1
|
Zhang L, Yang Y, Zhang Y, Yang F. Genome-Wide Investigation of MADS-Box Genes in Flower Development and Environmental Acclimation of Lumnitzera littorea (Jack) Voigt. Int J Mol Sci 2025; 26:1680. [PMID: 40004145 PMCID: PMC11855919 DOI: 10.3390/ijms26041680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Lumnitzera littorea (Jack) Voigt is an endangered mangrove species in China. Low fecundity and environmental pressure are supposed to be key factors limiting the population expansion of L. littorea. Transcription factors with the MADS-box domain are crucial regulators of plant flower development, reproduction, and stress response. In this study, we performed a comprehensive investigation into the features and functions of MADS-box genes of L. littorea. Sixty-three LlMADS genes with similar structure and motif composition were identified in the L. littorea genome, and these genes were unevenly distributed on the 11 chromosomes. Segmental duplication was suggested to make a main contribution to the expansion of the LlMADS gene family. Some LIMADS genes exhibited differential expression in different flower types or in response to cold stress. Overexpression of the B-class gene LlMADS37 had substantial effects on the flower morphology and flowering time of transgenic Arabidopsis plants, demonstrating its key role in regulating flower morphogenesis and inflorescence. These findings largely enrich our understanding of the functional importance of MADS-box genes in the inflorescence and stress acclimation of L. littorea and provide valuable resources for future genetic research to improve the conservation of this species.
Collapse
Affiliation(s)
- Linbi Zhang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China;
| | - Yuchen Yang
- School of Ecology, Sun Yat-sen University, Shenzhen 518107, China;
| | - Ying Zhang
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, China
| | - Fusun Yang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China;
| |
Collapse
|
2
|
Ruiz-Aguilar B, Torres-Serrallonga NB, Ortega-Amaro MA, Duque-Ortiz A, Ovando-Vázquez C, Jiménez-Bremont JF. Transcriptome Analysis Reveals Genes Responsive to Three Low-Temperature Treatments in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2024; 13:3127. [PMID: 39599336 PMCID: PMC11597575 DOI: 10.3390/plants13223127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
Cold stress impedes the growth and development of plants, restricts the geographical distribution of plant species, and impacts crop productivity. In this study, we analyzed the Arabidopsis thaliana transcriptome to identify differentially expressed genes (DEGs) in 14-day-old plantlets exposed to temperatures of 0 °C, 4 °C, and 10 °C for 24 h, compared to the 22 °C control group. Among the top 50 cold-induced genes at each temperature, we identified 31 genes that were common across all three low temperatures, with nine genes common to 0-4 °C, eight genes to 4-10 °C, and two genes to 0-10 °C. Using q-RTPCR, we analyzed selected genes at 24, 48, and 72 h under the three low temperatures. Our data revealed that genes, such as galactinol synthase 3 (Gols3, At1g09350), CIR1 (At5g37260), DnaJ (At1g71000), and At5g05220 (unknown function), exhibited the highest expressions at 0 °C and 4 °C throughout all time points. We also studied genes from the UDP-glycosyltransferase (UGT78) family, including At5g17030 (D3), At5g17040 (D4), At5g17050 (D2), and At1g30530 (D1), which showed increased expression at low temperatures compared to plantlets at 22 °C for 24 h. Gene ontology analysis revealed that DEGs highly enriched were found in biological processes such as "RNA secondary structure unwinding" and "rRNA processing" induced at the three low temperatures, whereas processes related to photosynthesis were repressed. Our findings indicated upregulation in the expression of four RNA helicases (RH13, RH48, RH32, and RH29), belonging to the "RNA secondary structure unwinding" category, mainly at 0 °C and 4 °C. This study provides valuable information on the molecular mechanisms that activate Arabidopsis thaliana in its early response to these three low temperatures.
Collapse
Affiliation(s)
- Bricia Ruiz-Aguilar
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A. C., San Luis Potosí, S.L.P. 78216, Mexico (N.B.T.-S.)
| | - Natalia B. Torres-Serrallonga
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A. C., San Luis Potosí, S.L.P. 78216, Mexico (N.B.T.-S.)
| | - María Azucena Ortega-Amaro
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A. C., San Luis Potosí, S.L.P. 78216, Mexico (N.B.T.-S.)
- Coordinación Académica Región Altiplano Oeste, Universidad Autónoma de San Luis Potosí, Salinas de Hidalgo 78600, Mexico
| | - Arianna Duque-Ortiz
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A. C., San Luis Potosí, S.L.P. 78216, Mexico (N.B.T.-S.)
| | - Cesaré Ovando-Vázquez
- Laboratorio de Bioinformática e Inteligencia Artificial, CONAHCyT–Centro Nacional de Supercómputo, Instituto Potosino de Investigación Científica y Tecnológica, A.C., San Luis Potosí, S.L.P. 78216, Mexico
| | - Juan Francisco Jiménez-Bremont
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A. C., San Luis Potosí, S.L.P. 78216, Mexico (N.B.T.-S.)
| |
Collapse
|
3
|
Mou SJ, Angon PB. Genome-wide characterization and expression profiling of FARL (FHY3/FAR1) family genes in Zea mays. J Genet Eng Biotechnol 2024; 22:100401. [PMID: 39179323 PMCID: PMC11342881 DOI: 10.1016/j.jgeb.2024.100401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 08/26/2024]
Abstract
A significant role of the plant is played by the transcription factor FARL, which is light signal transduction as well as plant growth and development. Despite being transposases, FARL has developed a variety of dominant biological actions in evolution and speciation. On the other hand, little is known about the Zea mays FARL protein family. This study identifies and characterizes fifteen ZmFARL genes genome-wide, and RNA sequencing data was used to profile their expression. 105 FARL proteins from five plant species were classified into five groups based on sequence alignment and phylogeny. The ZmFARL genes' exon-intron and motif distribution were conserved based on their evolutionary group. The fifteen ZmFARL genes were distributed over seven of the ten Z. mays chromosomes, although no duplication was discovered. Cis-element analysis reveals that ZmFARL genes play a variety of activities, including tissue-specific, stress- and hormone-responsive expressions. Furthermore, the results of the RNA sequencing used to profile expression showed that the genes ZmFARL2 and ZmFARL5 were much more expressed than other genes in various tissues, particularly in leaf characteristics. The identification of likely genes involved in cellular activity in Z. mays and related species will be aided by the characterization of the FARL genes.
Collapse
Affiliation(s)
- Sharah Jabeen Mou
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Prodipto Bishnu Angon
- Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.
| |
Collapse
|
4
|
Fu R, Zhu Y, Liu Y, Yang Z, Lu R, Qiu Y, Lascoux M, Li P, Chen J. Shared xerophytic genes and their re-use in local adaptation to aridity in the desert plant Gymnocarpos przewalskii. Mol Ecol 2024; 33:e17380. [PMID: 38745400 DOI: 10.1111/mec.17380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 04/13/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
In order to thrive and survive, plant species need to combine stability in the long term and rapid response to environmental challenges in the short term. The former would be reflected by parallel or convergent adaptation across species, and the latter by pronounced local adaptation among populations of the same species. In the present study, we generated a high-quality genome and re-sequenced 177 individuals for Gymnocarpos przewalskii, an important desert plant species from North-West China, to detect local adaptation. We first focus on ancient adaptation to aridity at the molecular level by comparing the genomic data of 15 species that vary in their ability to withstand aridity. We found that a total of 118 genes were shared across xerophytic species but absent from non-xerophytic species. Of the 65 found in G. przewalskii, 63 were under purifying selection and two under positive selection. We then focused on local adaptation. Up to 20% of the G. przewalskii genome showed signatures of local adaptation to aridity during population divergence. Thirteen of the selected shared xerophytic genes were reused in local adaptation after population differentiation. Hence, only about 20% of the genes shared and specific to xerophytic species and associated with adaptation to aridity were later recruited for local adaptation in G. przewalskii.
Collapse
Affiliation(s)
- Ruirui Fu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuxiang Zhu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying Liu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhaoping Yang
- College of Life Sciences and Technologies, Tarim University, Aral, China
| | - Ruisen Lu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Yingxiong Qiu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Martin Lascoux
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Pan Li
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jun Chen
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Jin L, Han Z, Mao X, Lu J, Yan B, Lu Y, Liang L, Wang L, Yu Y, Sun K. Genome-wide profiling of angiogenic cis-regulatory elements unravels cis-regulatory SNPs for vascular abnormality. Sci Data 2024; 11:467. [PMID: 38719891 PMCID: PMC11078952 DOI: 10.1038/s41597-024-03272-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
Angiogenesis is extensively involved in embryonic development and requires complex regulation networks, whose defects can cause a variety of vascular abnormalities. Cis-regulatory elements control gene expression at all developmental stages, but they have not been studied or profiled in angiogenesis yet. In this study, we exploited public DNase-seq and RNA-seq datasets from a VEGFA-stimulated in vitro angiogenic model, and carried out an integrated analysis of the transcriptome and chromatin accessibility across the entire process. Totally, we generated a bank of 47,125 angiogenic cis-regulatory elements with promoter (marker by H3K4me3) and/or enhancer (marker by H3K27ac) activities. Motif enrichment analysis revealed that these angiogenic cis-regulatory elements interacted preferentially with ETS family TFs. With this tool, we performed an association study using our WES data of TAPVC and identified rs199530718 as a cis-regulatory SNP associated with disease risk. Altogether, this study generated a genome-wide bank of angiogenic cis-regulatory elements and illustrated its utility in identifying novel cis-regulatory SNPs for TAPVC, expanding new horizons of angiogenesis as well as vascular abnormality genetics.
Collapse
Affiliation(s)
- Lihui Jin
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China.
| | - Zhenyuan Han
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| | - Xiaotong Mao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Jieru Lu
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
- Department of Pediatrics, Lishui People's Hospital, Lishui, 323050, China
| | - Bingqian Yan
- Department of NICU, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Yiwen Lu
- Department of Laboratory Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Lili Liang
- Department of Pediatric Endocrinology/Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Lin Wang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| | - Yu Yu
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China.
| | - Kun Sun
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China.
| |
Collapse
|
6
|
Zameer R, Alwutayd KM, Alshehri D, Mubarik MS, Li C, Yu C, Li Z. Identification of cysteine-rich receptor-like kinase gene family in potato: revealed StCRLK9 in response to heat, salt and drought stresses. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23320. [PMID: 38723163 DOI: 10.1071/fp23320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/09/2024] [Indexed: 05/18/2024]
Abstract
The investigation into cysteine-rich receptor-like kinases (CRLKs) holds pivotal significance as these conserved, upstream signalling molecules intricately regulate fundamental biological processes such as plant growth, development and stress adaptation. This study undertakes a comprehensive characterisation of CRLKs in Solanum tuberosum (potato), a staple food crop of immense economic importance. Employing comparative genomics and evolutionary analyses, we identified 10 distinct CRLK genes in potato. Further categorisation into three major groups based on sequence similarity was performed. Each CRLK member in potato was systematically named according to its chromosomal position. Multiple sequence alignment and phylogenetic analyses unveiled conserved gene structures and motifs within the same groups. The genomic distribution of CRLKs was observed across Chromosomes 2-5, 8 and 12. Gene duplication analysis highlighted a noteworthy trend, with most gene pairs exhibiting a Ka/Ks ratio greater than one, indicating positive selection of StCRLKs in potato. Salt and drought stresses significantly impacted peroxidase and catalase activities in potato seedlings. The presence of diverse cis -regulatory elements, including hormone-responsive elements, underscored their involvement in myriad biotic and abiotic stress responses. Interestingly, interactions between the phytohormone auxin and CRLK proteins unveiled a potential auxin-mediated regulatory mechanism. A holistic approach combining transcriptomics and quantitative PCR validation identified StCRLK9 as a potential candidate involved in plant response to heat, salt and drought stresses. This study lays a robust foundation for future research on the functional roles of the CRLK gene family in potatoes, offering valuable insights into their diverse regulatory mechanisms and potential applications in stress management.
Collapse
Affiliation(s)
- Roshan Zameer
- School of Life Sciences, Henan University, Kaifeng, China
| | - Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Dikhnah Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | | | - Cheng Li
- School of Life Sciences, Henan University, Kaifeng, China
| | - Chengde Yu
- School of Life Sciences, Henan University, Kaifeng, China
| | - Zhifang Li
- School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
7
|
Chandran AEJ, Finkler A, Hait TA, Kiere Y, David S, Pasmanik-Chor M, Shkolnik D. Calcium regulation of the Arabidopsis Na+/K+ transporter HKT1;1 improves seed germination under salt stress. PLANT PHYSIOLOGY 2024; 194:1834-1852. [PMID: 38057162 PMCID: PMC10904324 DOI: 10.1093/plphys/kiad651] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023]
Abstract
Calcium is known to improve seed-germination rates under salt stress. We investigated the involvement of calcium ions (Ca2+) in regulating HIGH-AFFINITY K+ TRANSPORTER 1 (HKT1; 1), which encodes a Na+/K+ transporter, and its post-translational regulator TYPE 2C PROTEIN PHOSPHATASE 49 (PP2C49), in germinating Arabidopsis (Arabidopsis thaliana) seedlings. Germination rates of hkt1 mutant seeds under salt stress remained unchanged by CaCl2 treatment in wild-type Arabidopsis, whereas pp2c49 mutant seeds displayed improved salt-stress tolerance in the absence of CaCl2 supplementation. Analysis of HKT1;1 and PP2C49 promoter activity revealed that CaCl2 treatment results in radicle-focused expression of HKT1;1 and reduction of the native radicle-exclusive expression of PP2C49. Ion-content analysis indicated that CaCl2 treatment improves K+ retention in germinating wild-type seedlings under salt stress, but not in hkt1 seedlings. Transgenic seedlings designed to exclusively express HKT1;1 in the radicle during germination displayed higher germination rates under salt stress than the wild type in the absence of CaCl2 treatment. Transcriptome analysis of germinating seedlings treated with CaCl2, NaCl, or both revealed 118 upregulated and 94 downregulated genes as responsive to the combined treatment. Bioinformatics analysis of the upstream sequences of CaCl2-NaCl-treatment-responsive upregulated genes revealed the abscisic acid response element CACGTGTC, a potential CaM-binding transcription activator-binding motif, as most prominent. Our findings suggest a key role for Ca2+ in mediating salt-stress responses during germination by regulating genes that function to maintain Na+ and K+ homeostasis, which is vital for seed germination under salt stress.
Collapse
Affiliation(s)
- Ancy E J Chandran
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Aliza Finkler
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tom Aharon Hait
- The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yvonne Kiere
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Sivan David
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Metsada Pasmanik-Chor
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Doron Shkolnik
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
8
|
Juneja S, Saini R, Mukit A, Kumar S. Drought priming modulates ABF, GRFs, related microRNAs and induce metabolic adjustment during heat stress in chickpea. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108007. [PMID: 37714028 DOI: 10.1016/j.plaphy.2023.108007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023]
Abstract
Drought and high temperature stress may occur concomitantly or individually in succession causing cellular dysfunctions. Abscisic acid (ABA) is a key stress regulator, and its responsive genes are controlled by ABRE (Abscisic acid Responsive Element)-binding factors (ABFs)and G-Box Regulatory factors (GRFs). Here, we identify ABFs, GRFs and targeting miRNAs in desi and kabuli chickpea. To validate their role after drought priming and subsequent high temperature stress, two contrasting chickpea varieties (PBG1 and PBG5) were primed and exposed to 32 °C, 35 °C and 38 °C for 12, 6 and 2 h respectively and analyzed for Physio-biochemical, expression of ABFs, GRFs and MiRNAs, and GC-MS based metabolite analysis. To ascertain the ABF-GRF protein-protein interactions, docking studies were carried out between the ABF3 and GRF14. Genome-wide analysis identified total 9 & 11 ABFs, and 11 GRFsin desi and kabuli respectively. Their gene structure, and motif composition were conserved in all subfamilies and only 10 and 12 genes have undergone duplication in both desi and kabuli chickpea respectively. These genes were differentially expressed in-silico. MiR172 and miR396 were identified to target ABFs and GRFs respectively. Protein-protein interaction (ABF3 and GRF14) might be successful only when the ABF3 was phosphorylated. Drought priming downregulated miR172 and miR396 and eventually upregulated targeting ABFs, and GRFs. Metabolite profiling (GC-MS) revealed the accumulation of 87 metabolites in Primed (P) and Non-Primed (NP) Chickpea plants. Tolerant cultivar (PBG5) responded better in all respects however both severity of stress and exposure are important factors and can produce broadly similar cellular response.
Collapse
Affiliation(s)
- Sumandeep Juneja
- Centre for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Rashmi Saini
- Centre for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Abdul Mukit
- Department of Botany, School of Basic Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Sanjeev Kumar
- Centre for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India; Department of Botany, School of Basic Sciences, Central University of Punjab, Bathinda, 151401, India.
| |
Collapse
|
9
|
Wang Y, Fan J, Wu X, Guan L, Li C, Gu T, Li Y, Ding J. Genome-Wide Characterization and Expression Profiling of HD-Zip Genes in ABA-Mediated Processes in Fragaria vesca. PLANTS (BASEL, SWITZERLAND) 2022; 11:3367. [PMID: 36501406 PMCID: PMC9737017 DOI: 10.3390/plants11233367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Members of homeodomain-leucine zipper (HD-Zip) transcription factors can play their roles by modulating abscisic acid (ABA) signaling in Arabidopsis. So far, our knowledge of the functions of HD-Zips in woodland strawberries (Fragaria vesca), a model plant for studying ABA-mediated fruit ripening, is limited. Here, we identified a total of 31 HD-Zip genes (FveHDZ1-31) in F. vesca, and classified them into four subfamilies (I to IV). Promoter analyses show that the ABA-responsive element, ABRE, is prevalent in the promoters of subfamily I and II FveHDZs. RT-qPCR results demonstrate that 10 of the 14 investigated FveHDZs were consistently >1.5-fold up-regulated or down-regulated in expression in response to exogenous ABA, dehydration, and ABA-induced senescence in leaves. Five of the six consistently up-regulated genes are from subfamily I and II. Thereinto, FveHDZ4, and 20 also exhibited significantly enhanced expression along with increased ABA content during fruit ripening. In yeast one-hybrid assays, FveHDZ4 proteins could bind the promoter of an ABA signaling gene FvePP2C6. Collectively, our results strongly support that the FveHDZs, particularly those from subfamilies I and II, are involved in the ABA-mediated processes in F. vesca, providing a basis for further functional characterization of the HD-Zips in strawberry and other plants.
Collapse
Affiliation(s)
- Yong Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210023, China
| | - Junmiao Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210023, China
| | - Xinjie Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210023, China
| | - Ling Guan
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Chun Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210023, China
| | - Tingting Gu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210023, China
| | - Yi Li
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT 06269, USA
| | - Jing Ding
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210023, China
| |
Collapse
|
10
|
Ndathe R, Dale R, Kato N. Dynamic modeling of ABA-dependent expression of the Arabidopsis RD29A gene. FRONTIERS IN PLANT SCIENCE 2022; 13:928718. [PMID: 36092424 PMCID: PMC9458874 DOI: 10.3389/fpls.2022.928718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/02/2022] [Indexed: 06/01/2023]
Abstract
The abscisic acid (ABA) signaling pathway is the key defense mechanism against drought stress in plants. In the pathway, signal transduction among four core proteins, pyrabactin resistance (PYR), protein phosphatase 2C (PP2C), sucrose-non-fermenting-1-related protein kinase 2 (SnRK2), and ABRE binding factor (ABF) leads to altered gene expression kinetics that is driven by an ABA-responsive element (ABRE). A most recent and comprehensive study provided data suggesting that ABA alters the expression kinetics in over 6,500 genes through the ABF-ABRE associations in Arabidopsis. Of these genes, termed ABA gene regulatory network (GRN), over 50% contain a single ABRE within 4 kb of the gene body, despite previous findings suggesting that a single copy of ABRE is not sufficient to drive the gene expression. To understand the expression system of the ABA GRN by the single ABRE, a dynamic model of the gene expression for the desiccation 29A (RD29A) gene was constructed with ordinary differential equations. Parameter values of molecular-molecular interactions and enzymatic reactions in the model were implemented from the data obtained by previously conducted in vitro experiments. On the other hand, parameter values of gene expression and translation were determined by comparing the kinetics of gene expression in the model to the expression kinetics of RD29A in real plants. The optimized model recapitulated the trend of gene expression kinetics of RD29A in ABA dose-response that were previously investigated. Further analysis of the model suggested that a single ABRE controls the time scale and dynamic range of the ABA-dependent gene expression through the PP2C feedback regulation even though an additional cis-element is required to drive the expression. The model construed in this study underpins the importance of a single ABRE in the ABA GRN.
Collapse
Affiliation(s)
- Ruth Ndathe
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Renee Dale
- Donald Danforth Plant Science Center, St. Louis, MO, United States
| | - Naohiro Kato
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
11
|
Matos MKDS, Benko-Iseppon AM, Bezerra-Neto JP, Ferreira-Neto JRC, Wang Y, Liu H, Pandolfi V, Amorim LLB, Willadino L, do Vale Amorim TC, Kido EA, Vianello RP, Timko MP, Brasileiro-Vidal AC. The WRKY transcription factor family in cowpea: Genomic characterization and transcriptomic profiling under root dehydration. Gene X 2022; 823:146377. [PMID: 35231571 DOI: 10.1016/j.gene.2022.146377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/06/2022] [Accepted: 02/24/2022] [Indexed: 11/25/2022] Open
Abstract
Cowpea [Vigna unguiculata (L.) Walp.] is one of the most tolerant legume crops to drought and salt stresses. WRKY transcription factor (TF) family members stand out among plant transcriptional regulators related to abiotic stress tolerance. However, little information is currently available on the expression of the cowpea WRKY gene family (VuWRKY) in response to water deficit. Thus, we analyzed genomic and transcriptomic data from cowpea to identify VuWRKY members and characterize their structure and transcriptional response under root dehydration stress. Ninety-two complete VuWRKY genes were found in the cowpea genome based on their domain characteristics. They were clustered into three groups: I (15 members), II (58), and III (16), while three genes were unclassified. Domain analysis of the encoded proteins identified four major variants of the conserved heptapeptide motif WRKYGQK. In silico analysis of VuWRKY gene promoters identified eight candidate binding motifs of cis-regulatory elements, regulated mainly by six TF families associated with abiotic stress responses. Ninety-seven VuWRKY modulated splicing variants associated with 55 VuWRKY genes were identified via RNA-Seq analysis available at the Cowpea Genomics Consortium (CpGC) database. qPCR analyses showed that 22 genes are induced under root dehydration, with VuWRKY18, 21, and 75 exhibiting the most significant induction levels. Given their central role in activating signal transduction cascades in abiotic stress response, the data provide a foundation for the targeted modification of specific VuWRKY family members to improve drought tolerance in this important climate-resilient legume in the developing world and beyond.
Collapse
Affiliation(s)
- Mitalle Karen da Silva Matos
- Laboratório de Genética e Biotecnologia Vegetal, Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Ana Maria Benko-Iseppon
- Laboratório de Genética e Biotecnologia Vegetal, Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - João Pacifico Bezerra-Neto
- Laboratório de Genética e Biotecnologia Vegetal, Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - José Ribamar Costa Ferreira-Neto
- Laboratório de Genética e Biotecnologia Vegetal, Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Yu Wang
- Department of Biology, University of Virginia, Charlottesville, VA, USA; Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hai Liu
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Valesca Pandolfi
- Laboratório de Genética e Biotecnologia Vegetal, Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Lidiane Lindinalva Barbosa Amorim
- Laboratório de Genética e Biotecnologia Vegetal, Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Lilia Willadino
- Laboratório de Cultura de Tecidos Vegetais, Departamento de Biologia, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Thialisson Caaci do Vale Amorim
- Laboratório de Genética e Biotecnologia Vegetal, Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Ederson Akio Kido
- Laboratório de Genética Molecular, Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Rosana Pereira Vianello
- Laboratório de Biotecnologia, Empresa Brasileira de Pesquisa Agropecuária, Centro Nacional de Pesquisa de Arroz e Feijão, Goiânia, Brazil
| | - Michael P Timko
- Department of Biology, University of Virginia, Charlottesville, VA, USA.
| | - Ana Christina Brasileiro-Vidal
- Laboratório de Genética e Biotecnologia Vegetal, Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil.
| |
Collapse
|
12
|
Zhu M, Wang X, Zhou Y, Tan J, Zhou Y, Gao F. Small RNA Sequencing Revealed that miR4415, a Legume-Specific miRNA, was Involved in the Cold Acclimation of Ammopiptanthus nanus by Targeting an L-Ascorbate Oxidase Gene and Regulating the Redox State of Apoplast. Front Genet 2022; 13:870446. [PMID: 35444684 PMCID: PMC9013972 DOI: 10.3389/fgene.2022.870446] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small endogenous single-stranded RNAs that regulate plant growth, development, and environmental stress response posttranscriptionally. Ammopiptanthus nanus, a rare evergreen broad-leaved shrub in the temperate area of Central Asia, can tolerate freezing stress as low as -30 degrees centigrade in winter, and miRNA might be involved in the cold acclimation which enables A. nanus to obtain tolerance to freezing stress. Systematic identification and functional analysis of the miRNAs involved in the cold acclimation in A. nanus may promote understanding of the miRNA-mediated gene regulation network underlying cold acclimation. Here, based on small RNA and degradome sequencing, 256 miRNAs and 1,808 miRNA-target pairs were identified in A. nanus. A total of 39 cold-responsive miRNAs were identified, of which 29 were upregulated and ten were downregulated. These cold-responsive miRNAs may participate in the cold acclimation by regulating redox homeostasis (miR398, miR4415, and miR408), calcium signaling (miR5225 and miR5211), growth and development (miR159 and miR390), and small RNA-mediated gene silencing (miR168 and miR1515). We found that miR4415, a legume-specific miRNA, is involved in the cold acclimation of A. nanus by targeting an L-ascorbate oxidase gene and then regulating the redox state of the apoplast. Our study provides important data for understanding the regulatory role of miRNA in the cold acclimation of A. nanus.
Collapse
Affiliation(s)
- Ming Zhu
- Key Laboratory of Ecology and Environment in Minority Areas, National Ethnic Affairs Commission, Minzu University of China, Beijing, China.,Key Laboratory of Mass Spectrometry Imaging and Metabolomics, National Ethnic Affairs Commission, Minzu University of China, Beijing, China.,College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Xue Wang
- Beijing Center for Disease Prevention and Control, Beijing, China
| | - Yanqiu Zhou
- Key Laboratory of Ecology and Environment in Minority Areas, National Ethnic Affairs Commission, Minzu University of China, Beijing, China.,Key Laboratory of Mass Spectrometry Imaging and Metabolomics, National Ethnic Affairs Commission, Minzu University of China, Beijing, China.,College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Jinhua Tan
- Key Laboratory of Ecology and Environment in Minority Areas, National Ethnic Affairs Commission, Minzu University of China, Beijing, China.,Key Laboratory of Mass Spectrometry Imaging and Metabolomics, National Ethnic Affairs Commission, Minzu University of China, Beijing, China.,College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yijun Zhou
- Key Laboratory of Ecology and Environment in Minority Areas, National Ethnic Affairs Commission, Minzu University of China, Beijing, China.,Key Laboratory of Mass Spectrometry Imaging and Metabolomics, National Ethnic Affairs Commission, Minzu University of China, Beijing, China.,College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Fei Gao
- Key Laboratory of Ecology and Environment in Minority Areas, National Ethnic Affairs Commission, Minzu University of China, Beijing, China.,Key Laboratory of Mass Spectrometry Imaging and Metabolomics, National Ethnic Affairs Commission, Minzu University of China, Beijing, China.,College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| |
Collapse
|
13
|
Han X, Wei X, Lu W, Wu Q, Mao L, Luo Z. Transcriptional regulation of KCS gene by bZIP29 and MYB70 transcription factors during ABA-stimulated wound suberization of kiwifruit (Actinidia deliciosa). BMC PLANT BIOLOGY 2022; 22:23. [PMID: 34998386 PMCID: PMC8742354 DOI: 10.1186/s12870-021-03407-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/09/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Our previous study has demonstrated that the transcription of AchnKCS involved in suberin biosynthesis was up-regulated by exogenous abscisic acid (ABA) during the wound suberization of kiwifruit, but the regulatory mechanism has not been fully elucidated. RESULTS Through subcellular localization analysis in this work, AchnbZIP29 and AchnMYB70 transcription factors were observed to be localized in the nucleus. Yeast one-hybrid and dual-luciferase assay proved the transcriptional activation of AchnMYB70 and transcriptional suppression of AchnbZIP29 on AchnKCS promoter. Furthermore, the transcription level of AchnMYB70 was enhanced by ABA during wound suberization of kiwifruit, but AchnbZIP29 transcription was reduced by ABA. CONCLUSIONS Therefore, it was believed that ABA enhanced the transcriptional activation of AchnMYB70 on AchnKCS by increasing AchnMYB70 expression. On the contrary, ABA relieved the inhibitory effect of AchnbZIP29 on transcription of AchnKCS by inhibiting AchnbZIP29 expression. These results gave further insight into the molecular regulatory network of ABA in wound suberization of kiwifruit.
Collapse
Affiliation(s)
- Xueyuan Han
- School of Life Science, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, China
| | - Xiaopeng Wei
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, China
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, Henan, China
| | - Wenjing Lu
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, China
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Qiong Wu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Linchun Mao
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, China.
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China.
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China
| |
Collapse
|
14
|
Kumar S, Abass Ahanger M, Alshaya H, Latief Jan B, Yerramilli V. Salicylic acid mitigates salt induced toxicity through the modifications of biochemical attributes and some key antioxidants in capsicum annuum. Saudi J Biol Sci 2022. [DOI: 10.1016/j.sjbs.2022.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
15
|
Genome-Wide cis-Regulatory Element Based Discovery of Auxin-Responsive Genes in Higher Plant. Genes (Basel) 2021; 13:genes13010024. [PMID: 35052364 PMCID: PMC8775021 DOI: 10.3390/genes13010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022] Open
Abstract
Auxin has a profound impact on plant physiology and participates in almost all aspects of plant development processes. Auxin exerts profound pleiotropic effects on plant growth and differentiation by regulating the auxin response genes’ expressions. The classical auxin reaction is usually mediated by auxin response factors (ARFs), which bind to the auxin response element (AuxRE) in the promoter region of the target gene. Experiments have generated only a limited number of plant genes with well-characterized functions. It is still unknown how many genes respond to exogenous auxin treatment. An economical and effective method was proposed for the genome-wide discovery of genes responsive to auxin in a model plant, Arabidopsis thaliana (A. thaliana). Our method relies on cis-regulatory-element-based targeted gene finding across different promoters in a genome. We first exploit and analyze auxin-specific cis-regulatory elements for the transcription of the target genes, and then identify putative auxin responsive genes whose promoters contain the elements in the collection of over 25,800 promoters in the A. thaliana genome. Evaluating our result by comparing with a published database and the literature, we found that this method has an accuracy rate of 65.2% (309/474) for predicting candidate genes responsive to auxin. Chromosome distribution and annotation of the putative auxin-responsive genes predicted here were also mined. The results can markedly decrease the number of identified but merely potential auxin target genes and also provide useful clues for improving the annotation of gene that lack functional information.
Collapse
|
16
|
Sun S, Wang B, Jiang Q, Li Z, Jia S, Wang Y, Guo H. Genome-wide analysis of BpDof genes and the tolerance to drought stress in birch ( Betula platyphylla). PeerJ 2021; 9:e11938. [PMID: 34513325 PMCID: PMC8395574 DOI: 10.7717/peerj.11938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/19/2021] [Indexed: 01/23/2023] Open
Abstract
Background DNA binding with one finger (Dof) proteins are plant-specific transcription factors playing vital roles in developmental processes and stress responses in plants. Nevertheless, the characterizations, expression patterns, and functions of the Dof family under drought stress (a key determinant of plant physiology and metabolic homeostasis) in woody plants remain unclear. Methods The birch (Betula platyphylla var. mandshuric) genome and plant TFDB database were used to identify Dof gene family members in birch plants. ClustalW2 of BioEdit v7.2.1, MEGA v7.0, ExPASy ProtParam tool, Subloc, TMHMM v2.0, GSDS v2.0, MEME, TBtools, KaKs Calculator v2.0, and PlantCARE were respectively used to align the BpDof sequences, build a phylogenetic tree, identify the physicochemical properties, analyze the chromosomal distribution and synteny, and identify the cis-elements in the promoter regions of the 26 BpDof genes. Additionally, the birch seedlings were exposed to PEG6000-simulated drought stress, and the expression patterns of the BpDof genes in different tissues were analyzed by qRT-PCR. The histochemical staining and the evaluation of physiological indexes were performed to assess the plant tolerance to drought with transient overexpression of BpDof4, BpDof11, and BpDof17 genes. SPSS software and ANOVA were used to conduct all statistical analyses and determine statistically significant differences between results. Results A total of 26 BpDof genes were identified in birch via whole-genome analysis. The conserved Dof domain with a C(x)2C(x)21C(x)2C zinc finger motif was present in all BpDof proteins. These birch BpDofs were classified into four groups (A to D) according to the phylogenetic analysis of Arabidopsis thaliana Dof genes. BpDof proteins within the same group mostly possessed similar motifs, as detected by conserved motif analysis. The exon–intron analysis revealed that the structures of BpDof genes differed, indicating probable gene gain and lose during the BpDof evolution. The chromosomal distribution and synteny analysis showed that the 26 BpDofs were unevenly distributed on 14 chromosomes, and seven duplication events among six chromosomes were found. Cis-acting elements were abundant in the promoter regions of the 26 BpDof genes. qRT-PCR revealed that the expression of the 26 BpDof genes was differentially regulated by drought stress among roots, stems, and leaves. Most BpDof genes responded to drought stress, and BpDof4, BpDof11, and BpDof17 were significantly up-regulated. Therefore, plants overexpressing these three genes were generated to investigate drought stress tolerance. The BpDof4-, BpDof11-, and BpDof17-overexpressing plants showed promoted reactive oxygen species (ROS) scavenging capabilities and less severe cell damage, suggesting that they conferred enhanced drought tolerance in birch. This study provided an in-depth insight into the structure, evolution, expression, and function of the Dof gene family in plants.
Collapse
Affiliation(s)
- Shilin Sun
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China.,The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Bo Wang
- Department of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, Heilongjiang, China
| | - Qi Jiang
- Department of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, Heilongjiang, China
| | - Zhuoran Li
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China.,The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Site Jia
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China.,The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yucheng Wang
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China.,The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Huiyan Guo
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China.,The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
17
|
Yong X, Zheng T, Zhuo X, Ahmad S, Li L, Li P, Yu J, Wang J, Cheng T, Zhang Q. Genome-wide identification, characterisation, and evolution of ABF/AREB subfamily in nine Rosaceae species and expression analysis in mei ( Prunus mume). PeerJ 2021; 9:e10785. [PMID: 33604183 PMCID: PMC7868070 DOI: 10.7717/peerj.10785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/23/2020] [Indexed: 01/15/2023] Open
Abstract
Rosaceae is an important family containing some of the highly evolved fruit and ornamental plants. Abiotic stress responses play key roles in the seasonal growth and development of plants. However, the molecular basis of stress responses remains largely unknown in Rosaceae. Abscisic acid (ABA) is a stress hormone involving abiotic stress response pathways. The ABRE-binding factor/ABA-responsive element-binding protein (ABF/AREB) is a subfamily of the basic domain/leucine zipper (bZIP) transcription factor family. It plays an important role in the ABA-mediated signaling pathway. Here, we analyzed the ABF/AREB subfamily genes in nine Rosaceae species. A total of 64 ABF/AREB genes were identified, including 18, 28, and 18 genes in the Rosoideae, Amygdaloideae, and Maloideae traditional subfamilies, respectively. The evolutionary relationship of the ABF/AREB subfamily genes was studied through the phylogenetic analysis, the gene structure and conserved motif composition, Ka/Ks values, and interspecies colinearity. These gene sets were clustered into four groups. In the Prunus ABF/AREB (PmABF) promoters, several cis-elements related to light, hormone, and abiotic stress response were predicted. PmABFs expressed in five different tissues, except PmABF5, which expressed only in buds. In the dormancy stages, PmABF1, 2, 5 and 7 showed differential expression. The expression of PmABF3, 4 and 6 was positively correlated with the ABA concentration. Except for PmABF5, all the PmABFs were sensitive to ABA. Several ABRE elements were contained in the promoters of PmABF1, 3, 6, 7. Based on the findings of our study, we speculate that PmABFs may play a role in flower bud dormancy in P. mume.
Collapse
Affiliation(s)
- Xue Yong
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing, China.,National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China.,Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China.,Engineering Research Center of Landscape Environment of Ministry of Education, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Tangchun Zheng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing, China.,National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China.,Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China.,Engineering Research Center of Landscape Environment of Ministry of Education, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Xiaokang Zhuo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing, China.,National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China.,Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China.,Engineering Research Center of Landscape Environment of Ministry of Education, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Sagheer Ahmad
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing, China.,National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China.,Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China.,Engineering Research Center of Landscape Environment of Ministry of Education, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Lulu Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing, China.,National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China.,Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China.,Engineering Research Center of Landscape Environment of Ministry of Education, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Ping Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing, China.,National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China.,Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China.,Engineering Research Center of Landscape Environment of Ministry of Education, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Jiayao Yu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing, China.,National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China.,Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China.,Engineering Research Center of Landscape Environment of Ministry of Education, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing, China.,National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China.,Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China.,Engineering Research Center of Landscape Environment of Ministry of Education, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing, China.,National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China.,Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China.,Engineering Research Center of Landscape Environment of Ministry of Education, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Qixiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing, China.,National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China.,Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China.,Engineering Research Center of Landscape Environment of Ministry of Education, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing, China
| |
Collapse
|
18
|
Wei X, Meng C, Yuan Y, Nath UK, Zhao Y, Wang Z, Yang S, Li L, Niu L, Yao Q, Wei F, Zhang X. CaPSY1 gene plays likely the key role in carotenoid metabolism of pepper (Capsicum annuum) at ripening. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:141-155. [PMID: 32926830 DOI: 10.1071/fp19287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 08/11/2020] [Indexed: 05/09/2023]
Abstract
Phytoene synthase (PSY) is the first committed enzyme in carotenoid biosynthesis, which plays important role in ripen fruit colour. However, the roles of CaPSY genes are not explained detail in ripen pepper fruit colour. In this study, three CaPSY genes (CaPSY1, CaPSY2 and CaPSY3) were identified through basic local alignment search tool (BLAST) in pepper genome. Among them, CaPSY1 was predicted as putative candidate based on relative expression values using five developmental stages of fruit in Zunla-1 cultivar and also in ripen fruits of five contrasting pepper lines. The CaPSY1 was characterised functionally through virus-induced gene silencing (VIGS) in ripen fruits and overexpression in Arabidopsis thaliana (L.) Heynh. Silencing of CaPSY1 gene altered colour with increased lutein and decreased zeaxanthin content in pepper fruits. The transgenic Arabidopsis line CaPSY1 gene showed higher expression of PSY1 gene compared with WT and dwarf phenotype due to reduction of GA3 (gibberellic acid) and higher abscisic acid (ABA) content. Our results confirmed that CaPSY1 gene involved in carotenoid metabolism in ripen pepper fruit and provide clue to develop bright red coloured pepper lines through breeding.
Collapse
Affiliation(s)
- Xiaochun Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, 450002, China; and School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chunyang Meng
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, 450002, China; and School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuxiang Yuan
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, 450002, China
| | - Ujjal Kumar Nath
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Yanyan Zhao
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, 450002, China
| | - Zhiyong Wang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, 450002, China
| | - Shuangjuan Yang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, 450002, China
| | - Lin Li
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, 450002, China
| | - Liujing Niu
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, 450002, China
| | - Qiuju Yao
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, 450002, China
| | - Fang Wei
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; and Corresponding authors. ;
| | - Xiaowei Zhang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, 450002, China; and School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; and Corresponding authors. ;
| |
Collapse
|
19
|
Li F, Mei F, Zhang Y, Li S, Kang Z, Mao H. Genome-wide analysis of the AREB/ABF gene lineage in land plants and functional analysis of TaABF3 in Arabidopsis. BMC PLANT BIOLOGY 2020; 20:558. [PMID: 33302868 PMCID: PMC7731569 DOI: 10.1186/s12870-020-02783-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 12/03/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND Previous studies have shown that ABFs (abscisic acid-responsive transcription factors) are important ABA-signaling components that participate in abiotic stress response. However, little is known about the function of ABFs in Triticum aestivum. In addition, although various ABFs have been identified in other species, the phylogenetic relationship between ABF transcription factors has not been systemically investigated in land plants. RESULTS In this study, we systemically collected ABFs from land plants and analyzed the phylogenetic relationship of these ABF genes. The ABF genes are present in all the land plants we investigated, including moss, lycophyte, monocots, and eudicots. Furthermore, these ABF genes are phylogenetically divided into seven subgroups, differentiations that are supported by variation in the gene structure, protein properties, and motif patterns. We further demonstrated that the expression of ABF genes varies among different tissues and developmental stages, and are induced by one or more environmental stresses. Furthermore, we found that three wheat ABFs (TaABF1, TaABF2, and TaABF3) were significantly induced by drought stress. Compared with wild-type (WT) plants, transgenic Arabidopsis plants overexpressing TaABF3 displayed enhanced drought tolerance. CONCLUSIONS These results provide important ground work for understanding the phylogenetic relationships between plant ABF genes. Our results also indicate that TaABFs may participate in regulating plant response to abiotic stresses.
Collapse
Affiliation(s)
- Fangfang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Fangming Mei
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yifang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Shumin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Hude Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
20
|
Kiseleva AA, Leonova IN, Pshenichnikova TA, Salina EA. Dissection of novel candidate genes for grain texture in Russian wheat varieties. PLANT MOLECULAR BIOLOGY 2020; 104:219-233. [PMID: 32617826 DOI: 10.1007/s11103-020-01025-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Antonina A Kiseleva
- The Federal State Budgetary Institution of Science Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Prospekt Lavrentyeva 10, Novosibirsk, Russia, 630090.
- Kurchatov Genomics Center, Institute of Cytology and Genetics SB RAS, Prospekt Lavrentyeva 10, Novosibirsk, Russia, 630090.
| | - Irina N Leonova
- The Federal State Budgetary Institution of Science Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Prospekt Lavrentyeva 10, Novosibirsk, Russia, 630090
| | - Tatyana A Pshenichnikova
- The Federal State Budgetary Institution of Science Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Prospekt Lavrentyeva 10, Novosibirsk, Russia, 630090
| | - Elena A Salina
- Kurchatov Genomics Center, Institute of Cytology and Genetics SB RAS, Prospekt Lavrentyeva 10, Novosibirsk, Russia, 630090
| |
Collapse
|
21
|
Oliveira BRM, de Almeida AAF, Pirovani CP, Barroso JP, de C Neto CH, Santos NA, Ahnert D, Baligar VC, Mangabeira PAO. Mitigation of Cd toxicity by Mn in young plants of cacao, evaluated by the proteomic profiles of leaves and roots. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:340-358. [PMID: 32107699 DOI: 10.1007/s10646-020-02178-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/13/2020] [Indexed: 05/28/2023]
Abstract
Cd is a non-essential metal and highly toxic to plants, animals and humans, even at very low concentrations. Cd has been found in cocoa beans and in their products, as in the case of chocolate. Mn plays an important role in photosynthetic and can interact with Cd and attenuate its toxic effects on plants. The objective of this work was to evaluate the mechanisms of Mn response in the mitigation of Cd toxicity in young plants of the CCN 51 cacao genotype submitted to 0.8 mmol Cd kg-1, 1.6 mmol Mn kg-1 or the combination of 0.4 mmol Cd kg-1 + 0.8 mmol Mn kg-1 soil, together with the control treatment (without addition of Cd and Mn in soil), by means of analysis of changes in the profile of exclusive proteins (EP) and differentially accumulated proteins (DAP). Leaf and root proteins were extracted and quantified from the different treatments, followed by proteomic analysis. About eight DAP and 38 EP were identified in leaves, whereas in roots 43 DAP and 21 EP were identified. Some important proteins induced in the presence of Cd and repressed in the presence of Cd + Mn or vice versa, were ATPases, isoflavone reductase, proteasome and chaperonin. It was concluded that proteins involved in oxidoreduction and defense and stress response processes, in addition to other processes, were induced in the presence of Cd and repressed in the presence of Cd + Mn. This demonstrated that Mn was able to mitigate the toxic effects of Cd on young plants of the CCN 51 cocoa genotype.
Collapse
Affiliation(s)
- Bruna Rafaela Machado Oliveira
- Department of Biological Sciences, State University of Santa Cruz, Rodovia Jorge Amado, km 16, Ilhéus, BA, 45662-900, Brazil.
| | - Alex-Alan Furtado de Almeida
- Department of Biological Sciences, State University of Santa Cruz, Rodovia Jorge Amado, km 16, Ilhéus, BA, 45662-900, Brazil.
| | - Carlos P Pirovani
- Department of Biological Sciences, State University of Santa Cruz, Rodovia Jorge Amado, km 16, Ilhéus, BA, 45662-900, Brazil
| | - Joedson P Barroso
- Department of Biological Sciences, State University of Santa Cruz, Rodovia Jorge Amado, km 16, Ilhéus, BA, 45662-900, Brazil
| | - Carlos H de C Neto
- Department of Biological Sciences, State University of Santa Cruz, Rodovia Jorge Amado, km 16, Ilhéus, BA, 45662-900, Brazil
| | - Nayara A Santos
- Department of Biological Sciences, State University of Santa Cruz, Rodovia Jorge Amado, km 16, Ilhéus, BA, 45662-900, Brazil
| | - Dário Ahnert
- Department of Biological Sciences, State University of Santa Cruz, Rodovia Jorge Amado, km 16, Ilhéus, BA, 45662-900, Brazil
| | - Viropax C Baligar
- USDA-ARS-Beltsville Agricultural Research Center, Beltsville, MD, USA
| | - Pedro Antonio O Mangabeira
- Department of Biological Sciences, State University of Santa Cruz, Rodovia Jorge Amado, km 16, Ilhéus, BA, 45662-900, Brazil
| |
Collapse
|
22
|
Norlina R, Norashikin MN, Loh SH, Aziz A, Cha TS. Exogenous Abscisic Acid Supplementation at Early Stationary Growth Phase Triggers Changes in the Regulation of Fatty Acid Biosynthesis in Chlorella vulgaris UMT-M1. Appl Biochem Biotechnol 2020; 191:1653-1669. [PMID: 32198601 DOI: 10.1007/s12010-020-03312-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 03/12/2020] [Indexed: 11/30/2022]
Abstract
Abscisic acid (ABA) has been known to exist in a microalgal system and serves as one of the chemical stimuli in various biological pathways. Nonetheless, the involvement of ABA in fatty acid biosynthesis, particularly at the transcription level in microalgae is poorly understood. The objective of this study was to determine the effects of exogenous ABA on growth, total oil content, fatty acid composition, and the expression level of beta ketoacyl-ACP synthase I (KAS I) and omega-3 fatty acid desaturase (ω-3 FAD) genes in Chlorella vulgaris UMT-M1. ABA was applied to early stationary C. vulgaris cultures at concentrations of 0, 10, 20, and 80 μM for 48 h. The results showed that ABA significantly increased biomass production and total oil content. The increment of palmitic (C16:0) and stearic (C18:0) acids was coupled by decrement in linoleic (C18:2) and α-linolenic (C18:3n3) acids. Both KAS I and ω-3 FAD gene expression were downregulated, which was negatively correlated to saturated fatty acid (SFAs), but positively correlated to polyunsaturated fatty acid (PUFA) accumulations. Further analysis of both KAS I and ω-3 FAD promoters revealed the presence of multiple ABA-responsive elements (ABREs) in addition to other phytohormone-responsive elements. However, the role of these phytohormone-responsive elements in regulating KAS I and ω-3 FAD gene expression still remains elusive. This revelation might suggest that phytohormone-responsive gene regulation in C. vulgaris and microalgae as a whole might diverge from higher plants which deserve further scientific research to elucidate its functional roles.
Collapse
Affiliation(s)
- Ramlee Norlina
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Md Nor Norashikin
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Saw Hong Loh
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Ahmad Aziz
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Thye San Cha
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia.
| |
Collapse
|
23
|
Azim JB, Khan MFH, Hassan L, Robin AHK. Genome-Wide Characterization and Expression Profiling of Plant-SpecificPLATZTranscription Factor Family Genes inBrassica rapaL. ACTA ACUST UNITED AC 2020. [DOI: 10.9787/pbb.2020.8.1.28] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jaber Bin Azim
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md. Fahim Hassan Khan
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Lutful Hassan
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Arif Hasan Khan Robin
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| |
Collapse
|
24
|
Wu X, Zhou Y, Yao D, Iqbal S, Gao Z, Zhang Z. DNA methylation of LDOX gene contributes to the floral colour variegation in peach. JOURNAL OF PLANT PHYSIOLOGY 2020; 246-247:153116. [PMID: 31981816 DOI: 10.1016/j.jplph.2020.153116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 06/10/2023]
Abstract
Peach is an important fruit and ornamental plant around the globe. Variegation in flowers often captures consumers' attention, and variegated plants are of high ornamental value. To determine the relationship between DNA methylation and phenotype, we obtained the first single-nucleotide resolution DNA methylation of variegation cultivars in peach through bisulfite sequencing. In this study, a similar methylation rate of 12.90 % in variegated flower buds (VF) and 11.96 % in red flower buds (RF) was determined. The methyl-CG (mCG) was the main context in both samples. We identified 503 differentially methylated regions (DMRs) in all chromosomes. These DMRs were focused on 96 genes and 156 promoters. Associated with the transcriptional and proteome analysis, 106 differently expressed genes and 52 different proteins had varying degrees of methylation. Silent genes exhibited higher methylation levels than expressed genes. The methylation state of the leucoanthocyanidin dioxygenase (LDOX) promoter in VF was higher than RF at flower stages 2 (FS2) based on bisulfite sequencing PCR (BSP) results. Moreover, further experiments showed LDOX gene expression and enzyme activity in RF was higher than VF. The DNA methylation trend consisted of the gene expression and flower colour phenotype. Several cis-acting regulatory elements on BSP sequences were involved in phytohormones, transcription factors, and light responsiveness, which could affect gene expression. The higher level of LDOX gene expression promoted synthesis of colourful anthocyanidins, which caused red spots on the petal. Together, this study identified the context and level of methylation at each site with bisulfite sequencing (BS). These results are helpful in uncovering the mechanism of variegated flower petal formation in peach.
Collapse
Affiliation(s)
- Xinxin Wu
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China; Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, No. 50 Zhongling Street, Nanjing 210014, China.
| | - Yong Zhou
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China.
| | - Dan Yao
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China.
| | - Shahid Iqbal
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China.
| | - Zhihong Gao
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China.
| | - Zhen Zhang
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China.
| |
Collapse
|
25
|
Shopan J, Liu C, Hu Z, Zhang M, Yang J. Identification of eukaryotic translation initiation factors and the temperature-dependent nature of Turnip mosaic virus epidemics in allopolyploid Brassica juncea. 3 Biotech 2020; 10:75. [PMID: 32051808 PMCID: PMC6987279 DOI: 10.1007/s13205-020-2058-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 01/06/2020] [Indexed: 11/24/2022] Open
Abstract
Eukaryotic translation initiation factors (eIFs) are essential protein complexes involved in the translation of mRNA into proteins. These initiation factors are generally used as targets in the control of plant RNA virus infections. In the present study, we identified a total 190 eIFs, clustered phylogenetically into 40 distinct subfamilies in the allopolyploid Brassica juncea. Extensive evolutionary duplications of the eIFs in B. juncea suggest their increased genetic diversity and wide adaptability. The induction of expressions in some of the eIFs after inoculation against Turnip mosaic virus (TuMV) provided candidate targets to be used in the control of viral infections. In addition, the expression profiles of eIFs under different temperatures suggested that the TuMV epidemic was temperature dependent. The eIFs expressions suggested that the systemic viral infections were more acute in plants grown between 20 °C and 28 °C. In addition, our results revealed that new subgroups of eIFs, eIF2β, eIF2α, eIF2Bβ, EF1A, and PABP could be represented as targets for antiviral strategies in B. juncea. In summary, our findings would be helpful in studying the complex mechanisms of eIF-mediated, temperature-dependent RNA virus control in B. juncea.
Collapse
Affiliation(s)
- Jannat Shopan
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058 China
| | - Chang Liu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058 China
| | - Zhongyuan Hu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058 China
| | - Mingfang Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058 China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058 China
| | - Jinghua Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058 China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058 China
| |
Collapse
|
26
|
Palusińska M, Barabasz A, Kozak K, Papierniak A, Maślińska K, Antosiewicz DM. Zn/Cd status-dependent accumulation of Zn and Cd in root parts in tobacco is accompanied by specific expression of ZIP genes. BMC PLANT BIOLOGY 2020; 20:37. [PMID: 31969116 PMCID: PMC6977228 DOI: 10.1186/s12870-020-2255-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/16/2020] [Indexed: 05/30/2023]
Abstract
BACKGROUND Root-to-shoot translocation of zinc (Zn) and cadmium (Cd) depends on the concentrations of both metals in the medium. A previous study on tobacco (Nicotiana tabacum) pointed to the contribution of NtZIP1, NtZIP2, NtZIP4 and NtIRT1-like in the regulation of this phenomenon. To learn more, Zn and Cd accumulation, root/shoot distribution and the expression of ZIP genes were investigated in the apical, middle and basal root parts. RESULTS We show that Zn/Cd status-dependent root-shoot distribution of both metals was related to distinct metal accumulation in root parts. At low Zn and Cd in the medium, the apical part contained the highest metal level; at higher concentrations, the middle and basal parts were the major sink for excess metal. The above were accompanied by root part-specific expression pattern modifications of ZIPs (NtZIP1-like, NtZIP2, NtZIP4A/B, NtZIP5A/B, NtZIP5-like, NtZIP8, NtZIP11, NtIRT1, and NtIRT1-like) that fell into four categories with respect to the root part. Furthermore, for lower Zn/Cd concentrations changes were noted for NtZIP5A/B and NtZIP5-like only, but at higher Zn and Cd levels for NtZIP1-like, NtZIP5-like, NtZIP8, NtZIP11, NtIRT1, and NtIRT1-like. NtZIP1, here renamed to NtZIP5B, was cloned and characterized. We found that it was a zinc deficiency-inducible transporter involved in zinc and cadmium uptake from the soil solution primarily by the middle root part. CONCLUSIONS We conclude that regulation of the longitudinal distribution of Zn and Cd is highly specific, and that the apical, middle and basal root parts play distinct roles in Zn/Cd status-dependent control of metal translocation efficiency to shoots, including the stimulation of Zn translocation to shoots in the presence of Cd. These results provide new insight into the root part-specific unique role of NtZIP5B and other ZIP genes in the longitudinal distribution of zinc and cadmium and their contribution to the regulation of root-to-shoot translocation.
Collapse
Affiliation(s)
- Małgorzata Palusińska
- University of Warsaw, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, Miecznikowa Street 1, 02-096 Warszawa, Poland
| | - Anna Barabasz
- University of Warsaw, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, Miecznikowa Street 1, 02-096 Warszawa, Poland
| | - Katarzyna Kozak
- University of Warsaw, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, Miecznikowa Street 1, 02-096 Warszawa, Poland
| | - Anna Papierniak
- University of Warsaw, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, Miecznikowa Street 1, 02-096 Warszawa, Poland
| | - Karolina Maślińska
- University of Warsaw, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, Miecznikowa Street 1, 02-096 Warszawa, Poland
| | - Danuta Maria Antosiewicz
- University of Warsaw, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, Miecznikowa Street 1, 02-096 Warszawa, Poland
| |
Collapse
|
27
|
Genome-Wide Computational Identification of Biologically Significant Cis-Regulatory Elements and Associated Transcription Factors from Rice. PLANTS 2019; 8:plants8110441. [PMID: 31652796 PMCID: PMC6918188 DOI: 10.3390/plants8110441] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 01/12/2023]
Abstract
The interactions between transcription factors (TFs) and cis-acting regulatory elements (CREs) provide crucial information on the regulation of gene expression. The determination of TF-binding sites and CREs experimentally is costly and time intensive. An in silico identification and annotation of TFs, and the prediction of CREs from rice are made possible by the availability of whole genome sequence and transcriptome data. In this study, we tested the applicability of two algorithms developed for other model systems for the identification of biologically significant CREs of co-expressed genes from rice. CREs were identified from the DNA sequences located upstream from the transcription start sites, untranslated regions (UTRs), and introns, and downstream from the translational stop codons of co-expressed genes. The biologically significance of each CRE was determined by correlating their absence and presence in each gene with that gene's expression profile using a meta-database constructed from 50 rice microarray data sets. The reliability of these methods in the predictions of CREs and their corresponding TFs was supported by previous wet lab experimental data and a literature review. New CREs corresponding to abiotic stresses, biotic stresses, specific tissues, and developmental stages were identified from rice, revealing new pieces of information for future experimental testing. The effectiveness of some-but not all-CREs was found to be affected by copy number, position, and orientation. The corresponding TFs that were most likely correlated with each CRE were also identified. These findings not only contribute to the prioritization of candidates for further analysis, the information also contributes to the understanding of the gene regulatory network.
Collapse
|
28
|
Han X, Mao L, Lu W, Wei X, Ying T, Luo Z. Positive Regulation of the Transcription of AchnKCS by a bZIP Transcription Factor in Response to ABA-Stimulated Suberization of Kiwifruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7390-7398. [PMID: 31244202 DOI: 10.1021/acs.jafc.9b01609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Wound-induced suberization is an essentially protective healing process for wounded fruit to reduce water loss and microbial infection. It has been demonstrated that abscisic acid (ABA) could promote wound suberization, but the molecular mechanism of ABA regulation remains little known. In this study, the transcript level of Achn030011 (designated as AchnKCS), coding a β-ketoacyl-coenzyme A synthase (KCS) involved in suberin biosynthesis, was found to be significantly upregulated by ABA in wounded kiwifruit. A bZIP transcription factor (Achn270881), a possible downstream transcription factor in the ABA signaling pathway, was screened and designated as AchnbZIP12 according to its homology with related Arabidopsis transcription factors. A yeast one-hybrid assay demonstrated that AchnbZIP12 could interact with the AchnKCS promoter. Furthermore, significant trans-activation of AchnbZIP12 on AchnKCS was verified. The transcript level of AchnbZIP12 was also upregulated upon treatment with ABA. These results imply that AchnbZIP12 acts as a positive regulator in ABA-mediated AchnKCS transcription during wound suberization of kiwifruit.
Collapse
Affiliation(s)
- Xueyuan Han
- School of Life Sciences , Shaoxing University , Shaoxing , Zhejiang Province 312000 , People's Republic of China
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of AgroFood Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs , Zhejiang University , Hangzhou 310058 , People's Republic of China
| | - Linchun Mao
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of AgroFood Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs , Zhejiang University , Hangzhou 310058 , People's Republic of China
- Ningbo Research Institute , Zhejiang University , Ningbo 315100 , People's Republic of China
| | - Wenjing Lu
- Institute of Food Science , Zhejiang Academy of Agricultural Sciences , Hangzhou 310021 , People's Republic of China
| | - Xiaopeng Wei
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of AgroFood Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs , Zhejiang University , Hangzhou 310058 , People's Republic of China
| | - Tiejin Ying
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of AgroFood Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs , Zhejiang University , Hangzhou 310058 , People's Republic of China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of AgroFood Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs , Zhejiang University , Hangzhou 310058 , People's Republic of China
| |
Collapse
|
29
|
Comparative Phosphoproteomic Analysis of Barley Embryos with Different Dormancy during Imbibition. Int J Mol Sci 2019; 20:ijms20020451. [PMID: 30669653 PMCID: PMC6359383 DOI: 10.3390/ijms20020451] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 11/17/2022] Open
Abstract
Dormancy is the mechanism that allows seeds to become temporally quiescent in order to select the right time and place to germinate. Like in other species, in barley, grain dormancy is gradually reduced during after-ripening. Phosphosignaling networks in barley grains were investigated by a large-scale analysis of phosphoproteins to examine potential changes in response pathways to after-ripening. We used freshly harvested (FH) and after-ripened (AR) barley grains which showed different dormancy levels. The LC-MS/MS analysis identified 2346 phosphopeptides in barley embryos, with 269 and 97 of them being up- or downregulated during imbibition, respectively. A number of phosphopeptides were differentially regulated between FH and AR samples, suggesting that phosphoproteomic profiles were quite different between FH and AR grains. Motif analysis suggested multiple protein kinases including SnRK2 and MAPK could be involved in such a difference between FH and AR samples. Taken together, our results revealed phosphosignaling pathways in barley grains during the water imbibition process.
Collapse
|
30
|
Srivastava R, Kumar S, Kobayashi Y, Kusunoki K, Tripathi P, Kobayashi Y, Koyama H, Sahoo L. Comparative genome-wide analysis of WRKY transcription factors in two Asian legume crops: Adzuki bean and Mung bean. Sci Rep 2018; 8:16971. [PMID: 30451872 PMCID: PMC6243003 DOI: 10.1038/s41598-018-34920-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 10/26/2018] [Indexed: 02/07/2023] Open
Abstract
The seminal participation of WRKY transcription factors in plant development, metabolism and in the governance of defense mechanism implicated their gaining importance for genomic and functional studies. The recent release of draft genome sequences of two legume crops, Adzuki bean (Vigna angularis) and Mung bean (Vigna radiata) has paved the way for characterization of WRKY gene family in these crops. We found 84 WRKY genes in Adzuki bean (VaWRKY) and 85 WRKY genes in Mung bean (VrWRKY). Based on the phylogenetic analysis, VaWRKY genes were classified into three groups with 15 members in Group I, 56 members in Group II, and 13 members in Group III, which was comparable to VrWRKY distribution in Mung bean, 16, 56 and 13 members in Group I, II and III, respectively. The few tandem and segmental duplication events suggested that recent duplication plays no prominent role in the expansion VaWRKY and VrWRKY genes. The illustration of gene-structure and their encoded protein-domains further revealed the nature of WRKY proteins. Moreover, the identification of abiotic or biotic stress-responsive cis-regulatory elements in the promoter regions of some WRKY genes provides fundamental insights for their further implementation in stress-tolerance and genetic improvement of agronomic traits.
Collapse
Affiliation(s)
- Richa Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Sanjeev Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Yasufumi Kobayashi
- Japan International Research Center for Agricultural Sciences Biological Resources, Post-Harvest Division, 1-1 Ohwashi, Tsukuba, Ibaraki, 305-8686, Japan
| | - Kazutaka Kusunoki
- Faculty of Applied Biological Sciences, Gifu University, 1-1, Yanagido, 501-1193, Gifu, Japan
| | - Prateek Tripathi
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Yuriko Kobayashi
- Faculty of Applied Biological Sciences, Gifu University, 1-1, Yanagido, 501-1193, Gifu, Japan
| | - Hiroyuki Koyama
- Faculty of Applied Biological Sciences, Gifu University, 1-1, Yanagido, 501-1193, Gifu, Japan
| | - Lingaraj Sahoo
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India.
| |
Collapse
|
31
|
Megha S, Basu U, Joshi RK, Kav NNV. Physiological studies and genome-wide microRNA profiling of cold-stressed Brassica napus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:1-17. [PMID: 30170322 DOI: 10.1016/j.plaphy.2018.08.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/26/2018] [Accepted: 08/21/2018] [Indexed: 05/27/2023]
Abstract
Temperature extremes, including cold, adversely impact plant growth and development. Plant responses to cold stress (CS) are regulated at both transcriptional and post-transcriptional levels. MicroRNAs (miRNAs), small non-coding RNAs, are known to be involved in post-transcriptional regulation of various developmental processes and metal stress in Brassica napus L. (canola), however, their role in response to CS is largely unknown. In this study, changes in various physiological parameters and endogenous abundance of miRNAs were characterized in spring canola seedlings (DH12075) exposed to 4 °C for 0-48 h. Cold stress induced electrolyte leakage, increased the levels of malondialdheyde and antioxidant enzymes and reduced photosynthetic efficiency. Using small RNA sequencing, 70 known and 126 novel miRNAs were identified in CS leaf tissues and among these, 25 known and 104 novel miRNAs were differentially expressed. Quantitative real-time (qRT) PCR analysis of eight selected miRNAs confirmed their CS responsiveness. Furthermore, the expression of six out of eight miRNAs exhibited an opposite trend in a winter variety of canola, 'Mendel', when compared to 'DH12075'. This first study on the B. napus miRNAome provides a framework for further functional analysis of these miRNAs and their targets in response to CS which may contribute towards the future development of cold resilient crops.
Collapse
Affiliation(s)
- Swati Megha
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Urmila Basu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Raj Kumar Joshi
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Nat N V Kav
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
32
|
Chu HD, Nguyen KH, Watanabe Y, Le DT, Pham TLT, Mochida K, Tran LSP. Identification, Structural Characterization and Gene Expression Analysis of Members of the Nuclear Factor-Y Family in Chickpea ( Cicer arietinum L.) under Dehydration and Abscisic Acid Treatments. Int J Mol Sci 2018; 19:ijms19113290. [PMID: 30360493 PMCID: PMC6275023 DOI: 10.3390/ijms19113290] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/18/2018] [Accepted: 10/18/2018] [Indexed: 01/25/2023] Open
Abstract
In plants, the Nuclear Factor-Y (NF-Y) transcription factors (TFs), which include three distinct types of NF-YA, NF-YB, and NF-YC TFs, have been identified to play key roles in the regulation of various plant growth and developmental processes under both normal and environmental stress conditions. In this work, a total of 40 CaNF-Y-encoding genes, including eight CaNF-YAs, 21 CaNF-YBs, and 11 CaNF-YCs, were identified in chickpea, and their major gene and protein characteristics were subsequently obtained using various web-based tools. Of our interest, a phylogenetically-based analysis predicted 18 CaNF-Ys (eight CaNF-YAs, seven CaNF-YBs, and three CaNF-YCs) that potentially play roles in chickpea responses to dehydration according to their close relationship with the well-characterized GmNF-Ys in soybean. These results were in good agreement with the enrichment of drought-responsive cis-regulatory motifs and expression patterns obtained from in silico analyses using publically available transcriptome data. Most of the phylogenetically predicted drought-responsive CaNF-Y genes (15 of 18) were quantitatively validated to significantly respond to dehydration treatment in leaves and/or roots, further supporting the results of in silico analyses. Among these CaNF-Y genes, the transcript levels of CaNF-YA01 and CaNF-YC10 were the most highly accumulated in leaves (by approximately eight-fold) and roots (by approximately 18-fold), respectively, by dehydration. Furthermore, 12 of the 18 CaNF-Y genes were found to be responsive to the most well-known stress hormone, namely abscisic acid (ABA), in leaves and/or roots, suggesting that these genes may act in chickpea response to dehydration in ABA-dependent manner. Taken together, our study has provided a comprehensive and fundamental information for further functional analyses of selected CaNF-Y candidate genes, ultimately leading to the improvement of chickpea growth under water-limited conditions.
Collapse
Affiliation(s)
- Ha Duc Chu
- Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Pham Van Dong Road, North Tu Liem District, Hanoi City 122300, Vietnam.
| | - Kien Huu Nguyen
- Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Pham Van Dong Road, North Tu Liem District, Hanoi City 122300, Vietnam.
- Plant Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.
| | - Yasuko Watanabe
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.
| | - Dung Tien Le
- Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Pham Van Dong Road, North Tu Liem District, Hanoi City 122300, Vietnam.
| | - Thu Ly Thi Pham
- Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Pham Van Dong Road, North Tu Liem District, Hanoi City 122300, Vietnam.
| | - Keiichi Mochida
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.
- Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan.
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa 244-0813, Japan.
| | - Lam-Son Phan Tran
- Plant Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.
| |
Collapse
|
33
|
Nagatoshi Y, Fujita M, Fujita Y. Casein kinase 2 α and β subunits inversely modulate ABA signal output in Arabidopsis protoplasts. PLANTA 2018; 248:571-578. [PMID: 29799081 PMCID: PMC6244648 DOI: 10.1007/s00425-018-2919-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/13/2018] [Indexed: 06/08/2023]
Abstract
Our transient gene expression analyses in Arabidopsis protoplasts support the view that CK2αs and CK2βs positively and negatively modulate ABRE-dependent gene expression, respectively. The phytohormone abscisic acid (ABA) regulates the expression of thousands of genes via ABA-responsive elements (ABREs), and has a crucial role in abiotic stress response. Casein kinase II (CK2), a conserved Ser/Thr protein kinase in eukaryotes, is essential for plant viability. Although the CK2 has been known as a tetrameric holoenzyme comprised of two catalytic α and two regulatory β subunits, each of the two types of subunits has been proposed to have independent functions. The Arabidopsis genome encodes four α subunits (CK2α1, CK2α2, CK2α3, CK2α4) and four β subunits (CK2β1, CK2β2, CK2β3, CK2β4). There is a growing body of evidence linking CK2 to ABA signaling and abiotic stress responses. However, the roles of each CK2 subunit in ABA signaling remain largely elusive. Using the transient expression system with the core ABA signaling components in Arabidopsis leaf mesophyll protoplasts, we show here that CK2α1 and CK2α2 (CK2α1/2) positively modulate ABRE-dependent gene expression as ABA signal output in ABA signaling, whereas all four CK2βs negatively modulate the ABRE-dependent gene expression mediated by subclass III SnRK2-AREB/ABF pathway and by CK2α1/2. These data indicate that CK2α1/2 and CK2βs positively and negatively modulate ABA signal output, respectively, suggesting that the quantitative balance of CK2 subunits determines the ABA signal output in plants. Given that CK2s act as pleiotropic enzymes involved in multiple developmental and stress-responsive processes, our findings suggest that CK2 subunits may be involved in integration and coordination of ABA-dependent and -independent signaling.
Collapse
Affiliation(s)
- Yukari Nagatoshi
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, 305-8686, Japan
| | - Miki Fujita
- RIKEN Center for Sustainable Resource Science, Tsukuba, Ibaraki, 305-0074, Japan
| | - Yasunari Fujita
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, 305-8686, Japan.
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
34
|
Delineation of condition specific Cis- and Trans-acting elements in plant promoters under various Endo- and exogenous stimuli. BMC Genomics 2018; 19:85. [PMID: 29764390 PMCID: PMC5954277 DOI: 10.1186/s12864-018-4469-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Transcription factors (TFs) play essential roles during plant development and response to environmental stresses. However, the relationships among transcription factors, cis-acting elements and target gene expression under endo- and exogenous stimuli have not been systematically characterized. RESULTS Here, we developed a series of bioinformatics analysis methods to infer transcriptional regulation by using numerous gene expression data from abiotic stresses and hormones treatments. After filtering the expression profiles of TF-encoding genes, 291 condition specific transcription factors (CsTFs) were obtained. Differentially expressed genes were then classified into various co-expressed gene groups based on each CsTFs. In the case studies of heat stress and ABA treatment, several known and novel cis-acting elements were identified following our bioinformatics approach. Significantly, a palindromic sequence of heat-responsive elements is recognized, and also obtained from a 3D protein structure of heat-shock protein-DNA complex. Notably, overrepresented 3- and 4-mer motifs in an enriched 8-mer motif could be a core cis-element for a CsTF. In addition, the results suggest DNA binding preferences of the same CsTFs are different according to various conditions. CONCLUSIONS The overall results illustrate this study may be useful in identifying condition specific cis- and trans- regulatory elements and facilitate our understanding of the relationships among TFs, cis-acting elements and target gene expression.
Collapse
|
35
|
Qiao Z, Pingault L, Zogli P, Langevin M, Rech N, Farmer A, Libault M. A comparative genomic and transcriptomic analysis at the level of isolated root hair cells reveals new conserved root hair regulatory elements. PLANT MOLECULAR BIOLOGY 2017; 94:641-655. [PMID: 28687904 DOI: 10.1007/s11103-017-0630-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/28/2017] [Indexed: 06/07/2023]
Abstract
KEY MESSAGE A comparative transcriptomic and genomic analysis between Arabidopsis thaliana and Glycine max root hair genes reveals the evolution of the expression of plant genes after speciation and whole genome duplication. Our understanding of the conservation and divergence of the expression patterns of genes between plant species is limited by the quality of the genomic and transcriptomic resources available. Specifically, the transcriptomes generated from plant organs are the reflection of the contribution of the different cell types composing the samples weighted by their relative abundances in the sample. These contributions can vary between plant species leading to the generation of datasets which are difficult to compare. To gain a deeper understanding of the evolution of gene transcription in and between plant species, we performed a comparative transcriptomic and genomic analysis at the level of one single plant cell type, the root hair cell, and between two model plants: Arabidopsis (Arabidopsis thaliana) and soybean (Glycine max). These two species, which diverged 90 million years ago, were selected as models based on the large amount of genomic and root hair transcriptomic information currently available. Our analysis revealed in detail the transcriptional divergence and conservation between soybean paralogs (i.e., the soybean genome is the product of two successive whole genome duplications) and between Arabidopsis and soybean orthologs in this single plant cell type. Taking advantage of this evolutionary study, we combined bioinformatics, molecular, cellular and microscopic tools to characterize plant promoter sequences and the discovery of two root hair regulatory elements (RHE1 and RHE2) consistently and specifically active in plant root hair cells.
Collapse
Affiliation(s)
- Zhenzhen Qiao
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Lise Pingault
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Prince Zogli
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Micaela Langevin
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Niccole Rech
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Andrew Farmer
- National Center for Genome Resources, Santa Fe, NM, 87505, USA
| | - Marc Libault
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA.
| |
Collapse
|
36
|
Song C, Kim T, Chung WS, Lim CO. The Arabidopsis Phytocystatin AtCYS5 Enhances Seed Germination and Seedling Growth under Heat Stress Conditions. Mol Cells 2017; 40:577-586. [PMID: 28756655 PMCID: PMC5582304 DOI: 10.14348/molcells.2017.0075] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/08/2017] [Accepted: 06/25/2017] [Indexed: 11/27/2022] Open
Abstract
Phytocystatins (PhyCYSs) are plant-specific proteinaceous inhibitors that are implicated in protein turnover and stress responses. Here, we characterized a PhyCYS from Arabidopsis thaliana, which was designated AtCYS5. RT-qPCR analysis showed that the expression of AtCYS5 in germinating seeds was induced by heat stress (HS) and exogenous abscisic acid (ABA) treatment. Analysis of the expression of the β-glucuronidase reporter gene under the control of the AtCYS5 promoter showed that AtCYS5 expression during seed germination was induced by HS and ABA. Constitutive overexpression of AtCYS5 driven by the cauliflower mosaic virus 35S promoter led to enhanced HS tolerance in transgenic Arabidopsis, which was characterized by higher fresh weight and root length compared to wild-type (WT) and knockout (cys5) plants grown under HS conditions. The HS tolerance of At-CYS5-overexpressing transgenic plants was associated with increased insensitivity to exogenous ABA during both seed germination and post-germination compared to WT and cys5. Although no HS elements were identified in the 5'-flanking region of AtCYS5, canonical ABA-responsive elements (ABREs) were detected. AtCYS5 was upregulated in ABA-treated protoplasts transiently co-expressing this gene and genes encoding bZIP ABRE-binding factors (ABFs and AREB3). In the absence of ABA, ABF1 and ABF3 directly bound to the ABREs in the AtCYS5 promoter, which activated the transcription of this gene in the presence of ABA. These results suggest that an ABA-dependent pathway plays a positive role in the HS-responsive expression of AtCYS5 during seed germination and post-germination growth.
Collapse
Affiliation(s)
- Chieun Song
- Systems and Synthetic Agrobiotech Center and PMBBRC, Gyeongsang National University, Jinju 52828,
Korea
| | - Taeyoon Kim
- Systems and Synthetic Agrobiotech Center and PMBBRC, Gyeongsang National University, Jinju 52828,
Korea
- Division of Life Science, Gyeongsang National University, Jinju 52828,
Korea
| | - Woo Sik Chung
- Systems and Synthetic Agrobiotech Center and PMBBRC, Gyeongsang National University, Jinju 52828,
Korea
- Division of Life Science, Gyeongsang National University, Jinju 52828,
Korea
| | - Chae Oh Lim
- Systems and Synthetic Agrobiotech Center and PMBBRC, Gyeongsang National University, Jinju 52828,
Korea
- Division of Life Science, Gyeongsang National University, Jinju 52828,
Korea
| |
Collapse
|
37
|
Cui X, Yan Q, Gan S, Xue D, Dou D, Guo N, Xing H. Overexpression of gma-miR1510a/b suppresses the expression of a NB-LRR domain gene and reduces resistance to Phytophthora sojae. Gene 2017; 621:32-39. [PMID: 28411083 DOI: 10.1016/j.gene.2017.04.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 04/02/2017] [Accepted: 04/10/2017] [Indexed: 12/31/2022]
Abstract
MicroRNAs (miRNAs) are universal regulators that repress target gene expression in eukaryotes and play essential roles in plant immune responses. miRNAs were recently found to be involved in soybean and Phytophthora sojae interactions. Here, we screened miR1510, which was repressed in soybean during infection with P. sojae, indicating that it might be involved in soybean response to pathogens. To further uncover the roles of miRNAs in soybean, gma-miR1510a/b was overexpressed in the hairy roots of soybean using an Arabidopsis miR319a precursor as the backbone. The gma-miR1510a/b-overexpressing hairy roots showed enhanced susceptibility to P. sojae, and the results showed that miR1510 guides the cleavage of the Glyma.16G135500 gene, which encodes a classic type of plant disease resistance-associated gene that harbors the Toll-interleukin-like receptor (TIR) domain and nucleotide-binding site-leucine-rich repeat (NB-LRR) domain. Noticeably, several biotic stresses and hormone-responsive cis-regulatory elements were found to be present in the promoters of gma-MIR1510a and the target gene. Collectively, the results obtained in the current study reveal that gma-miR1510 regulates the target NB-LRR immune receptor gene Glyma.16G135500 and thus plays a crucial role in regulating the resistance of soybean to P. sojae.
Collapse
Affiliation(s)
- Xiaoxia Cui
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiang Yan
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuping Gan
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Dong Xue
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Na Guo
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Han Xing
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
38
|
Transcriptomic basis for drought-resistance in Brassica napus L. Sci Rep 2017; 7:40532. [PMID: 28091614 PMCID: PMC5238399 DOI: 10.1038/srep40532] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/07/2016] [Indexed: 01/06/2023] Open
Abstract
Based on transcriptomic data from four experimental settings with drought-resistant and drought-sensitive cultivars under drought and well-watered conditions, statistical analysis revealed three categories encompassing 169 highly differentially expressed genes (DEGs) in response to drought in Brassica napus L., including 37 drought-resistant cultivar-related genes, 35 drought-sensitive cultivar-related genes and 97 cultivar non-specific ones. We provide evidence that the identified DEGs were fairly uniformly distributed on different chromosomes and their expression patterns are variety specific. Except commonly enriched in response to various stimuli or stresses, different categories of DEGs show specific enrichment in certain biological processes or pathways, which indicated the possibility of functional differences among the three categories. Network analysis revealed relationships among the 169 DEGs, annotated biological processes and pathways. The 169 DEGs can be classified into different functional categories via preferred pathways or biological processes. Some pathways might simultaneously involve a large number of shared DEGs, and these pathways are likely to cross-talk and have overlapping biological functions. Several members of the identified DEGs fit to drought stress signal transduction pathway in Arabidopsis thaliana. Finally, quantitative real-time PCR validations confirmed the reproducibility of the RNA-seq data. These investigations are profitable for the improvement of crop varieties through transgenic engineering.
Collapse
|
39
|
Christiansen MW, Matthewman C, Podzimska-Sroka D, O'Shea C, Lindemose S, Møllegaard NE, Holme IB, Hebelstrup K, Skriver K, Gregersen PL. Barley plants over-expressing the NAC transcription factor gene HvNAC005 show stunting and delay in development combined with early senescence. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5259-73. [PMID: 27436280 PMCID: PMC5014165 DOI: 10.1093/jxb/erw286] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The plant-specific NAC transcription factors have attracted particular attention because of their involvement in stress responses, senescence, and nutrient remobilization. The HvNAC005 gene of barley encodes a protein belonging to subgroup NAC-a6 of the NAC family. This study shows that HvNAC005 is associated with developmental senescence. It was significantly up-regulated following ABA treatment, supported by ABA-responsive elements in its promoter, but it was not up-regulated during dark-induced senescence. The C-termini of proteins closely related to HvNAC005 showed overall high divergence but also contained conserved short motifs. A serine- and leucine-containing central motif was essential for transcriptional activity of the HvNAC005 C-terminus in yeast. Over-expression of HvNAC005 in barley resulted in a strong phenotype with delayed development combined with precocious senescence. The over-expressing plants showed up-regulation of genes involved with secondary metabolism, hormone metabolism, stress, signalling, development, and transport. Up-regulation of senescence markers and hormone metabolism and signalling genes supports a role of HvNAC005 in the cross field of different hormone and signalling pathways. Binding of HvNAC005 to promoter sequences of putative target genes containing the T[G/A]CGT core motif was shown by direct protein-DNA interactions of HvNAC005 with promoters for two of the up-regulated genes. In conclusion, HvNAC005 was shown to be a strong positive regulator of senescence and so is an obvious target for the fine-tuning of gene expression in future attempts to improve nutrient remobilization related to the senescence process in barley.
Collapse
Affiliation(s)
- Michael W Christiansen
- Department of Genetics and Biotechnology, Aarhus University, Forsøgsvej 1, Slagelse DK-4200, Denmark
| | - Colette Matthewman
- Department of Genetics and Biotechnology, Aarhus University, Forsøgsvej 1, Slagelse DK-4200, Denmark
| | - Dagmara Podzimska-Sroka
- Department of Genetics and Biotechnology, Aarhus University, Forsøgsvej 1, Slagelse DK-4200, Denmark
| | - Charlotte O'Shea
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-Copenhagen N, Denmark
| | - Søren Lindemose
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-Copenhagen N, Denmark
| | - Niels Erik Møllegaard
- Department of Cellular and Molecular Medicin, University of Copenhagen, Blegdamsvej 3B, DK-Copenhagen N, Denmark
| | - Inger B Holme
- Department of Genetics and Biotechnology, Aarhus University, Forsøgsvej 1, Slagelse DK-4200, Denmark
| | - Kim Hebelstrup
- Department of Genetics and Biotechnology, Aarhus University, Forsøgsvej 1, Slagelse DK-4200, Denmark
| | - Karen Skriver
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-Copenhagen N, Denmark
| | - Per L Gregersen
- Department of Genetics and Biotechnology, Aarhus University, Forsøgsvej 1, Slagelse DK-4200, Denmark
| |
Collapse
|
40
|
de Ollas C, Dodd IC. Physiological impacts of ABA-JA interactions under water-limitation. PLANT MOLECULAR BIOLOGY 2016; 91:641-50. [PMID: 27299601 PMCID: PMC4932129 DOI: 10.1007/s11103-016-0503-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 05/18/2016] [Indexed: 05/03/2023]
Abstract
Plant responses to drought stress depend on highly regulated signal transduction pathways with multiple interactions. This complex crosstalk can lead to a physiological outcome of drought avoidance or tolerance/resistance. ABA is the principal mediator of these responses due to the regulation of stomatal closure that determines plant growth and survival, but also other strategies of drought resistance such as osmotic adjustment. However, other hormones such as JA seem responsible for regulating a subset of plant responses to drought by regulating ABA biosynthesis and accumulation and ABA-dependent signalling, but also by ABA independent pathways. Here, we review recent reports of ABA-JA hormonal and molecular interactions within a physiological framework of drought tolerance. Understanding the physiological significance of this complex regulation offers opportunities to find strategies of drought tolerance that avoid unwanted side effects that limit growth and yield, and may allow biotechnological crop improvement.
Collapse
Affiliation(s)
- Carlos de Ollas
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Ian C. Dodd
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
41
|
Xia J, Wang X, Perroud PF, He Y, Quatrano R, Zhang W. Endogenous Small-Noncoding RNAs and Potential Functions in Desiccation Tolerance in Physcomitrella Patens. Sci Rep 2016; 6:30118. [PMID: 27443635 PMCID: PMC4957126 DOI: 10.1038/srep30118] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/29/2016] [Indexed: 02/07/2023] Open
Abstract
Early land plants like moss Physcomitrella patens have developed remarkable drought tolerance. Phytohormone abscisic acid (ABA) protects seeds during water stress by activating genes through transcription factors such as ABSCISIC ACID INSENSITIVE (ABI3). Small noncoding RNA (sncRNA), including microRNAs (miRNAs) and endogenous small-interfering RNAs (endo-siRNAs), are key gene regulators in eukaryotes, playing critical roles in stress tolerance in plants. Combining next-generation sequencing and computational analysis, we profiled and characterized sncRNA species from two ABI3 deletion mutants and the wild type P. patens that were subject to ABA treatment in dehydration and rehydration stages. Small RNA profiling using deep sequencing helped identify 22 novel miRNAs and 6 genomic loci producing trans-acting siRNAs (ta-siRNAs) including TAS3a to TAS3e and TAS6. Data from degradome profiling showed that ABI3 genes (ABI3a/b/c) are potentially regulated by the plant-specific miR536 and that other ABA-relevant genes are regulated by miRNAs and ta-siRNAs. We also observed broad variations of miRNAs and ta-siRNAs expression across different stages, suggesting that they could potentially influence desiccation tolerance. This study provided evidence on the potential roles of sncRNA in mediating desiccation-responsive pathways in early land plants.
Collapse
Affiliation(s)
- Jing Xia
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei 430056, China.,Department of Computer Science and Engineering, Washington University, St. Louis, MO 63130, USA
| | - Xiaoqin Wang
- College of Life Sciences, Capital Normal University, Beijing 100048, China.,Department of Biology, Washington University, St. Louis, MO 63130, USA
| | | | - Yikun He
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ralph Quatrano
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | - Weixiong Zhang
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei 430056, China.,Department of Computer Science and Engineering, Washington University, St. Louis, MO 63130, USA.,Department of Genetics, Washington University, St. Louis, MO 63130, USA
| |
Collapse
|
42
|
Sah SK, Reddy KR, Li J. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:571. [PMID: 27200044 DOI: 10.3389/fpls.2016.00571/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 04/13/2016] [Indexed: 05/27/2023]
Abstract
Abiotic stress is a primary threat to fulfill the demand of agricultural production to feed the world in coming decades. Plants reduce growth and development process during stress conditions, which ultimately affect the yield. In stress conditions, plants develop various stress mechanism to face the magnitude of stress challenges, although that is not enough to protect them. Therefore, many strategies have been used to produce abiotic stress tolerance crop plants, among them, abscisic acid (ABA) phytohormone engineering could be one of the methods of choice. ABA is an isoprenoid phytohormone, which regulates various physiological processes ranging from stomatal opening to protein storage and provides adaptation to many stresses like drought, salt, and cold stresses. ABA is also called an important messenger that acts as the signaling mediator for regulating the adaptive response of plants to different environmental stress conditions. In this review, we will discuss the role of ABA in response to abiotic stress at the molecular level and ABA signaling. The review also deals with the effect of ABA in respect to gene expression.
Collapse
Affiliation(s)
- Saroj K Sah
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University Mississippi State, Mississippi, MS, USA
| | - Kambham R Reddy
- Department of Plant and Soil Sciences, Mississippi State University Mississippi State, Mississippi, MS, USA
| | - Jiaxu Li
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University Mississippi State, Mississippi, MS, USA
| |
Collapse
|
43
|
Sah SK, Reddy KR, Li J. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:571. [PMID: 27200044 PMCID: PMC4855980 DOI: 10.3389/fpls.2016.00571] [Citation(s) in RCA: 629] [Impact Index Per Article: 69.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 04/13/2016] [Indexed: 05/17/2023]
Abstract
Abiotic stress is a primary threat to fulfill the demand of agricultural production to feed the world in coming decades. Plants reduce growth and development process during stress conditions, which ultimately affect the yield. In stress conditions, plants develop various stress mechanism to face the magnitude of stress challenges, although that is not enough to protect them. Therefore, many strategies have been used to produce abiotic stress tolerance crop plants, among them, abscisic acid (ABA) phytohormone engineering could be one of the methods of choice. ABA is an isoprenoid phytohormone, which regulates various physiological processes ranging from stomatal opening to protein storage and provides adaptation to many stresses like drought, salt, and cold stresses. ABA is also called an important messenger that acts as the signaling mediator for regulating the adaptive response of plants to different environmental stress conditions. In this review, we will discuss the role of ABA in response to abiotic stress at the molecular level and ABA signaling. The review also deals with the effect of ABA in respect to gene expression.
Collapse
Affiliation(s)
- Saroj K. Sah
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State UniversityMississippi State, Mississippi, MS, USA
| | - Kambham R. Reddy
- Department of Plant and Soil Sciences, Mississippi State UniversityMississippi State, Mississippi, MS, USA
| | - Jiaxu Li
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State UniversityMississippi State, Mississippi, MS, USA
| |
Collapse
|
44
|
Abstract
NAC transcription factors comprise a large plant-specific gene family. Increasing evidence suggests that members of this family have diverse functions in plant growth and development. In this study, we performed a genomewide survey of NAC type genes in maize (Zea mays L.). A complete set of 148 nonredundant NAC genes (ZmNAC1-ZmNAC148) were identifiedin the maize genome using Blast search tools, and divided into 12 groups (a-l) based on phylogeny. Chromosomal location of these genes revealed that they are distributed unevenly across all 10 chromosomes. Segmental and tandem duplication contributed largely to the expansion of the maize NAC gene family. The Ka/Ks ratio suggested that the duplicated genes of maize NAC family mainly experienced purifying selection, with limited functional divergence after duplication events.Microarray analysis indicated most of the maize NAC genes were expressed across different developmental stages. Moreover,19 maize NAC genes grouped with published stress-responsive genes from other plants were found to contain putative stress-responsive cis-elements in their promoter regions. All these stress-responsive genes belonged to the group d (stress-related).Further, these genes showed differential expression patterns over time in response to drought treatments by quantitative real-time PCR analysis. Our results reveal a comprehensive overview of the maize NAC, and form the foundation for future functional research to uncover their roles in maize growth and development.
Collapse
|
45
|
Ghosh TK, Kaneko M, Akter K, Murai S, Komatsu K, Ishizaki K, Yamato KT, Kohchi T, Takezawa D. Abscisic acid-induced gene expression in the liverwort Marchantia polymorpha is mediated by evolutionarily conserved promoter elements. PHYSIOLOGIA PLANTARUM 2016; 156:407-20. [PMID: 26456006 DOI: 10.1111/ppl.12385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/04/2015] [Accepted: 07/17/2015] [Indexed: 05/23/2023]
Abstract
Abscisic acid (ABA) is a phytohormone widely distributed among members of the land plant lineage (Embryophyta), regulating dormancy, stomata closure and tolerance to environmental stresses. In angiosperms (Magnoliophyta), ABA-induced gene expression is mediated by promoter elements such as the G-box-like ACGT-core motifs recognized by bZIP transcription factors. In contrast, the mode of regulation by ABA of gene expression in liverworts (Marchantiophyta), representing one of the earliest diverging land plant groups, has not been elucidated. In this study, we used promoters of the liverwort Marchantia polymorpha dehydrin and the wheat Em genes fused to the β-glucuronidase (GUS) reporter gene to investigate ABA-induced gene expression in liverworts. Transient assays of cultured cells of Marchantia indicated that ACGT-core motifs proximal to the transcription initiation site play a role in the ABA-induced gene expression. The RY sequence recognized by B3 transcriptional regulators was also shown to be responsible for the ABA-induced gene expression. In transgenic Marchantia plants, ABA treatment elicited an increase in GUS expression in young gemmalings, which was abolished by simultaneous disruption of the ACGT-core and RY elements. ABA-induced GUS expression was less obvious in mature thalli than in young gemmalings, associated with reductions in sensitivity to exogenous ABA during gametophyte growth. In contrast, lunularic acid, which had been suggested to function as an ABA-like substance, had no effect on GUS expression. The results demonstrate the presence of ABA-specific response mechanisms mediated by conserved cis-regulatory elements in liverworts, implying that the mechanisms had been acquired in the common ancestors of embryophytes.
Collapse
Affiliation(s)
- Totan K Ghosh
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Midori Kaneko
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Khaleda Akter
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Shuhei Murai
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Kenji Komatsu
- Department of Bioproduction Technology, Junior College of Tokyo University of Agriculture, Tokyo, Japan
| | | | - Katsuyuki T Yamato
- Faculty of Biology-Oriented Science and Engineering, Kinki University, Higashiosaka, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Daisuke Takezawa
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
- Institute for Environmental Science and Technology, Saitama University, Saitama, Japan
| |
Collapse
|
46
|
Kim H, Kim SH, Seo DH, Chung S, Kim SW, Lee JS, Kim WT, Lee JH. ABA-HYPERSENSITIVE BTB/POZ PROTEIN 1 functions as a negative regulator in ABA-mediated inhibition of germination in Arabidopsis. PLANT MOLECULAR BIOLOGY 2016; 90:303-15. [PMID: 26667153 DOI: 10.1007/s11103-015-0418-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/06/2015] [Indexed: 05/24/2023]
Abstract
To elucidate the contribution of CRL3-ABA-mediated responses, we attempted to find CRL3 substrate receptors involved in ABA signaling. One gene named ABA-HYPERSENSITIVE BTB/POZ PROTEIN 1 (AHT1) was upregulated more than 2.5 times by ABA, and its coding region possessed a BTB/POZ domain, which is the common feature of CRL3 substrate receptors. Loss of AHT1 led to retardation of the germination process, not inhibition of root growth. AHT1 transcripts also increased in response to mannitol, NaCl and drought treatments at the seedling stage and in dry seeds. High expression of AHT1 in dry seeds was inhibited by the defect of ABA signaling components such as ABI1, ABI3 and SRKs indicating that the expression of AHT1 is dependent on ABA signaling. Among bZIP transcription factors participating in ABA signaling, the losses of ABI5/DPBF1, AREB1/ABF2, EEL/DPBF4 and DPBF2/bZIP67 resulted in reduced AHT1 expression, showing that these transcription factors play a positive role in ABA-induced AHT1 expression. While loss of AHT1 did not affect the expression pattern of NCED3, ABI2, SRKs and AREB/ABF genes, it led to hyperinduction of ABI5/DPBF genes such as ABI5/DPBF1, EEL/DPBF4 and AREB3/DPBF3, which are mainly involved in seed development and germination, as well as ABA-inducible genes transactivated by ABI5. Overall, these findings indicate that AHT1 negatively regulates ABA-mediated inhibition of germination, possibly by repressing the expression of a subset of ABI5/DPBF subfamily genes, and that AHT1 may be regulated by a negative feedback process through its linkage with a part of ABI5/DPBF proteins.
Collapse
Affiliation(s)
- Hani Kim
- Department of Biology Education, Pusan National University, Pusan, 609-735, Korea
| | - Soon-Hee Kim
- Department of Biology Education, Pusan National University, Pusan, 609-735, Korea
| | - Dong Hye Seo
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749, Korea
| | - Sunglan Chung
- Underwood International College, Yonsei University, Seoul, 120-749, Korea
| | - Sang-Woo Kim
- Department of Biological Sciences, Pusan National University, Pusan, 609-735, Korea
| | - Jeong-Soo Lee
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Taejon, 305-806, Korea
| | - Woo Taek Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749, Korea
| | - Jae-Hoon Lee
- Department of Biology Education, Pusan National University, Pusan, 609-735, Korea.
| |
Collapse
|
47
|
Wei Y, Xu H, Diao L, Zhu Y, Xie H, Cai Q, Wu F, Wang Z, Zhang J, Xie H. Protein repair L-isoaspartyl methyltransferase 1 (PIMT1) in rice improves seed longevity by preserving embryo vigor and viability. PLANT MOLECULAR BIOLOGY 2015; 89:475-92. [PMID: 26438231 DOI: 10.1007/s11103-015-0383-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/19/2015] [Indexed: 05/07/2023]
Abstract
Damaged proteins containing abnormal isoaspartyl (isoAsp) accumulate as seeds age and the abnormality is thought to undermine seed vigor. Protein-L-isoaspartyl methyltransferase (PIMT) is involved in isoAsp-containing protein repair. Two PIMT genes from rice (Oryza sativa L.), designated as OsPIMT1 and OsPIMT2, were isolated and investigated for their roles. The results indicated that OsPIMT2 was mainly present in green tissues, but OsPIMT1 largely accumulated in embryos. Confocal visualization of the transient expression of OsPIMTs showed that OsPIMT2 was localized in the chloroplast and nucleus, whereas OsPIMT1 was predominately found in the cytosol. Artificial aging results highlighted the sensitivity of the seeds of OsPIMT1 mutant line when subjected to accelerated aging. Overexpression of OsPIMT1 in transgenic seeds reduced the accumulation of isoAsp-containing protein in embryos, and increased embryo viability. The germination percentage of transgenic seeds overexpressing OsPIMT1 increased 9-15% compared to the WT seeds after 21-day of artificial aging, whereas seeds from the OsPIMT1 RNAi lines overaccumulated isoAsp in embryos and experienced rapid loss of seed germinability. Taken together, these data strongly indicated that OsPIMT1-related seed longevity improvement is probably due to the repair of detrimental isoAsp-containing proteins that over accumulate in embryos when subjected to accelerated aging.
Collapse
Affiliation(s)
- Yidong Wei
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fuzhou, Fujian, China
- Incubator of National Key Laboratory of Crop Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China, Fuzhou/National Engineering Laboratory of Rice, Fuzhou, Fujian, China
| | - Huibin Xu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fuzhou, Fujian, China
- Incubator of National Key Laboratory of Crop Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China, Fuzhou/National Engineering Laboratory of Rice, Fuzhou, Fujian, China
| | - Lirong Diao
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fuzhou, Fujian, China
- Incubator of National Key Laboratory of Crop Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China, Fuzhou/National Engineering Laboratory of Rice, Fuzhou, Fujian, China
- Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yongsheng Zhu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fuzhou, Fujian, China
- Incubator of National Key Laboratory of Crop Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China, Fuzhou/National Engineering Laboratory of Rice, Fuzhou, Fujian, China
| | - Hongguang Xie
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fuzhou, Fujian, China
- Incubator of National Key Laboratory of Crop Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China, Fuzhou/National Engineering Laboratory of Rice, Fuzhou, Fujian, China
| | - Qiuhua Cai
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fuzhou, Fujian, China
- Incubator of National Key Laboratory of Crop Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China, Fuzhou/National Engineering Laboratory of Rice, Fuzhou, Fujian, China
| | - Fangxi Wu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fuzhou, Fujian, China
- Incubator of National Key Laboratory of Crop Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China, Fuzhou/National Engineering Laboratory of Rice, Fuzhou, Fujian, China
| | - Zonghua Wang
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fuzhou, Fujian, China
- Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jianfu Zhang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China.
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fuzhou, Fujian, China.
- Incubator of National Key Laboratory of Crop Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China, Fuzhou/National Engineering Laboratory of Rice, Fuzhou, Fujian, China.
| | - Huaan Xie
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China.
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fuzhou, Fujian, China.
- Incubator of National Key Laboratory of Crop Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China, Fuzhou/National Engineering Laboratory of Rice, Fuzhou, Fujian, China.
| |
Collapse
|
48
|
Filiz E, Ozyigit II, Vatansever R. Genome-wide identification of galactinol synthase (GolS) genes in Solanum lycopersicum and Brachypodium distachyon. Comput Biol Chem 2015; 58:149-57. [PMID: 26232767 DOI: 10.1016/j.compbiolchem.2015.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 06/15/2015] [Accepted: 07/17/2015] [Indexed: 12/22/2022]
Abstract
GolS genes stand as potential candidate genes for molecular breeding and/or engineering programs in order for improving abiotic stress tolerance in plant species. In this study, a total of six galactinol synthase (GolS) genes/proteins were retrieved for Solanum lycopersicum and Brachypodium distachyon. GolS protein sequences were identified to include glyco_transf_8 (PF01501) domain structure, and to have a close molecular weight (36.40-39.59kDa) and amino acid length (318-347 aa) with a slightly acidic pI (5.35-6.40). The sub-cellular location was mainly predicted as cytoplasmic. S. lycopersicum genes located on chr 1 and 2, and included one segmental duplication while genes of B. distachyon were only on chr 1 with one tandem duplication. GolS sequences were found to have well conserved motif structures. Cis-acting analysis was performed for three abiotic stress responsive elements, including ABA responsive element (ABRE), dehydration and cold responsive elements (DRE/CRT) and low-temperature responsive element (LTRE). ABRE elements were found in all GolS genes, except for SlGolS4; DRE/CRT was not detected in any GolS genes and LTRE element found in SlGolS1 and BdGolS1 genes. AU analysis in UTR and ORF regions indicated that SlGolS and BdGolS mRNAs may have a short half-life. SlGolS3 and SlGolS4 genes may generate more stable transcripts since they included AATTAAA motif for polyadenylation signal POLASIG2. Seconder structures of SlGolS proteins were well conserved than that of BdGolS. Some structural divergences were detected in 3D structures and predicted binding sites exhibited various patterns in GolS proteins.
Collapse
Affiliation(s)
- Ertugrul Filiz
- Duzce University, Department of Crop and Animal Production, Cilimli Vocational School, 81750 Cilimli, Duzce, Turkey.
| | - Ibrahim Ilker Ozyigit
- Marmara University, Faculty of Science and Arts, Department of Biology, 34722 Goztepe, Istanbul, Turkey
| | - Recep Vatansever
- Marmara University, Faculty of Science and Arts, Department of Biology, 34722 Goztepe, Istanbul, Turkey
| |
Collapse
|
49
|
A hormone-responsive C1-domain-containing protein At5g17960 mediates stress response in Arabidopsis thaliana. PLoS One 2015; 10:e0115418. [PMID: 25590629 PMCID: PMC4295845 DOI: 10.1371/journal.pone.0115418] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 11/22/2014] [Indexed: 12/17/2022] Open
Abstract
Phytohormones play a critical role in mediating plant stress response. They employ a variety of proteins for coordinating such processes. In Arabidopsis thaliana, some members of a Cys-rich protein family known as C1-clan proteins were involved in stress response, but the actual function of the protein family is largely unknown. We studied At5g17960, a C1-clan protein member that possesses three unique C1 signature domains viz. C1_2, C1_3 and ZZ/PHD type. Additionally, we identified 72 other proteins in A. thaliana that contain all three unique signature domains. Subsequently, the 73 proteins were phylogenetically classified into IX subgroups. Promoter motif analysis of the 73 genes identified the presence of hormone-responsive and stress-responsive putative cis-regulatory elements. Furthermore, we observed that transcript levels of At5g17960 were induced in response to different hormones and stress treatments. At1g35610 and At3g13760, two other members of subgroup IV, also showed upregulation upon GA3, biotic and abiotic stress treatments. Moreover, seedlings of independent transgenic A. thaliana lines ectopically expressing or suppressing At5g17960 also showed differential regulation of several abiotic stress-responsive marker genes. Thus, our data suggest that C1-domain-containing proteins have a role to play in plant hormone-mediated stress responses, thereby assigning a putative function for the C1-clan protein family.
Collapse
|
50
|
Mani B, Agarwal M, Katiyar-Agarwal S. Comprehensive Expression Profiling of Rice Tetraspanin Genes Reveals Diverse Roles During Development and Abiotic Stress. FRONTIERS IN PLANT SCIENCE 2015; 6:1088. [PMID: 26697042 PMCID: PMC4675852 DOI: 10.3389/fpls.2015.01088] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 11/20/2015] [Indexed: 05/05/2023]
Abstract
Tetraspanin family is comprised of evolutionarily conserved integral membrane proteins. The incredible ability of tetraspanins to form 'micro domain complexes' and their preferential targeting to membranes emphasizes their active association with signal recognition and communication with neighboring cells, thus acting as key modulators of signaling cascades. In animals, tetraspanins are associated with multitude of cellular processes. Unlike animals, the biological relevance of tetraspanins in plants has not been well investigated. In Arabidopsis tetraspanins are known to contribute in important plant development processes such as leaf morphogenesis, root, and floral organ formation. In the present study we investigated the genomic organization, chromosomal distribution, phylogeny and domain structure of 15 rice tetraspanin proteins (OsTETs). OsTET proteins had similar domain structure and signature 'GCCK/R' motif as reported in Arabidopsis. Comprehensive expression profiling of OsTET genes suggested their possible involvement during rice development. While OsTET9 and 10 accumulated predominantly in flowers, OsTET5, 8, and 12 were preferentially expressed in root tissues. Noticeably, seven OsTETs exhibited more than twofold up regulation at early stages of flag leaf senescence in rice. Furthermore, several OsTETs were differentially regulated in rice seedlings exposed to abiotic stresses, exogenous treatment of hormones and nutrient deprivation. Transient subcellular localization studies of eight OsTET proteins in tobacco epidermal cells showed that these proteins localized in plasma membrane. The present study provides valuable insights into the possible roles of tetraspanins in regulating development and defining response to abiotic stresses in rice. Targeted proteomic studies would be useful in identification of their interacting partners under different conditions and ultimately their biological function in plants.
Collapse
Affiliation(s)
- Balaji Mani
- Department of Plant Molecular Biology, University of Delhi South CampusNew Delhi, India
| | - Manu Agarwal
- Department of Botany, University of DelhiDelhi, India
| | - Surekha Katiyar-Agarwal
- Department of Plant Molecular Biology, University of Delhi South CampusNew Delhi, India
- *Correspondence: Surekha Katiyar-Agarwal, ,
| |
Collapse
|