1
|
Andreini C. Twenty years in metalloprotein bioinformatics: A short history of a long journey. J Inorg Biochem 2025; 266:112854. [PMID: 39961171 DOI: 10.1016/j.jinorgbio.2025.112854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/31/2025] [Accepted: 02/07/2025] [Indexed: 03/01/2025]
Abstract
The study of the structure and function of metalloproteins is a central subject of inorganic biochemistry. Starting from the 2000s, computational methods have flanked experimental research by exploiting the ever-increasing computing power and the huge amount of data produced by omics technologies. In this article, we retrace the major advancements that brought bioinformatics from being of minor relevance to being an essential tool for today's inorganic biochemists, focusing on the contributions coming from the Magnetic Resonance Center (CERM) of Florence, where we have been developing for twenty years methods and resources to investigate metalloproteins with computational approaches.
Collapse
Affiliation(s)
- Claudia Andreini
- Magnetic Resonance Center, University of Florence, 50019 Sesto Fiorentino, Italy; Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
2
|
Xiao Y, Zhang Y. deep-Sep: a deep learning-based method for fast and accurate prediction of selenoprotein genes in bacteria. mSystems 2025; 10:e0125824. [PMID: 40062874 PMCID: PMC12013277 DOI: 10.1128/msystems.01258-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 02/07/2025] [Indexed: 04/23/2025] Open
Abstract
Selenoproteins are a special group of proteins with major roles in cellular antioxidant defense. They contain the 21st amino acid selenocysteine (Sec) in the active sites, which is encoded by an in-frame UGA codon. Compared to eukaryotes, identification of selenoprotein genes in bacteria remains challenging due to the absence of an effective strategy for distinguishing the Sec-encoding UGA codon from a normal stop signal. In this study, we have developed a deep learning-based algorithm, deep-Sep, for quickly and precisely identifying selenoprotein genes in bacterial genomic sequences. This algorithm uses a Transformer-based neural network architecture to construct an optimal model for detecting Sec-encoding UGA codons and a homology search-based strategy to remove additional false positives. During the training and testing stages, deep-Sep has demonstrated commendable performance, including an F1 score of 0.939 and an area under the receiver operating characteristic curve of 0.987. Furthermore, when applied to 20 bacterial genomes as independent test data sets, deep-Sep exhibited remarkable capability in identifying both known and new selenoprotein genes, which significantly outperforms the existing state-of-the-art method. Our algorithm has proved to be a powerful tool for comprehensively characterizing selenoprotein genes in bacterial genomes, which should not only assist in accurate annotation of selenoprotein genes in genome sequencing projects but also provide new insights for a deeper understanding of the roles of selenium in bacteria.IMPORTANCESelenium is an essential micronutrient present in selenoproteins in the form of Sec, which is a rare amino acid encoded by the opal stop codon UGA. Identification of all selenoproteins is of vital importance for investigating the functions of selenium in nature. Previous strategies for predicting selenoprotein genes mainly relied on the identification of a special cis-acting Sec insertion sequence (SECIS) element within mRNAs. However, due to the complexity and variability of SECIS elements, recognition of all selenoprotein genes in bacteria is still a major challenge in the annotation of bacterial genomes. We have developed a deep learning-based algorithm to predict selenoprotein genes in bacterial genomic sequences, which demonstrates superior performance compared to currently available methods. This algorithm can be utilized in either web-based or local (standalone) modes, serving as a promising tool for identifying the complete set of selenoprotein genes in bacteria.
Collapse
Affiliation(s)
- Yao Xiao
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Yan Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Haft DH, Tolstoy I. Novel selenoprotein neighborhoods suggest specialized biochemical processes. mSystems 2025; 10:e0141724. [PMID: 40162776 PMCID: PMC12013261 DOI: 10.1128/msystems.01417-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
Prokaryotic genomes encode selenoproteins sparsely, roughly one protein per 5,000. Finding novel selenoprotein families can expose unknown biological processes that are enabled, or at least enhanced, by having a selenium atom replace a sulfur atom in some cysteine residues. Here, we report the discovery of 18 novel selenoprotein families or second selenocysteine sites in previously unrecognized extensions of protein translations. Most of these families had some confounding factors-too small a family, too few selenoproteins in the family, selenocysteine (U) too close to one end, a skew toward understudied or uncultured lineages, and consequently were missed previously. Discoveries were triggered by observations during the ongoing construction of protein family models for the National Center for Biotechnology Information's RefSeq and Prokaryotic Gene Annotation Pipeline or made by targeted searches for novel selenoproteins in the vicinity of known ones, rather than by any broadly applied genome mining method. Unrelated families TsoA, TsoB, TsoC, and TsoX are adjacent in tso (three selenoprotein operon) loci in the bacterial phylum Thermodesulfobacteriota. TrsS (third radical SAM selenoprotein) occurs strictly in the context of a molybdopterin-dependent aldehyde oxidoreductase. A short carboxy-terminal motif, U-X-X-stop (UXX-star), occurs in selenoproteins with various architectures, usually providing the second U in the protein. The multiple new selenocysteine insertion sites, selenoprotein families, and selenium-dependent operons we curated manually suggest that many more proteins and pathways remain to be discovered; once improved computational methods are applied comprehensively to the latest collections of microbial genomes and metagenomes, they may reveal surprising new biochemical processes. IMPORTANCE Next-generation DNA sequencing and assembly of metagenome-assembled genomes (MAGs) for uncultured species of various microbiomes adds a vast "dark matter" of hard-to-decipher protein sequences. Selenoproteins, optimized by natural selection to encode selenocysteine where cysteine might have been encoded much more easily, carry a strong clue to their function-some specialized aspect of binding or catalysis. Operons with multiple adjacent, but otherwise unrelated, selenoproteins should provide even more vivid information. In this study, efforts in protein family construction and curation, aimed at improving the PGAP genome annotation pipeline, generated multiple novel selenoprotein-containing genomic contexts that may lead to the future characterization of several systems of proteins. Past observations suggest roles in the metabolic handling of trace elements (mercury, tungsten, arsenic, etc.) or of organic compounds refractory to simpler enzymatic pathways. In addition, the work significantly expands the truth set of validated selenoproteins, which should aid future, more automated genome mining efforts.
Collapse
Affiliation(s)
- Daniel H. Haft
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
4
|
Leong LEX, Denman SE, Kang S, Mondot S, Hugenholtz P, McSweeney CS. Identification of the mechanism for dehalorespiration of monofluoroacetate in the phylum Synergistota. Anim Biosci 2024; 37:396-403. [PMID: 38186254 PMCID: PMC10838667 DOI: 10.5713/ab.23.0351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/26/2023] [Indexed: 01/09/2024] Open
Abstract
OBJECTIVE Monofluoroacetate (MFA) is a potent toxin that blocks ATP production via the Krebs cycle and causes acute toxicity in ruminants consuming MFA-containing plants. The rumen bacterium, Cloacibacillus porcorum strain MFA1 belongs to the phylum Synergistota and can produce fluoride and acetate from MFA as the end-products of dehalorespiration. The aim of this study was to identify the genomic basis for the metabolism of MFA by this bacterium. METHODS A draft genome sequence for C. porcorum strain MFA1 was assembled and quantitative transcriptomic analysis was performed thus highlighting a candidate operon encoding four proteins that are responsible for the carbon-fluorine bond cleavage. Comparative genome analysis of this operon was undertaken with three other species of closely related Synergistota bacteria. RESULTS Two of the genes in this operon are related to the substrate-binding components of the glycine reductase protein B (GrdB) complex. Glycine shares a similar structure to MFA suggesting a role for these proteins in binding MFA. The remaining two genes in the operon, an antiporter family protein and an oxidoreductase belonging to the radical S-adenosyl methionine superfamily, are hypothesised to transport and activate the GrdB-like protein respectively. Similar operons were identified in a small number of other Synergistota bacteria including type strains of Cloacibacillus porcorum, C. evryensis, and Pyramidobacter piscolens, suggesting lateral transfer of the operon as these genera belong to separate families. We confirmed that all three species can degrade MFA, however, substrate degradation in P. piscolens was notably reduced compared to Cloacibacillus isolates possibly reflecting the loss of the oxidoreductase and antiporter in the P. piscolens operon. CONCLUSION Identification of this unusual anaerobic fluoroacetate metabolism extends the known substrates for dehalorespiration and indicates the potential for substrate plasticity in amino acid-reducing enzymes to include xenobiotics.
Collapse
Affiliation(s)
- Lex E X Leong
- CSIRO Agriculture and Food, St Lucia 4067, Queensland Australia
| | - Stuart E Denman
- CSIRO Agriculture and Food, St Lucia 4067, Queensland Australia
| | - Seungha Kang
- CSIRO Agriculture and Food, St Lucia 4067, Queensland Australia
- Current address: The University of Queensland Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, Queensland 4102, Australia
| | - Stanislas Mondot
- Micalis Institute, INRA, AgroParisTech, University Paris-Saclay, 78350 Jouy-en- Josas, France
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Bioscience, the University of Queensland, St Lucia, 4072 Queensland Australia
| | | |
Collapse
|
5
|
Wright DE, O’Donoghue P. Biosynthesis, Engineering, and Delivery of Selenoproteins. Int J Mol Sci 2023; 25:223. [PMID: 38203392 PMCID: PMC10778597 DOI: 10.3390/ijms25010223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Selenocysteine (Sec) was discovered as the 21st genetically encoded amino acid. In nature, site-directed incorporation of Sec into proteins requires specialized biosynthesis and recoding machinery that evolved distinctly in bacteria compared to archaea and eukaryotes. Many organisms, including higher plants and most fungi, lack the Sec-decoding trait. We review the discovery of Sec and its role in redox enzymes that are essential to human health and important targets in disease. We highlight recent genetic code expansion efforts to engineer site-directed incorporation of Sec in bacteria and yeast. We also review methods to produce selenoproteins with 21 or more amino acids and approaches to delivering recombinant selenoproteins to mammalian cells as new applications for selenoproteins in synthetic biology.
Collapse
Affiliation(s)
- David E. Wright
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada;
| | - Patrick O’Donoghue
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada;
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
6
|
Manta B, Makarova NE, Mariotti M. The selenophosphate synthetase family: A review. Free Radic Biol Med 2022; 192:63-76. [PMID: 36122644 DOI: 10.1016/j.freeradbiomed.2022.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022]
Abstract
Selenophosphate synthetases use selenium and ATP to synthesize selenophosphate. This is required for biological utilization of selenium, most notably for the synthesis of the non-canonical amino acid selenocysteine (Sec). Therefore, selenophosphate synthetases underlie all functions of selenoproteins, which include redox homeostasis, protein quality control, hormone regulation, metabolism, and many others. This protein family comprises two groups, SelD/SPS2 and SPS1. The SelD/SPS2 group represent true selenophosphate synthetases, enzymes central to selenium metabolism which are present in all Sec-utilizing organisms across the tree of life. Notably, many SelD/SPS2 proteins contain Sec as catalytic residue in their N-terminal flexible selenium-binding loop, while others replace it with cysteine (Cys). The SPS1 group comprises proteins originated through gene duplications of SelD/SPS2 in metazoa in which the Sec/Cys-dependent catalysis was disrupted. SPS1 proteins do not synthesize selenophosphate and are not required for Sec synthesis. They have essential regulatory functions related to redox homeostasis and pyridoxal phosphate, which affect signaling pathways for growth and differentiation. In this review, we summarize the knowledge about the selenophosphate synthetase family acquired through decades of research, encompassing their structure, mechanism, function, and evolution.
Collapse
Affiliation(s)
- Bruno Manta
- Laboratorio de Genómica Microbiana, Institut Pasteur Montevideo, Uruguay, Cátedra de Fisiopatología, Facultad de Odontología, Universidad de la República, Uruguay
| | - Nadezhda E Makarova
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Avinguda Diagonal 643, Barcelona, 08028, Catalonia, Spain
| | - Marco Mariotti
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Avinguda Diagonal 643, Barcelona, 08028, Catalonia, Spain.
| |
Collapse
|
7
|
Selenium Metabolism and Selenoproteins in Prokaryotes: A Bioinformatics Perspective. Biomolecules 2022; 12:biom12070917. [PMID: 35883471 PMCID: PMC9312934 DOI: 10.3390/biom12070917] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 01/25/2023] Open
Abstract
Selenium (Se) is an important trace element that mainly occurs in the form of selenocysteine in selected proteins. In prokaryotes, Se is also required for the synthesis of selenouridine and Se-containing cofactor. A large number of selenoprotein families have been identified in diverse prokaryotic organisms, most of which are thought to be involved in various redox reactions. In the last decade or two, computational prediction of selenoprotein genes and comparative genomics of Se metabolic pathways and selenoproteomes have arisen, providing new insights into the metabolism and function of Se and their evolutionary trends in bacteria and archaea. This review aims to offer an overview of recent advances in bioinformatics analysis of Se utilization in prokaryotes. We describe current computational strategies for the identification of selenoprotein genes and generate the most comprehensive list of prokaryotic selenoproteins reported to date. Furthermore, we highlight the latest research progress in comparative genomics and metagenomics of Se utilization in prokaryotes, which demonstrates the divergent and dynamic evolutionary patterns of different Se metabolic pathways, selenoprotein families, and selenoproteomes in sequenced organisms and environmental samples. Overall, bioinformatics analyses of Se utilization, function, and evolution may contribute to a systematic understanding of how this micronutrient is used in nature.
Collapse
|
8
|
Feng Y, Wang Z, Chien KY, Chen HL, Liang YH, Hua X, Chiu CH. "Pseudo-pseudogenes" in bacterial genomes: Proteogenomics reveals a wide but low protein expression of pseudogenes in Salmonella enterica. Nucleic Acids Res 2022; 50:5158-5170. [PMID: 35489061 PMCID: PMC9122581 DOI: 10.1093/nar/gkac302] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 12/03/2022] Open
Abstract
Pseudogenes (genes disrupted by frameshift or in-frame stop codons) are ubiquitously present in the bacterial genome and considered as nonfunctional fossil. Here, we used RNA-seq and mass-spectrometry technologies to measure the transcriptomes and proteomes of Salmonella enterica serovars Paratyphi A and Typhi. All pseudogenes’ mRNA sequences remained disrupted, and were present at comparable levels to their intact homologs. At the protein level, however, 101 out of 161 pseudogenes suggested successful translation, with their low expression regardless of growth conditions, genetic background and pseudogenization causes. The majority of frameshifting detected was compensatory for -1 frameshift mutations. Readthrough of in-frame stop codons primarily involved UAG; and cytosine was the most frequent base adjacent to the codon. Using a fluorescence reporter system, fifteen pseudogenes were confirmed to express successfully in vivo in Escherichia coli. Expression of the intact copy of the fifteen pseudogenes in S. Typhi affected bacterial pathogenesis as revealed in human macrophage and epithelial cell infection models. The above findings suggest the need to revisit the nonstandard translation mechanism as well as the biological role of pseudogenes in the bacterial genome.
Collapse
Affiliation(s)
- Ye Feng
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Zeyu Wang
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Kun-Yi Chien
- Graduate Institute of Biomedical Sciences, Chang Gung University College of Medicine, Taoyuan, Republic of China
| | - Hsiu-Ling Chen
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Republic of China
| | - Yi-Hua Liang
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Republic of China
| | - Xiaoting Hua
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Cheng-Hsun Chiu
- Graduate Institute of Biomedical Sciences, Chang Gung University College of Medicine, Taoyuan, Republic of China.,Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Republic of China.,Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Republic of China
| |
Collapse
|
9
|
Comerlato CB, Prichula J, Siqueira FM, Ritter AC, Varela APM, Mayer FQ, Brandelli A. Genomic analysis of Enterococcus durans LAB18S, a potential probiotic strain isolated from cheese. Genet Mol Biol 2022; 45:e20210201. [PMID: 35244137 PMCID: PMC8894896 DOI: 10.1590/1678-4685-gmb-2021-0201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/03/2022] [Indexed: 01/15/2023] Open
Abstract
Gut microbiota exerts a fundamental role in human health and increased evidence supports the beneficial role of probiotic microorganisms in the maintenance of intestinal health. Enterococcus durans LAB18S was previously isolated from soft cheese and showed some desirable in vitro probiotic properties, for that reason its genome was sequenced and evaluated for genes that can be relevant for probiotic activity and are involved in selenium metabolism. Genome sequencing was performed using the Illumina MiSeq System. A variety of genes potentially associated with probiotic properties, including adhesion capability, viability at low pH, bile salt resistance, antimicrobial activity, and utilization of prebiotic fructooligosaccharides (FOS) were identified. The strain showed tolerance to acid pH and bile salts, exhibited antimicrobial activity and thrived on prebiotic oligosaccharides. Six genes involved in selenium metabolism were predicted. Analysis of the SECIS element showed twelve known selenoprotein candidates. E. durans LAB18S was the only food isolate showing absence of plasmids, virulence and antimicrobial resistance genes, when compared with other 30 E. durans genomes. The results of this study provide evidence supporting the potential of E. durans LAB18S as alternative for probiotic formulations.
Collapse
Affiliation(s)
| | - Janira Prichula
- Universidade Federal de Ciências da Saúde de Porto Alegre, Brazil
| | | | | | | | | | | |
Collapse
|
10
|
Mechanisms Affecting the Biosynthesis and Incorporation Rate of Selenocysteine. Molecules 2021; 26:molecules26237120. [PMID: 34885702 PMCID: PMC8659212 DOI: 10.3390/molecules26237120] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022] Open
Abstract
Selenocysteine (Sec) is the 21st non-standard proteinogenic amino acid. Due to the particularity of the codon encoding Sec, the selenoprotein synthesis needs to be completed by unique mechanisms in specific biological systems. In this paper, the underlying mechanisms for the biosynthesis and incorporation of Sec into selenoprotein were comprehensively reviewed on five aspects: (i) the specific biosynthesis mechanism of Sec and the role of its internal influencing factors (SelA, SelB, SelC, SelD, SPS2 and PSTK); (ii) the elements (SECIS, PSL, SPUR and RF) on mRNA and their functional mechanisms; (iii) the specificity (either translation termination or translation into Sec) of UGA; (iv) the structure–activity relationship and action mechanism of SelA, SelB, SelC and SelD; and (v) the operating mechanism of two key enzyme systems for inorganic selenium source flow before Sec synthesis. Lastly, the size of the translation initiation interval, other action modes of SECIS and effects of REPS (Repetitive Extragenic Palindromic Sequences) that affect the incorporation efficiency of Sec was also discussed to provide scientific basis for the large-scale industrial fermentation for the production of selenoprotein.
Collapse
|
11
|
Lewis JK, Jochimsen AS, Lefave SJ, Young AP, Kincannon WM, Roberts AG, Kieber-Emmons MT, Bandarian V. New Role for Radical SAM Enzymes in the Biosynthesis of Thio(seleno)oxazole RiPP Natural Products. Biochemistry 2021; 60:3347-3361. [PMID: 34730336 DOI: 10.1021/acs.biochem.1c00469] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ribosomally synthesized post-translationally modified peptides (RiPPs) are ubiquitous and represent a structurally diverse class of natural products. The ribosomally encoded precursor polypeptides are often extensively modified post-translationally by enzymes that are encoded by coclustered genes. Radical S-adenosyl-l-methionine (SAM) enzymes catalyze numerous chemically challenging transformations. In RiPP biosynthetic pathways, these transformations include the formation of C-H, C-C, C-S, and C-O linkages. In this paper, we show that the Geobacter lovleyi sbtM gene encodes a radical SAM protein, SbtM, which catalyzes the cyclization of a Cys/SeCys residue in a minimal peptide substrate. Biochemical studies of this transformation support a mechanism involving H-atom abstraction at the C-3 of the substrate Cys to initiate the chemistry. Several possible cyclization products were considered. The collective biochemical, spectroscopic, mass spectral, and computational observations point to a thiooxazole as the product of the SbtM-catalyzed modification. To our knowledge, this is the first example of a radical SAM enzyme that catalyzes a transformation involving a SeCys-containing peptide and represents a new paradigm for formation of oxazole-containing RiPP natural products.
Collapse
Affiliation(s)
- Julia K Lewis
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Andrew S Jochimsen
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Sarah J Lefave
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Anthony P Young
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - William M Kincannon
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Andrew G Roberts
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Matthew T Kieber-Emmons
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Vahe Bandarian
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
12
|
Shimizu A, Tobe R, Aono R, Inoue M, Hagita S, Kiriyama K, Toyotake Y, Ogawa T, Kurihara T, Goto K, Prakash NT, Mihara H. Initial Step of Selenite Reduction via Thioredoxin for Bacterial Selenoprotein Biosynthesis. Int J Mol Sci 2021; 22:ijms222010965. [PMID: 34681630 PMCID: PMC8538045 DOI: 10.3390/ijms222010965] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/11/2022] Open
Abstract
Many organisms reductively assimilate selenite to synthesize selenoprotein. Although the thioredoxin system, consisting of thioredoxin 1 (TrxA) and thioredoxin reductase with NADPH, can reduce selenite and is considered to facilitate selenite assimilation, the detailed mechanism remains obscure. Here, we show that selenite was reduced by the thioredoxin system from Pseudomonas stutzeri only in the presence of the TrxA (PsTrxA), and this system was specific to selenite among the oxyanions examined. Mutational analysis revealed that Cys33 and Cys36 residues in PsTrxA are important for selenite reduction. Free thiol-labeling assays suggested that Cys33 is more reactive than Cys36. Mass spectrometry analysis suggested that PsTrxA reduces selenite via PsTrxA-SeO intermediate formation. Furthermore, an in vivo formate dehydrogenase activity assay in Escherichia coli with a gene disruption suggested that TrxA is important for selenoprotein biosynthesis. The introduction of PsTrxA complemented the effects of TrxA disruption in E. coli cells, only when PsTrxA contained Cys33 and Cys36. Based on these results, we proposed the early steps of the link between selenite and selenoprotein biosynthesis via the formation of TrxA–selenium complexes.
Collapse
Affiliation(s)
- Atsuki Shimizu
- College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Shiga, Japan; (A.S.); (R.T.); (R.A.); (M.I.); (S.H.); (K.K.)
| | - Ryuta Tobe
- College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Shiga, Japan; (A.S.); (R.T.); (R.A.); (M.I.); (S.H.); (K.K.)
| | - Riku Aono
- College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Shiga, Japan; (A.S.); (R.T.); (R.A.); (M.I.); (S.H.); (K.K.)
| | - Masao Inoue
- College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Shiga, Japan; (A.S.); (R.T.); (R.A.); (M.I.); (S.H.); (K.K.)
- R-GIRO, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Shiga, Japan
| | - Satoru Hagita
- College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Shiga, Japan; (A.S.); (R.T.); (R.A.); (M.I.); (S.H.); (K.K.)
| | - Kaito Kiriyama
- College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Shiga, Japan; (A.S.); (R.T.); (R.A.); (M.I.); (S.H.); (K.K.)
| | - Yosuke Toyotake
- Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Kyoto, Japan; (Y.T.); (T.O.); (T.K.)
| | - Takuya Ogawa
- Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Kyoto, Japan; (Y.T.); (T.O.); (T.K.)
| | - Tatsuo Kurihara
- Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Kyoto, Japan; (Y.T.); (T.O.); (T.K.)
| | - Kei Goto
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan;
| | - N. Tejo Prakash
- School of Energy and Environment, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India;
| | - Hisaaki Mihara
- College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Shiga, Japan; (A.S.); (R.T.); (R.A.); (M.I.); (S.H.); (K.K.)
- Correspondence: ; Tel.: +81-(0)77-561-2732
| |
Collapse
|
13
|
Kivenson V, Paul BG, Valentine DL. An Ecological Basis for Dual Genetic Code Expansion in Marine Deltaproteobacteria. Front Microbiol 2021; 12:680620. [PMID: 34335502 PMCID: PMC8318568 DOI: 10.3389/fmicb.2021.680620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/20/2021] [Indexed: 01/04/2023] Open
Abstract
Marine benthic environments may be shaped by anthropogenic and other localized events, leading to changes in microbial community composition evident decades after a disturbance. Marine sediments in particular harbor exceptional taxonomic diversity and can shed light on distinctive evolutionary strategies. Genetic code expansion is a strategy that increases the structural and functional diversity of proteins in cells, by repurposing stop codons to encode non-canonical amino acids: pyrrolysine (Pyl) and selenocysteine (Sec). Here, we report both a study of the microbiome at a deep sea industrial waste dumpsite and an unanticipated discovery of codon reassignment in its most abundant member, with potential ramifications for interpreting microbial interactions with ocean-dumped wastes. The genomes of abundant Deltaproteobacteria from the sediments of a deep-ocean chemical waste dump site have undergone genetic code expansion. Pyl and Sec in these organisms appear to augment trimethylamine (TMA) and one-carbon metabolism, representing an increased metabolic versatility. The inferred metabolism of these sulfate-reducing bacteria places them in competition with methylotrophic methanogens for TMA, a contention further supported by earlier isotope tracer studies and reanalysis of metatranscriptomic studies. A survey of genomic data further reveals a broad geographic distribution of a niche group of similarly specialized Deltaproteobacteria, including at sulfidic sites in the Atlantic Ocean, Gulf of Mexico, Guaymas Basin, and North Sea, as well as in terrestrial and estuarine environments. These findings reveal an important biogeochemical role for specialized Deltaproteobacteria at the interface of the carbon, nitrogen, selenium, and sulfur cycles, with their niche adaptation and ecological success potentially augmented by genetic code expansion.
Collapse
Affiliation(s)
- Veronika Kivenson
- Interdepartmental Graduate Program in Marine Science, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Blair G. Paul
- Department of Earth Science and Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - David L. Valentine
- Department of Earth Science and Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
14
|
Lamarche J, Ronga L, Szpunar J, Lobinski R. Characterization and Quantification of Selenoprotein P: Challenges to Mass Spectrometry. Int J Mol Sci 2021; 22:ijms22126283. [PMID: 34208081 PMCID: PMC8230778 DOI: 10.3390/ijms22126283] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022] Open
Abstract
Selenoprotein P (SELENOP) is an emerging marker of the nutritional status of selenium and of various diseases, however, its chemical characteristics still need to be investigated and methods for its accurate quantitation improved. SELENOP is unique among selenoproteins, as it contains multiple genetically encoded SeCys residues, whereas all the other characterized selenoproteins contain just one. SELENOP occurs in the form of multiple isoforms, truncated species and post-translationally modified variants which are relatively poorly characterized. The accurate quantification of SELENOP is contingent on the availability of specific primary standards and reference methods. Before recombinant SELENOP becomes available to be used as a primary standard, careful investigation of the characteristics of the SELENOP measured by electrospray MS and strict control of the recoveries at the various steps of the analytical procedures are strongly recommended. This review critically discusses the state-of-the-art of analytical approaches to the characterization and quantification of SELENOP. While immunoassays remain the standard for the determination of human and animal health status, because of their speed and simplicity, mass spectrometry techniques offer many attractive and complementary features that are highlighted and critically evaluated.
Collapse
Affiliation(s)
- Jérémy Lamarche
- IPREM UMR5254, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Matériaux, CNRS, Université de Pau et des Pays de l’Adour, Hélioparc, 64053 Pau, France; (L.R.); (J.S.); (R.L.)
- Correspondence:
| | - Luisa Ronga
- IPREM UMR5254, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Matériaux, CNRS, Université de Pau et des Pays de l’Adour, Hélioparc, 64053 Pau, France; (L.R.); (J.S.); (R.L.)
| | - Joanna Szpunar
- IPREM UMR5254, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Matériaux, CNRS, Université de Pau et des Pays de l’Adour, Hélioparc, 64053 Pau, France; (L.R.); (J.S.); (R.L.)
| | - Ryszard Lobinski
- IPREM UMR5254, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Matériaux, CNRS, Université de Pau et des Pays de l’Adour, Hélioparc, 64053 Pau, France; (L.R.); (J.S.); (R.L.)
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
- Chair of Analytical Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
15
|
Biogeographic and Evolutionary Patterns of Trace Element Utilization in Marine Microbial World. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 19:958-972. [PMID: 33631428 PMCID: PMC9402790 DOI: 10.1016/j.gpb.2021.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/23/2019] [Accepted: 06/06/2019] [Indexed: 12/01/2022]
Abstract
Trace elements are required by all organisms, which are key components of many enzymes catalyzing important biological reactions. Many trace element-dependent proteins have been characterized; however, little is known about their occurrence in microbial communities in diverse environments, especially the global marine ecosystem. Moreover, the relationships between trace element utilization and different types of environmental stressors are unclear. In this study, we used metagenomic data from the Global Ocean Sampling expedition project to identify the biogeographic distribution of genes encoding trace element-dependent proteins (for copper, molybdenum, cobalt, nickel, and selenium) in a variety of marine and non-marine aquatic samples. More than 56,000 metalloprotein and selenoprotein genes corresponding to nearly 100 families were predicted, becoming the largest dataset of marine metalloprotein and selenoprotein genes reported to date. In addition, samples with enriched or depleted metalloprotein/selenoprotein genes were identified, suggesting an active or inactive usage of these micronutrients in various sites. Further analysis of interactions among the elements showed significant correlations between some of them, especially those between nickel and selenium/copper. Finally, investigation of the relationships between environmental conditions and metalloprotein/selenoprotein families revealed that many environmental factors might contribute to the evolution of different metalloprotein and/or selenoprotein genes in the marine microbial world. Our data provide new insights into the utilization and biological roles of these trace elements in extant marine microbes, and might also be helpful for the understanding of how these organisms have adapted to their local environments.
Collapse
|
16
|
Hao C, Lam HHN. Quantitative Proteomics Reveals UGA-Independent Misincorporation of Selenocysteine throughout the Escherichia coli Proteome. J Proteome Res 2020; 20:212-221. [PMID: 33253578 DOI: 10.1021/acs.jproteome.0c00352] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Selenocysteine is cotranslationally inserted into polypeptide chains by recoding the stop codon UGA. However, selenocysteine has also been found to be misincorporated into a small number of proteins displacing cysteines in previous studies, but such misincorporation has not yet been examined at the proteome level thoroughly. We performed label-free quantitative proteomics analysis on Escherichia coli grown in a high-selenium medium to obtain a fuller picture of selenocysteine misincorporation in its proteome. We found 139 misincorporation sites, including 54 recurred in all biological replicates, suggesting that some cysteine sites are more prone to be misincorporated than others. However, sequence and evolutionary conservation analysis showed no clear pattern among these misincorporation sites. We hypothesize that misincorporations occur randomly throughout the proteome, but the degradation rate of such misincorporated proteins varies depending on the impact of the misincorporation on protein function and stability, leading to the differential detectability of misincorporated sites by proteomics. Our hypothesis is further supported by two observations: (1) cells cultured with severely limited sulfur still retained a substantial proportion of normal cysteine counterparts of all of the found misincorporated proteins and (2) proteins involved in protein folding and proteolysis were highly upregulated in high-selenium culture.
Collapse
Affiliation(s)
- Chunlin Hao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Henry H N Lam
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| |
Collapse
|
17
|
Abstract
Cardiovascular disease (CVD) has been linked to animal-based diets, which are a major source of trimethylamine (TMA), a precursor of the proatherogenic compound trimethylamine-N-oxide (TMAO). Human gut bacteria in the genus Bilophila have genomic signatures for genetic code expansion that could enable them to metabolize both TMA and its precursors without production of TMAO. We uncovered evidence that the Bilophila demethylation pathway is actively transcribed in gut microbiomes and that animal-based diets cause Bilophila to rapidly increase in abundance. CVD occurrence and Bilophila abundance in humans were significantly negatively correlated. These data lead us to propose that Bilophila, which is commonly regarded as a pathobiont, may play a role in mitigating cardiovascular disease. Human gut microbiomes have been shown to affect the development of a myriad of disease states, but mechanistic connections between diet, health, and microbiota have been challenging to establish. The hypothesis that Bilophila reduces cardiovascular disease by circumventing TMAO production offers a clearly defined mechanism with a potential human health impact, but investigations of Bilophila cell biology and ecology will be needed to fully evaluate these ideas.IMPORTANCE Links between trimethylamine-N-oxide (TMAO) and cardiovascular disease (CVD) have focused attention on mechanisms by which animal-based diets have negative health consequences. In a meta-analysis of data from foundational gut microbiome studies, we found evidence that specialized bacteria have and express a metabolic pathway that circumvents TMAO production and is often misannotated because it relies on genetic code expansion. This naturally occurring mechanism for TMAO attenuation is negatively correlated with CVD. Ultimately, these findings point to new avenues of research that could increase microbiome-informed understanding of human health and hint at potential biomedical applications in which specialized bacteria are used to curtail CVD development.
Collapse
|
18
|
Wells M, Stolz JF. Microbial selenium metabolism: a brief history, biogeochemistry and ecophysiology. FEMS Microbiol Ecol 2020; 96:5921172. [DOI: 10.1093/femsec/fiaa209] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/08/2020] [Indexed: 01/02/2023] Open
Abstract
ABSTRACTSelenium is an essential trace element for organisms from all three domains of life. Microorganisms, in particular, mediate reductive transformations of selenium that govern the element's mobility and bioavailability in terrestrial and aquatic environments. Selenium metabolism is not just ubiquitous but an ancient feature of life likely extending back to the universal common ancestor of all cellular lineages. As with the sulfur biogeochemical cycle, reductive transformations of selenium serve two metabolic functions: assimilation into macromolecules and dissimilatory reduction during anaerobic respiration. This review begins with a historical overview of how research in both aspects of selenium metabolism has developed. We then provide an overview of the global selenium biogeochemical cycle, emphasizing the central role of microorganisms in the cycle. This serves as a basis for a robust discussion of current models for the evolution of the selenium biogeochemical cycle over geologic time, and how knowledge of the evolution and ecophysiology of selenium metabolism can enrich and refine these models. We conclude with a discussion of the ecophysiological function of selenium-respiring prokaryotes within the cycle, and the tantalizing possibility of oxidative selenium transformations during chemolithoautotrophic growth.
Collapse
Affiliation(s)
- Michael Wells
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - John F Stolz
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| |
Collapse
|
19
|
Abstract
Background Selenium is an essential trace element, and selenocysteine (Sec, U) is its predominant form in vivo. Proteins that contain Sec are selenoproteins, whose special structural features include not only the TGA codon encoding Sec but also the SECIS element in mRNA and the conservation of the Sec-flanking region. These unique features have led to the development of a series of bioinformatics methods to predict and research selenoprotein genes. There have been some studies and reports on the evolution and distribution of selenoprotein genes in prokaryotes and multicellular eukaryotes, but the systematic analysis of single-cell eukaryotes, especially algae, has been very limited. Results In this study, we predicted selenoprotein genes in 137 species of algae by using a program we previously developed. More than 1000 selenoprotein genes were obtained. A database website was built to record these algae selenoprotein genes (www.selenoprotein.com). These genes belong to 42 selenoprotein families, including three novel selenoprotein gene families. Conclusions This study reveals the primordial state of the eukaryotic selenoproteome. It is an important clue to explore the significance of selenium for primordial eukaryotes and to determine the complete evolutionary spectrum of selenoproteins in all life forms.
Collapse
|
20
|
Santesmasses D, Mariotti M, Gladyshev VN. Bioinformatics of Selenoproteins. Antioxid Redox Signal 2020; 33:525-536. [PMID: 32031018 PMCID: PMC7409585 DOI: 10.1089/ars.2020.8044] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022]
Abstract
Significance: Bioinformatics has brought important insights into the field of selenium research. The progress made in the development of computational tools in the last two decades, coordinated with growing genome resources, provided new opportunities to study selenoproteins. The present review discusses existing tools for selenoprotein gene finding and other bioinformatic approaches to study the biology of selenium. Recent Advances: The availability of complete selenoproteomes allowed assessing a global distribution of the use of selenocysteine (Sec) across the tree of life, as well as studying the evolution of selenoproteins and their biosynthetic pathway. Beyond gene identification and characterization, human genetic variants in selenoprotein genes were used to examine adaptations to selenium levels in diverse human populations and to estimate selective constraints against gene loss. Critical Issues: The synthesis of selenoproteins is essential for development in mice. In humans, several mutations in selenoprotein genes have been linked to rare congenital disorders. And yet, the mechanism of Sec insertion and the regulation of selenoprotein synthesis in mammalian cells are not completely understood. Future Directions: Omics technologies offer new possibilities to study selenoproteins and mechanisms of Sec incorporation in cells, tissues, and organisms.
Collapse
Affiliation(s)
- Didac Santesmasses
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Marco Mariotti
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Zhang Y, Zheng J. Bioinformatics of Metalloproteins and Metalloproteomes. Molecules 2020; 25:molecules25153366. [PMID: 32722260 PMCID: PMC7435645 DOI: 10.3390/molecules25153366] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022] Open
Abstract
Trace metals are inorganic elements that are required for all organisms in very low quantities. They serve as cofactors and activators of metalloproteins involved in a variety of key cellular processes. While substantial effort has been made in experimental characterization of metalloproteins and their functions, the application of bioinformatics in the research of metalloproteins and metalloproteomes is still limited. In the last few years, computational prediction and comparative genomics of metalloprotein genes have arisen, which provide significant insights into their distribution, function, and evolution in nature. This review aims to offer an overview of recent advances in bioinformatic analysis of metalloproteins, mainly focusing on metalloprotein prediction and the use of different metals across the tree of life. We describe current computational approaches for the identification of metalloprotein genes and metal-binding sites/patterns in proteins, and then introduce a set of related databases. Furthermore, we discuss the latest research progress in comparative genomics of several important metals in both prokaryotes and eukaryotes, which demonstrates divergent and dynamic evolutionary patterns of different metalloprotein families and metalloproteomes. Overall, bioinformatic studies of metalloproteins provide a foundation for systematic understanding of trace metal utilization in all three domains of life.
Collapse
Affiliation(s)
- Yan Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China;
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
- Correspondence: ; Tel.: +86-755-2692-2024
| | - Junge Zheng
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China;
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
22
|
Rohwerder T, Rohde MT, Jehmlich N, Purswani J. Actinobacterial Degradation of 2-Hydroxyisobutyric Acid Proceeds via Acetone and Formyl-CoA by Employing a Thiamine-Dependent Lyase Reaction. Front Microbiol 2020; 11:691. [PMID: 32351493 PMCID: PMC7176365 DOI: 10.3389/fmicb.2020.00691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/25/2020] [Indexed: 11/13/2022] Open
Abstract
The tertiary branched short-chain 2-hydroxyisobutyric acid (2-HIBA) has been associated with several metabolic diseases and lysine 2-hydroxyisobutyrylation seems to be a common eukaryotic as well as prokaryotic post-translational modification in proteins. In contrast, the underlying 2-HIBA metabolism has thus far only been detected in a few microorganisms, such as the betaproteobacterium Aquincola tertiaricarbonis L108 and the Bacillus group bacterium Kyrpidia tusciae DSM 2912. In these strains, 2-HIBA can be specifically activated to the corresponding CoA thioester by the 2-HIBA-CoA ligase (HCL) and is then isomerized to 3-hydroxybutyryl-CoA in a reversible and B12-dependent mutase reaction. Here, we demonstrate that the actinobacterial strain Actinomycetospora chiangmaiensis DSM 45062 degrades 2-HIBA and also its precursor 2-methylpropane-1,2-diol via acetone and formic acid by employing a thiamine pyrophosphate-dependent lyase. The corresponding gene is located directly upstream of hcl, which has previously been found only in operonic association with the 2-hydroxyisobutyryl-CoA mutase genes in other bacteria. Heterologous expression of the lyase gene from DSM 45062 in E. coli established a 2-hydroxyisobutyryl-CoA lyase activity in the latter. In line with this, analysis of the DSM 45062 proteome reveals a strong induction of the lyase-HCL gene cluster on 2-HIBA. Acetone is likely degraded via hydroxylation to acetol catalyzed by a MimABCD-related binuclear iron monooxygenase and formic acid appears to be oxidized to CO2 by selenium-dependent dehydrogenases. The presence of the lyase-HCL gene cluster in isoprene-degrading Rhodococcus strains and Pseudonocardia associated with tropical leafcutter ant species points to a role in degradation of biogenic short-chain ketones and highly branched organic compounds.
Collapse
Affiliation(s)
- Thore Rohwerder
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Maria-Teresa Rohde
- Institut für Chemie - Biophysikalische Chemie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Jessica Purswani
- Institute of Water Research, University of Granada, Granada, Spain
| |
Collapse
|
23
|
Farukh M. Comparative genomic analysis of selenium utilization traits in different marine environments. J Microbiol 2020; 58:113-122. [PMID: 31993987 DOI: 10.1007/s12275-020-9250-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/02/2019] [Accepted: 10/31/2019] [Indexed: 11/25/2022]
Abstract
Selenium (Se) is an essential trace element for many organisms, which is required in the biosynthesis of proteins with selenocysteine, tRNAs with selenouridine, and certain enzymes with Se as a cofactor. Recent large-scale metagenomics projects provide a unique opportunity for studying the global trends of Se utilization in marine environments. Here, we analyzed samples from different marine microbial communities, revealed by the Tara Oceans project, to characterize the Se utilization traits. We found that the selenophosphate synthetase gene, which defines the overall Se utilization, and Se utilization traits are present in all samples. Regions with samples rich and poor in Se utilization traits were categorized. From the analysis of environmental factors, the mesopelagic zone and high temperature (> 15°C) of water are favorable, while geographical location has little influence on Se utilization. All Se utilization traits showed a relatively independent occurrence. The taxonomic classification of Se traits shows that most of the sequences corresponding to Se utilization traits belong to the phylum Proteobacteria. Overall, our study provides useful insights into the general features of Se utilization in ocean samples and may help to understand the evolutionary dynamics of Se utilization in different marine environments.
Collapse
Affiliation(s)
- Muhammad Farukh
- Department of Biotechnology, School of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan, 430074, P. R. China.
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, Hubei, P. R. China.
| |
Collapse
|
24
|
Keller A, Schink B, Müller N. Energy-Conserving Enzyme Systems Active During Syntrophic Acetate Oxidation in the Thermophilic Bacterium Thermacetogenium phaeum. Front Microbiol 2019; 10:2785. [PMID: 31849917 PMCID: PMC6895022 DOI: 10.3389/fmicb.2019.02785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/15/2019] [Indexed: 11/13/2022] Open
Abstract
The thermophilic acetogen Thermacetogenium phaeum uses the Wood-Ljungdahl pathway (WLP) in both directions, either for the production of acetate from various compounds or for the oxidation of acetate in syntrophic cooperation with methanogens. In this study, energy-conserving enzyme systems in T. phaeum were investigated in both metabolic directions. A gene cluster containing a membrane-bound periplasmically oriented formate dehydrogenase directly adjacent to putative menaquinone synthesis genes was identified in the genome. The protein products of these genes were identified by total proteome analysis, and menaquinone MK-7 had been found earlier as the dominant quinone in the membrane. Enzyme assays with membrane preparations and anthraquinone-2,6-disulfonate as electron acceptor verified the presence of a quinone-dependent formate dehydrogenase. A quinone-dependent methylene-THF reductase is active in the soluble fraction and in the membrane fraction. From these results we conclude a reversed electron transport system from methyl-THF oxidation to CO2 reduction yielding formate as reduced product which is transferred to the methanogenic partner. The redox potential difference between methyl-THF (Eo' = -200 mV) and formate (Eo' = -432 mV) does not allow electron transfer through syntrophic formate removal alone. We postulate that part of the ATP conserved by substrate-level phosphorylation has to be invested into the generation of a transmembrane proton gradient by ATPase. This proton gradient could drive the endergonic oxidation of methyl-THF in an enzyme reaction similar to the membrane-bound reversed electron transport system previously observed in the syntrophically butyrate-oxidizing bacterium Syntrophomonas wolfei. To balance the overall ATP budget in acetate oxidation, we postulate that acetate is activated through an ATP-independent path via aldehyde:ferredoxin oxidoreductase (AOR) and subsequent oxidation of acetaldehyde to acetyl-CoA.
Collapse
Affiliation(s)
- Anja Keller
- Department of Biology, Universität Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, Konstanz, Germany
| | - Bernhard Schink
- Department of Biology, Universität Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, Konstanz, Germany
| | - Nicolai Müller
- Department of Biology, Universität Konstanz, Konstanz, Germany
| |
Collapse
|
25
|
Chiaruttini C, Guillier M. On the role of mRNA secondary structure in bacterial translation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1579. [PMID: 31760691 DOI: 10.1002/wrna.1579] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 11/07/2022]
Abstract
Messenger RNA (mRNA) is no longer considered as a mere informational molecule whose sole function is to convey the genetic information specified by DNA to the ribosome. Beyond this primary function, mRNA also contains additional instructions that influence the way and the extent to which this message is translated by the ribosome into protein(s). Indeed, owing to its intrinsic propensity to quickly and dynamically fold and form higher order structures, mRNA exhibits a second layer of structural information specified by the sequence itself. Besides influencing transcription and mRNA stability, this additional information also affects translation, and more precisely the frequency of translation initiation, the choice of open reading frame by recoding, the elongation speed, and the folding of the nascent protein. Many studies in bacteria have shown that mRNA secondary structure participates to the rapid adaptation of these versatile organisms to changing environmental conditions by efficiently tuning translation in response to diverse signals, such as the presence of ligands, regulatory proteins, or small RNAs. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems Translation > Translation Regulation.
Collapse
|
26
|
Holland SI, Edwards RJ, Ertan H, Wong YK, Russell TL, Deshpande NP, Manefield MJ, Lee M. Whole genome sequencing of a novel, dichloromethane-fermenting Peptococcaceae from an enrichment culture. PeerJ 2019; 7:e7775. [PMID: 31592187 PMCID: PMC6778437 DOI: 10.7717/peerj.7775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/27/2019] [Indexed: 01/07/2023] Open
Abstract
Bacteria capable of dechlorinating the toxic environmental contaminant dichloromethane (DCM, CH2Cl2) are of great interest for potential bioremediation applications. A novel, strictly anaerobic, DCM-fermenting bacterium, "DCMF", was enriched from organochlorine-contaminated groundwater near Botany Bay, Australia. The enrichment culture was maintained in minimal, mineral salt medium amended with dichloromethane as the sole energy source. PacBio whole genome SMRTTM sequencing of DCMF allowed de novo, gap-free assembly despite the presence of cohabiting organisms in the culture. Illumina sequencing reads were utilised to correct minor indels. The single, circularised 6.44 Mb chromosome was annotated with the IMG pipeline and contains 5,773 predicted protein-coding genes. Based on 16S rRNA gene and predicted proteome phylogeny, the organism appears to be a novel member of the Peptococcaceae family. The DCMF genome is large in comparison to known DCM-fermenting bacteria. It includes an abundance of methyltransferases, which may provide clues to the basis of its DCM metabolism, as well as potential to metabolise additional methylated substrates such as quaternary amines. Full annotation has been provided in a custom genome browser and search tool, in addition to multiple sequence alignments and phylogenetic trees for every predicted protein, http://www.slimsuite.unsw.edu.au/research/dcmf/.
Collapse
Affiliation(s)
- Sophie I. Holland
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | - Richard J. Edwards
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Haluk Ertan
- Department of Molecular Biology and Genetics, Istanbul University, Istanbul, Turkey
- School of Chemical Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | - Yie Kuan Wong
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Tonia L. Russell
- Ramaciotti Centre for Genomics, University of New South Wales, Sydney, New South Wales, Australia
| | - Nandan P. Deshpande
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Michael J. Manefield
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, Australia
- School of Chemical Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | - Matthew Lee
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
27
|
Zhang Y, Ying H, Xu Y. Comparative genomics and metagenomics of the metallomes. Metallomics 2019; 11:1026-1043. [DOI: 10.1039/c9mt00023b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent achievements and advances in comparative genomic and metagenomic analyses of trace metals were reviewed and discussed.
Collapse
Affiliation(s)
- Yan Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology
- College of Life Sciences and Oceanography
- Shenzhen University
- Shenzhen
- P. R. China
| | - Huimin Ying
- Department of Endocrinology
- Hangzhou Xixi Hospital
- Hangzhou
- P. R. China
| | - Yinzhen Xu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology
- College of Life Sciences and Oceanography
- Shenzhen University
- Shenzhen
- P. R. China
| |
Collapse
|
28
|
The genomics of selenium: Its past, present and future. Biochim Biophys Acta Gen Subj 2018; 1862:2427-2432. [DOI: 10.1016/j.bbagen.2018.05.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/29/2018] [Accepted: 05/24/2018] [Indexed: 12/13/2022]
|
29
|
Yang Y, Richards JP, Gundrum J, Ojha AK. GlnR Activation Induces Peroxide Resistance in Mycobacterial Biofilms. Front Microbiol 2018; 9:1428. [PMID: 30022971 PMCID: PMC6039565 DOI: 10.3389/fmicb.2018.01428] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/11/2018] [Indexed: 12/31/2022] Open
Abstract
Mycobacteria spontaneously form surface-associated multicellular communities, called biofilms, which display resistance to a wide range of exogenous stresses. A causal relationship between biofilm formation and emergence of stress resistance is not known. Here, we report that activation of a nitrogen starvation response regulator, GlnR, during the development of Mycobacterium smegmatis biofilms leads to peroxide resistance. The resistance arises from induction of a GlnR-dependent peroxide resistance (gpr) gene cluster comprising of 8 ORFs (MSMEG_0565-0572). Expression of gpr increases the NADPH to NADP ratio, suggesting that a reduced cytosolic environment of nitrogen-starved cells in biofilms contributes to peroxide resistance. Increased NADPH levels from gpr activity likely support the activity of enzymes involved in nitrogen assimilation, as suggested by a higher threshold of nitrogen supplement required by a gpr mutant to form biofilms. Together, our study uniquely interlinks a nutrient sensing mechanism with emergence of stress resistance during mycobacterial biofilm development. The gpr gene cluster is conserved in several mycobacteria that can cause nosocomial infections, offering a possible explanation for their resistance to peroxide-based sterilization of medical equipment.
Collapse
Affiliation(s)
- Yong Yang
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Jacob P. Richards
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, United States
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jennifer Gundrum
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Anil K. Ojha
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, United States
- Department of Biomedical Sciences, University at Albany, Albany, NY, United States
| |
Collapse
|
30
|
Trace Elements and Healthcare: A Bioinformatics Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1005:63-98. [PMID: 28916929 DOI: 10.1007/978-981-10-5717-5_4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Biological trace elements are essential for human health. Imbalance in trace element metabolism and homeostasis may play an important role in a variety of diseases and disorders. While the majority of previous researches focused on experimental verification of genes involved in trace element metabolism and those encoding trace element-dependent proteins, bioinformatics study on trace elements is relatively rare and still at the starting stage. This chapter offers an overview of recent progress in bioinformatics analyses of trace element utilization, metabolism, and function, especially comparative genomics of several important metals. The relationship between individual elements and several diseases based on recent large-scale systematic studies such as genome-wide association studies and case-control studies is discussed. Lastly, developments of ionomics and its recent application in human health are also introduced.
Collapse
|
31
|
Jahan MI, Tobe R, Mihara H. Characterization of a Novel Porin-Like Protein, ExtI, from Geobacter sulfurreducens and Its Implication in the Reduction of Selenite and Tellurite. Int J Mol Sci 2018. [PMID: 29534491 PMCID: PMC5877670 DOI: 10.3390/ijms19030809] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The extI gene in Geobacter sulfurreducens encodes a putative outer membrane channel porin, which resides within a cluster of extHIJKLMNOPQS genes. This cluster is highly conserved across the Geobacteraceae and includes multiple putative c-type cytochromes. In silico analyses of the ExtI sequence, together with Western blot analysis and proteinase protection assays, showed that it is an outer membrane protein. The expression level of ExtI did not respond to changes in osmolality and phosphate starvation. An extI-deficient mutant did not show any significant impact on fumarate or Fe(III) citrate reduction or sensitivity to β-lactam antibiotics, as compared with those of the wild-type strain. However, extI deficiency resulted in a decreased ability to reduce selenite and tellurite. Heme staining analysis revealed that extI deficiency affects certain heme-containing proteins in the outer and inner membranes, which may cause a decrease in the ability to reduce selenite and tellurite. Based on these observations, we discuss possible roles for ExtI in selenite and tellurite reduction in G. sulfurreducens.
Collapse
Affiliation(s)
- Mst Ishrat Jahan
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| | - Ryuta Tobe
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| | - Hisaaki Mihara
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| |
Collapse
|
32
|
Mariotti M. SECISearch3 and Seblastian: In-Silico Tools to Predict SECIS Elements and Selenoproteins. Methods Mol Biol 2018; 1661:3-16. [PMID: 28917033 DOI: 10.1007/978-1-4939-7258-6_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The computational identification of selenoprotein genes is complicated by the dual meaning of the UGA codon as stop and selenocysteine. SECIS elements are RNA structures essential for selenocysteine incorporation, which have been used as markers for selenoprotein genes in many bioinformatics studies. The most widely used tool for eukaryotic SECIS finding has been recently improved to its third generation, SECISearch3. This program is also a component of Seblastian, a pipeline for the identification of selenoprotein genes that employs SECIS finding as the first step. This chapter constitutes a practical guide to use SECISearch3 and Seblastian, which can be run via webservers at http://seblastian.crg.eu / or http://gladyshevlab.org/SelenoproteinPredictionServer/ .
Collapse
Affiliation(s)
- Marco Mariotti
- Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA. .,Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain. .,Institut Hospital del Mar d'Investigacions Mediques (IMIM), Barcelona, Spain.
| |
Collapse
|
33
|
Ndah E, Jonckheere V, Giess A, Valen E, Menschaert G, Van Damme P. REPARATION: ribosome profiling assisted (re-)annotation of bacterial genomes. Nucleic Acids Res 2017; 45:e168. [PMID: 28977509 PMCID: PMC5714196 DOI: 10.1093/nar/gkx758] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 08/17/2017] [Indexed: 12/13/2022] Open
Abstract
Prokaryotic genome annotation is highly dependent on automated methods, as manual curation cannot keep up with the exponential growth of sequenced genomes. Current automated methods depend heavily on sequence composition and often underestimate the complexity of the proteome. We developed RibosomeE Profiling Assisted (re-)AnnotaTION (REPARATION), a de novo machine learning algorithm that takes advantage of experimental protein synthesis evidence from ribosome profiling (Ribo-seq) to delineate translated open reading frames (ORFs) in bacteria, independent of genome annotation (https://github.com/Biobix/REPARATION). REPARATION evaluates all possible ORFs in the genome and estimates minimum thresholds based on a growth curve model to screen for spurious ORFs. We applied REPARATION to three annotated bacterial species to obtain a more comprehensive mapping of their translation landscape in support of experimental data. In all cases, we identified hundreds of novel (small) ORFs including variants of previously annotated ORFs and >70% of all (variants of) annotated protein coding ORFs were predicted by REPARATION to be translated. Our predictions are supported by matching mass spectrometry proteomics data, sequence composition and conservation analysis. REPARATION is unique in that it makes use of experimental translation evidence to intrinsically perform a de novo ORF delineation in bacterial genomes irrespective of the sequence features linked to open reading frames.
Collapse
Affiliation(s)
- Elvis Ndah
- VIB-UGent Center for Medical Biotechnology, B-9000 Ghent, Belgium.,Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium.,Lab of Bioinformatics and Computational Genomics, Department of Mathematical Modelling, Statistics and Bioinformatics, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
| | - Veronique Jonckheere
- VIB-UGent Center for Medical Biotechnology, B-9000 Ghent, Belgium.,Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Adam Giess
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen 5020, Norway
| | - Eivind Valen
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen 5020, Norway.,Sars International Centre for Marine Molecular Biology, University of Bergen, 5008 Bergen, Norway
| | - Gerben Menschaert
- Lab of Bioinformatics and Computational Genomics, Department of Mathematical Modelling, Statistics and Bioinformatics, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
| | - Petra Van Damme
- VIB-UGent Center for Medical Biotechnology, B-9000 Ghent, Belgium.,Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| |
Collapse
|
34
|
Baggett NE, Zhang Y, Gross CA. Global analysis of translation termination in E. coli. PLoS Genet 2017; 13:e1006676. [PMID: 28301469 PMCID: PMC5373646 DOI: 10.1371/journal.pgen.1006676] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/30/2017] [Accepted: 03/08/2017] [Indexed: 01/01/2023] Open
Abstract
Terminating protein translation accurately and efficiently is critical for both protein fidelity and ribosome recycling for continued translation. The three bacterial release factors (RFs) play key roles: RF1 and 2 recognize stop codons and terminate translation; and RF3 promotes disassociation of bound release factors. Probing release factors mutations with reporter constructs containing programmed frameshifting sequences or premature stop codons had revealed a propensity for readthrough or frameshifting at these specific sites, but their effects on translation genome-wide have not been examined. We performed ribosome profiling on a set of isogenic strains with well-characterized release factor mutations to determine how they alter translation globally. Consistent with their known defects, strains with increasingly severe release factor defects exhibit increasingly severe accumulation of ribosomes over stop codons, indicative of an increased duration of the termination/release phase of translation. Release factor mutant strains also exhibit increased occupancy in the region following the stop codon at a significant number of genes. Our global analysis revealed that, as expected, translation termination is generally efficient and accurate, but that at a significant number of genes (≥ 50) the ribosome signature after the stop codon is suggestive of translation past the stop codon. Even native E. coli K-12 exhibits the ribosome signature suggestive of protein extension, especially at UGA codons, which rely exclusively on the reduced function RF2 variant of the K-12 strain for termination. Deletion of RF3 increases the severity of the defect. We unambiguously demonstrate readthrough and frameshifting protein extensions and their further accumulation in mutant strains for a few select cases. In addition to enhancing recoding, ribosome accumulation over stop codons disrupts attenuation control of biosynthetic operons, and may alter expression of some overlapping genes. Together, these functional alterations may either augment the protein repertoire or produce deleterious proteins. Proteins are the cellular workhorses, performing essentially all of the functions required for cell and organismal survival. But, it takes a great deal of energy to make proteins, making it critical that proteins are made accurately and in the proper time frame. After a ribosome synthesizes a protein, release factors catalyze the accurate and timely release of the finished protein from the ribosome, a process called termination. Ribosomes are then recycled and start the next protein. We utilized ribosome profiling, a method that allows us to follow the position of every ribosome that is making a protein, to globally investigate and strengthen insights on termination fidelity for cells with and without mutant release factors. We find that as we decrease release factor function, the time to terminate/release a protein increases across the genome. We observe that the accuracy of terminating a protein at the correct place decreases on a global scale. Using this metric we identify genes with inherently low termination efficiency and confirm two novel events resulting in extended protein products. In addition we find that beyond disrupting accurate protein synthesis, release factor mutations can alter expression of genes involved in the production of key amino acids.
Collapse
Affiliation(s)
- Natalie E. Baggett
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
| | - Yan Zhang
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
| | - Carol A. Gross
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, United States of America
- California Institute of Quantitative Biology, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
35
|
Santesmasses D, Mariotti M, Guigó R. Computational identification of the selenocysteine tRNA (tRNASec) in genomes. PLoS Comput Biol 2017; 13:e1005383. [PMID: 28192430 PMCID: PMC5330540 DOI: 10.1371/journal.pcbi.1005383] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 02/28/2017] [Accepted: 01/26/2017] [Indexed: 12/11/2022] Open
Abstract
Selenocysteine (Sec) is known as the 21st amino acid, a cysteine analogue with selenium replacing sulphur. Sec is inserted co-translationally in a small fraction of proteins called selenoproteins. In selenoprotein genes, the Sec specific tRNA (tRNASec) drives the recoding of highly specific UGA codons from stop signals to Sec. Although found in organisms from the three domains of life, Sec is not universal. Many species are completely devoid of selenoprotein genes and lack the ability to synthesize Sec. Since tRNASec is a key component in selenoprotein biosynthesis, its efficient identification in genomes is instrumental to characterize the utilization of Sec across lineages. Available tRNA prediction methods fail to accurately predict tRNASec, due to its unusual structural fold. Here, we present Secmarker, a method based on manually curated covariance models capturing the specific tRNASec structure in archaea, bacteria and eukaryotes. We exploited the non-universality of Sec to build a proper benchmark set for tRNASec predictions, which is not possible for the predictions of other tRNAs. We show that Secmarker greatly improves the accuracy of previously existing methods constituting a valuable tool to identify tRNASec genes, and to efficiently determine whether a genome contains selenoproteins. We used Secmarker to analyze a large set of fully sequenced genomes, and the results revealed new insights in the biology of tRNASec, led to the discovery of a novel bacterial selenoprotein family, and shed additional light on the phylogenetic distribution of selenoprotein containing genomes. Secmarker is freely accessible for download, or online analysis through a web server at http://secmarker.crg.cat. Most proteins are made of twenty amino acids. However, there is a small group of proteins that incorporate a 21st amino acid, Selenocysteine (Sec). These proteins are called selenoproteins and are present in some, but not all, species from the three domains of life. Sec is inserted in selenoproteins in response to the UGA codon, normally a stop codon. A Sec specific tRNA (tRNASec), which only exists in the organisms that synthesize selenoproteins recognizes the UGA codon. tRNASec is not only indispensable for Sec incorporation into selenoproteins, but also for Sec synthesis, since Sec is synthesized on its own tRNA. The structure of tRNASec differs from that of canonical tRNAs, and general tRNA detection methods fail to accurately predict it. We developed Secmarker, a tRNASec specific identification tool based on the characteristic structural features of the tRNASec. Our benchmark shows that Secmarker produces nearly flawless tRNASec predictions. We used Secmarker to scan all currently available genome sequences. The analysis of the highly accurate predictions obtained revealed new insights into the biology of tRNASec.
Collapse
Affiliation(s)
- Didac Santesmasses
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), Barcelona, Spain
- * E-mail: (DS); (MM)
| | - Marco Mariotti
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), Barcelona, Spain
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (DS); (MM)
| | - Roderic Guigó
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), Barcelona, Spain
| |
Collapse
|
36
|
Dörries M, Wöhlbrand L, Kube M, Reinhardt R, Rabus R. Genome and catabolic subproteomes of the marine, nutritionally versatile, sulfate-reducing bacterium Desulfococcus multivorans DSM 2059. BMC Genomics 2016; 17:918. [PMID: 27846794 PMCID: PMC5109826 DOI: 10.1186/s12864-016-3236-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 11/01/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sulfate-reducing bacteria (SRB) are key players of the carbon- and sulfur-cycles in the sediments of the world's oceans. Habitat relevant SRBs are often members of the Desulfosarcina-Desulfococcus clade belonging to the deltaproteobacterial family of Desulfobacteraceae. Despite this environmental recognition, their molecular (genome-based) physiology and their potential to contribute to organic carbon mineralization as well as to adapt to changing environmental conditions have been scarcely investigated. A metabolically versatile representative of this family is Desulfococcus multivorans that is able to completely oxidize (to CO2) a variety of organic acids, including fatty acids up to C14, as well as aromatic compounds. RESULTS In this study the complete 4.46 Mbp and manually annotated genome of metabolically versatile Desulfococcus multivorans DSM 2059 is presented with particular emphasis on a proteomics-driven metabolic reconstruction. Proteomic profiling covered 17 substrate adaptation conditions (6 aromatic and 11 aliphatic compounds) and comprised 2D DIGE, shotgun proteomics and analysis of the membrane protein-enriched fractions. This comprehensive proteogenomic dataset allowed for reconstructing a metabolic network of degradation pathways and energy metabolism that consists of 170 proteins (154 detected; ~91 % coverage). Peripheral degradation routes feed via central benzoyl-CoA, (modified) β-oxidation or methylmalonyl-CoA pathways into the Wood-Ljungdahl pathway for complete oxidation of acetyl-CoA to CO2. Dissimilatory sulfate reduction is fueled by a complex electron transfer network composed of cytoplasmic components (e.g., electron transfer flavoproteins) and diverse membrane redox complexes (Dsr, Qmo, Hmc, Tmc, Qrc, Nuo and Rnf). Overall, a high degree of substrate-specific formation of catabolic enzymes was observed, while most complexes involved in electron transfer appeared to be constitutively formed. CONCLUSIONS A highly dynamic genome structure in combination with substrate-specifically formed catabolic subproteomes and a constitutive subproteome for energy metabolism and electron transfer appears to be a common trait of Desulfobacteraceae members.
Collapse
Affiliation(s)
- Marvin Dörries
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Lars Wöhlbrand
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Michael Kube
- Institute of Forest Genetics, Johann Heinrich von Thünen Institute, Waldsieversdorf, Germany
| | | | - Ralf Rabus
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| |
Collapse
|
37
|
Mariotti M, Lobanov AV, Manta B, Santesmasses D, Bofill A, Guigó R, Gabaldón T, Gladyshev VN. Lokiarchaeota Marks the Transition between the Archaeal and Eukaryotic Selenocysteine Encoding Systems. Mol Biol Evol 2016; 33:2441-53. [PMID: 27413050 PMCID: PMC4989117 DOI: 10.1093/molbev/msw122] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Selenocysteine (Sec) is the 21st amino acid in the genetic code, inserted in response to UGA codons with the help of RNA structures, the SEC Insertion Sequence (SECIS) elements. The three domains of life feature distinct strategies for Sec insertion in proteins and its utilization. While bacteria and archaea possess similar sets of selenoproteins, Sec biosynthesis is more similar among archaea and eukaryotes. However, SECIS elements are completely different in the three domains of life. Here, we analyze the archaeon Lokiarchaeota that resolves the relationships among Sec insertion systems. This organism has selenoproteins representing five protein families, three of which have multiple Sec residues. Remarkably, these archaeal selenoprotein genes possess conserved RNA structures that strongly resemble the eukaryotic SECIS element, including key eukaryotic protein-binding sites. These structures also share similarity with the SECIS element in archaeal selenoprotein VhuD, suggesting a relation of direct descent. These results identify Lokiarchaeota as an intermediate form between the archaeal and eukaryotic Sec-encoding systems and clarify the evolution of the Sec insertion system.
Collapse
Affiliation(s)
- Marco Mariotti
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain Universitat Pompeu Fabra (UPF); and Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Alexei V Lobanov
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Bruno Manta
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Didac Santesmasses
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain Universitat Pompeu Fabra (UPF); and Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Andreu Bofill
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain Universitat Pompeu Fabra (UPF); and Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Roderic Guigó
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain Universitat Pompeu Fabra (UPF); and Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain Universitat Pompeu Fabra (UPF); and Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
38
|
Key TA, Richmond DP, Bowman KS, Cho YJ, Chun J, da Costa MS, Rainey FA, Moe WM. Genome sequence of the organohalide-respiring Dehalogenimonas alkenigignens type strain (IP3-3(T)). Stand Genomic Sci 2016; 11:44. [PMID: 27340512 PMCID: PMC4918011 DOI: 10.1186/s40793-016-0165-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 05/31/2016] [Indexed: 11/13/2022] Open
Abstract
Dehalogenimonas alkenigignens IP3-3T is a strictly anaerobic, mesophilic, Gram negative staining bacterium that grows by organohalide respiration, coupling the oxidation of H2 to the reductive dehalogenation of polychlorinated alkanes. Growth has not been observed with any non-polyhalogenated alkane electron acceptors. Here we describe the features of strain IP3-3T together with genome sequence information and its annotation. The 1,849,792 bp high-quality-draft genome contains 1936 predicted protein coding genes, 47 tRNA genes, a single large subunit rRNA (23S-5S) locus, and a single, orphan, small unit rRNA (16S) locus. The genome contains 29 predicted reductive dehalogenase genes, a large majority of which lack cognate genes encoding membrane anchoring proteins.
Collapse
Affiliation(s)
- Trent A Key
- Louisiana State University, Baton Rouge, LA USA
| | | | | | - Yong-Joon Cho
- ChunLab, Inc., Seoul National University, Seoul, Republic of Korea
| | - Jongsik Chun
- ChunLab, Inc., Seoul National University, Seoul, Republic of Korea
| | - Milton S da Costa
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | | | | |
Collapse
|
39
|
Insights into CO2 Fixation Pathway of Clostridium autoethanogenum by Targeted Mutagenesis. mBio 2016; 7:mBio.00427-16. [PMID: 27222467 PMCID: PMC4895105 DOI: 10.1128/mbio.00427-16] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The future sustainable production of chemicals and fuels from nonpetrochemical resources and reduction of greenhouse gas emissions are two of the greatest societal challenges. Gas fermentation, which utilizes the ability of acetogenic bacteria such as Clostridium autoethanogenum to grow and convert CO2 and CO into low-carbon fuels and chemicals, could potentially provide solutions to both. Acetogens fix these single-carbon gases via the Wood-Ljungdahl pathway. Two enzyme activities are predicted to be essential to the pathway: carbon monoxide dehydrogenase (CODH), which catalyzes the reversible oxidation of CO to CO2, and acetyl coenzyme A (acetyl-CoA) synthase (ACS), which combines with CODH to form a CODH/ACS complex for acetyl-CoA fixation. Despite their pivotal role in carbon fixation, their functions have not been confirmed in vivo. By genetically manipulating all three CODH isogenes (acsA, cooS1, and cooS2) of C. autoethanogenum, we highlighted the functional redundancies of CODH by demonstrating that cooS1 and cooS2 are dispensable for autotrophy. Unexpectedly, the cooS1 inactivation strain showed a significantly reduced lag phase and a higher growth rate than the wild type on H2 and CO2. During heterotrophic growth on fructose, the acsA inactivation strain exhibited 61% reduced biomass and the abolishment of acetate production (a hallmark of acetogens), in favor of ethanol, lactate, and 2,3-butanediol production. A translational readthrough event was discovered in the uniquely truncated (compared to those of other acetogens) C. autoethanogenum acsA gene. Insights gained from studying the function of CODH enhance the overall understanding of autotrophy and can be used for optimization of biotechnological production of ethanol and other commodities via gas fermentation. Gas fermentation is an emerging technology that converts the greenhouse gases CO2 and CO in industrial waste gases and gasified biomass into fuels and chemical commodities. Acetogenic bacteria such as Clostridium autoethanogenum are central to this bioprocess, but the molecular and genetic characterization of this microorganism is currently lacking. By targeting all three of the isogenes encoding carbon monoxide dehydrogenase (CODH) in C. autoethanogenum, we identified the most important CODH isogene for carbon fixation and demonstrated that genetic inactivation of CODH could improve autotrophic growth. This study shows that disabling of the Wood-Ljungdahl pathway via the inactivation of acsA (encodes CODH) significantly impairs heterotrophic growth and alters the product profile by abolishing acetate production. Moreover, we discovered a previously undescribed mechanism for controlling the production of this enzyme. This study provides valuable insights into the acetogenic pathway and can be used for the development of more efficient and productive strains for gas fermentation.
Collapse
|
40
|
Comparative genomics reveals new evolutionary and ecological patterns of selenium utilization in bacteria. ISME JOURNAL 2016; 10:2048-59. [PMID: 26800233 PMCID: PMC5029168 DOI: 10.1038/ismej.2015.246] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 10/28/2015] [Accepted: 11/27/2015] [Indexed: 12/15/2022]
Abstract
Selenium (Se) is an important micronutrient for many organisms, which is required for the biosynthesis of selenocysteine, selenouridine and Se-containing cofactor. Several key genes involved in different Se utilization traits have been characterized; however, systematic studies on the evolution and ecological niches of Se utilization are very limited. Here, we analyzed more than 5200 sequenced organisms to examine the occurrence patterns of all Se traits in bacteria. A global species map of all Se utilization pathways has been generated, which demonstrates the most detailed understanding of Se utilization in bacteria so far. In addition, the selenophosphate synthetase gene, which is used to define the overall Se utilization, was also detected in some organisms that do not have any of the known Se traits, implying the presence of a novel Se form in this domain. Phylogenetic analyses of components of different Se utilization traits revealed new horizontal gene transfer events for each of them. Moreover, by characterizing the selenoproteomes of all organisms, we found a new selenoprotein-rich phylum and additional selenoprotein-rich species. Finally, the relationship between ecological environments and Se utilization was investigated and further verified by metagenomic analysis of environmental samples, which indicates new macroevolutionary trends of each Se utilization trait in bacteria. Our data provide insights into the general features of Se utilization in bacteria and should be useful for a further understanding of the evolutionary dynamics of Se utilization in nature.
Collapse
|
41
|
Cravedi P, Mori G, Fischer F, Percudani R. Evolution of the Selenoproteome in Helicobacter pylori and Epsilonproteobacteria. Genome Biol Evol 2015; 7:2692-704. [PMID: 26342139 PMCID: PMC4607533 DOI: 10.1093/gbe/evv177] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2015] [Indexed: 12/14/2022] Open
Abstract
By competing for the acquisition of essential nutrients, Helicobacter pylori has the unique ability to persist in the human stomach, also causing nutritional insufficiencies in the host. Although the H. pylori genome apparently encodes selenocysteine synthase (SelA, HP1513), a key pyridoxal phosphate (PLP)-dependent enzyme for the incorporation of selenium into bacterial proteins, nothing is known about the use of this essential element in protein synthesis by this pathogen. We analyzed the evolution of the complete machinery for incorporation of selenium into proteins and the selenoproteome of several H. pylori strains and related Epsilonproteobacteria. Our searches identified the presence of selenoproteins-including the previously unknown DUF466 family-in various Epsilonproteobacteria, but not in H. pylori. We found that a complete system for selenocysteine incorporation was present in the Helicobacteriaceae ancestor and has been recently lost before the split of Helicobacter acinonychis and H. pylori. Our results indicate that H. pylori, at variance with other gastric and enterohepatic Helicobacter, does not use selenocysteine in protein synthesis and does not use selenium for tRNA wobble base modification. However, selA has survived as a functional gene, having lost the domain for the binding of selenocysteine tRNA, but maintaining the ability to bind the PLP cofactor. The evolutionary modifications described for the SelA protein of H. pylori find parallels in other bacterial and archaeal species, suggesting that an alternative enzymatic function is hidden in many proteins annotated as selenocysteinyl-tRNA synthase.
Collapse
Affiliation(s)
| | - Giulia Mori
- Department of Life Sciences, University of Parma, Italy
| | - Frédéric Fischer
- Unité Pathogenèse de Helicobacter, Département de Microbiologie, Institut Pasteur, ERL CNRS 3526, Paris, France
| | | |
Collapse
|
42
|
Visser M, Pieterse MM, Pinkse MWH, Nijsse B, Verhaert PDEM, de Vos WM, Schaap PJ, Stams AJM. Unravelling the one-carbon metabolism of the acetogen Sporomusa strain An4 by genome and proteome analysis. Environ Microbiol 2015; 18:2843-55. [PMID: 26147498 DOI: 10.1111/1462-2920.12973] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/19/2015] [Accepted: 06/26/2015] [Indexed: 01/06/2023]
Abstract
The Sporomusa genus comprises anaerobic spore-forming acetogenic bacteria that stain Gram-negative. Sporomusa species typically grow with one-carbon substrates and N-methylated compounds. In the degradation of these compounds methyltransferases are involved. In addition, Sporomusa species can grow autotrophically with H2 and CO2 , and use a variety of sugars for acetogenic growth. Here we describe a genome analysis of Sporomusa strain An4 and a proteome analysis of cells grown under five different conditions. Comparison of the genomes of Sporomusa strain An4 and Sporomusa ovata strain H1 indicated that An4 is a S. ovata strain. Proteome analysis showed a high abundance of several methyltransferases, predominantly trimethylamine methyltransferases, during growth with betaine, whereas trimethylamine is one of the main end-products of betaine degradation. In methanol degradation methyltransferases are also involved. In methanol-utilizing methanogens, two methyltransferases catalyse methanol conversion, methyltransferase 1 composed of subunits MtaB and MtaC and methyltransferase 2, also called MtaA. The two methyltransferase 1 subunits MtaB and MtaC were highly abundant when strain An4 was grown with methanol. However, instead of MtaA a methyltetrahydrofolate methyltransferase was synthesized. We propose a novel methanol degradation pathway in Sporomusa strain An4 that uses a methyltetrahydrofolate methyltransferase instead of MtaA.
Collapse
Affiliation(s)
- Michael Visser
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - Mervin M Pieterse
- Department of Biotechnology, Technische Universiteit Delft, Julianalaan 67, 2628 BC, Delft, The Netherlands.,Netherlands Proteomics Centre, Julianalaan 67, 2628 BC, Delft, The Netherlands
| | - Martijn W H Pinkse
- Department of Biotechnology, Technische Universiteit Delft, Julianalaan 67, 2628 BC, Delft, The Netherlands.,Netherlands Proteomics Centre, Julianalaan 67, 2628 BC, Delft, The Netherlands
| | - Bart Nijsse
- Laboratory of Systems and Synthetic Biology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Peter D E M Verhaert
- Department of Biotechnology, Technische Universiteit Delft, Julianalaan 67, 2628 BC, Delft, The Netherlands.,Netherlands Proteomics Centre, Julianalaan 67, 2628 BC, Delft, The Netherlands
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.,Department of Veterinary Biosciences, Helsinki University, Helsinki, Finland.,Department of Bacteriology and Immunology, Helsinki University, Helsinki, Finland
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.,CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| |
Collapse
|
43
|
Kim MJ, Lee BC, Hwang KY, Gladyshev VN, Kim HY. Selenium utilization in thioredoxin and catalytic advantage provided by selenocysteine. Biochem Biophys Res Commun 2015; 461:648-52. [PMID: 25912135 DOI: 10.1016/j.bbrc.2015.04.082] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 04/16/2015] [Indexed: 12/13/2022]
Abstract
Thioredoxin (Trx) is a major thiol-disulfide reductase that plays a role in many biological processes, including DNA replication and redox signaling. Although selenocysteine (Sec)-containing Trxs have been identified in certain bacteria, their enzymatic properties have not been characterized. In this study, we expressed a selenoprotein Trx from Treponema denticola, an oral spirochete, in Escherichia coli and characterized this selenoenzyme and its natural cysteine (Cys) homologue using E. coli Trx1 as a positive control. (75)Se metabolic labeling and mutation analyses showed that the SECIS (Sec insertion sequence) of T. denticola selenoprotein Trx is functional in the E. coli Sec insertion system with specific selenium incorporation into the Sec residue. The selenoprotein Trx exhibited approximately 10-fold higher catalytic activity than the Sec-to-Cys version and natural Cys homologue and E. coli Trx1, suggesting that Sec confers higher catalytic activity on this thiol-disulfide reductase. Kinetic analysis also showed that the selenoprotein Trx had a 30-fold higher Km than Cys-containing homologues, suggesting that this selenoenzyme is adapted to work efficiently with high concentrations of substrate. Collectively, the results of this study support the hypothesis that selenium utilization in oxidoreductase systems is primarily due to the catalytic advantage provided by the rare amino acid, Sec.
Collapse
Affiliation(s)
- Moon-Jung Kim
- Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu 705-717, Republic of Korea
| | - Byung Cheon Lee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Division of Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Kwang Yeon Hwang
- Division of Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hwa-Young Kim
- Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu 705-717, Republic of Korea.
| |
Collapse
|
44
|
Howard JB, Kechris KJ, Rees DC, Glazer AN. Multiple amino acid sequence alignment nitrogenase component 1: insights into phylogenetics and structure-function relationships. PLoS One 2013; 8:e72751. [PMID: 24019874 PMCID: PMC3760896 DOI: 10.1371/journal.pone.0072751] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 07/18/2013] [Indexed: 02/05/2023] Open
Abstract
Amino acid residues critical for a protein's structure-function are retained by natural selection and these residues are identified by the level of variance in co-aligned homologous protein sequences. The relevant residues in the nitrogen fixation Component 1 α- and β-subunits were identified by the alignment of 95 protein sequences. Proteins were included from species encompassing multiple microbial phyla and diverse ecological niches as well as the nitrogen fixation genotypes, anf, nif, and vnf, which encode proteins associated with cofactors differing at one metal site. After adjusting for differences in sequence length, insertions, and deletions, the remaining >85% of the sequence co-aligned the subunits from the three genotypes. Six Groups, designated Anf, Vnf , and Nif I-IV, were assigned based upon genetic origin, sequence adjustments, and conserved residues. Both subunits subdivided into the same groups. Invariant and single variant residues were identified and were defined as “core” for nitrogenase function. Three species in Group Nif-III, Candidatus Desulforudis audaxviator, Desulfotomaculum kuznetsovii, and Thermodesulfatator indicus, were found to have a seleno-cysteine that replaces one cysteinyl ligand of the 8Fe:7S, P-cluster. Subsets of invariant residues, limited to individual groups, were identified; these unique residues help identify the gene of origin (anf, nif, or vnf) yet should not be considered diagnostic of the metal content of associated cofactors. Fourteen of the 19 residues that compose the cofactor pocket are invariant or single variant; the other five residues are highly variable but do not correlate with the putative metal content of the cofactor. The variable residues are clustered on one side of the cofactor, away from other functional centers in the three dimensional structure. Many of the invariant and single variant residues were not previously recognized as potentially critical and their identification provides the bases for new analyses of the three-dimensional structure and for mutagenesis studies.
Collapse
Affiliation(s)
- James B. Howard
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
- * E-mail: (JBH); (KJK); (DCR); (ANG)
| | - Katerina J. Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado, United States of America
- * E-mail: (JBH); (KJK); (DCR); (ANG)
| | - Douglas C. Rees
- Division of Chemistry and Chemical Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California, United States of America
- * E-mail: (JBH); (KJK); (DCR); (ANG)
| | - Alexander N. Glazer
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
- * E-mail: (JBH); (KJK); (DCR); (ANG)
| |
Collapse
|
45
|
Galano E, Mangiapane E, Bianga J, Palmese A, Pessione E, Szpunar J, Lobinski R, Amoresano A. Privileged incorporation of selenium as selenocysteine in Lactobacillus reuteri proteins demonstrated by selenium-specific imaging and proteomics. Mol Cell Proteomics 2013; 12:2196-204. [PMID: 23660472 DOI: 10.1074/mcp.m113.027607] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An analytical approach was developed to study the incorporation of selenium (Se), an important trace element involved in the protection of cells from oxidative stress, into the well-known probiotic Lactobacillus reuteri Lb2 BM-DSM 16143. The analyses revealed that about half of the internalized Se was covalently incorporated into soluble proteins. Se-enriched proteins were detected in 2D gels by laser ablation inductively coupled plasma mass spectrometry imaging (LA-ICP MSI) and identified by capillary HPLC with the parallel ICP MS ((78)Se) and electrospray Orbitrap MS/MS detection. On the basis of the identification of 10 richest in selenium proteins, it was demonstrated that selenium was incorporated by the strain exclusively as selenocysteine. Also, the exact location of selenocysteine within the primary sequence was determined. This finding is in a striking contrast to another common nutraceutical, Se-enriched yeast, which incorporates Se principally as selenomethionine.
Collapse
Affiliation(s)
- Eugenio Galano
- Department of Chemical Sciences, University of Naples Federico II, Italy
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Köpke M, Straub M, Dürre P. Clostridium difficile is an autotrophic bacterial pathogen. PLoS One 2013; 8:e62157. [PMID: 23626782 PMCID: PMC3633928 DOI: 10.1371/journal.pone.0062157] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/18/2013] [Indexed: 12/28/2022] Open
Abstract
During the last decade, Clostridium difficile infection showed a dramatic increase in incidence and virulence in the Northern hemisphere. This incessantly challenging disease is the leading cause of antibiotic-associated and nosocomial infectious diarrhea and became life-threatening especially among elderly people. It is generally assumed that all human bacterial pathogens are heterotrophic organisms, being either saccharolytic or proteolytic. So far, this has not been questioned as colonization of the human gut gives access to an environment, rich in organic nutrients. Here, we present data that C. difficile (both clinical and rumen isolates) is also able to grow on CO2+H2 as sole carbon and energy source, thus representing the first identified autotrophic bacterial pathogen. Comparison of several different strains revealed high conservation of genes for autotrophic growth and showed that the ability to use gas mixtures for growth decreases or is lost upon prolonged culturing under heterotrophic conditions. The metabolic flexibility of C. difficile (heterotrophic growth on various substrates as well as autotrophy) could allow the organism in the gut to avoid competition by niche differentiation and contribute to its survival when stressed or in unfavorable conditions that cause death to other bacteria. This may be an important trait for the pathogenicity of C. difficile.
Collapse
Affiliation(s)
- Michael Köpke
- Institut für Mikrobiologie und Biotechnologie, Universität Ulm, Ulm, Germany
- LanzaTech, Auckland, New Zealand
| | - Melanie Straub
- Institut für Mikrobiologie und Biotechnologie, Universität Ulm, Ulm, Germany
| | - Peter Dürre
- Institut für Mikrobiologie und Biotechnologie, Universität Ulm, Ulm, Germany
- * E-mail:
| |
Collapse
|
47
|
Visser M, Worm P, Muyzer G, Pereira IAC, Schaap PJ, Plugge CM, Kuever J, Parshina SN, Nazina TN, Ivanova AE, Bernier-Latmani R, Goodwin LA, Kyrpides NC, Woyke T, Chain P, Davenport KW, Spring S, Klenk HP, Stams AJM. Genome analysis of Desulfotomaculum kuznetsovii strain 17(T) reveals a physiological similarity with Pelotomaculum thermopropionicum strain SI(T). Stand Genomic Sci 2013; 8:69-87. [PMID: 23961313 PMCID: PMC3739171 DOI: 10.4056/sigs.3627141] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Desulfotomaculum kuznetsovii is a moderately thermophilic member of the polyphyletic spore-forming genus Desulfotomaculum in the family Peptococcaceae. This species is of interest because it originates from deep subsurface thermal mineral water at a depth of about 3,000 m. D. kuznetsovii is a rather versatile bacterium as it can grow with a large variety of organic substrates, including short-chain and long-chain fatty acids, which are degraded completely to carbon dioxide coupled to the reduction of sulfate. It can grow methylotrophically with methanol and sulfate and autotrophically with H2 + CO2 and sulfate. For growth it does not require any vitamins. Here, we describe the features of D. kuznetsovii together with the genome sequence and annotation. The chromosome has 3,601,386 bp organized in one contig. A total of 3,567 candidate protein-encoding genes and 58 RNA genes were identified. Genes of the acetyl-CoA pathway, possibly involved in heterotrophic growth with acetate and methanol, and in CO2 fixation during autotrophic growth are present. Genomic comparison revealed that D. kuznetsovii shows a high similarity with Pelotomaculum thermopropionicum. Genes involved in propionate metabolism of these two strains show a strong similarity. However, main differences are found in genes involved in the electron acceptor metabolism.
Collapse
Affiliation(s)
- Michael Visser
- Wageningen University, Laboratory of Microbiology, Wageningen, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Chen H, Jiang L, Ni J, Liu Q, Zhang J. Bioinformatic prediction of selenoprotein genes in the dolphin genome. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11434-011-4970-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Zhang Y, Gladyshev VN. Comparative genomics of trace element dependence in biology. J Biol Chem 2011; 286:23623-9. [PMID: 21566146 DOI: 10.1074/jbc.r110.172833] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Biological trace elements are needed in small quantities but are used by all living organisms. A growing list of trace element-dependent proteins and trace element utilization pathways highlights the importance of these elements for life. In this minireview, we focus on recent advances in comparative genomics of trace elements and explore the evolutionary dynamics of the dependence of user proteins on these elements. Many zinc protein families evolved representatives that lack this metal, whereas selenocysteine in proteins is dynamically exchanged with cysteine. Several other elements, such as molybdenum and nickel, have a limited number of user protein families, but they are strictly dependent on these metals. Comparative genomics of trace elements provides a foundation for investigating the fundamental properties, functions, and evolutionary dynamics of trace element dependence in biology.
Collapse
Affiliation(s)
- Yan Zhang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
50
|
Yu H, Kim KS. The involvement of SelB in the expression of cytotoxic necrotizing factor 1 in Escherichia coli. FEBS Lett 2011; 585:1934-40. [DOI: 10.1016/j.febslet.2011.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 04/25/2011] [Accepted: 05/02/2011] [Indexed: 11/27/2022]
|