1
|
Sall I, Foxall R, Felth L, Maret S, Rosa Z, Gaur A, Calawa J, Pavlik N, Whistler JL, Whistler CA. Gut dysbiosis was inevitable, but tolerance was not: temporal responses of the murine microbiota that maintain its capacity for butyrate production correlate with sustained antinociception to chronic morphine. Gut Microbes 2025; 17:2446423. [PMID: 39800714 PMCID: PMC11730370 DOI: 10.1080/19490976.2024.2446423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 11/24/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
The therapeutic benefits of opioids are compromised by the development of analgesic tolerance, which necessitates higher dosing for pain management thereby increasing the liability for drug dependence and addiction. Rodent models indicate opposing roles of the gut microbiota in tolerance: morphine-induced gut dysbiosis exacerbates tolerance, whereas probiotics ameliorate tolerance. Not all individuals develop tolerance, which could be influenced by differences in microbiota, and yet no study design has capitalized upon this natural variation. We leveraged natural behavioral variation in a murine model of voluntary oral morphine self-administration to elucidate the mechanisms by which microbiota influences tolerance. Although all mice shared similar morphine-driven microbiota changes that largely masked informative associations with variability in tolerance, our high-resolution temporal analyses revealed a divergence in the progression of dysbiosis that best explained sustained antinociception. Mice that did not develop tolerance maintained a higher capacity for production of the short-chain fatty acid (SCFA) butyrate known to bolster intestinal barriers and promote neuronal homeostasis. Both fecal microbial transplantation (FMT) from donor mice that did not develop tolerance and dietary butyrate supplementation significantly reduced the development of tolerance independently of suppression of systemic inflammation. These findings could inform immediate therapies to extend the analgesic efficacy of opioids.
Collapse
Affiliation(s)
- Izabella Sall
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- Graduate program in Molecular and Evolutionary Systems Biology, University of New Hampshire, Durham, NH, USA
| | - Randi Foxall
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Lindsey Felth
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
| | - Soren Maret
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Zachary Rosa
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
| | - Anirudh Gaur
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
| | - Jennifer Calawa
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- Microbiology Graduate Program, University of New Hampshire, Durham, NH, USA
| | - Nadia Pavlik
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Jennifer L. Whistler
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
- Department of Physiology and Membrane Biology, UC Davis School of Medicine, Davis, CA, USA
| | - Cheryl A. Whistler
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| |
Collapse
|
2
|
Morikka J, Federico A, Möbus L, Inkala S, Pavel A, Sani S, Vaani M, Peltola S, Serra A, Greco D. Toxicogenomic assessment of in vitro macrophages exposed to profibrotic challenge reveals a sustained transcriptomic immune signature. Comput Struct Biotechnol J 2024; 25:194-204. [PMID: 39430886 PMCID: PMC11490883 DOI: 10.1016/j.csbj.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/27/2024] [Accepted: 10/05/2024] [Indexed: 10/22/2024] Open
Abstract
Immune signalling is a crucial component in the progression of fibrosis. However, approaches for the safety assessment of potentially profibrotic substances, that provide information on mechanistic immune responses, are underdeveloped. This study aimed to develop a novel framework for assessing the immunotoxicity of fibrotic compounds. We exposed macrophages in vitro to multiple sublethal concentrations of the profibrotic agent bleomycin, over multiple timepoints, and generated RNA sequencing data. Using a toxicogenomic approach, we performed dose-dependent analysis to discover genes dysregulated by bleomycin exposure in a dose-responsive manner. A subset of immune genes displayed a sustained dose-dependent and differential expression response to profibrotic challenge. An immunoassay revealed cytokines and proteinases responding to bleomycin exposure that closely correlated to transcriptomic alterations, underscoring the integration between transcriptional immune response and external immune signalling activity. This study not only increases our understanding of the immunological mechanisms of fibrosis, but also offers an innovative framework for the toxicological evaluation of substances with potential fibrogenic effects on macrophage signalling. Our work brings a new immunotoxicogenomic direction for hazard assessment of fibrotic compounds, through the implementation of a time and resource efficient in vitro methodology.
Collapse
Affiliation(s)
- Jack Morikka
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tampere Institute for Advanced Study, Tampere University, Tampere, Finland
| | - Antonio Federico
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tampere Institute for Advanced Study, Tampere University, Tampere, Finland
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Lena Möbus
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Simo Inkala
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Alisa Pavel
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Copenhagen, Denmark
| | - Saara Sani
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Maaret Vaani
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sanna Peltola
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Angela Serra
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tampere Institute for Advanced Study, Tampere University, Tampere, Finland
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Dario Greco
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Harden M, Kovalev M, Molano G, Yorke C, Miller R, Reed D, Alberto F, Koos DS, Lansford R, Nuzhdin S. Heat stress analysis suggests a genetic basis for tolerance in Macrocystis pyrifera across developmental stages. Commun Biol 2024; 7:1147. [PMID: 39278981 PMCID: PMC11402984 DOI: 10.1038/s42003-024-06800-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/28/2024] [Indexed: 09/18/2024] Open
Abstract
Kelps are vital for marine ecosystems, yet the genetic diversity underlying their capacity to adapt to climate change remains unknown. In this study, we focused on the kelp Macrocystis pyrifera a species critical to coastal habitats. We developed a protocol to evaluate heat stress response in 204 Macrocystis pyrifera genotypes subjected to heat stress treatments ranging from 21 °C to 27 °C. Here we show that haploid gametophytes exhibiting a heat-stress tolerant (HST) phenotype also produced greater biomass as genetically similar diploid sporophytes in a warm-water ocean farm. HST was measured as chlorophyll autofluorescence per genotype, presented here as fluorescent intensity values. This correlation suggests a predictive relationship between the growth performance of the early microscopic gametophyte stage HST and the later macroscopic sporophyte stage, indicating the potential for selecting resilient kelp strains under warmer ocean temperatures. However, HST kelps showed reduced genetic variation, underscoring the importance of integrating heat tolerance genes into a broader genetic pool to maintain the adaptability of kelp populations in the face of climate change.
Collapse
Affiliation(s)
| | - Maxim Kovalev
- University of Southern California, Los Angeles, CA, USA
| | - Gary Molano
- University of Southern California, Los Angeles, CA, USA
| | - Christie Yorke
- University of California Santa Barbara, Santa Barbara, CA, USA
| | - Robert Miller
- University of California Santa Barbara, Santa Barbara, CA, USA
| | - Daniel Reed
- University of California Santa Barbara, Santa Barbara, CA, USA
| | | | - David S Koos
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Rusty Lansford
- University of Southern California, Los Angeles, CA, USA
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Sergey Nuzhdin
- University of Southern California, Los Angeles, CA, USA
- Kelp Ark, Port of Los Angeles, San Pedro, CA, USA
| |
Collapse
|
4
|
Pérez Compte D, Etourneau L, Hesse AM, Kraut A, Barthelon J, Sturm N, Borges H, Biennier S, Courçon M, de Saint Loup M, Mignot V, Costentin C, Burger T, Couté Y, Bruley C, Decaens T, Jaquinod M, Boursier J, Brun V. Plasma ALS and Gal-3BP differentiate early from advanced liver fibrosis in MASLD patients. Biomark Res 2024; 12:44. [PMID: 38679739 PMCID: PMC11057169 DOI: 10.1186/s40364-024-00583-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/19/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is estimated to affect 30% of the world's population, and its prevalence is increasing in line with obesity. Liver fibrosis is closely related to mortality, making it the most important clinical parameter for MASLD. It is currently assessed by liver biopsy - an invasive procedure that has some limitations. There is thus an urgent need for a reliable non-invasive means to diagnose earlier MASLD stages. METHODS A discovery study was performed on 158 plasma samples from histologically-characterised MASLD patients using mass spectrometry (MS)-based quantitative proteomics. Differentially abundant proteins were selected for verification by ELISA in the same cohort. They were subsequently validated in an independent MASLD cohort (n = 200). RESULTS From the 72 proteins differentially abundant between patients with early (F0-2) and advanced fibrosis (F3-4), we selected Insulin-like growth factor-binding protein complex acid labile subunit (ALS) and Galectin-3-binding protein (Gal-3BP) for further study. In our validation cohort, AUROCs with 95% CIs of 0.744 [0.673 - 0.816] and 0.735 [0.661 - 0.81] were obtained for ALS and Gal-3BP, respectively. Combining ALS and Gal-3BP improved the assessment of advanced liver fibrosis, giving an AUROC of 0.796 [0.731. 0.862]. The {ALS; Gal-3BP} model surpassed classic fibrosis panels in predicting advanced liver fibrosis. CONCLUSIONS Further investigations with complementary cohorts will be needed to confirm the usefulness of ALS and Gal-3BP individually and in combination with other biomarkers for diagnosis of liver fibrosis. With the availability of ELISA assays, these findings could be rapidly clinically translated, providing direct benefits for patients.
Collapse
Affiliation(s)
- David Pérez Compte
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, FR2048 ProFI, EDyP team, 17 Avenue des Martyrs, 38000, Grenoble, France
| | - Lucas Etourneau
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, FR2048 ProFI, EDyP team, 17 Avenue des Martyrs, 38000, Grenoble, France
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
| | - Anne-Marie Hesse
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, FR2048 ProFI, EDyP team, 17 Avenue des Martyrs, 38000, Grenoble, France
| | - Alexandra Kraut
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, FR2048 ProFI, EDyP team, 17 Avenue des Martyrs, 38000, Grenoble, France
| | - Justine Barthelon
- Université Grenoble Alpes, Clinique Universitaire d'Hépato-Gastroentérologie, CHU Grenoble Alpes, 38000, Grenoble, France
| | - Nathalie Sturm
- Université Grenoble Alpes, Clinique Universitaire d'Hépato-Gastroentérologie, CHU Grenoble Alpes, 38000, Grenoble, France
| | - Hélène Borges
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, FR2048 ProFI, EDyP team, 17 Avenue des Martyrs, 38000, Grenoble, France
| | - Salomé Biennier
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, FR2048 ProFI, EDyP team, 17 Avenue des Martyrs, 38000, Grenoble, France
| | - Marie Courçon
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, FR2048 ProFI, EDyP team, 17 Avenue des Martyrs, 38000, Grenoble, France
| | - Marc de Saint Loup
- Hepato-Gastroenterology Department, University Hospital, Angers, France
- HIFIH Laboratory, UPRES 3859, SFR 4208, LUNAM University, Angers, France
| | - Victoria Mignot
- Université Grenoble Alpes, Clinique Universitaire d'Hépato-Gastroentérologie, CHU Grenoble Alpes, 38000, Grenoble, France
- Univ. Grenoble Alpes, Institute for Advanced Biosciences-INSERM U1209/ CNRS UMR 5309, Grenoble, France
| | - Charlotte Costentin
- Université Grenoble Alpes, Clinique Universitaire d'Hépato-Gastroentérologie, CHU Grenoble Alpes, 38000, Grenoble, France
- Univ. Grenoble Alpes, Institute for Advanced Biosciences-INSERM U1209/ CNRS UMR 5309, Grenoble, France
| | - Thomas Burger
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, FR2048 ProFI, EDyP team, 17 Avenue des Martyrs, 38000, Grenoble, France
| | - Yohann Couté
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, FR2048 ProFI, EDyP team, 17 Avenue des Martyrs, 38000, Grenoble, France
| | - Christophe Bruley
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, FR2048 ProFI, EDyP team, 17 Avenue des Martyrs, 38000, Grenoble, France
| | - Thomas Decaens
- Université Grenoble Alpes, Clinique Universitaire d'Hépato-Gastroentérologie, CHU Grenoble Alpes, 38000, Grenoble, France
- Univ. Grenoble Alpes, Institute for Advanced Biosciences-INSERM U1209/ CNRS UMR 5309, Grenoble, France
| | - Michel Jaquinod
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, FR2048 ProFI, EDyP team, 17 Avenue des Martyrs, 38000, Grenoble, France.
| | - Jérôme Boursier
- Hepato-Gastroenterology Department, University Hospital, Angers, France
- HIFIH Laboratory, UPRES 3859, SFR 4208, LUNAM University, Angers, France
| | - Virginie Brun
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, FR2048 ProFI, EDyP team, 17 Avenue des Martyrs, 38000, Grenoble, France.
- Univ. Grenoble Alpes, CEA, Leti, 38000, Grenoble, France.
| |
Collapse
|
5
|
Matthews ER, Johnson OD, Horn KJ, Gutiérrez JA, Powell SR, Ward MC. Anthracyclines induce cardiotoxicity through a shared gene expression response signature. PLoS Genet 2024; 20:e1011164. [PMID: 38416769 PMCID: PMC10927150 DOI: 10.1371/journal.pgen.1011164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/11/2024] [Accepted: 01/31/2024] [Indexed: 03/01/2024] Open
Abstract
TOP2 inhibitors (TOP2i) are effective drugs for breast cancer treatment. However, they can cause cardiotoxicity in some women. The most widely used TOP2i include anthracyclines (AC) Doxorubicin (DOX), Daunorubicin (DNR), Epirubicin (EPI), and the anthraquinone Mitoxantrone (MTX). It is unclear whether women would experience the same adverse effects from all drugs in this class, or if specific drugs would be preferable for certain individuals based on their cardiotoxicity risk profile. To investigate this, we studied the effects of treatment of DOX, DNR, EPI, MTX, and an unrelated monoclonal antibody Trastuzumab (TRZ) on iPSC-derived cardiomyocytes (iPSC-CMs) from six healthy females. All TOP2i induce cell death at concentrations observed in cancer patient serum, while TRZ does not. A sub-lethal dose of all TOP2i induces limited cellular stress but affects calcium handling, a function critical for cardiomyocyte contraction. TOP2i induce thousands of gene expression changes over time, giving rise to four distinct gene expression response signatures, denoted as TOP2i early-acute, early-sustained, and late response genes, and non-response genes. There is no drug- or AC-specific signature. TOP2i early response genes are enriched in chromatin regulators, which mediate AC sensitivity across breast cancer patients. However, there is increased transcriptional variability between individuals following AC treatments. To investigate potential genetic effects on response variability, we first identified a reported set of expression quantitative trait loci (eQTLs) uncovered following DOX treatment in iPSC-CMs. Indeed, DOX response eQTLs are enriched in genes that respond to all TOP2i. Next, we identified 38 genes in loci associated with AC toxicity by GWAS or TWAS. Two thirds of the genes that respond to at least one TOP2i, respond to all ACs with the same direction of effect. Our data demonstrate that TOP2i induce thousands of shared gene expression changes in cardiomyocytes, including genes near SNPs associated with inter-individual variation in response to DOX treatment and AC-induced cardiotoxicity.
Collapse
Affiliation(s)
- E. Renee Matthews
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Omar D. Johnson
- Biochemistry, Cellular and Molecular Biology Graduate Program, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kandace J. Horn
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - José A. Gutiérrez
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Simon R. Powell
- Neuroscience Graduate Program, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Michelle C. Ward
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
6
|
Lu M, Jiang H, Wang R, An S, Wang J, Yu C. Injectiondesign: web service of plate design with optimized stratified block randomization for modern GC/LC-MS-based sample preparation. BMC Bioinformatics 2023; 24:489. [PMID: 38124029 PMCID: PMC10734102 DOI: 10.1186/s12859-023-05598-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Plate design is a necessary and time-consuming operation for GC/LC-MS-based sample preparation. The implementation of the inter-batch balancing algorithm and the intra-batch randomization algorithm can have a significant impact on the final results. For researchers without programming skills, a stable and efficient online service for plate design is necessary. RESULTS Here we describe InjectionDesign, a free online plate design service focused on GC/LC-MS-based multi-omics experiment design. It offers the ability to separate the position design from the sequence design, making the output more compatible with the requirements of a modern mass spectrometer-based laboratory. In addition, it has implemented an optimized block randomization algorithm, which can be better applied to sample stratification with block randomization for an unbalanced distribution. It is easy to use, with built-in support for common instrument models and quick export to a worksheet. CONCLUSIONS InjectionDesign is an open-source project based on Java. Researchers can get the source code for the project from Github: https://github.com/CSi-Studio/InjectionDesign . A free web service is also provided: http://www.injection.design .
Collapse
Affiliation(s)
- Miaoshan Lu
- Zhejiang University, Hangzhou, Zhejiang, China
- School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang, China
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Hengxuan Jiang
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Ruimin Wang
- School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang, China
- Fudan University, Shanghai, China
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shaowei An
- School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang, China
- Fudan University, Shanghai, China
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jiawei Wang
- Carbon Silicon (Hangzhou) Biotechnology Co., Ltd, Hangzhou, China
| | - Changbin Yu
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
7
|
Late Embryogenesis Abundant Proteins Contribute to the Resistance of Toxoplasma gondii Oocysts against Environmental Stresses. mBio 2023; 14:e0286822. [PMID: 36809045 PMCID: PMC10128015 DOI: 10.1128/mbio.02868-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Toxoplasma gondii oocysts, which are shed in large quantities in the feces from infected felines, are very stable in the environment, resistant to most inactivation procedures, and highly infectious. The oocyst wall provides an important physical barrier for sporozoites contained inside oocysts, protecting them from many chemical and physical stressors, including most inactivation procedures. Furthermore, sporozoites can withstand large temperature changes, even freeze-thawing, as well as desiccation, high salinity, and other environmental insults; however, the genetic basis for this environmental resistance is unknown. Here, we show that a cluster of four genes encoding Late Embryogenesis Abundant (LEA)-related proteins are required to provide Toxoplasma sporozoites resistance to environmental stresses. Toxoplasma LEA-like genes (TgLEAs) exhibit the characteristic features of intrinsically disordered proteins, explaining some of their properties. Our in vitro biochemical experiments using recombinant TgLEA proteins show that they have cryoprotective effects on the oocyst-resident lactate dehydrogenase enzyme and that induced expression in E. coli of two of them leads to better survival after cold stress. Oocysts from a strain in which the four LEA genes were knocked out en bloc were significantly more susceptible to high salinity, freezing, and desiccation compared to wild-type oocysts. We discuss the evolutionary acquisition of LEA-like genes in Toxoplasma and other oocyst-producing apicomplexan parasites of the Sarcocystidae family and discuss how this has likely contributed to the ability of sporozoites within oocysts to survive outside the host for extended periods. Collectively, our data provide a first molecular detailed view on a mechanism that contributes to the remarkable resilience of oocysts against environmental stresses. IMPORTANCE Toxoplasma gondii oocysts are highly infectious and may survive in the environment for years. Their resistance against disinfectants and irradiation has been attributed to the oocyst and sporocyst walls by acting as physical and permeability barriers. However, the genetic basis for their resistance against stressors like changes in temperature, salinity, or humidity, is unknown. We show that a cluster of four genes encoding Toxoplasma Late Embryogenesis Abundant (TgLEA)-related proteins are important for this resistance to environmental stresses. TgLEAs have features of intrinsically disordered proteins, explaining some of their properties. Recombinant TgLEA proteins show cryoprotective effects on the parasite's lactate dehydrogenase, an abundant enzyme in oocysts, and expression in E. coli of two TgLEAs has a beneficial effect on growth after cold stress. Moreover, oocysts from a strain lacking all four TgLEA genes were more susceptible to high salinity, freezing, and desiccation compared to wild-type oocysts, highlighting the importance of the four TgLEAs for oocyst resilience.
Collapse
|
8
|
De Meyer S, Vanbrabant J, Schaeverbeke JM, Reinartz M, Luckett ES, Dupont P, Van Laere K, Stoops E, Vanmechelen E, Poesen K, Vandenberghe R. Phospho-specific plasma p-tau181 assay detects clinical as well as asymptomatic Alzheimer's disease. Ann Clin Transl Neurol 2022; 9:734-746. [PMID: 35502634 PMCID: PMC9082389 DOI: 10.1002/acn3.51553] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE Plasma phosphorylated-tau-181 (p-tau181) reliably detects clinical Alzheimer's disease (AD) as well as asymptomatic amyloid-β (Aβ) pathology, but is consistently quantified with assays using antibody AT270, which cross-reacts with p-tau175. This study investigates two novel phospho-specific assays for plasma p-tau181 and p-tau231 in clinical and asymptomatic AD. METHODS Plasma p-tau species were quantified with Simoa in 44 AD patients, 40 spouse controls and an independent cohort of 151 cognitively unimpaired (CU) elderly who underwent Aβ-PET. Simoa plasma Aβ42 measurements were available in a CU subset (N = 69). Receiver operating characteristics and Aβ-PET associations were used to evaluate biomarker validity. RESULTS The novel plasma p-tau181 and p-tau231 assays did not show cross-reactivity. Plasma p-tau181 accurately detected clinical AD (area under the curve (AUC) = 0.98, 95% CI 0.95-1.00) as well as asymptomatic Aβ pathology (AUC = 0.84, 95% CI 0.76-0.92), while plasma p-tau231 did not (AUC = 0.74, 95% CI 0.63-0.85 and 0.61, 95% CI 0.52-0.71, respectively). Plasma p-tau181, but not p-tau231, detected asymptomatic Aβ pathology more accurately than age, sex and APOE combined (AUC = 0.64). In asymptomatic elderly, correlations between plasma p-tau181 and Aβ pathology were observed throughout the cerebral cortex (ρ = 0.40, p < 0.0001), with focal associations within AD-vulnerable regions, particularly the precuneus. The plasma Aβ42/p-tau181 ratio did not reflect asymptomatic Aβ pathology better than p-tau181 alone. INTERPRETATION The novel plasma p-tau181 assay is an accurate tool to detect clinical as well as asymptomatic AD and provides a phospho-specific alternative to currently employed immunoassays.
Collapse
Affiliation(s)
- Steffi De Meyer
- Laboratory for Cognitive Neurology, Department of NeurosciencesKU LeuvenLeuvenBelgium
- Laboratory for Molecular Neurobiomarker Research, Department of NeurosciencesKU LeuvenLeuvenBelgium
- Laboratory Medicine DepartmentUZ LeuvenLeuvenBelgium
- Alzheimer Research CentreLeuven Brain Institute (LBI), KU LeuvenLeuvenBelgium
| | | | - Jolien M. Schaeverbeke
- Laboratory for Cognitive Neurology, Department of NeurosciencesKU LeuvenLeuvenBelgium
- Alzheimer Research CentreLeuven Brain Institute (LBI), KU LeuvenLeuvenBelgium
| | - Mariska Reinartz
- Laboratory for Cognitive Neurology, Department of NeurosciencesKU LeuvenLeuvenBelgium
- Alzheimer Research CentreLeuven Brain Institute (LBI), KU LeuvenLeuvenBelgium
| | - Emma S. Luckett
- Laboratory for Cognitive Neurology, Department of NeurosciencesKU LeuvenLeuvenBelgium
- Alzheimer Research CentreLeuven Brain Institute (LBI), KU LeuvenLeuvenBelgium
| | - Patrick Dupont
- Laboratory for Cognitive Neurology, Department of NeurosciencesKU LeuvenLeuvenBelgium
- Alzheimer Research CentreLeuven Brain Institute (LBI), KU LeuvenLeuvenBelgium
| | - Koen Van Laere
- Alzheimer Research CentreLeuven Brain Institute (LBI), KU LeuvenLeuvenBelgium
- Nuclear Medicine and Molecular Imaging, Department of Imaging and PathologyKU LeuvenLeuvenBelgium
- Division of Nuclear MedicineUZ LeuvenLeuvenBelgium
| | | | | | - Koen Poesen
- Laboratory for Molecular Neurobiomarker Research, Department of NeurosciencesKU LeuvenLeuvenBelgium
- Laboratory Medicine DepartmentUZ LeuvenLeuvenBelgium
- Alzheimer Research CentreLeuven Brain Institute (LBI), KU LeuvenLeuvenBelgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of NeurosciencesKU LeuvenLeuvenBelgium
- Alzheimer Research CentreLeuven Brain Institute (LBI), KU LeuvenLeuvenBelgium
- Neurology DepartmentUZ LeuvenLeuvenBelgium
| |
Collapse
|
9
|
Deutsch EW, Omenn GS, Sun Z, Maes M, Pernemalm M, Palaniappan KK, Letunica N, Vandenbrouck Y, Brun V, Tao SC, Yu X, Geyer PE, Ignjatovic V, Moritz RL, Schwenk JM. Advances and Utility of the Human Plasma Proteome. J Proteome Res 2021; 20:5241-5263. [PMID: 34672606 PMCID: PMC9469506 DOI: 10.1021/acs.jproteome.1c00657] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The study of proteins circulating in blood offers tremendous opportunities to diagnose, stratify, or possibly prevent diseases. With recent technological advances and the urgent need to understand the effects of COVID-19, the proteomic analysis of blood-derived serum and plasma has become even more important for studying human biology and pathophysiology. Here we provide views and perspectives about technological developments and possible clinical applications that use mass-spectrometry(MS)- or affinity-based methods. We discuss examples where plasma proteomics contributed valuable insights into SARS-CoV-2 infections, aging, and hemostasis and the opportunities offered by combining proteomics with genetic data. As a contribution to the Human Proteome Organization (HUPO) Human Plasma Proteome Project (HPPP), we present the Human Plasma PeptideAtlas build 2021-07 that comprises 4395 canonical and 1482 additional nonredundant human proteins detected in 240 MS-based experiments. In addition, we report the new Human Extracellular Vesicle PeptideAtlas 2021-06, which comprises five studies and 2757 canonical proteins detected in extracellular vesicles circulating in blood, of which 74% (2047) are in common with the plasma PeptideAtlas. Our overview summarizes the recent advances, impactful applications, and ongoing challenges for translating plasma proteomics into utility for precision medicine.
Collapse
Affiliation(s)
- Eric W Deutsch
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Gilbert S Omenn
- Institute for Systems Biology, Seattle, Washington 98109, United States.,Departments of Computational Medicine & Bioinformatics, Internal Medicine, and Human Genetics and School of Public Health, University of Michigan, Ann Arbor, Michigan 48109-2218, United States
| | - Zhi Sun
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Michal Maes
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Maria Pernemalm
- Department of Oncology and Pathology/Science for Life Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden
| | | | - Natasha Letunica
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville 3052, Victoria, Australia
| | - Yves Vandenbrouck
- Université Grenoble Alpes, CEA, Inserm U1292, Grenoble 38000, France
| | - Virginie Brun
- Université Grenoble Alpes, CEA, Inserm U1292, Grenoble 38000, France
| | - Sheng-Ce Tao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, B207 SCSB Building, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaobo Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Philipp E Geyer
- OmicEra Diagnostics GmbH, Behringstr. 6, 82152 Planegg, Germany
| | - Vera Ignjatovic
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville 3052, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, 50 Flemington Road, Parkville 3052, Victoria, Australia
| | - Robert L Moritz
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Jochen M Schwenk
- Affinity Proteomics, Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Tomtebodavägen 23, SE-171 65 Solna, Sweden
| |
Collapse
|