1
|
Mine K, Taki H, Kim J, Seto J, Matsuo S, Sato R, Takaku H. Transcriptomic analysis reveals 3 important carbohydrate-active enzymes contributing to starch degradation of the oleaginous yeast Lipomyces starkeyi. Biosci Biotechnol Biochem 2025; 89:446-458. [PMID: 39694709 DOI: 10.1093/bbb/zbae199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
The oleaginous yeast Lipomyces starkeyi has a high capacity for starch assimilation, but the genes involved and specific mechanisms in starch degradation remain unclear. This study aimed to identify the critical carbohydrate-active enzyme (CAZyme) genes contributing to starch degradation in L. starkeyi. Comparative transcriptome analysis of cells cultured in glucose and soluble starch medium revealed that 55 CAZymes (including transcript IDs 3772, 1803, and 7314) were highly expressed in soluble starch medium. Protein domain structure and disruption mutant analyses revealed that 3772 encodes the sole secreted α-amylase (LsAmy1p), whereas 1803 and 7314 encode secreted α-glucosidase (LsAgd1p and LsAgd2p, respectively). Triple-gene disruption exhibited severely impaired growth in soluble starch, dextrin, and raw starch media, highlighting their critical role in degrading polysaccharides composed of glucose linked by α-1,4-glucosidic bonds. This study provided insights into the complex starch degradation mechanism in L. starkeyi.
Collapse
Affiliation(s)
- Kentaro Mine
- Department of Applied Life Sciences, Niigata University of Pharmacy and Medical and Life Sciences, Niigata, Japan
- Nissin Global Innovation Center, Nissin Foods Holdings Co., Ltd, Tokyo, Japan
| | - Hiroya Taki
- Nissin Global Innovation Center, Nissin Foods Holdings Co., Ltd, Tokyo, Japan
| | - Juyoung Kim
- Nissin Global Innovation Center, Nissin Foods Holdings Co., Ltd, Tokyo, Japan
| | - Jiro Seto
- Nissin Global Innovation Center, Nissin Foods Holdings Co., Ltd, Tokyo, Japan
| | - Shinji Matsuo
- Nissin Global Innovation Center, Nissin Foods Holdings Co., Ltd, Tokyo, Japan
| | - Rikako Sato
- Department of Applied Life Sciences, Niigata University of Pharmacy and Medical and Life Sciences, Niigata, Japan
| | - Hiroaki Takaku
- Department of Applied Life Sciences, Niigata University of Pharmacy and Medical and Life Sciences, Niigata, Japan
| |
Collapse
|
2
|
Pongpom M, Khamto N, Sukantamala P, Kalawil T, Wangsanut T. Identification of Homeobox Transcription Factors in a Dimorphic Fungus Talaromyces marneffei and Protein-Protein Interaction Prediction of RfeB. J Fungi (Basel) 2024; 10:687. [PMID: 39452639 PMCID: PMC11508405 DOI: 10.3390/jof10100687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/11/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Talaromyces marneffei is a thermally dimorphic fungus that can cause life-threatening systemic mycoses, particularly in immunocompromised individuals. Fungal homeobox transcription factors control various developmental processes, including the regulation of sexual reproduction, morphology, metabolism, and virulence. However, the function of homeobox proteins in T. marneffei has not been fully explored. Here, we searched the T. marneffei genome for the total homeobox transcription factors and predicted their biological relevance by performing gene expression analysis in different cell types, including conidia, mycelia, yeasts, and during phase transition. RfeB is selected for further computational analysis since (i) its transcripts were differentially expressed in different phases of T. marneffei, and (ii) this protein contains the highly conserved protein-protein interaction region (IR), which could be important for pathobiology and have therapeutic application. To assess the structure-function of the IR region, in silico alanine substitutions were performed at three-conserved IR residues (Asp276, Glu279, and Gln282) of RfeB, generating a triple RfeB mutated protein. Using 3D modeling and molecular dynamics simulations, we compared the protein complex formation of wild-type and mutated RfeB proteins with the putative partner candidate TmSwi5. Our results demonstrated that the mutated RfeB protein exhibited increased free binding energy, elevated protein compactness, and a reduced number of atomic contacts, suggesting disrupted protein stability and interaction. Notably, our model revealed that the IR residues primarily stabilized the RfeB binding sites located in the central region (CR). This computational approach for protein mutagenesis could provide a foundation for future experimental studies on the functional characterization of RfeB and other homeodomain-containing proteins in T. marneffei.
Collapse
Affiliation(s)
- Monsicha Pongpom
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (M.P.)
| | - Nopawit Khamto
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Thitisuda Kalawil
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (M.P.)
| | - Tanaporn Wangsanut
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (M.P.)
| |
Collapse
|
3
|
Buradam P, Thananusak R, Koffas M, Chumnanpuen P, Vongsangnak W. Expanded Gene Regulatory Network Reveals Potential Light-Responsive Transcription Factors and Target Genes in Cordyceps militaris. Int J Mol Sci 2024; 25:10516. [PMID: 39408845 PMCID: PMC11476991 DOI: 10.3390/ijms251910516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Cordyceps militaris, a fungus widely used in traditional Chinese medicine and pharmacology, is recognized for its abundant bioactive compounds, including cordycepin and carotenoids. The growth, development, and metabolite production in various fungi are influenced by the complex interactions between regulatory cascades and light-signaling pathways. However, the mechanisms of gene regulation in response to light exposure in C. militaris remain largely unexplored. This study aimed to identify light-responsive genes and potential transcription factors (TFs) in C. militaris through an integrative transcriptome analysis. To achieve this, we reconstructed an expanded gene regulatory network (eGRN) comprising 507 TFs and 8662 regulated genes using both interolog-based and homolog-based methods to build the protein-protein interaction network. Aspergillus nidulans and Neurospora crassa were chosen as templates due to their relevance as fungal models and the extensive study of their light-responsive mechanisms. By utilizing the eGRN as a framework for comparing transcriptomic responses between light-exposure and dark conditions, we identified five key TFs-homeobox TF (CCM_07504), FlbC (CCM_04849), FlbB (CCM_01128), C6 zinc finger TF (CCM_05172), and mcrA (CCM_06477)-along with ten regulated genes within the light-responsive subnetwork. These TFs and regulated genes are likely crucial for the growth, development, and secondary metabolite production in C. militaris. Moreover, molecular docking analysis revealed that two novel TFs, CCM_05727 and CCM_06992, exhibit strong binding affinities and favorable docking scores with the primary light-responsive protein CmWC-1, suggesting their potential roles in light signaling pathways. This information provides an important functional interactive network for future studies on global transcriptional regulation in C. militaris and related fungi.
Collapse
Affiliation(s)
- Paradee Buradam
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Kasetsart University International College (KUIC), Kasetsart University, Bangkok 10900, Thailand
| | - Roypim Thananusak
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand;
| | - Mattheos Koffas
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Pramote Chumnanpuen
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Kasetsart University International College (KUIC), Kasetsart University, Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand;
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand;
| |
Collapse
|
4
|
Morelos-Martínez MI, Cano-Camacho H, Díaz-Tapia KM, Simpson J, López-Romero E, Zavala-Páramo MG. Comparative Genomic Analyses of Colletotrichum lindemuthianum Pathotypes with Different Virulence Levels and Lifestyles. J Fungi (Basel) 2024; 10:651. [PMID: 39330411 PMCID: PMC11432805 DOI: 10.3390/jof10090651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Colletotrichum lindemuthianum is the most frequent pathogenic fungus of the common bean Phaseolus vulgaris. This filamentous fungus employs a hemibiotrophic nutrition/infection strategy, which is characteristic of many Colletotrichum species. Due to host-pathogen coevolution, C. lindemuthianum includes pathotypes with a diversity of virulence against differential common bean varieties. In this study, we performed comparative genomic analyses on three pathotypes with different virulence levels and a non-pathogenic pathotype, isolated from different geographical areas in Mexico. Our results revealed large genomes with high transposable element contents that have undergone expansions, generating intraspecific diversity. All the pathotypes exhibited a similar number of clusters of orthologous genes (COGs) and Gene Ontology (GO) terms. TFomes contain families that are typical in fungal genomes; however, they show different contents between pathotypes, mainly in transcription factors with the fungal-specific TF and Zn2Cys6 domains. Peptidase families mainly contain abundant serine peptidases, metallopeptidases, and cysteine peptidases. In the secretomes, the number of genes differed between the pathotypes, with a high percentage of candidate effectors. Both the virulence gene and CAZyme gene content for each pathotype was abundant and diverse, and the latter was enriched in hemicellulolytic enzymes. We provide new insights into the nature of intraspecific diversity among C. lindemuthianum pathotypes and the origin of their ability to rapidly adapt to genetic changes in its host and environmental conditions.
Collapse
Affiliation(s)
- Ma Irene Morelos-Martínez
- Centro Multidisciplinario de Estudios en Biotecnología, FMVZ, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Posta Veterinaria, Morelia 58000, Michoacán, Mexico
| | - Horacio Cano-Camacho
- Centro Multidisciplinario de Estudios en Biotecnología, FMVZ, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Posta Veterinaria, Morelia 58000, Michoacán, Mexico
| | - Karla Morelia Díaz-Tapia
- Centro Multidisciplinario de Estudios en Biotecnología, FMVZ, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Posta Veterinaria, Morelia 58000, Michoacán, Mexico
| | - June Simpson
- Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Km 9.6 Libramiento Norte Carretera Irapuato-León, Irapuato 36821, Guanajuato, Mexico
| | - Everardo López-Romero
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta SN, Guanajuato 36030, Guanajuato, Mexico
| | - María Guadalupe Zavala-Páramo
- Centro Multidisciplinario de Estudios en Biotecnología, FMVZ, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Posta Veterinaria, Morelia 58000, Michoacán, Mexico
| |
Collapse
|
5
|
Tong Z, Han X, Duan X, Lin J, Chen J, Xiao J, Gan Y, Gan B, Yan J. Genome-Wide Identification and Expression Analysis of the Cys2His2 Zinc Finger Protein Gene Family in Flammulina filiformis. J Fungi (Basel) 2024; 10:644. [PMID: 39330404 PMCID: PMC11433517 DOI: 10.3390/jof10090644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Zinc finger proteins (ZFPs) are essential transcription factors in eukaryotes, particularly the extensively studied C2H2 family, which is known for its involvement in various biological processes. This research provides a thorough examination and analysis of the C2H2-ZFP gene family in Flammulina filiformis. Using bioinformatics tools, 58 FfC2H2-ZFP genes spread across 11 chromosomes were identified and scrutinized in detail for their gene structures, protein characteristics, and phylogenetic relationships. The study of phylogenetics and synteny sheds light on the evolutionary relationships among C2H2-ZFPs in F. filiformis and other fungi, revealing a complex evolutionary past. The identification of conserved cis-regulatory elements in the gene promoter regions suggests intricate functionalities, particularly in the developmental and stress response pathways. By utilizing RNA-seq and qRT-PCR techniques, the expression patterns of these genes were explored across different developmental stages and tissues of F. filiformis, unveiling distinct expression profiles. Notably, significant expression variations were observed in the stipe elongation region and pilei of various sizes, indicating potential roles in fruiting body morphogenesis. This study enhances our knowledge of the C2H2-ZFP gene family in F. filiformis and lays the groundwork for future investigations into their regulatory mechanisms and applications in fungal biology and biotechnology.
Collapse
Affiliation(s)
- Zongjun Tong
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
| | - Xing Han
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
- Chengdu Agricultural Science and Technology Center, Chengdu 610095, China
| | - Xinlian Duan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
| | - Junbin Lin
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
- Chengdu Agricultural Science and Technology Center, Chengdu 610095, China
| | - Jie Chen
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
- Chengdu Agricultural Science and Technology Center, Chengdu 610095, China
| | - Jihong Xiao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
| | - Ying Gan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
- Chengdu Agricultural Science and Technology Center, Chengdu 610095, China
| | - Bingcheng Gan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
| | - Junjie Yan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
| |
Collapse
|
6
|
Marian IM, Valdes ID, Hayes RD, LaButti K, Duffy K, Chovatia M, Johnson J, Ng V, Lugones LG, Wösten HAB, Grigoriev IV, Ohm RA. High phenotypic and genotypic plasticity among strains of the mushroom-forming fungus Schizophyllum commune. Fungal Genet Biol 2024; 173:103913. [PMID: 39004162 DOI: 10.1016/j.fgb.2024.103913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Schizophyllum commune is a mushroom-forming fungus notable for its distinctive fruiting bodies with split gills. It is used as a model organism to study mushroom development, lignocellulose degradation and mating type loci. It is a hypervariable species with considerable genetic and phenotypic diversity between the strains. In this study, we systematically phenotyped 16 dikaryotic strains for aspects of mushroom development and 18 monokaryotic strains for lignocellulose degradation. There was considerable heterogeneity among the strains regarding these phenotypes. The majority of the strains developed mushrooms with varying morphologies, although some strains only grew vegetatively under the tested conditions. Growth on various carbon sources showed strain-specific profiles. The genomes of seven monokaryotic strains were sequenced and analyzed together with six previously published genome sequences. Moreover, the related species Schizophyllum fasciatum was sequenced. Although there was considerable genetic variation between the genome assemblies, the genes related to mushroom formation and lignocellulose degradation were well conserved. These sequenced genomes, in combination with the high phenotypic diversity, will provide a solid basis for functional genomics analyses of the strains of S. commune.
Collapse
Affiliation(s)
- Ioana M Marian
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Ivan D Valdes
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Richard D Hayes
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kurt LaButti
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kecia Duffy
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Mansi Chovatia
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jenifer Johnson
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Vivian Ng
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Luis G Lugones
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Han A B Wösten
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Robin A Ohm
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
7
|
Sakamoto Y, Sato S, Yoshida H, Takahashi M, Osakabe K, Muraguchi H. The exp2 gene, which encodes a protein with two zinc finger domains, regulates cap expansion and autolysis in Coprinopsis cinerea. Microbiol Res 2024; 283:127695. [PMID: 38554651 DOI: 10.1016/j.micres.2024.127695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/02/2024]
Abstract
Cap expansion in agaricoid mushroom species is an important event for sexual reproduction because meiosis occurs in basidia under the cap, and basidiospores can be released by opening the cap. However, molecular mechanisms underlying cap expansion in basidiomycetes remain poorly understood. We aimed to elucidate the molecular mechanisms of cap expansion in basidiomycetes by analyzing the unique cap-expansionless UV mutant #13 (exp2-1) in Coprinopsis cinerea. Linkage analysis and consequent genome sequence analysis revealed that the gene responsible for the mutant phenotypes encodes a putative transcription factor with two C2H2 zinc finger motifs. The mutant that was genome-edited to lack exp2 exhibited an expansionless phenotype. Some of the genes encoding cell wall degradation-related enzymes showed decreased expression during cap expansion and autolysis in the exp2 UV and genome-edited mutant. The exp2 gene is widely conserved in Agaricomycetes, suggesting that Exp2 homologs regulate fruiting body maturation in Agaricomycetes, especially cap expansion in Agaricoid-type mushroom-forming fungi. Therefore, exp2 homologs could be a target for mushroom breeding to maintain shape after harvest for some cultivating mushrooms, presenting a promising avenue for further research in breeding techniques.
Collapse
Affiliation(s)
- Yuichi Sakamoto
- Department of Bioresource Sciences, Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami-shi, Iwate 024-0003, Japan.
| | - Shiho Sato
- Department of Bioresource Sciences, Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami-shi, Iwate 024-0003, Japan
| | - Hiroshi Yoshida
- Department of Bioresource Sciences, Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami-shi, Iwate 024-0003, Japan
| | - Machiko Takahashi
- Department of Bioresource Sciences, Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami-shi, Iwate 024-0003, Japan
| | - Keishi Osakabe
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Hajime Muraguchi
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-Nishi Nakano Shimoshinjo, Akita 010-0195, Japan
| |
Collapse
|
8
|
Shin S, Park J, Yang L, Kim H, Choi GJ, Lee YW, Kim JE, Son H. Con7 is a key transcription regulator for conidiogenesis in the plant pathogenic fungus Fusarium graminearum. mSphere 2024; 9:e0081823. [PMID: 38591889 PMCID: PMC11237738 DOI: 10.1128/msphere.00818-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
The mycelium of the plant pathogenic fungus Fusarium graminearum exhibits distinct structures for vegetative growth, asexual sporulation, sexual development, virulence, and chlamydospore formation. These structures are vital for the survival and pathogenicity of the fungus, necessitating precise regulation based on environmental cues. Initially identified in Magnaporthe oryzae, the transcription factor Con7p regulates conidiation and infection-related morphogenesis, but not vegetative growth. We characterized the Con7p ortholog FgCon7, and deletion of FgCON7 resulted in severe defects in conidium production, virulence, sexual development, and vegetative growth. The mycelia of the deletion mutant transformed into chlamydospore-like structures with high chitin level accumulation. Notably, boosting FgABAA expression partially alleviated developmental issues in the FgCON7 deletion mutant. Chromatin immunoprecipitation (ChIP)-quantitative PCR (qPCR) analysis confirmed a direct genetic link between FgABAA and FgCON7. Furthermore, the chitin synthase gene Fg6550 (FGSG_06550) showed significant upregulation in the FgCON7 deletion mutant, and altering FgCON7 expression affected cell wall integrity. Further research will focus on understanding the behavior of the chitin synthase gene and its regulation by FgCon7 in F. graminearum. This study contributes significantly to our understanding of the genetic pathways that regulate hyphal differentiation and conidiation in this plant pathogenic fungus. IMPORTANCE The ascomycete fungus Fusarium graminearum is the primary cause of head blight disease in wheat and barley, as well as ear and stalk rot in maize. Given the importance of conidia and ascospores in the disease cycle of F. graminearum, precise spatiotemporal regulation of these biological processes is crucial. In this study, we characterized the Magnaporthe oryzae Con7p ortholog and discovered that FgCon7 significantly influences various crucial aspects of fungal development and pathogenicity. Notably, overexpression of FgABAA partially restored developmental defects in the FgCON7 deletion mutant. ChIP-qPCR analysis confirmed a direct genetic link between FgABAA and FgCON7. Furthermore, our research revealed a clear correlation between FgCon7 and chitin accumulation and the expression of chitin synthase genes. These findings offer valuable insights into the genetic mechanisms regulating conidiation and the significance of mycelial differentiation in this plant pathogenic fungus.
Collapse
Affiliation(s)
- Soobin Shin
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Jiyeun Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Lin Yang
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Hun Kim
- Eco-friendly New Materials Research Group, Research Center for Biobased Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Gyung Ja Choi
- Eco-friendly New Materials Research Group, Research Center for Biobased Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Yin-Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Jung-Eun Kim
- Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, Jeju, South Korea
| | - Hokyoung Son
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
9
|
Pfotenhauer AC, Reuter DN, Clark M, Harbison SA, Schimel TM, Stewart CN, Lenaghan SC. Development of new binary expression systems for plant synthetic biology. PLANT CELL REPORTS 2023; 43:22. [PMID: 38150091 DOI: 10.1007/s00299-023-03100-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/10/2023] [Indexed: 12/28/2023]
Abstract
KEY MESSAGE A novel plant binary expression system was developed from the compactin biosynthetic pathway 27 of Penicillium citrinum ML-236B. The system achieved >fivefold activation of gene expression in 28 transgenic tobacco. A diverse and well-characterized genetic toolset is fundamental to achieve the overall goals of plant synthetic biology. To properly coordinate expression of a multigene pathway, this toolset should include binary systems that control gene expression at the level of transcription. In plants, few highly functional, orthogonal transcriptional regulators have been identified. Here, we describe the process of developing synthetic plant transcription factors using regulatory elements from the Penicillium citrinum ML-236B (compactin) pathway. This pathway contains several genes including mlcA and mlcC that are transcriptionally regulated in a dose-dependent manner by the activator mlcR. In Nicotiana benthamiana, we first expressed mlcR with several cognate synthetic promoters driving expression of GFP. Synthetic promoters contained operator sequences from the compactin gene cluster. Following identification of the most active synthetic promoter, the DNA-binding domain from mlcR was used to generate chimeric transcription factors containing variable activation domains, including QF from the Neurospora crassa Q-system. Activity was measured at both protein and RNA levels which correlated with an R2 value of 0.94. A synthetic transcription factor with a QF activation domain increased gene expression from its synthetic promoter up to sixfold in N. benthamiana. Two systems were characterized in transgenic tobacco plants. The QF-based plants maintained high expression in tobacco, increasing expression from the cognate synthetic promoter by fivefold. Transgenic plants and non-transgenic plants were morphologically indistinguishable. The framework of this study can easily be adopted for other putative transcription factors to continue improvement of the plant synthetic biology toolbox.
Collapse
Affiliation(s)
- Alexander C Pfotenhauer
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - D Nikki Reuter
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Mikayla Clark
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Stacee A Harbison
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Tayler M Schimel
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - C Neal Stewart
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, 37996, USA
- Department of Plant Sciences, The University of Tennessee, Knoxville, Knoxville, TN, USA
| | - Scott C Lenaghan
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, 37996, USA.
- Department of Food Science, The University of Tennessee, Knoxville, Knoxville, TN, USA.
| |
Collapse
|
10
|
Zhang C, Shi X, Zhang J, Zhang Y, Liu W, Wang W. Integration of Metabolomes and Transcriptomes Provides Insights into Morphogenesis and Maturation in Morchella sextelata. J Fungi (Basel) 2023; 9:1143. [PMID: 38132744 PMCID: PMC10744280 DOI: 10.3390/jof9121143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
True morels (Morchella, Pezizales) are a popular edible and medicinal fungus with great nutritional and economic value. The dynamics and regulatory mechanisms during the morphogenesis and maturation of morels are poorly understood. In this study, the metabolomes and transcriptomes of the mycelium (MY), primordium differentiation (PR), young fruiting body (YFB), and mature fruiting body (MFB) were comprehensively analyzed to reveal the mechanism of the morphogenesis and maturation of Morchella sextelata. A total of 748 differentially expressed metabolites (DEMs) and 5342 differentially expressed genes (DEGs) were detected, mainly enriched in the carbohydrate, amino acid, and lipid metabolism pathways, with the transition from the mycelium to the primordium being the most drastic stage at both the metabolic and transcriptional levels. The integrated metabolomics and transcriptomics highlighted significant correlations between the DEMs and DEGs, and specific amino acid and nucleotide metabolic pathways were significantly co-enriched, which may play key roles in morphological development and ascocarp maturation. A conceptual model of transcriptional and metabolic regulation was proposed during morphogenesis and maturation in M. sextelata for the first time, in which environmental factors activate the regulation of transcription factors, which then promote metabolic and transcriptional regulation from vegetative to reproductive growth. These results provide insights into the metabolic dynamics and transcriptional regulation during the morphogenesis and maturation of morels and valuable resources for future breeding enhancement and sustainable artificial cultivation.
Collapse
Affiliation(s)
- Chen Zhang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China; (C.Z.); (J.Z.)
| | - Xiaofei Shi
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
| | - Jiexiong Zhang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China; (C.Z.); (J.Z.)
| | - Yesheng Zhang
- Shandong Junsheng Biotechnologies Co., Ltd., Liaocheng 252400, China;
| | - Wei Liu
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
| | - Wen Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China; (C.Z.); (J.Z.)
| |
Collapse
|
11
|
Nambiar A, Dubinkina V, Liu S, Maslov S. FUN-PROSE: A deep learning approach to predict condition-specific gene expression in fungi. PLoS Comput Biol 2023; 19:e1011563. [PMID: 37971967 PMCID: PMC10653424 DOI: 10.1371/journal.pcbi.1011563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 09/30/2023] [Indexed: 11/19/2023] Open
Abstract
mRNA levels of all genes in a genome is a critical piece of information defining the overall state of the cell in a given environmental condition. Being able to reconstruct such condition-specific expression in fungal genomes is particularly important to metabolically engineer these organisms to produce desired chemicals in industrially scalable conditions. Most previous deep learning approaches focused on predicting the average expression levels of a gene based on its promoter sequence, ignoring its variation across different conditions. Here we present FUN-PROSE-a deep learning model trained to predict differential expression of individual genes across various conditions using their promoter sequences and expression levels of all transcription factors. We train and test our model on three fungal species and get the correlation between predicted and observed condition-specific gene expression as high as 0.85. We then interpret our model to extract promoter sequence motifs responsible for variable expression of individual genes. We also carried out input feature importance analysis to connect individual transcription factors to their gene targets. A sizeable fraction of both sequence motifs and TF-gene interactions learned by our model agree with previously known biological information, while the rest corresponds to either novel biological facts or indirect correlations.
Collapse
Affiliation(s)
- Ananthan Nambiar
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
- Carl R. Woese Institute for Genomic Biology, Urbana, Illinois, United States of America
| | - Veronika Dubinkina
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
- Carl R. Woese Institute for Genomic Biology, Urbana, Illinois, United States of America
- The Gladstone Institute of Data Science and Biotechnology, San Francisco, California, United States of America
| | - Simon Liu
- Carl R. Woese Institute for Genomic Biology, Urbana, Illinois, United States of America
- Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| | - Sergei Maslov
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
- Carl R. Woese Institute for Genomic Biology, Urbana, Illinois, United States of America
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
- Computing, Environment and Life Sciences, Argonne National Laboratory, Lemont, Illinois, United States of America
| |
Collapse
|
12
|
Rani V, Joshi DC, Joshi P, Singh R, Yadav D. "Millet Models" for harnessing nuclear factor-Y transcription factors to engineer stress tolerance in plants: current knowledge and emerging paradigms. PLANTA 2023; 258:29. [PMID: 37358736 DOI: 10.1007/s00425-023-04186-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/17/2023] [Indexed: 06/27/2023]
Abstract
MAIN CONCLUSION The main purpose of this review is to shed light on the role of millet models in imparting climate resilience and nutritional security and to give a concrete perspective on how NF-Y transcription factors can be harnessed for making cereals more stress tolerant. Agriculture faces significant challenges from climate change, bargaining, population, elevated food prices, and compromises with nutritional value. These factors have globally compelled scientists, breeders, and nutritionists to think of some options that can combat the food security crisis and malnutrition. To address these challenges, mainstreaming the climate-resilient and nutritionally unparalleled alternative crops like millet is a key strategy. The C4 photosynthetic pathway and adaptation to low-input marginal agricultural systems make millets a powerhouse of important gene and transcription factor families imparting tolerance to various kinds of biotic and abiotic stresses. Among these, the nuclear factor-Y (NF-Y) is one of the prominent transcription factor families that regulate diverse genes imparting stress tolerance. The primary purpose of this article is to shed light on the role of millet models in imparting climate resilience and nutritional security and to give a concrete perspective on how NF-Y transcription factors can be harnessed for making cereals more stress tolerant. Future cropping systems could be more resilient to climate change and nutritional quality if these practices were implemented.
Collapse
Affiliation(s)
- Varsha Rani
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - D C Joshi
- ICAR-Vivekananda Institute of Hill Agriculture, Almora, Uttarakhand, 263601, India
| | - Priyanka Joshi
- Plant and Environmental Sciences, 113 Biosystems Research Complex, Clemson University, Clemson, South Carolina, 29634, USA
| | - Rajesh Singh
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Dinesh Yadav
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India.
| |
Collapse
|
13
|
Lee S, Völz R, Lim YJ, Harris W, Kim S, Lee YH. The nuclear effector MoHTR3 of Magnaporthe oryzae modulates host defence signalling in the biotrophic stage of rice infection. MOLECULAR PLANT PATHOLOGY 2023; 24:602-615. [PMID: 36977203 DOI: 10.1111/mpp.13326] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/07/2023] [Accepted: 02/28/2023] [Indexed: 05/18/2023]
Abstract
Fungal effectors play a pivotal role in suppressing the host defence system, and their evolution is highly dynamic. By comparative sequence analysis of plant-pathogenic fungi and Magnaporthe oryzae, we identified the small secreted C2 H2 zinc finger protein MoHTR3. MoHTR3 exhibited high conservation in M. oryzae strains but low conservation among other plant-pathogenic fungi, suggesting an emerging evolutionary selection process. MoHTR3 is exclusively expressed in the biotrophic stage of fungal invasion, and the encoded protein localizes to the biotrophic interfacial complex (BIC) and the host cell nucleus. The signal peptide crucial for MoHTR3' secretion to the BIC and the protein section required for its translocation to the nucleus were both identified by a functional protein domain study. The host-nuclear localization of MoHTR3 suggests a function as a transcriptional modulator of host defence gene induction. After ΔMohtr3 infection, the expression of jasmonic acid- and ethylene-associated genes was diminished in rice, in contrast to when the MoHTR3-overexpressing strain (MoHTR3ox) was applied. The transcript levels of salicylic acid- and defence-related genes were also affected after ΔMohtr3 and MoHTR3ox application. In pathogenicity assays, ΔMohtr3 was indistinguishable from the wild type. However, MoHTR3ox-infected plants showed diminished lesion formation and hydrogen peroxide accumulation, accompanied by a decrease in susceptibility, suggesting that the MoHTR3-induced manipulation of host cells affects host-pathogen interaction. MoHTR3 emphasizes the role of the host nucleus as a critical target for the pathogen-driven manipulation of host defence mechanisms and underscores the ongoing evolution of rice blast's arms race.
Collapse
Affiliation(s)
- Sehee Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Ronny Völz
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - You-Jin Lim
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - William Harris
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Seongbeom Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Center for Fungal Genetic Resources, Seoul National University, Seoul, South Korea
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
- Center for Plant Microbiome Research, Seoul National University, Seoul, South Korea
| |
Collapse
|
14
|
Mazumder MAR, Sujintonniti N, Chaum P, Ketnawa S, Rawdkuen S. Developments of Plant-Based Emulsion-Type Sausage by Using Grey Oyster Mushrooms and Chickpeas. Foods 2023; 12:1564. [PMID: 37107359 PMCID: PMC10137549 DOI: 10.3390/foods12081564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/22/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Plant-based (PB) meat alternatives are developing due to the consumer's demand, especially those who are mainly health-concerned. Soy proteins (SP) are commonly used as the main ingredients for PB meat analogues; however, SP may have adverse effects on the cognitive function and mood of humans. This study aimed to use grey oyster mushroom (GOM) and chickpea flour (CF) as an alternative source of SP to prepare emulsion-type sausages (ES). The effect of different hydrocolloids and oil on the quality of sausage was also investigated. The sausage was prepared using different concentrations of GOM and CF (20:20, 25:15, and 30:10 w/w). The GOM to CF ratio 25:15 was selected for the ES based on protein content, textural properties, and sensory attributes. The result indicated that sausage containing konjac powder (KP) and rice bran oil (RBO) provided a better texture and consumer acceptability. The final product showed higher protein (36%, dry basis), less cooking loss (4.08%), purge loss (3.45%), higher emulsion stability, and better consumer acceptability than the commercial sausage. The best recipe for mushroom-based ES is 25% GOM, 15% CF, 5% KP, and 5% RBO. In addition, GOM and CF could be an alternative option to replace SP in PB meat products.
Collapse
Affiliation(s)
- Md. Anisur Rahman Mazumder
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Department of Food Technology and Rural Industries, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Naphat Sujintonniti
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Pranchalee Chaum
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Sunantha Ketnawa
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Saroat Rawdkuen
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Unit of Innovative Food Packaging and Biomaterials, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
| |
Collapse
|
15
|
Christopher M, Sreeja-Raju A, Abraham A, Gokhale DV, Pandey A, Sukumaran RK. Early cellular events and potential regulators of cellulase induction in Penicillium janthinellum NCIM 1366. Sci Rep 2023; 13:5057. [PMID: 36977777 PMCID: PMC10050438 DOI: 10.1038/s41598-023-32340-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
Cellulase production by fungi is tightly regulated in response to environmental cues, and understanding this mechanism is a key pre-requisite in the efforts to improve cellulase secretion. Based on UniProt descriptions of secreted Carbohydrate Active enZymes (CAZymes), 13 proteins of the cellulase hyper-producer Penicillium janthinellum NCIM 1366 (PJ-1366) were annotated as cellulases- 4 cellobiohydrolases (CBH), 7 endoglucanases (EG) and 2 beta glucosidases (BGL). Cellulase, xylanase, BGL and peroxidase activities were higher for cultures grown on a combination of cellulose and wheat bran, while EG was stimulated by disaccharides. Docking studies indicated that the most abundant BGL- Bgl2- has different binding sites for the substrate cellobiose and the product glucose, which helps to alleviate feedback inhibition, probably accounting for the low level of glucose tolerance exhibited. Out of the 758 transcription factors (TFs) differentially expressed on cellulose induction, 13 TFs were identified whose binding site frequencies on the promoter regions of the cellulases positively correlated with their abundance in the secretome. Further, correlation analysis of the transcriptional response of these regulators and TF-binding sites on their promoters indicated that cellulase expression is possibly preceded by up-regulation of 12 TFs and down-regulation of 16 TFs, which cumulatively regulate transcription, translation, nutrient metabolism and stress response.
Collapse
Affiliation(s)
- Meera Christopher
- Biofuels and Biorefineries Section, Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Pappanamcode, Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - AthiraRaj Sreeja-Raju
- Biofuels and Biorefineries Section, Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Pappanamcode, Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Amith Abraham
- Department of Chemical Engineering, Hanyang University, Seoul, Republic of Korea
| | | | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, Uttar Pradesh, India
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248 007, India
- Centre for Energy and Environmental Sustainability, Lucknow, 226 029, India
| | - Rajeev K Sukumaran
- Biofuels and Biorefineries Section, Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Pappanamcode, Thiruvananthapuram, Kerala, 695019, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India.
| |
Collapse
|
16
|
Yu H, Yang H, Haridas S, Hayes RD, Lynch H, Andersen S, Newman M, Li G, Martínez-Soto D, Milo-Cochavi S, Hazal Ayhan D, Zhang Y, Grigoriev IV, Ma LJ. Conservation and Expansion of Transcriptional Factor Repertoire in the Fusarium oxysporum Species Complex. J Fungi (Basel) 2023; 9:359. [PMID: 36983527 PMCID: PMC10056406 DOI: 10.3390/jof9030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The Fusarium oxysporum species complex (FOSC) includes both plant and human pathogens that cause devastating plant vascular wilt diseases and threaten public health. Each F. oxysporum genome comprises core chromosomes (CCs) for housekeeping functions and accessory chromosomes (ACs) that contribute to host-specific adaptation. This study inspects global transcription factor profiles (TFomes) and their potential roles in coordinating CC and AC functions to accomplish host-specific interactions. Remarkably, we found a clear positive correlation between the sizes of TFomes and the proteomes of an organism. With the acquisition of ACs, the FOSC TFomes were larger than the other fungal genomes included in this study. Among a total of 48 classified TF families, 14 families involved in transcription/translation regulations and cell cycle controls were highly conserved. Among the 30 FOSC expanded families, Zn2-C6 and Znf_C2H2 were most significantly expanded to 671 and 167 genes per family including well-characterized homologs of Ftf1 (Zn2-C6) and PacC (Znf_C2H2) that are involved in host-specific interactions. Manual curation of characterized TFs increased the TFome repertoires by 3% including a disordered protein Ren1. RNA-Seq revealed a steady pattern of expression for conserved TF families and specific activation for AC TFs. Functional characterization of these TFs could enhance our understanding of transcriptional regulation involved in FOSC cross-kingdom interactions, disentangle species-specific adaptation, and identify targets to combat diverse diseases caused by this group of fungal pathogens.
Collapse
Affiliation(s)
- Houlin Yu
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - He Yang
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Sajeet Haridas
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, University of California Berkeley, Berkeley, CA 94720, USA
| | - Richard D. Hayes
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, University of California Berkeley, Berkeley, CA 94720, USA
| | - Hunter Lynch
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Sawyer Andersen
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Madison Newman
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Gengtan Li
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Domingo Martínez-Soto
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Shira Milo-Cochavi
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Dilay Hazal Ayhan
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Yong Zhang
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Igor V. Grigoriev
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94598, USA
| | - Li-Jun Ma
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
17
|
Yu H, Yang H, Haridas S, Hayes RD, Lynch H, Andersen S, Li G, Mart Nez-Soto D, Milo-Cochavi S, Hazal Ayhan D, Zhang Y, Grigoriev IV, Ma LJ. Conservation and Expansion of Transcriptional Factor Repertoire in the Fusarium oxysporum Species Complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527873. [PMID: 36798233 PMCID: PMC9934661 DOI: 10.1101/2023.02.09.527873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The Fusarium oxysporum species complex (FOSC) includes both plant and human pathogens that cause devastating plant vascular wilt diseases and threaten public health. Each F. oxysporum genome comprises core chromosomes (CCs) for housekeeping functions and accessory chromosomes (ACs) that contribute to host-specific adaptation. This study inspected global transcription factor profiles (TFomes) and their potential roles in coordinating CCs and ACs functions to accomplish host-specific pathogenicity. Remarkably, we found a clear positive correlation between the sizes of TFome and proteome of an organism, and FOSC TFomes are larger due to the acquisition of ACs. Among a total of 48 classified TF families, 14 families involved in transcription/translation regulations and cell cycle controls are highly conserved. Among 30 FOSC expanded families, Zn2-C6 and Znf_C2H2 are most significantly expanded to 671 and 167 genes per family, including well-characterized homologs of Ftf1 (Zn2-C6) and PacC (Znf_C2H2) involved in host-specific interactions. Manual curation of characterized TFs increased the TFome repertoires by 3%, including a disordered protein Ren1. Expression profiles revealed a steady expression of conserved TF families and specific activation of AC TFs. Functional characterization of these TFs could enhance our understanding of transcriptional regulation involved in FOSC cross-kingdom interactions, disentangle species-specific adaptation, and identify targets to combat diverse diseases caused by this group of fungal pathogens.
Collapse
|
18
|
Itaconic acid production is regulated by LaeA in Aspergillus pseudoterreus. Metab Eng Commun 2022; 15:e00203. [PMID: 36065328 PMCID: PMC9440423 DOI: 10.1016/j.mec.2022.e00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/08/2022] [Accepted: 08/15/2022] [Indexed: 11/22/2022] Open
Abstract
The global regulator LaeA controls secondary metabolism in diverse Aspergillus species. Here we explored its role in regulation of itaconic acid production in Aspergillus pseudoterreus. To understand its role in regulating metabolism, we deleted and overexpressed laeA, and assessed the transcriptome, proteome, and secreted metabolome prior to and during initiation of phosphate limitation induced itaconic acid production. We found that secondary metabolite clusters, including the itaconic acid biosynthetic gene cluster, are regulated by laeA and that laeA is required for high yield production of itaconic acid. Overexpression of LaeA improves itaconic acid yield at the expense of biomass by increasing the expression of key biosynthetic pathway enzymes and attenuating the expression of genes involved in phosphate acquisition and scavenging. Increased yield was observed in optimized conditions as well as conditions containing excess nutrients that may be present in inexpensive sugar containing feedstocks such as excess phosphate or complex nutrient sources. This suggests that global regulators of metabolism may be useful targets for engineering metabolic flux that is robust to environmental heterogeneity. The Itaconic acid biosynthetic gene cluster is regulated by laeA. LaeA is required for production of itaconic acid. Overexpression of laeA attenuates genes involved in phosphate acquisition. Global regulator engineering increases robustness of itaconic acid production.
Collapse
|
19
|
Liu T, Qin J, Cao Y, Subbarao KV, Chen J, Mandal MK, Xu X, Shang W, Hu X. Transcription Factor VdCf2 Regulates Growth, Pathogenicity, and the Expression of a Putative Secondary Metabolism Gene Cluster in Verticillium dahliae. Appl Environ Microbiol 2022; 88:e0138522. [PMID: 36342142 PMCID: PMC9680623 DOI: 10.1128/aem.01385-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/07/2022] [Indexed: 11/09/2022] Open
Abstract
Transcription factors (TFs) bind to the promoters of target genes to regulate gene expression in response to different stimuli. The functions and regulatory mechanisms of transcription factors (TFs) in Verticillium dahliae are, however, still largely unclear. This study showed that a C2H2-type zinc finger TF, VdCf2 (V. dahliae chorion transcription factor 2), plays key roles in V. dahliae growth, melanin production, and virulence. Transcriptome sequencing analysis showed that VdCf2 was involved in the regulation of expression of genes encoding secreted proteins, pathogen-host interaction (PHI) homologs, TFs, and G protein-coupled receptors (GPCRs). Furthermore, VdCf2 positively regulated the expression of VdPevD1 (VDAG_02735), a previously reported virulence factor. VdCf2 thus regulates the expression of several pathogenicity-related genes that also contribute to virulence in V. dahliae. VdCf2 also inhibited the transcription of the Vd276-280 gene cluster and interacted with two members encoding proteins (VDAG_07276 and VDAG_07278) in the gene cluster. IMPORTANCE Verticillium dahliae is an important soilborne phytopathogen which can ruinously attack numerous host plants and cause significant economic losses. Transcription factors (TFs) were reported to be involved in various biological processes, such as hyphal growth and virulence of pathogenic fungi. However, the functions and regulatory mechanisms of TFs in V. dahliae remain largely unclear. In this study, we identified a new transcription factor, VdCf2 (V. dahliae chorion transcription factor 2), based on previous transcriptome data, which participates in growth, melanin production, and virulence of V. dahliae. We provide evidence that VdCf2 regulates the expression of the pathogenicity-related gene VdPevD1 (VDAG_02735) and Vd276-280 gene cluster. VdCf2 also interacts with VDAG_07276 and VDAG_07278 in this gene cluster based on a yeast two-hybrid and bimolecular fluorescence complementation assay. These results revealed the regulatory mechanisms of a pivotal pathogenicity-related transcription factor, VdCf2 in V. dahliae.
Collapse
Affiliation(s)
- Tao Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jun Qin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yonghong Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Krishna V. Subbarao
- Department of Plant Pathology, University of California, Davis, United States Agricultural Research Station, Salinas, California, USA
| | - Jieyin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mihir K. Mandal
- Department of Plant Pathology, University of California, Davis, United States Agricultural Research Station, Salinas, California, USA
| | - Xiangming Xu
- NIAB East Malling Research (EMR), West Malling, Kent, United Kingdom
| | - Wenjing Shang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xiaoping Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
20
|
Mustafa S, Riaz MA, Masoud MS, Qasim M, Riaz A. Impact of dietary inclusion of Chenopodium quinoa on growth performance and survival of Hubbard chicken. PLoS One 2022; 17:e0276524. [PMID: 36264847 PMCID: PMC9584399 DOI: 10.1371/journal.pone.0276524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 10/10/2022] [Indexed: 02/05/2023] Open
Abstract
The poultry sector is the most vibrant segment of the agriculture system plays a vital role in the supply of healthy meat products. Broiler production effectiveness is greatly associated with feed formulation. Although, broiler exhibits a relatively fast growth rate, the nutritional profile of its meat has been criticized under conventional human dietary regimes. In the current study, the dietary inclusion of quinoa was assessed to improve broiler growth performance, carcass quality, and health by analyzing different growth, hematological and biochemical, immunological parameters. In the present study, the chicken was fed with 50 g/kg, 100 g/kg, and 200 g/kg quinoa enriched diets in two different experimental groups during the growth phase or finisher phase while chicken fed with diet without quinoa were as control. The 50 g/kg quinoa supplemented chicken group revealed a substantial difference in growth performance in comparison with the control group. In addition, the examination of quinoa dietary supplementation on carcass quality exhibited variable behavior. Further, all the study groups fed with quinoa during the growth phase revealed no remarkable difference in the hematological profile in contrast to the control group except for the chicken group fed (50 g/Kg) during the finisher phase for hemoglobin levels. Likewise, all the quinoa enriched diet given chicken groups showed no significant difference in serum biochemical profile in contrast to the control group except for the 50 g/Kg quinoa fed chicken group during the finisher phase for total globulin levels. In addition, the examination of quinoa dietary supplementation on the broiler serum lipid profile was also assessed and birds exhibited variable behavior as the result of quinoa dietary supplementation. Evaluation of short-term immune response after quinoa supplementation assessed and birds exhibited no marked significance on expression outcomes of interleukin/cytokines (IL 1 beta, IL-6, IL-10) assessed by qRT-PCR analysis. In conclusion, the dietary supplementation of broiler fed with quinoa seeds can enhance the growth performance and the carcass quality of broiler.
Collapse
Affiliation(s)
- Samina Mustafa
- Department of Zoology, Government College Women University, Faisalabad, Pakistan
| | - Muhammad Ahsan Riaz
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan
| | - Muhammad Shareef Masoud
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Ayesha Riaz
- Department of Zoology, Government College Women University, Faisalabad, Pakistan
| |
Collapse
|
21
|
Therapeutic Investigation of Standardized Aqueous Methanolic Extract of Bitter Melon (Momordica charantia L.) for Its Potential against Polycystic Ovarian Syndrome in Experimental Animals’ Model: In Vitro and In Vivo Studies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5143653. [PMID: 36212951 PMCID: PMC9536891 DOI: 10.1155/2022/5143653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/09/2022] [Accepted: 09/17/2022] [Indexed: 11/30/2022]
Abstract
Polycystic ovarian syndrome (PCOS) is an heterogenous, endocrine, metabolic, and multidisciplinary disorder of reproductive-aged females that aggravates insulin resistance, hyperandrogenism, obesity, menstrual irregularities, and infertility. Bitter melon is consumed as vegetable in various parts of the world. The purpose of this study was to provide the rationale for the folkloric uses of bitter melon (Momordica charantia L.) in reproductive abnormalities. HPLC analysis of standardized aqueous methanolic extract of bitter melon revealed the presence of various phytochemicals such as quercetin, gallic acid, benzoic acid, chlorogenic acid, syringic acid, p-coumaric acid, ferulic acid, and cinnamic acid. Twenty-five Swiss albino adult female rats (120–130 g) were acquired and divided into two groups (5 + 20). Letrozole (1 mg/kg p.o.) was used for four weeks to induce PCOS in twenty rats. Disease induction was confirmed by vaginal smear cytology analysis under the microscope. Animals were further divided into four groups, with one group as PCOS group, and the remaining three are treated with standardized extract of bitter melon (500 mg/kg p.o.), bitter melon plus metformin (500 mg/kg p.o.), and metformin alone for the period of next four weeks. After four weeks, the rats were euthanized at diestrus stage. Ovaries of the experimental animals were removed and fixed in 10% buffered formalin, and blood samples were obtained from direct cardiac puncture and stored. Ovaries histopathological analysis showed cystic follicles (9–10) in PCOS group, while, in all the treatment groups, we found developing and mature follicles. Similarly, hormone analysis showed significant (p < 0.001) reduction of LH surge, insulin, and testosterone levels and improvement in FSH levels. Lipid profile and antioxidant enzymes status were also significantly (p < 0.001) improved. In conclusion, the study validates the bitter melon potential as an insulin sensitizer and ovulation enhancer and authenticates its potential in PCOS management.
Collapse
|
22
|
Satterlee TR, Williams FN, Nadal M, Glenn AE, Lofton LW, Duke MV, Scheffler BE, Gold SE. Transcriptomic Response of Fusarium verticillioides to Variably Inhibitory Environmental Isolates of Streptomyces. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:894590. [PMID: 37746240 PMCID: PMC10512263 DOI: 10.3389/ffunb.2022.894590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/31/2022] [Indexed: 09/26/2023]
Abstract
Fusarium verticillioides is a mycotoxigenic fungus that is a threat to food and feed safety due to its common infection of maize, a global staple crop. A proposed strategy to combat this threat is the use of biological control bacteria that can inhibit the fungus and reduce mycotoxin contamination. In this study, the effect of multiple environmental isolates of Streptomyces on F. verticillioides was examined via transcriptome analysis. The Streptomyces strains ranged from inducing no visible response to dramatic growth inhibition. Transcriptionally, F. verticillioides responded proportionally to strain inhibition with either little to no transcript changes to thousands of genes being differentially expressed. Expression changes in multiple F. verticillioides putative secondary metabolite gene clusters was observed. Interestingly, genes involved in the fusaric acid gene cluster were suppressed by inhibitory strains of Streptomyces. A F. verticillioides beta-lactamase encoding gene (FVEG_13172) was found to be highly induced by specific inhibitory Streptomyces strains and its deletion increased visible response to those strains. This study demonstrates that F. verticillioides does not have an all or nothing response to bacteria it encounters but rather a measured response that is strain specific and proportional to the strength of inhibition.
Collapse
Affiliation(s)
- Timothy R. Satterlee
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Toxicology and Mycotoxin Research Unit, United States (US) National Poultry Research Center, Athens, GA, United States
| | - Felicia N. Williams
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Toxicology and Mycotoxin Research Unit, United States (US) National Poultry Research Center, Athens, GA, United States
| | - Marina Nadal
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Toxicology and Mycotoxin Research Unit, United States (US) National Poultry Research Center, Athens, GA, United States
| | - Anthony E. Glenn
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Toxicology and Mycotoxin Research Unit, United States (US) National Poultry Research Center, Athens, GA, United States
| | - Lily W. Lofton
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Toxicology and Mycotoxin Research Unit, United States (US) National Poultry Research Center, Athens, GA, United States
| | - Mary V. Duke
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Genomics and Bioinformatics Research Unit, Stoneville, MS, United States
| | - Brian E. Scheffler
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Genomics and Bioinformatics Research Unit, Stoneville, MS, United States
| | - Scott E. Gold
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Toxicology and Mycotoxin Research Unit, United States (US) National Poultry Research Center, Athens, GA, United States
| |
Collapse
|
23
|
Luo X, Zhan X, Ruan R, Xi Y, Shen C, Wang H, Wang M. Genome-wide identification of the Penicillium digitatum bZIP gene family and the roles of one key member, PdatfA. Res Microbiol 2022; 173:103970. [PMID: 35868518 DOI: 10.1016/j.resmic.2022.103970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/03/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022]
Abstract
Penicillium digitatum is the most common cause of postharvest decay in citrus fruits around the world. Previous studies revealed that the bZIP gene family plays crucial roles in development, stress adaptation, and pathogenicity in fungi. However, little is known about the bZIP genes in P. digitatum. In this study, we systematically identified the bZIP family in 23 Penicillium species and analyzed their evolutionary relationships. We found that gene loss and gene duplication shaped the evolution of the Penicillium bZIP family. P. digitatum experienced 3 bZIP gene loss events, but with no gene duplication. We subsequently characterized the biological functions of one important member, PdatfA in P. digitatum by constructing the deletion mutant. Results showed that ΔPdatfA exhibited a moderate growth defect, reduced pigmentation, and slightly increased resistance to fungicides iprodione and fludioxonil. However, ΔPdatfA displayed similar rot symptoms to that of the wild type. The ΔPdatfA mycelia were not affected in response to oxidative stress while its conidia showed enhanced resistance due to the upregulation of catalases. Our results provide new insights into the evolution and functions of the bZIP gene family in Penicillium.
Collapse
Affiliation(s)
- Xiujun Luo
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Xiaori Zhan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Ruoxin Ruan
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Yue Xi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Mingshuang Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China.
| |
Collapse
|
24
|
Zhao K, Liu L, Huang S. Genome-Wide Identification and Functional Analysis of the bZIP Transcription Factor Family in Rice Bakanae Disease Pathogen, Fusarium fujikuroi. Int J Mol Sci 2022; 23:ijms23126658. [PMID: 35743103 PMCID: PMC9223689 DOI: 10.3390/ijms23126658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 12/10/2022] Open
Abstract
Fungal basic leucine zipper (bZIP) proteins play a vital role in biological processes such as growth, biotic/abiotic stress responses, nutrient utilization, and invasion. In this study, genome-wide identification of bZIP genes in the fungus Fusarium fujikuroi, the pathogen of bakanae disease, was carried out. Forty-four genes encoding bZIP transcription factors (TFs) from the genome of F. fujikuroi (FfbZIP) were identified and functionally characterized. Structures, domains, and phylogenetic relationships of the sequences were analyzed by bioinformatic approaches. Based on the phylogenetic relationships with the FfbZIP proteins of eight other fungi, the bZIP genes can be divided into six groups (A–F). The additional conserved motifs have been identified and their possible functions were predicted. To analyze functions of the bZIP genes, 11 FfbZIPs were selected according to different motifs they contained and were knocked out by genetic recombination. Results of the characteristic studies revealed that these FfbZIPs were involved in oxygen stress, osmotic stress, cell wall selection pressure, cellulose utilization, cell wall penetration, and pathogenicity. In conclusion, this study enhanced understandings of the evolution and regulatory mechanism of the FfbZIPs in fungal growth, abiotic/biotic stress resistance, and pathogenicity, which could be the reference for other fungal bZIP studies.
Collapse
|
25
|
Zhang J, Wang F, Liu M, Fu M, Dong C. Dynamic Genome-Wide Transcription Profiling and Direct Target Genes of CmWC-1 Reveal Hierarchical Light Signal Transduction in Cordyceps militaris. J Fungi (Basel) 2022; 8:jof8060624. [PMID: 35736107 PMCID: PMC9225392 DOI: 10.3390/jof8060624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Light is necessary for primordium differentiation and fruiting body development for most edible fungi; however, light perception and signal transduction have only been well studied in model fungi. In this study, a hierarchical network of transcriptional response to light in Cordyceps militaris, one of the edible fungi, has been described on a genome-wide scale using dynamic transcriptome analysis. It was shown that light regulated the transcript of 1722 genes, making up 18% of the whole genome of C. militaris. Analysis of light-responsive genes in C. militaris identified 4 categories: immediate-early, early, late, and continuous light-responsive genes, and the gene number increased distinctly with prolonged light exposure. Light-responsive genes with distinct functional categories showed specific time-dependent regulation. The target genes of CmWC-1, the most important photoreceptor, were revealed by ChIP-seq. A total of 270 significant peaks corresponding to 427 genes were identified to be directly regulated by CmWC-1, among which 143 genes respond to light. Based on 270 ChIP-seq peaks, the binding site for CmWC-1 was identified as AAATCAGACCAC/GTGGTCTGATTT, differing from the binding site by the homolog in Neurospora crassa. Elucidating the mechanisms of light perception and signal transduction will be helpful for further research on the fruiting body development in edible fungi.
Collapse
Affiliation(s)
- Jiaojiao Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (J.Z.); (F.W.); (M.L.)
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Fen Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (J.Z.); (F.W.); (M.L.)
| | - Mengqian Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (J.Z.); (F.W.); (M.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingjia Fu
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China;
| | - Caihong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (J.Z.); (F.W.); (M.L.)
- Correspondence: ; Tel./Fax: +86-10-64806138
| |
Collapse
|
26
|
Transcription factor lineages in plant-pathogenic fungi, connecting diversity with fungal virulence. Fungal Genet Biol 2022; 161:103712. [PMID: 35667520 DOI: 10.1016/j.fgb.2022.103712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/18/2022] [Accepted: 05/30/2022] [Indexed: 12/27/2022]
Abstract
Plant-pathogenic fungi span diverse taxonomic lineages. Their host-infection strategies are often specialised and require the coordinated regulation of molecular virulence factors. Transcription factors (TFs) are fundamental regulators of gene expression, yet relatively few virulence-specific regulators are characterised in detail and their evolutionary trajectories are not well understood. Hence, this study compared the full range of TFs across taxonomically-diverse fungal proteomes and classified their lineages through an orthology analysis. The primary aims were to characterise differences in the range and profile of TF lineages broadly linked to plant-host association or pathogenic lifestyles, and to better characterise the evolutionary origin and trajectory of experimentally-validated virulence regulators. We observed significantly fewer TFs among obligate, host-associated pathogens, largely attributed to contractions in several Zn2Cys6 TF-orthogroup lineages. We also present novel insight into the key virulence-regulating TFs Ste12, Pf2 and EBR1, providing evidence for their ancestral origins, expansion and/or loss. Ultimately, the analysis presented here provides both primary evidence for TF evolution in fungal phytopathogenicity, as well as a practical phylogenetic resource to guide further detailed investigation on the regulation of virulence within key pathogen lineages.
Collapse
|
27
|
Kang S, Kim KT, Choi J, Kim H, Cheong K, Bandara A, Lee YH. Genomics and Informatics, Conjoined Tools Vital for Understanding and Protecting Plant Health. PHYTOPATHOLOGY 2022; 112:981-995. [PMID: 34889667 DOI: 10.1094/phyto-10-21-0418-rvw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Genomics' impact on crop production continuously expands. The number of sequenced plant and microbial species and strains representing diverse populations of individual species rapidly increases thanks to the advent of next-generation sequencing technologies. Their genomic blueprints revealed candidate genes involved in various functions and processes crucial for crop health and helped in understanding how the sequenced organisms have evolved at the genome level. Functional genomics quickly translates these blueprints into a detailed mechanistic understanding of how such functions and processes work and are regulated; this understanding guides and empowers efforts to protect crops from diverse biotic and abiotic threats. Metagenome analyses help identify candidate microbes crucial for crop health and uncover how microbial communities associated with crop production respond to environmental conditions and cultural practices, presenting opportunities to enhance crop health by judiciously configuring microbial communities. Efficient conversion of disparate types of massive genomics data into actionable knowledge requires a robust informatics infrastructure supporting data preservation, analysis, and sharing. This review starts with an overview of how genomics came about and has quickly transformed life science. We illuminate how genomics and informatics can be applied to investigate various crop health-related problems using selected studies. We end the review by noting why community empowerment via crowdsourcing is crucial to harnessing genomics to protect global food and nutrition security without continuously expanding the environmental footprint of crop production.
Collapse
Affiliation(s)
- Seogchan Kang
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Ki-Tae Kim
- Department of Agricultural Life Science, Sunchon National University, Suncheon 57922, Korea
| | - Jaeyoung Choi
- Korea Institute of Science and Technology Gangneung Institute of Natural Products, Gangneung 25451, Korea
| | - Hyun Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Kyeongchae Cheong
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Korea
| | - Ananda Bandara
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
28
|
Jeon J, Kim KT, Choi J, Cheong K, Ko J, Choi G, Lee H, Lee GW, Park SY, Kim S, Kim ST, Min CW, Kang S, Lee YH. Alternative splicing diversifies the transcriptome and proteome of the rice blast fungus during host infection. RNA Biol 2022; 19:373-385. [PMID: 35311472 PMCID: PMC8942408 DOI: 10.1080/15476286.2022.2043040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Alternative splicing (AS) contributes to diversifying and regulating cellular responses to environmental conditions and developmental cues by differentially producing multiple mRNA and protein isoforms from a single gene. Previous studies on AS in pathogenic fungi focused on profiling AS isoforms under a limited number of conditions. We analysed AS profiles in the rice blast fungus Magnaporthe oryzae, a global threat to rice production, using high-quality transcriptome data representing its vegetative growth (mycelia) and multiple host infection stages. We identified 4,270 AS isoforms derived from 2,413 genes, including 499 genes presumably regulated by infection-specific AS. AS appears to increase during infection, with 32.7% of the AS isoforms being produced during infection but absent in mycelia. Analysis of the isoforms observed at each infection stage showed that 636 AS isoforms were more abundant than corresponding annotated mRNAs, especially after initial hyphal penetration into host cell. Many such dominant isoforms were predicted to encode regulatory proteins such as transcription factors and phospho-transferases. We also identified the genes encoding distinct proteins via AS and confirmed the translation of some isoforms via a proteomic analysis, suggesting potential AS-mediated neo-functionalization of some genes during infection. Comprehensive profiling of the pattern of genome-wide AS during multiple stages of rice-M. oryzae interaction established a foundational resource that will help investigate the role and regulation of AS during rice infection.
Collapse
Affiliation(s)
- Jongbum Jeon
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, Korea
- Plant Immunity Research Center, Seoul National University, Seoul, Korea
- Korea Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Ki-Tae Kim
- Department of Agricultural Life Science, Sunchon National University, Suncheon, Korea
| | - Jaeyoung Choi
- Smart Farm Research Center, Korea Institute of Science and Technology, Gangneung, Korea
| | - Kyeongchae Cheong
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, Korea
| | - Jaeho Ko
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Gobong Choi
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, Korea
| | - Hyunjun Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | | | - Sook-Young Park
- Department of Agricultural Life Science, Sunchon National University, Suncheon, Korea
| | - Seongbeom Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Pusan National University, Miryang, Korea
- Life and Energy Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Cheol Woo Min
- Department of Plant Bioscience, Pusan National University, Miryang, Korea
| | - Seogchan Kang
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA USA
| | - Yong-Hwan Lee
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, Korea
- Plant Immunity Research Center, Seoul National University, Seoul, Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
- Center for Fungal Genetic Resources, Seoul National University, Seoul, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
29
|
Prediction of effector proteins and their implications in pathogenicity of phytopathogenic filamentous fungi: A review. Int J Biol Macromol 2022; 206:188-202. [PMID: 35227707 DOI: 10.1016/j.ijbiomac.2022.02.133] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022]
Abstract
Plant pathogenic fungi encode and secrete effector proteins to promote pathogenesis. In recent years, the important role of effector proteins in fungi and plant host interactions has become increasingly prominent. In this review, the functional characterization and molecular mechanisms by which fungal effector proteins modulate biological processes and suppress the defense of plant hosts are discussed, with an emphasis on cell localization during fungal infection. This paper also provides a comprehensive review of bioinformatic and experimental methods that are currently available for the identification of fungal effector proteins. We additionally summarize the secretion pathways and the methods for verifying the presence effector proteins in plant host cells. For future research, comparative genomic studies of different pathogens with varying life cycles will allow comprehensive and systematic identification of effector proteins. Additionally, functional analysis of effector protein interactions with a wider range of hosts (especially non-model crops) will provide more detailed repertoires of fungal effectors. Identifying effector proteins and verifying their functions will improve our understanding of their role in causing disease and in turn guide future strategies for combatting fungal infections.
Collapse
|
30
|
Oliveira Monteiro LM, Saraiva JP, Brizola Toscan R, Stadler PF, Silva-Rocha R, Nunes da Rocha U. PredicTF: prediction of bacterial transcription factors in complex microbial communities using deep learning. ENVIRONMENTAL MICROBIOME 2022; 17:7. [PMID: 35135629 PMCID: PMC8822659 DOI: 10.1186/s40793-021-00394-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Transcription factors (TFs) are proteins controlling the flow of genetic information by regulating cellular gene expression. A better understanding of TFs in a bacterial community context may open novel revenues for exploring gene regulation in ecosystems where bacteria play a key role. Here we describe PredicTF, a platform supporting the prediction and classification of novel bacterial TF in single species and complex microbial communities. PredicTF is based on a deep learning algorithm. RESULTS To train PredicTF, we created a TF database (BacTFDB) by manually curating a total of 11,961 TF distributed in 99 TF families. Five model organisms were used to test the performance and the accuracy of PredicTF. PredicTF was able to identify 24-62% of the known TFs with an average precision of 88% in our five model organisms. We demonstrated PredicTF using pure cultures and a complex microbial community. In these demonstrations, we used (meta)genomes for TF prediction and (meta)transcriptomes for determining the expression of putative TFs. CONCLUSION PredicTF demonstrated high accuracy in predicting transcription factors in model organisms. We prepared the pipeline to be easily implemented in studies profiling TFs using (meta)genomes and (meta)transcriptomes. PredicTF is an open-source software available at https://github.com/mdsufz/PredicTF .
Collapse
Affiliation(s)
- Lummy Maria Oliveira Monteiro
- Helmholtz Center for Environmental Research (UFZ), Leipzig, Germany
- Bioinformatics Group, Institute of Computer Science, Universität Leipzig, Leipzig, Germany
- Ribeirão Preto Medical School (FMRP), University of São Paulo (USP), Ribeirão Prêto, Brazil
| | | | | | - Peter F. Stadler
- Bioinformatics Group, Institute of Computer Science, Universität Leipzig, Leipzig, Germany
| | - Rafael Silva-Rocha
- Ribeirão Preto Medical School (FMRP), University of São Paulo (USP), Ribeirão Prêto, Brazil
| | | |
Collapse
|
31
|
Wang J, Yu X, Ai C, Gao R. Genome Sequence Resource of the Causal Agent of Persimmon Anthracnose, Colletotrichum horii Strain SD010 from China. PLANT DISEASE 2022; 106:730-733. [PMID: 34661446 DOI: 10.1094/pdis-05-21-1049-a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Colletotrichum horii is a main causal agent of persimmon (Diospyros kaki) anthracnose and is distributed widely in persimmon-producing areas of the world. Here, we report the first high-quality draft genome sequence of C. horii strain SD010. This will provide a reference for understanding adaptive evolution of genome structure, genes, and population diversity among members of the C. gloeosporioides species complex, and also help in understanding the mechanisms of host-pathogen interactions and improve management strategies of anthracnose.
Collapse
Affiliation(s)
- Jie Wang
- Shandong Institute of Pomology, Taian, 271000, China
| | - Xianmei Yu
- Shandong Institute of Pomology, Taian, 271000, China
| | - Chengxiang Ai
- Shandong Institute of Pomology, Taian, 271000, China
| | - Rui Gao
- Shandong Institute of Pomology, Taian, 271000, China
| |
Collapse
|
32
|
Functional characterization of the GATA-type transcription factor PaNsdD in the filamentous fungus Podospora anserina and its interplay with the sterigmatocystin pathway. Appl Environ Microbiol 2022; 88:e0237821. [PMID: 35080910 PMCID: PMC8939327 DOI: 10.1128/aem.02378-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The model ascomycete Podospora anserina, distinguished by its strict sexual development, is a prolific but yet unexploited reservoir of natural products. The GATA-type transcription factor NsdD has been characterized by the role in balancing asexual and sexual reproduction and governing secondary metabolism in filamentous fungi. In the present study, we functionally investigated the NsdD ortholog PaNsdD in P. anserina. Compared to the wild-type strain, vegetative growth, ageing processes, sexual reproduction, stress tolerance, and interspecific confrontations in the mutant were drastically impaired, owing to the loss of function of PaNsdD. In addition, the production of 3-acetyl-4-methylpyrrole, a new metabolite identified in P. anserina in this study, was significantly inhibited in the ΔPaNsdD mutant. We also demonstrated the interplay of PaNsdD with the sterigmatocystin biosynthetic gene pathway, especially as the deletion of PaNsdD triggered the enhanced red-pink pigment biosynthesis that occurs only in the presence of the core polyketide synthase-encoding gene PaStcA of the sterigmatocystin pathway. Taken together, these results contribute to a better understanding of the global regulation mediated by PaNsdD in P. anserina, especially with regard to its unexpected involvement in the fungal ageing process and its interplay with the sterigmatocystin pathway. IMPORTANCE Fungal transcription factors play an essential role in coordinating multiple physiological processes. However, little is known about the functional characterization of transcription factors in the filamentous fungus Podospora anserina. In this study, a GATA-type regulator PaNsdD was investigated in P. anserina. The results showed that PaNsdD was a key factor that can control the fungal ageing process, vegetative growth, pigmentation, stress response, and interspecific confrontations and positively regulate the production of 3-acetyl-4-methylpyrrole. Meanwhile, a molecular interaction was implied between PaNsdD and the sterigmatocystin pathway. Overall, loss of function of PaNsdD seems to be highly disadvantageous for P. anserina, which relies on pure sexual reproduction in a limited life span. Therefore, PaNsdD is clearly indispensable for the survival and propagation of P. anserina in its complex ecological niches.
Collapse
|
33
|
Wen D, Yu L, Xiong D, Tian C. Genome-Wide Identification of bZIP Transcription Factor Genes and Functional Analyses of Two Members in Cytospora chrysosperma. J Fungi (Basel) 2021; 8:jof8010034. [PMID: 35049973 PMCID: PMC8778692 DOI: 10.3390/jof8010034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 12/25/2022] Open
Abstract
The basic leucine zipper (bZIP) transcription factor (TF) family, one of the largest and the most diverse TF families, is widely distributed across the eukaryotes. It has been described that the bZIP TFs play diverse roles in development, nutrient utilization, and various stress responses in fungi. However, little is known of the bZIP members in Cytospora chrysosperma, a notorious plant pathogenic fungus, which causes canker disease on over 80 woody plant species. In this study, 26 bZIP genes were systematically identified in the genome of C. chrysosperma, and two of them (named CcbZIP05 and CcbZIP23) significantly down-regulated in CcPmk1 deletion mutant (a pathogenicity-related mitogen-activated protein kinase) were selected for further analysis. Deletion of CcbZIP05 or CcbZIP23 displayed a dramatic reduction in fungal growth but showed increased hypha branching and resistance to cell wall inhibitors and abiotic stresses. The CcbZIP05 deletion mutants but not CcbZIP23 deletion mutants were more sensitive to the hydrogen peroxide compared to the wild-type and complemented strains. Additionally, the CcbZIP23 deletion mutants produced few pycnidia but more pigment. Remarkably, both CcbZIP05 and CcbZIP23 deletion mutants were significantly reduced in fungal virulence. Further analysis showed that CcbZIP05 and CcbZIP23 could regulate the expression of putative effector genes and chitin synthesis-related genes. Taken together, our results suggest that CcbZIP05 and CcbZIP23 play important roles in fungal growth, abiotic stresses response, and pathogenicity, which will provide comprehensive information on the CcbZIP genes and lay the foundation for further research on the bZIP members in C. chrysosperma.
Collapse
Affiliation(s)
- Dasen Wen
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (D.W.); (L.Y.)
| | - Lu Yu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (D.W.); (L.Y.)
| | - Dianguang Xiong
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (D.W.); (L.Y.)
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing 100083, China
- Correspondence: (D.X.); (C.T.)
| | - Chengming Tian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (D.W.); (L.Y.)
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing 100083, China
- Correspondence: (D.X.); (C.T.)
| |
Collapse
|
34
|
Olivares-Yañez C, Sánchez E, Pérez-Lara G, Seguel A, Camejo PY, Larrondo LF, Vidal EA, Canessa P. A comprehensive transcription factor and DNA-binding motif resource for the construction of gene regulatory networks in Botrytis cinerea and Trichoderma atroviride. Comput Struct Biotechnol J 2021; 19:6212-6228. [PMID: 34900134 PMCID: PMC8637145 DOI: 10.1016/j.csbj.2021.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 11/25/2022] Open
Abstract
Botrytis cinerea and Trichoderma atroviride are two relevant fungi in agricultural systems. To gain insights into these organisms' transcriptional gene regulatory networks (GRNs), we generated a manually curated transcription factor (TF) dataset for each of them, followed by a GRN inference utilizing available sequence motifs describing DNA-binding specificity and global gene expression data. As a proof of concept of the usefulness of this resource to pinpoint key transcriptional regulators, we employed publicly available transcriptomics data and a newly generated dual RNA-seq dataset to build context-specific Botrytis and Trichoderma GRNs under two different biological paradigms: exposure to continuous light and Botrytis-Trichoderma confrontation assays. Network analysis of fungal responses to constant light revealed striking differences in the transcriptional landscape of both fungi. On the other hand, we found that the confrontation of both microorganisms elicited a distinct set of differentially expressed genes with changes in T. atroviride exceeding those in B. cinerea. Using our regulatory network data, we were able to determine, in both fungi, central TFs involved in this interaction response, including TFs controlling a large set of extracellular peptidases in the biocontrol agent T. atroviride. In summary, our work provides a comprehensive catalog of transcription factors and regulatory interactions for both organisms. This catalog can now serve as a basis for generating novel hypotheses on transcriptional regulatory circuits in different experimental contexts.
Collapse
Affiliation(s)
- Consuelo Olivares-Yañez
- ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Avda. Libertador Bernardo O'Higgins 340, Santiago, Chile.,Centro de Biotecnologia Vegetal, Universidad Andres Bello, Republica 330, Santiago, Chile
| | - Evelyn Sánchez
- ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Avda. Libertador Bernardo O'Higgins 340, Santiago, Chile.,Centro de Genomica y Bioinformatica, Facultad de Ciencias, Universidad Mayor, Camino la Pirámide 5750, Huechuraba, Santiago, Chile
| | - Gabriel Pérez-Lara
- ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Avda. Libertador Bernardo O'Higgins 340, Santiago, Chile.,Centro de Biotecnologia Vegetal, Universidad Andres Bello, Republica 330, Santiago, Chile
| | - Aldo Seguel
- ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Avda. Libertador Bernardo O'Higgins 340, Santiago, Chile.,Departamento de Genetica Molecular y Microbiologia, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Avda. Libertador Bernardo O'Higgins 340, Santiago, Chile
| | - Pamela Y Camejo
- ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Avda. Libertador Bernardo O'Higgins 340, Santiago, Chile
| | - Luis F Larrondo
- ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Avda. Libertador Bernardo O'Higgins 340, Santiago, Chile.,Departamento de Genetica Molecular y Microbiologia, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Avda. Libertador Bernardo O'Higgins 340, Santiago, Chile
| | - Elena A Vidal
- ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Avda. Libertador Bernardo O'Higgins 340, Santiago, Chile.,Centro de Genomica y Bioinformatica, Facultad de Ciencias, Universidad Mayor, Camino la Pirámide 5750, Huechuraba, Santiago, Chile.,Escuela de Biotecnologia, Facultad de Ciencias, Universidad Mayor, Camino la Pirámide 5750, Huechuraba, Santiago, Chile
| | - Paulo Canessa
- ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Avda. Libertador Bernardo O'Higgins 340, Santiago, Chile.,Centro de Biotecnologia Vegetal, Universidad Andres Bello, Republica 330, Santiago, Chile
| |
Collapse
|
35
|
Genomic and Experimental Investigations of Auriscalpium and Strobilurus Fungi Reveal New Insights into Pinecone Decomposition. J Fungi (Basel) 2021; 7:jof7080679. [PMID: 34436218 PMCID: PMC8401616 DOI: 10.3390/jof7080679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Saprophytic fungi (SPF) play vital roles in ecosystem dynamics and decomposition. However, because of the complexity of living systems, our understanding of how SPF interact with each other to decompose organic matter is very limited. Here we studied their roles and interactions in the decomposition of highly specialized substrates between the two genera Auriscalpium and Strobilurus fungi-colonized fallen pinecones of the same plant sequentially. We obtained the genome sequences from seven fungal species with three pairs: A. orientale-S. luchuensis, A. vulgare-S. stephanocystis and A. microsporum-S. pachcystidiatus/S. orientalis on cones of Pinus yunnanensis, P. sylvestris and P. armandii, respectively, and the organic profiles of substrate during decomposition. Our analyses revealed evidence for both competition and cooperation between the two groups of fungi during decomposition, enabling efficient utilization of substrates with complementary profiles of carbohydrate active enzymes (CAZymes). The Auriscalpium fungi are highly effective at utilizing the primary organic carbon, such as lignin, and hemicellulose in freshly fallen cones, facilitated the invasion and colonization by Strobilurus fungi. The Strobilurus fungi have genes coding for abundant CAZymes to utilize the remaining organic compounds and for producing an arsenal of secondary metabolites such as strobilurins that can inhibit other fungi from colonizing the pinecones.
Collapse
|
36
|
Lü BB, Wu GG, Sun Y, Zhang LS, Wu X, Jiang W, Li P, Huang YN, Wang JB, Zhao YC, Liu H, Song LL, Mo Q, Pan AH, Yang Y, Long XQ, Cui WD, Zhang C, Wang X, Tang XM. Comparative Transcriptome and Endophytic Bacterial Community Analysis of Morchella conica SH. Front Microbiol 2021; 12:682356. [PMID: 34354681 PMCID: PMC8329594 DOI: 10.3389/fmicb.2021.682356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/10/2021] [Indexed: 12/13/2022] Open
Abstract
The precious rare edible fungus Morchella conica is popular worldwide for its rich nutrition, savory flavor, and varieties of bioactive components. Due to its high commercial, nutritional, and medicinal value, it has always been a hot spot. However, the molecular mechanism and endophytic bacterial communities in M. conica were poorly understood. In this study, we sequenced, assembled, and analyzed the genome of M. conica SH. Transcriptome analysis reveals significant differences between the mycelia and fruiting body. As shown in this study, 1,329 and 2,796 genes were specifically expressed in the mycelia and fruiting body, respectively. The Gene Ontology (GO) enrichment showed that RNA polymerase II transcription activity-related genes were enriched in the mycelium-specific gene cluster, and nucleotide binding-related genes were enriched in the fruiting body-specific gene cluster. Further analysis of differentially expressed genes in different development stages resulted in finding two groups with distinct expression patterns. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment displays that glycan degradation and ABC transporters were enriched in the group 1 with low expressed level in the mycelia, while taurine and hypotaurine metabolismand tyrosine metabolism-related genes were significantly enriched in the group 2 with high expressed level in mycelia. Moreover, a dynamic shift of bacterial communities in the developing fruiting body was detected by 16S rRNA sequencing, and co-expression analysis suggested that bacterial communities might play an important role in regulating gene expression. Taken together, our study provided a better understanding of the molecular biology of M. conica SH and direction for future research on artificial cultivation.
Collapse
Affiliation(s)
- Bei B Lü
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Guo G Wu
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yu Sun
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Liang S Zhang
- Institute of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiao Wu
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Wei Jiang
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Peng Li
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yan N Huang
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jin B Wang
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yong C Zhao
- Institute of Edible Fungi, Yunnan Academy of Agricultural Sciences, Yunnan, China
| | - Hua Liu
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Li L Song
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Qin Mo
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Ai H Pan
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xuan Q Long
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Wei D Cui
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Chao Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xu Wang
- Department of Pathobiology, Auburn University, Auburn, AL, United States.,HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Xue M Tang
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
37
|
John E, Singh KB, Oliver RP, Tan K. Transcription factor control of virulence in phytopathogenic fungi. MOLECULAR PLANT PATHOLOGY 2021; 22:858-881. [PMID: 33973705 PMCID: PMC8232033 DOI: 10.1111/mpp.13056] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 05/12/2023]
Abstract
Plant-pathogenic fungi are a significant threat to economic and food security worldwide. Novel protection strategies are required and therefore it is critical we understand the mechanisms by which these pathogens cause disease. Virulence factors and pathogenicity genes have been identified, but in many cases their roles remain elusive. It is becoming increasingly clear that gene regulation is vital to enable plant infection and transcription factors play an essential role. Efforts to determine their regulatory functions in plant-pathogenic fungi have expanded since the annotation of fungal genomes revealed the ubiquity of transcription factors from a broad range of families. This review establishes the significance of transcription factors as regulatory elements in plant-pathogenic fungi and provides a systematic overview of those that have been functionally characterized. Detailed analysis is provided on regulators from well-characterized families controlling various aspects of fungal metabolism, development, stress tolerance, and the production of virulence factors such as effectors and secondary metabolites. This covers conserved transcription factors with either specialized or nonspecialized roles, as well as recently identified regulators targeting key virulence pathways. Fundamental knowledge of transcription factor regulation in plant-pathogenic fungi provides avenues to identify novel virulence factors and improve our understanding of the regulatory networks linked to pathogen evolution, while transcription factors can themselves be specifically targeted for disease control. Areas requiring further insight regarding the molecular mechanisms and/or specific classes of transcription factors are identified, and direction for future investigation is presented.
Collapse
Affiliation(s)
- Evan John
- Centre for Crop and Disease ManagementCurtin UniversityBentleyWestern AustraliaAustralia
- School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| | - Karam B. Singh
- Agriculture and FoodCommonwealth Scientific and Industrial Research OrganisationFloreatWestern AustraliaAustralia
| | - Richard P. Oliver
- School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| | - Kar‐Chun Tan
- Centre for Crop and Disease ManagementCurtin UniversityBentleyWestern AustraliaAustralia
- School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| |
Collapse
|
38
|
Zuriegat Q, Zheng Y, Liu H, Wang Z, Yun Y. Current progress on pathogenicity-related transcription factors in Fusarium oxysporum. MOLECULAR PLANT PATHOLOGY 2021; 22:882-895. [PMID: 33969616 PMCID: PMC8232035 DOI: 10.1111/mpp.13068] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 05/03/2023]
Abstract
Fusarium oxysporum is a well-known soilborne plant pathogen that causes severe vascular wilt in economically important crops worldwide. During the infection process, F. oxysporum not only secretes various virulence factors, such as cell wall-degrading enzymes (CWDEs), effectors, and mycotoxins, that potentially play important roles in fungal pathogenicity but it must also respond to extrinsic abiotic stresses from the environment and the host. Over 700 transcription factors (TFs) have been predicted in the genome of F. oxysporum, but only 26 TFs have been functionally characterized in various formae speciales of F. oxysporum. Among these TFs, a total of 23 belonging to 10 families are required for pathogenesis through various mechanisms and pathways, and the zinc finger TF family is the largest family among these 10 families, which consists of 15 TFs that have been functionally characterized in F. oxysporum. In this review, we report current research progress on the 26 functionally analysed TFs in F. oxysporum and sort them into four groups based on their roles in F. oxysporum pathogenicity. Furthermore, we summarize and compare the biofunctions, involved pathways, putative targets, and homologs of these TFs and analyse the relationships among them. This review provides a systematic analysis of the regulation of virulence-related genes and facilitates further mechanistic analysis of TFs important in F. oxysporum virulence.
Collapse
Affiliation(s)
- Qussai Zuriegat
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yuru Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Institute for Food and Drug Quality ControlFuzhouChina
| | - Hong Liu
- College of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhouChina
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
- Institute of OceanographyMinjiang UniversityFuzhouChina
| | - Yingzi Yun
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
39
|
Transcriptional Responses of Fusarium graminearum Interacted with Soybean to Cause Root Rot. J Fungi (Basel) 2021; 7:jof7060422. [PMID: 34072279 PMCID: PMC8227214 DOI: 10.3390/jof7060422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 01/16/2023] Open
Abstract
Fusarium graminearum is the most devastating pathogen of Fusarium head blight of cereals, stalk and ear of maize, and it has recently become a potential threat for soybean as maize-soybean strip relay intercropping is widely practiced in China. To elucidate the pathogenesis mechanism of F. graminearum on intercropped soybean which causes root rot, transcriptional profiling of F. graminearum at 12, 24, and 48 h post-inoculation (hpi) on soybean hypocotyl tissues was conducted. In total, 2313 differentially expressed genes (DEGs) of F. graminearum were annotated by both KEGG pathway and Gene Ontology (GO) analysis. Among them, 128 DEGs were commonly expressed at three inoculation time points while the maximum DEGs were induced at 24 hpi. In addition, DEGs were also rich in carbon metabolism, ribosome and peroxisome pathways which might contribute to carbon source utilization, sexual reproduction, virulence and survival of F. graminearum when infected on soybean. Hence, this study will provide some basis for the deep understanding the pathogenesis mechanism of F. graminearum on different hosts and its effective control in maize-soybean strip relay intercropping systems.
Collapse
|
40
|
Park SY, Jeon J, Kim JA, Jeon MJ, Yu NH, Kim S, Park AR, Kim JC, Lee Y, Kim Y, Choi ED, Jeong MH, Lee YH, Kim S. Draft Genome Sequence of Xylaria grammica EL000614, a Strain Producing Grammicin, a Potent Nematicidal Compound. MYCOBIOLOGY 2021; 49:294-296. [PMID: 34290553 PMCID: PMC8259839 DOI: 10.1080/12298093.2021.1914360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 06/13/2023]
Abstract
An endolichenic fungus, Xylaria grammica strain EL000614, showed strong nematicidal effects against plant pathogenic nematode, Meloidogyne incognita by producing grammicin. We report genome assembly of X. grammica EL000614 comprised of 25 scaffolds with a total length of 54.73 Mb, N50 of 4.60 Mb, and 99.8% of BUSCO completeness. GC contents of this genome were 44.02%. Gene families associated with biosynthesis of secondary metabolites or regulatory proteins were identified out of 13,730 gene models predicted.
Collapse
Affiliation(s)
- Sook-Young Park
- Department of Plant Medicine, Sunchon National University, Suncheon, Korea
| | - Jongbum Jeon
- Department of Agricultural Biotechnology, Interdisciplinary Program in Agricultural Genomics, Center for Fungal Genetic Resources, and Center for Fungal Pathogenesis, Seoul National University, Seoul, Korea
| | - Jung A Kim
- Animal Resources Division, National Institute of Biological Resources, Incheon, Korea
| | - Mi Jin Jeon
- Microorganism Resources Division, National Institute of Biological Resources, Incheon, Korea
| | - Nan Hee Yu
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju, Korea
| | - Seulbi Kim
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju, Korea
| | - Ae Ran Park
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju, Korea
| | - Jin-Cheol Kim
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju, Korea
| | - Yerim Lee
- Department of Plant Medicine, Sunchon National University, Suncheon, Korea
| | - Youngmin Kim
- Department of Plant Medicine, Sunchon National University, Suncheon, Korea
| | - Eu Ddeum Choi
- Department of Plant Medicine, Sunchon National University, Suncheon, Korea
| | - Min-Hye Jeong
- Department of Plant Medicine, Sunchon National University, Suncheon, Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Interdisciplinary Program in Agricultural Genomics, Center for Fungal Genetic Resources, and Center for Fungal Pathogenesis, Seoul National University, Seoul, Korea
| | - Soonok Kim
- Microorganism Resources Division, National Institute of Biological Resources, Incheon, Korea
| |
Collapse
|
41
|
Lee DY, Jeon J, Kim KT, Cheong K, Song H, Choi G, Ko J, Opiyo SO, Correll JC, Zuo S, Madhav S, Wang GL, Lee YH. Comparative genome analyses of four rice-infecting Rhizoctonia solani isolates reveal extensive enrichment of homogalacturonan modification genes. BMC Genomics 2021; 22:242. [PMID: 33827423 PMCID: PMC8028249 DOI: 10.1186/s12864-021-07549-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 03/23/2021] [Indexed: 11/24/2022] Open
Abstract
Background Plant pathogenic isolates of Rhizoctonia solani anastomosis group 1-intraspecific group IA (AG1-IA) infect a wide range of crops causing diseases such as rice sheath blight (ShB). ShB has become a serious disease in rice production worldwide. Additional genome sequences of the rice-infecting R. solani isolates from different geographical regions will facilitate the identification of important pathogenicity-related genes in the fungus. Results Rice-infecting R. solani isolates B2 (USA), ADB (India), WGL (India), and YN-7 (China) were selected for whole-genome sequencing. Single-Molecule Real-Time (SMRT) and Illumina sequencing were used for de novo sequencing of the B2 genome. The genomes of the other three isolates were then sequenced with Illumina technology and assembled using the B2 genome as a reference. The four genomes ranged from 38.9 to 45.0 Mbp in size, contained 9715 to 11,505 protein-coding genes, and shared 5812 conserved orthogroups. The proportion of transposable elements (TEs) and average length of TE sequences in the B2 genome was nearly 3 times and 2 times greater, respectively, than those of ADB, WGL and YN-7. Although 818 to 888 putative secreted proteins were identified in the four isolates, only 30% of them were predicted to be small secreted proteins, which is a smaller proportion than what is usually found in the genomes of cereal necrotrophic fungi. Despite a lack of putative secondary metabolite biosynthesis gene clusters, the rice-infecting R. solani genomes were predicted to contain the most carbohydrate-active enzyme (CAZyme) genes among all 27 fungal genomes used in the comparative analysis. Specifically, extensive enrichment of pectin/homogalacturonan modification genes were found in all four rice-infecting R. solani genomes. Conclusion Four R. solani genomes were sequenced, annotated, and compared to other fungal genomes to identify distinctive genomic features that may contribute to the pathogenicity of rice-infecting R. solani. Our analyses provided evidence that genomic conservation of R. solani genomes among neighboring AGs was more diversified than among AG1-IA isolates and the presence of numerous predicted pectin modification genes in the rice-infecting R. solani genomes that may contribute to the wide host range and virulence of this necrotrophic fungal pathogen. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07549-7.
Collapse
Affiliation(s)
- Da-Young Lee
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Jongbum Jeon
- Fungal Bioinformatics Laboratory, Seoul National University, Seoul, 08826, South Korea.,Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
| | - Ki-Tae Kim
- Department of Agricultural Life Science, Sunchon National University, Suncheon, 57922, South Korea
| | - Kyeongchae Cheong
- Fungal Bioinformatics Laboratory, Seoul National University, Seoul, 08826, South Korea.,Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
| | - Hyeunjeong Song
- Fungal Bioinformatics Laboratory, Seoul National University, Seoul, 08826, South Korea.,Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
| | - Gobong Choi
- Fungal Bioinformatics Laboratory, Seoul National University, Seoul, 08826, South Korea.,Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
| | - Jaeho Ko
- Fungal Bioinformatics Laboratory, Seoul National University, Seoul, 08826, South Korea.,Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, South Korea
| | - Stephen O Opiyo
- Ohio Agricultural Research and Development Center (OARDC) Molecular & Cellular Imaging Center (MCIC)-Columbus, The Ohio State University, Columbus, OH, 43210, USA
| | - James C Correll
- Department of Entomology & Plant Pathology, University of Arkansas, Fayetteville, AK, 72701, USA
| | - Shimin Zuo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Sheshu Madhav
- Indian Council of Agricultural Research-Indian Institute of Rice Research (ICAR-IIRR), Hyderabad, 500030, Telangana, India
| | - Guo-Liang Wang
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA.
| | - Yong-Hwan Lee
- Fungal Bioinformatics Laboratory, Seoul National University, Seoul, 08826, South Korea. .,Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea. .,Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, South Korea. .,Center for Fungal Genetic Resources, Plant Immunity Research Center, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, 08826, Seoul, South Korea.
| |
Collapse
|
42
|
Bhattarai K, Bhattarai K, Kabir ME, Bastola R, Baral B. Fungal natural products galaxy: Biochemistry and molecular genetics toward blockbuster drugs discovery. ADVANCES IN GENETICS 2021; 107:193-284. [PMID: 33641747 DOI: 10.1016/bs.adgen.2020.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Secondary metabolites synthesized by fungi have become a precious source of inspiration for the design of novel drugs. Indeed, fungi are prolific producers of fascinating, diverse, structurally complex, and low-molecular-mass natural products with high therapeutic leads, such as novel antimicrobial compounds, anticancer compounds, immunosuppressive agents, among others. Given that these microorganisms possess the extraordinary capacity to secrete diverse chemical scaffolds, they have been highly exploited by the giant pharma companies to generate small molecules. This has been made possible because the isolation of metabolites from fungal natural sources is feasible and surpasses the organic synthesis of compounds, which otherwise remains a significant bottleneck in the drug discovery process. Here in this comprehensive review, we have discussed recent studies on different fungi (pathogenic, non-pathogenic, commensal, and endophytic/symbiotic) from different habitats (terrestrial and marines), the specialized metabolites they biosynthesize, and the drugs derived from these specialized metabolites. Moreover, we have unveiled the logic behind the biosynthesis of vital chemical scaffolds, such as NRPS, PKS, PKS-NRPS hybrid, RiPPS, terpenoids, indole alkaloids, and their genetic mechanisms. Besides, we have provided a glimpse of the concept behind mycotoxins, virulence factor, and host immune response based on fungal infections.
Collapse
Affiliation(s)
- Keshab Bhattarai
- Pharmaceutical Institute, Department of Pharmaceutical Biology, University of Tübingen, Tübingen, Germany
| | - Keshab Bhattarai
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Md Ehsanul Kabir
- Animal Health Research Division, Bangladesh Livestock Research Institute, Savar, Dhaka, Bangladesh
| | - Rina Bastola
- Spinal Cord Injury Association-Nepal (SCIAN), Pokhara, Nepal
| | - Bikash Baral
- Department of Biochemistry, University of Turku, Turku, Finland.
| |
Collapse
|
43
|
Hong Y, Cai R, Guo J, Zhong Z, Bao J, Wang Z, Chen X, Zhou J, Lu GD. Carbon catabolite repressor MoCreA is required for the asexual development and pathogenicity of the rice blast fungus. Fungal Genet Biol 2020; 146:103496. [PMID: 33290821 DOI: 10.1016/j.fgb.2020.103496] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/12/2020] [Accepted: 11/27/2020] [Indexed: 11/16/2022]
Abstract
During the infection and colonization process, the rice blast fungus Magnaporthe oryzae faces various challenges from hostile environment, such as nutrient limitation and carbon stress, while carbon catabolite repression (CCR) mechanism would facilitate the fungus to shrewdly and efficiently utilize carbon nutrients under fickle nutritional conditions since it ensures the preferential utilization of most preferred carbon sources through repressing the expression of enzymes required for the utilization of less preferred carbon sources. Researches on M. oryzae CCR have made some progress, however the involved regulation mechanism is still largely obscured, especially, little is known about the key carbon catabolite repressor CreA. Here we identified and characterized the biological functions of the CreA homolog MoCreA in M. oryzae. MoCreA is constitutively expressed throughout all the life stages of the fungus, and it can shuttle between nucleus and cytoplasm which is induced by glucose. Following functional analyses of MoCreA suggested that it was required for the vegetative growth, conidiation, appressorium formation and pathogenicity of M. oryzae. Moreover, comparative transcriptomic analysis revealed that disruption of MoCreA resulted in the extensive gene expression variations, including a large number of carbon metabolism enzymes, transcription factors and pathogenicity-related genes. Taken together, our results demonstrated that, as a key regulator of CCR, MoCreA plays a vital role in precise regulation of the asexual development and pathogenicity of the rice blast fungus.
Collapse
Affiliation(s)
- Yonghe Hong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Renli Cai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiayuan Guo
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhenhui Zhong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiandong Bao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Oceanography, Minjiang University, Fuzhou 350108, China; Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaofeng Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Oceanography, Minjiang University, Fuzhou 350108, China; Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jie Zhou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Guo-Dong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
44
|
Two nuclear effectors of the rice blast fungus modulate host immunity via transcriptional reprogramming. Nat Commun 2020; 11:5845. [PMID: 33203871 PMCID: PMC7672089 DOI: 10.1038/s41467-020-19624-w] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/20/2020] [Indexed: 02/04/2023] Open
Abstract
Pathogens utilize multiple types of effectors to modulate plant immunity. Although many apoplastic and cytoplasmic effectors have been reported, nuclear effectors have not been well characterized in fungal pathogens. Here, we characterize two nuclear effectors of the rice blast pathogen Magnaporthe oryzae. Both nuclear effectors are secreted via the biotrophic interfacial complex, translocated into the nuclei of initially penetrated and surrounding cells, and reprogram the expression of immunity-associated genes by binding on effector binding elements in rice. Their expression in transgenic rice causes ambivalent immunity: increased susceptibility to M. oryzae and Xanthomonas oryzae pv. oryzae, hemibiotrophic pathogens, but enhanced resistance to Cochliobolus miyabeanus, a necrotrophic pathogen. Our findings help remedy a significant knowledge deficiency in the mechanism of M. oryzae–rice interactions and underscore how effector-mediated manipulation of plant immunity by one pathogen may also affect the disease severity by other pathogens. Plant pathogens secrete various effectors to manipulate host immunity. Here, Kim et al. describe two Magnaporthe oryzae effectors that translocate into the nuclei of infected rice cells and reprogram expression of immunity-associated genes, increasing susceptibility to hemibiotrophic pathogens.
Collapse
|
45
|
Fountain J, Pandey A, Nayak S, Bajaj P, Wang H, Kumar V, Chitikineni A, Abbas H, Scully B, Kemerait R, Pandey M, Guo B, Varshney R. Transcriptional responses of toxigenic and atoxigenic isolates of Aspergillus flavus to oxidative stress in aflatoxin-conducive and non-conducive media. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2020.2566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aflatoxin production by isolates of Aspergillus flavus varies, ranging from highly toxigenic to completely atoxigenic. Several mechanisms have been identified which regulate aflatoxin production including medium carbon source and oxidative stress. In recent studies, aflatoxin production has been implicated in partially ameliorating oxidative stress in A. flavus. To better understand the role of aflatoxin production in oxidative stress responses, a selection of toxigenic and atoxigenic isolates of A. flavus with moderate to high oxidative stress tolerance were exposed to increasing concentrations of H2O2 in both aflatoxin-conducive and non-conducive media. Mycelial mats were collected for global transcriptome sequencing followed by differential expression, functional prediction, and weighted co-expression analyses. Oxidative stress and medium carbon source had a significant effect on the expression of several secondary metabolite gene clusters including those for aflatoxin, aflatrem, aflavarin, cyclopiazonic acid, and kojic acid. Atoxigenic biological control isolates showed less differential expression under stress than other atoxigenic isolates suggesting expression profiles may be useful in screening. Increasing stress also resulted in regulation of SakA/Hog1 and MpkA MAP kinase signalling pathways pointing to their potential roles in regulating oxidative stress responses. Their expression was also influenced by medium carbon source. These results suggest that aflatoxin production along with that of other mycotoxins may occur as part of a concerted coping mechanism for oxidative stress and its effects in the environment. This mechanism is also regulated by availability of simple sugars and glycolytic compounds for their biosynthesis.
Collapse
Affiliation(s)
- J.C. Fountain
- USDA-ARS, Crop Protection and Management Research Unit, Tifton, GA 31793, USA
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, MS 39762, USA
| | - A.K. Pandey
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana 502324, India
| | - S.N. Nayak
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, Karnataka 580005, India
| | - P. Bajaj
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana 502324, India
| | - H. Wang
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA
| | - V. Kumar
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana 502324, India
| | - A. Chitikineni
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana 502324, India
| | - H.K. Abbas
- USDA-ARS, Biological Control of Pests Research Unit, Stoneville, MS, USA
| | - B.T. Scully
- USDA-ARS, National Horticultural Research Laboratory, Fort Pierce, FL, USA
| | - R.C. Kemerait
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA
| | - M.K. Pandey
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana 502324, India
| | - B. Guo
- USDA-ARS, Crop Protection and Management Research Unit, Tifton, GA 31793, USA
| | - R.K. Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana 502324, India
| |
Collapse
|
46
|
Fountain J, Pandey A, Nayak S, Bajaj P, Wang H, Kumar V, Chitikineni A, Abbas H, Scully B, Kemerait R, Pandey M, Guo B, Varshney R. Transcriptional responses of toxigenic and atoxigenic isolates of Aspergillus flavus to oxidative stress in aflatoxin-conducive and non-conducive media. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2020.test2566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aflatoxin production by isolates of Aspergillus flavus varies, ranging from highly toxigenic to completely atoxigenic. Several mechanisms have been identified which regulate aflatoxin production including medium carbon source and oxidative stress. In recent studies, aflatoxin production has been implicated in partially ameliorating oxidative stress in A. flavus. To better understand the role of aflatoxin production in oxidative stress responses, a selection of toxigenic and atoxigenic isolates of A. flavus with moderate to high oxidative stress tolerance were exposed to increasing concentrations of H2O2 in both aflatoxin-conducive and non-conducive media. Mycelial mats were collected for global transcriptome sequencing followed by differential expression, functional prediction, and weighted co-expression analyses. Oxidative stress and medium carbon source had a significant effect on the expression of several secondary metabolite gene clusters including those for aflatoxin, aflatrem, aflavarin, cyclopiazonic acid, and kojic acid. Atoxigenic biological control isolates showed less differential expression under stress than other atoxigenic isolates suggesting expression profiles may be useful in screening. Increasing stress also resulted in regulation of SakA/Hog1 and MpkA MAP kinase signalling pathways pointing to their potential roles in regulating oxidative stress responses. Their expression was also influenced by medium carbon source. These results suggest that aflatoxin production along with that of other mycotoxins may occur as part of a concerted coping mechanism for oxidative stress and its effects in the environment. This mechanism is also regulated by availability of simple sugars and glycolytic compounds for their biosynthesis.
Collapse
Affiliation(s)
- J.C. Fountain
- USDA-ARS, Crop Protection and Management Research Unit, Tifton, GA 31793, USA
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, MS 39762, USA
| | - A.K. Pandey
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana 502324, India
| | - S.N. Nayak
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, Karnataka 580005, India
| | - P. Bajaj
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana 502324, India
| | - H. Wang
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA
| | - V. Kumar
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana 502324, India
| | - A. Chitikineni
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana 502324, India
| | - H.K. Abbas
- USDA-ARS, Biological Control of Pests Research Unit, Stoneville, MS, USA
| | - B.T. Scully
- USDA-ARS, National Horticultural Research Laboratory, Fort Pierce, FL, USA
| | - R.C. Kemerait
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA
| | - M.K. Pandey
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana 502324, India
| | - B. Guo
- USDA-ARS, Crop Protection and Management Research Unit, Tifton, GA 31793, USA
| | - R.K. Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana 502324, India
| |
Collapse
|
47
|
Genetic Underpinnings of Host Manipulation by Ophiocordyceps as Revealed by Comparative Transcriptomics. G3-GENES GENOMES GENETICS 2020; 10:2275-2296. [PMID: 32354705 PMCID: PMC7341126 DOI: 10.1534/g3.120.401290] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ant-infecting Ophiocordyceps fungi are globally distributed, host manipulating, specialist parasites that drive aberrant behaviors in infected ants, at a lethal cost to the host. An apparent increase in activity and wandering behaviors precedes a final summiting and biting behavior onto vegetation, which positions the manipulated ant in a site beneficial for fungal growth and transmission. We investigated the genetic underpinnings of host manipulation by: (i) producing a high-quality hybrid assembly and annotation of the Ophiocordyceps camponoti-floridani genome, (ii) conducting laboratory infections coupled with RNAseq of O. camponoti-floridani and its host, Camponotus floridanus, and (iii) comparing these data to RNAseq data of Ophiocordyceps kimflemingiae and Camponotus castaneus as a powerful method to identify gene expression patterns that suggest shared behavioral manipulation mechanisms across Ophiocordyceps-ant species interactions. We propose differentially expressed genes tied to ant neurobiology, odor response, circadian rhythms, and foraging behavior may result by activity of putative fungal effectors such as enterotoxins, aflatrem, and mechanisms disrupting feeding behaviors in the ant.
Collapse
|
48
|
Park SY, Jeon J, Kim JA, Jeon MJ, Jeong MH, Kim Y, Lee Y, Chung H, Lee YH, Kim S. Draft Genome Sequence of Alternaria alternata JS-1623, a Fungal Endophyte of Abies koreana. MYCOBIOLOGY 2020; 48:240-244. [PMID: 37970559 PMCID: PMC10635108 DOI: 10.1080/12298093.2020.1756134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 03/31/2020] [Accepted: 04/08/2020] [Indexed: 11/17/2023]
Abstract
Alternaria alternata JS-1623 is an endophytic fungus isolated from a stem tissue of Korean fir, Abies koreana. Ethyl acetate extracts of culture filtrates exhibited anti-inflammatory activity in LPS induced microglia BV-2 cell without cytotoxicity. Here we report a 33.67 Mb sized genome assembly of JS-1623 comprised of 13 scaffolds with N50 of 4.96 Mb, and 92.41% of BUSCO completeness. GC contents were 50.97%. Of the 11,197 genes annotated, gene families related to the biosynthesis of secondary metabolites or transcription factors were identified.
Collapse
Affiliation(s)
- Sook-Young Park
- Department of Plant Medicine, Sunchon National University, Suncheon, Korea
| | - Jongbum Jeon
- Department of Agricultural Biotechnology, Interdisciplinary Program in Agricultural Genomics, Center for Fungal Genetic Resources, and Center for Fungal Pathogenesis, Seoul National University, Seoul, Korea
| | - Jung A. Kim
- Microbiology Resources Division, National Institute of Biological Resources, Incheon, Korea
| | - Mi Jin Jeon
- Microbiology Resources Division, National Institute of Biological Resources, Incheon, Korea
| | - Min-Hye Jeong
- Department of Plant Medicine, Sunchon National University, Suncheon, Korea
| | - Youngmin Kim
- Department of Plant Medicine, Sunchon National University, Suncheon, Korea
| | - Yerim Lee
- Department of Plant Medicine, Sunchon National University, Suncheon, Korea
| | - Hyunjung Chung
- Department of Agricultural Biotechnology, Interdisciplinary Program in Agricultural Genomics, Center for Fungal Genetic Resources, and Center for Fungal Pathogenesis, Seoul National University, Seoul, Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Interdisciplinary Program in Agricultural Genomics, Center for Fungal Genetic Resources, and Center for Fungal Pathogenesis, Seoul National University, Seoul, Korea
| | - Soonok Kim
- Microbiology Resources Division, National Institute of Biological Resources, Incheon, Korea
| |
Collapse
|
49
|
Chen BX, Wei T, Xue LN, Zheng QW, Ye ZW, Zou Y, Yang Y, Yun F, Guo LQ, Lin JF. Transcriptome Analysis Reveals the Flexibility of Cordycepin Network in Cordyceps militaris Activated by L-Alanine Addition. Front Microbiol 2020; 11:577. [PMID: 32390960 PMCID: PMC7193312 DOI: 10.3389/fmicb.2020.00577] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/16/2020] [Indexed: 01/18/2023] Open
Abstract
Cordycepin, isolated from the traditional medicinal fungus Cordyceps militaris, has gained much attention due to its various clinical functions. Previous reports of L-alanine addition could significantly improve cordycepin production, but the molecular mechanism remains unknown. In this study, transcriptome analysis of C. militaris with doubled cordycepin production induced by L-alanine addition provides an insight into the flexibility of the cordycepin network. The biopathways of energy generation and amino acid conversion were activated so that cordycepin substrate generation was consequently improved. Specific genes of rate-limiting enzymes in these pathways, as well as related transcription factors, were figured out. Two key Zn2Cys6-type transcription factors CmTf1 and CmTf2 were verified to play the roles of doubling the cordycepin production by overexpression of their coding genes in C. militaris wild type. These results provide a complete map of the cordycepin network in C. militaris with a distinct understanding of the flexibility of joints, giving a better foundation for increasing cordycepin yield and strain breeding in the future.
Collapse
Affiliation(s)
- Bai-Xiong Chen
- Institute of Food Biotechnology & College of Food Science, South China Agricultural University, Guangzhou, China.,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Tao Wei
- Institute of Food Biotechnology & College of Food Science, South China Agricultural University, Guangzhou, China.,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Ling-Na Xue
- Institute of Food Biotechnology & College of Food Science, South China Agricultural University, Guangzhou, China.,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Qian-Wang Zheng
- Institute of Food Biotechnology & College of Food Science, South China Agricultural University, Guangzhou, China.,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Zhi-Wei Ye
- Institute of Food Biotechnology & College of Food Science, South China Agricultural University, Guangzhou, China.,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Yuan Zou
- Institute of Food Biotechnology & College of Food Science, South China Agricultural University, Guangzhou, China.,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Yi Yang
- Institute of Food Biotechnology & College of Food Science, South China Agricultural University, Guangzhou, China.,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Fan Yun
- Guangzhou Alchemy Biotechnology Co., Ltd., Guangzhou, China
| | - Li-Qiong Guo
- Institute of Food Biotechnology & College of Food Science, South China Agricultural University, Guangzhou, China.,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Jun-Fang Lin
- Institute of Food Biotechnology & College of Food Science, South China Agricultural University, Guangzhou, China.,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| |
Collapse
|
50
|
Draft Genome Sequence of Daldinia childiae JS-1345, an Endophytic Fungus Isolated from Stem Tissue of Korean Fir. Microbiol Resour Announc 2020; 9:9/14/e01284-19. [PMID: 32241861 PMCID: PMC7118187 DOI: 10.1128/mra.01284-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The fungus Daldinia childiae strain JS-1345, isolated from stem tissue of Abies koreana (Korean fir), has shown strong anti-inflammatory activity. Here, we report the genome sequence of D. childiae JS-1345. The final assembly consisted of 133 scaffolds totaling 38,652,569 bp (G+C content, 44.07%).
Collapse
|