synergistic and inhibits the growth of Madurella mycetomatis in vitro but not in vivo. Med Mycol 2023; 61:myad118. [PMID: 37960934 PMCID: PMC10684268 DOI: 10.1093/mmy/myad118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/17/2023] [Accepted: 11/10/2023] [Indexed: 11/15/2023] Open
Abstract
Mycetoma is a neglected tropical disease commonly caused by the fungus Madurella mycetomatis. Standard treatment consists of extensive treatment with itraconazole in combination with surgical excision of the infected tissue, but has a low success rate. To improve treatment outcomes, novel treatment strategies are needed. Here, we determined the potential of manogepix, a novel antifungal agent that targets the GPI-anchor biosynthesis pathway by inhibition of the GWT1 enzyme. Manogepix was evaluated by determining the minimal inhibitory concentrations (MICs) according to the CLSI-based in vitro susceptibility assay for 22 M. mycetomatis strains and by in silico protein comparison of the target protein. The synergy between manogepix and itraconazole was determined using a checkerboard assay. The efficacy of clinically relevant dosages was assessed in an in vivo grain model in Galleria mellonella larvae. MICs for manogepix ranged from <0.008 to >8 mg/l and 16/22 M. mycetomatis strains had an MIC ≥4 mg/ml. Differences in MICs were not related to differences observed in the GWT1 protein sequence. For 70% of the tested isolates, synergism was found between manogepix and itraconazole in vitro. In vivo, enhanced survival was not observed upon admission of 8.6 mg/kg manogepix, nor in combination treatment with 5.7 mg/kg itraconazole. MICs of manogepix were high, but the in vitro antifungal activity of itraconazole was enhanced in combination therapy. However, no efficacy of manogepix was found in an in vivo grain model using clinically relevant dosages. Therefore, the therapeutic potential of manogepix in mycetoma caused by M. mycetomatis seems limited.
Collapse
Affiliation(s)
- Mickey Konings
- Department of Medical Microbiology and Infectious Diseases, ErasmusMC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015GD, Rotterdam, The Netherlands
| | - Kimberly Eadie
- Department of Medical Microbiology and Infectious Diseases, ErasmusMC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015GD, Rotterdam, The Netherlands
| | - Nikolaos Strepis
- Department of Medical Microbiology and Infectious Diseases, ErasmusMC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015GD, Rotterdam, The Netherlands
| | - Bertrand Nyuykonge
- Department of Medical Microbiology and Infectious Diseases, ErasmusMC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015GD, Rotterdam, The Netherlands
| | - Ahmed H Fahal
- Mycetoma Research Center, University of Khartoum, Khartoum, Sudan
| | - Annelies Verbon
- Department of Medical Microbiology and Infectious Diseases, ErasmusMC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015GD, Rotterdam, The Netherlands
- Department of Internal Medicine, UMC Utrecht, Utrecht, The Netherlands
| | - Wendy W J van de Sande
- Department of Medical Microbiology and Infectious Diseases, ErasmusMC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015GD, Rotterdam, The Netherlands
| |
Collapse
|
43
|
Xue L, Zhao Y, Li L, Rao X, Chen X, Ma F, Yu H, Xie S. A key O-demethylase in the degradation of guaiacol by Rhodococcus opacus PD630. Appl Environ Microbiol 2023; 89:e0052223. [PMID: 37800939 PMCID: PMC10617553 DOI: 10.1128/aem.00522-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/24/2023] [Indexed: 10/07/2023] Open
Abstract
Rhodococcus opacus PD630 is a high oil-producing strain with the ability to convert lignin-derived aromatics to high values, but limited research has been done to elucidate its conversion pathway, especially the upper pathways. In this study, we focused on the upper pathways and demethylation mechanism of lignin-derived aromatics metabolism by R. opacus PD630. The results of the aromatic carbon resource utilization screening showed that R. opacus PD630 had a strong degradation capacity to the lignin-derived methoxy-containing aromatics, such as guaiacol, 3,4-veratric acid, anisic acid, isovanillic acid, and vanillic acid. The gene of gcoAR, which encodes cytochrome P450, showed significant up-regulation when R. opacus PD630 grew on diverse aromatics. Deletion mutants of gcoAR and its partner protein gcoBR resulted in the strain losing the ability to grow on guaiacol, but no significant difference to the other aromatics. Only co-complementation alone of gcoAR and gcoBR restored the strain's ability to utilize guaiacol, demonstrating that both genes were equally important in the utilization of guaiacol. In vitro assays further revealed that GcoAR could convert guaiacol and anisole to catechol and phenol, respectively, with the production of formaldehyde as a by-product. The study provided robust evidence to reveal the molecular mechanism of R. opacus PD630 on guaiacol metabolism and offered a promising study model for dissecting the demethylation process of lignin-derived aromatics in microbes.IMPORTANCEAryl-O-demethylation is believed to be the key rate-limiting step in the catabolism of heterogeneous lignin-derived aromatics in both native and engineered microbes. However, the mechanisms of O-demethylation in lignin-derived aromatic catabolism remain unclear. Notably, guaiacol, the primary component unit of lignin, lacks in situ demonstration and illustration of the molecular mechanism of guaiacol O-demethylation in lignin-degrading bacteria. This is the first study to illustrate the mechanism of guaiacol metabolism by R. opacus PD630 in situ as well as characterize the purified key O-demethylase in vitro. This study provided further insight into the lignin metabolic pathway of R. opacus PD630 and could guide the design of an efficient biocatalytic system for lignin valorization.
Collapse
Affiliation(s)
- Le Xue
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yiquan Zhao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinran Rao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinjie Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fuying Ma
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongbo Yu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shangxian Xie
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
44
|
Lu J, Qu L, Xing G, Liu Z, Lu X, Han X. Genome-Wide Identification and Expression Analysis of the MADS Gene Family in Tulips ( Tulipa gesneriana). Genes (Basel) 2023; 14:1974. [PMID: 37895323 PMCID: PMC10606154 DOI: 10.3390/genes14101974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
To investigate the cold response mechanism and low temperature regulation of flowering in tulips, this study identified 32 MADS-box transcription factor family members in tulips based on full-length transcriptome sequencing, named TgMADS1-TgMADS32. Phylogenetic analysis revealed that these genes can be divided into two classes: type I and type II. Structural analysis showed that TgMADS genes from different subfamilies have a similar distribution of conserved motifs. Quantitative real-time PCR results demonstrated that some TgMADS genes (e.g., TgMADS3, TgMADS15, TgMADS16, and TgMADS19) were significantly upregulated in buds and stems under cold conditions, implying their potential involvement in the cold response of tulips. In summary, this study systematically identified MADS family members in tulips and elucidated their evolutionary relationships, gene structures, and cold-responsive expression patterns, laying the foundation for further elucidating the roles of these transcription factors in flowering and the cold adaptability of tulips.
Collapse
Affiliation(s)
- Jiaojiao Lu
- Liaoning Academy of Agriculture Sciences, Shenyang 110161, China; (J.L.); (L.Q.); (G.X.); (Z.L.)
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
| | - Lianwei Qu
- Liaoning Academy of Agriculture Sciences, Shenyang 110161, China; (J.L.); (L.Q.); (G.X.); (Z.L.)
| | - Guimei Xing
- Liaoning Academy of Agriculture Sciences, Shenyang 110161, China; (J.L.); (L.Q.); (G.X.); (Z.L.)
| | - Zhenlei Liu
- Liaoning Academy of Agriculture Sciences, Shenyang 110161, China; (J.L.); (L.Q.); (G.X.); (Z.L.)
| | - Xiaochun Lu
- Liaoning Academy of Agriculture Sciences, Shenyang 110161, China; (J.L.); (L.Q.); (G.X.); (Z.L.)
| | - Xiaori Han
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
45
|
Otarigho B, Falade MO. Natural Perylenequinone Compounds as Potent Inhibitors of Schistosoma mansoni Glutathione S-Transferase. Life (Basel) 2023; 13:1957. [PMID: 37895339 PMCID: PMC10608284 DOI: 10.3390/life13101957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
The existing treatment strategy for Schistosomiasis centers on praziquantel, a single drug, but its effectiveness is limited due to resistance and lack of preventive benefits. Thus, there is an urgent need for novel antischistosomal agents. Schistosoma glutathione S-transferase (GST) is an essential parasite enzyme, with a high potential for targeted drug discovery. In this study, we conducted a screening of compounds possessing antihelminth properties, focusing on their interaction with the Schistosoma mansoni glutathione S-transferase (SmGST) protein. We demonstrated the unique nature of SmGST in comparison to human GST. Evolutionary analysis indicated its close relationship with other parasitic worms, setting it apart from free-living worms such as C. elegans. Through an assessment of binding pockets and subsequent protein-ligand docking, we identified Scutiaquinone A and Scutiaquinone B, both naturally derived Perylenequinones, as robust binders to SmGST. These compounds have exhibited effectiveness against similar parasites and offer promising potential as antischistosomal agents.
Collapse
Affiliation(s)
- Benson Otarigho
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | | |
Collapse
|
46
|
Hu S, Yan C, Yu H, Zhang Y, Zhang CQ. Establishment of the Recombinase Polymerase Amplification-Lateral Flow Dipstick Detection Technique for Fusarium oxysporum. PLANT DISEASE 2023; 107:2665-2672. [PMID: 36774580 DOI: 10.1094/pdis-12-22-2841-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Fusarium oxysporum causes crown rot, wilt, root rot, and many other major plant diseases worldwide. During the progression of strawberry crown rot disease, the pathogen is transmitted from the mother plant to the seedling through the stolon, with obvious characteristics of latent infection. Therefore, rapid and timely detection of F. oxysporum is important for efficient disease management. In this study, a recombinase polymerase amplification-lateral flow dipstick (RPA-LFD) detection technique was developed for the rapid detection of F. oxysporum on strawberry plants by targeting the CYP51C gene, which is unique to Fusarium spp. Because this RPA-LFD detection technique was highly specific to F. oxysporum, other Fusarium and non-Fusarium fungi were not detected. The optimal reaction temperature and time for this technique were 39°C and 8 min, respectively. The detection limit was 1 pg of F. oxysporum genomic DNA in a 50-μl reaction system. A total of 46 strawberry plants with or without crown rot symptoms collected from Jiande, Changxing, and Haining in Zhejiang Province were further assessed for F. oxysporum infection using both RPA-LFD and traditional tissue isolation techniques. The RPA-LFD test showed that 32 of the 46 strawberry plants tested were positive for F. oxysporum, while in the traditional isolation technique, F. oxysporum was isolated from 30 of the 46 strawberry plants. These results suggest that our established RPA-LFD method is rapid, sensitive, and highly specific in detecting F. oxysporum infection in strawberry plants.
Collapse
Affiliation(s)
- Shuodan Hu
- Department of Plant Pathology, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Chenyi Yan
- Department of Plant Pathology, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Hong Yu
- Research Institute for the Agriculture Science of Hangzhou, Hangzhou 310013, China
| | - Yu Zhang
- Department of Plant Pathology, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Chuan-Qing Zhang
- Department of Plant Pathology, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| |
Collapse
|
47
|
Yang HJ, Yang ZH, Ren TG, Dong WG. Description and phylogenetic analysis of the complete mitochondrial genome in Eulaelaps silvestris provides new insights into the molecular classification of the family Haemogamasidae. Parasitology 2023; 150:821-830. [PMID: 37395062 PMCID: PMC10478059 DOI: 10.1017/s0031182023000616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/21/2023] [Accepted: 06/08/2023] [Indexed: 07/04/2023]
Abstract
In this study, the mitochondrial genome of Eulaelaps silvestris, which parasitizes Apodemus chevrieri, was sequenced and assembled to fill the gap in understanding the molecular evolution of the genus Eulaelaps. The E. silvestris mitochondrial genome is a double-stranded DNA molecule with a length of 14 882 bp, with a distinct AT preference for base composition and a notably higher AT content than GC content. The arrangement between genes is relatively compact, with a total of 10 gene intergenic regions and 12 gene overlap regions. All protein-coding genes had a typical ATN initiation codon, and only 2 protein-coding genes had an incomplete termination codon T. Out of the 13 protein-coding genes, the 5 most frequently used codons ended in A/U, with only 1 codon ending in G/C had an relative synonymous codon usage value >1. Except for trnS1 and trnS2, which lacked the D arm, all other tRNAs were able to form a typical cloverleaf structure; and there were a total of 38 mismatches in the folding process of tRNA genes. Unlike the gene arrangement order of the arthropod hypothetical ancestor, the E. silvestris mitochondrial genome underwent fewer rearrangements, mainly near tRNA genes and control regions. Both the maximum likelihood tree and the Bayesian tree showed that the family Haemogamasidae is most closely related to the family Dermanyssidae. The results not only provide a theoretical basis for studying the phylogenetic relationships of the genus Eulaelaps, but also provide molecular evidence that the family Haemogamasidae does not belong to the subfamily Laelapidae.
Collapse
Affiliation(s)
- Hui-Juan Yang
- Institute of Pathogens and Vectors, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali University, Dali, Yunnan 671000, China
| | - Zhi-Hua Yang
- School of Foreign Languages, Dali University, Dali 671000, China
| | | | - Wen-Ge Dong
- Institute of Pathogens and Vectors, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali University, Dali, Yunnan 671000, China
| |
Collapse
|
48
|
Shivnauth V, Pretheepkumar S, Marchetta EJR, Rossi CAM, Amani K, Castroverde CDM. Structural diversity and stress regulation of the plant immunity-associated CALMODULIN-BINDING PROTEIN 60 (CBP60) family of transcription factors in Solanum lycopersicum (tomato). Funct Integr Genomics 2023; 23:236. [PMID: 37439880 DOI: 10.1007/s10142-023-01172-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/23/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Cellular signaling generates calcium (Ca2+) ions, which are ubiquitous secondary messengers decoded by calcium-dependent protein kinases, calcineurins, calreticulin, calmodulins (CAMs), and CAM-binding proteins. Previous studies in the model plant Arabidopsis thaliana have shown the critical roles of the CAM-BINDING PROTEIN 60 (CBP60) protein family in plant growth, stress responses, and immunity. Certain CBP60 factors can regulate plant immune responses, like pattern-triggered immunity, effector-triggered immunity, and synthesis of major plant immune-activating metabolites salicylic acid (SA) and N-hydroxypipecolic acid (NHP). Although homologous CBP60 sequences have been identified in the plant kingdom, their function and regulation in most species remain unclear. In this paper, we specifically characterized 11 members of the CBP60 family in the agriculturally important crop tomato (Solanum lycopersicum). Protein sequence analyses revealed that three CBP60 homologs have the closest amino acid identity to Arabidopsis CBP60g and SARD1, master transcription factors involved in plant immunity. Strikingly, AlphaFold deep learning-assisted prediction of protein structures highlighted close structural similarity between these tomato and Arabidopsis CBP60 homologs. Conserved domain analyses revealed that they possess CAM-binding domains and DNA-binding domains, reflecting their potential involvement in linking Ca2+ signaling and transcriptional regulation in tomato plants. In terms of their gene expression profiles under biotic (Pseudomonas syringae pv. tomato DC3000 pathogen infection) and/or abiotic stress (warming temperatures), five tomato CBP60 genes were pathogen-responsive and temperature-sensitive, reminiscent of Arabidopsis CBP60g and SARD1. Overall, we present a genome-wide identification of the CBP60 gene/protein family in tomato plants, and we provide evidence on their regulation and potential function as Ca2+-sensing transcriptional regulators.
Collapse
Affiliation(s)
- Vanessa Shivnauth
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | - Sonya Pretheepkumar
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | - Eric J R Marchetta
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | - Christina A M Rossi
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | - Keaun Amani
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | | |
Collapse
|
49
|
Jia Z, Hasi S, Zhan D, Hou B, Vogl C, Burger PA. Genome and Transcriptome Analyses Facilitate Genetic Control of Wohlfahrtia magnifica, a Myiasis-Causing Flesh Fly. INSECTS 2023; 14:620. [PMID: 37504626 PMCID: PMC10380434 DOI: 10.3390/insects14070620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023]
Abstract
Myiasis caused by Wohlfahrtia magnifica is a widespread parasitic infestation in mammals. The infested host suffers from damage as the developing larvae feed on its tissues. For the control of myiasis infestation, genetic methods have been shown to be effective and promising as an alternative to insecticides. Combining genome, isoform sequencing (Iso-Seq), and RNA sequencing (RNA-seq) data, we isolated and characterized two sex-determination genes, W. magnifica transformer (Wmtra) and W. magnifica transformer2 (Wmtra2), whose orthologs in a number of insect pests have been utilized to develop genetic control approaches. Wmtra transcripts are sex-specifically spliced; only the female transcript encodes a full-length functional protein, while the male transcript encodes a truncated and non-functional polypeptide due to the presence of the male-specific exon containing multiple in-frame stop codons. The existence of five predicted TRA/TRA2 binding sites in the male-specific exon and the surrounding intron of Wmtra, as well as the presence of an RNA-recognition motif in WmTRA2 may suggest the auto-regulation of Wmtra by its own protein interacting with WmTRA2. This results in the skipping of the male-specific exon and translation of the full-length functional protein only in females. Our comparative study in dipteran species showed that both the WmTRA and WmTRA2 proteins exhibit a high degree of similarity to their orthologs in the myiasis-causing blow flies. Additionally, transcriptome profiling performed between adult females and adult males reported 657 upregulated and 365 downregulated genes. Functional analysis showed that among upregulated genes those related to meiosis and mitosis Gene Ontology (GO) terms were enriched, while, among downregulated genes, those related to muscle cell development and aerobic metabolic processes were enriched. Among the female-biased gene set, we detected five candidate genes, vasa (vas), nanos (nanos), bicoid (bcd), Bicaudal C (BicC), and innexin5 (inx5). The promoters of these genes may be able to upregulate Cas9 expression in the germline in Cas9-based homing gene drive systems as established in some flies and mosquitoes. The isolation and characterization of these genes is an important step toward the development of genetic control programs against W. magnifica infestation.
Collapse
Affiliation(s)
- Zhipeng Jia
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Savoyenstrasse 1, 1160 Vienna, Austria
| | - Surong Hasi
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Deng Zhan
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Bin Hou
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Claus Vogl
- Institute of Animal Breeding and Genetics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Pamela A Burger
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Savoyenstrasse 1, 1160 Vienna, Austria
| |
Collapse
|
50
|
Li Y, Rong J, Gao C. Phylogenetic analyses of antimicrobial resistant Corynebacterium striatum strains isolated from a nosocomial outbreak in a tertiary hospital in China. Antonie Van Leeuwenhoek 2023:10.1007/s10482-023-01855-8. [PMID: 37368178 PMCID: PMC10371919 DOI: 10.1007/s10482-023-01855-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/19/2023] [Indexed: 06/28/2023]
Abstract
Corynebacterium striatum is an emerging, multidrug-resistant pathogen that frequently causes nosocomial infections worldwide. This study aimed to investigate phylogenetic relationship and presence of genes responsible for antimicrobial resistance among C. striatum strains associated with an outbreak at the Shanxi Bethune Hospital, China, in 2021. Fecal samples were collected from 65 patients with C. striatum infection at Shanxi Bethune Hospital between February 12, 2021 and April 12, 2021. C. striatum isolates were identified by 16S rRNA and rpoB gene sequencing. E-test strips were used to examine the antimicrobial susceptibility of the isolates. Whole-genome sequencing and bioinformatics analysis were employed to assess the genomic features and identify antimicrobial resistance genes of the isolates. Crystal violet staining was conducted to determine the ability of biofilm formation of each isolate. A total of 64 C. striatum isolates were identified and categorized into 4 clades based on single nucleotide polymorphisms. All isolates were resistant to penicillin, meropenem, ceftriaxone, and ciprofloxacin but susceptible to vancomycin and linezolid. Most isolates were also resistant to tetracycline, clindamycin, and erythromycin, with susceptibility rates of 10.77, 4.62, and 7.69%, respectively. Genomic analysis revealed 14 antimicrobial resistance genes in the isolates, including tetW, ermX, and sul1. Crystal violet staining showed that all isolates formed biofilms on the abiotic surface. Four clades of multidrug-resistant C. striatum spread in our hospitals possibly due to the acquisition of antimicrobial resistance genes.
Collapse
Affiliation(s)
- Yuchuan Li
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jianrong Rong
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chunyan Gao
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|